1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/drivers/char/mem.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Added devfs support.
8 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10 */
11
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 #include <linux/uaccess.h>
33 #include <linux/security.h>
34 #include <linux/pseudo_fs.h>
35 #include <uapi/linux/magic.h>
36 #include <linux/mount.h>
37
38 #ifdef CONFIG_IA64
39 # include <linux/efi.h>
40 #endif
41
42 #define DEVMEM_MINOR 1
43 #define DEVPORT_MINOR 4
44
size_inside_page(unsigned long start,unsigned long size)45 static inline unsigned long size_inside_page(unsigned long start,
46 unsigned long size)
47 {
48 unsigned long sz;
49
50 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
51
52 return min(sz, size);
53 }
54
55 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
valid_phys_addr_range(phys_addr_t addr,size_t count)56 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
57 {
58 return addr + count <= __pa(high_memory);
59 }
60
valid_mmap_phys_addr_range(unsigned long pfn,size_t size)61 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
62 {
63 return 1;
64 }
65 #endif
66
67 #ifdef CONFIG_STRICT_DEVMEM
page_is_allowed(unsigned long pfn)68 static inline int page_is_allowed(unsigned long pfn)
69 {
70 return devmem_is_allowed(pfn);
71 }
range_is_allowed(unsigned long pfn,unsigned long size)72 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
73 {
74 u64 from = ((u64)pfn) << PAGE_SHIFT;
75 u64 to = from + size;
76 u64 cursor = from;
77
78 while (cursor < to) {
79 if (!devmem_is_allowed(pfn))
80 return 0;
81 cursor += PAGE_SIZE;
82 pfn++;
83 }
84 return 1;
85 }
86 #else
page_is_allowed(unsigned long pfn)87 static inline int page_is_allowed(unsigned long pfn)
88 {
89 return 1;
90 }
range_is_allowed(unsigned long pfn,unsigned long size)91 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
92 {
93 return 1;
94 }
95 #endif
96
97 #ifndef unxlate_dev_mem_ptr
98 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)99 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
100 {
101 }
102 #endif
103
should_stop_iteration(void)104 static inline bool should_stop_iteration(void)
105 {
106 if (need_resched())
107 cond_resched();
108 return fatal_signal_pending(current);
109 }
110
111 /*
112 * This funcion reads the *physical* memory. The f_pos points directly to the
113 * memory location.
114 */
read_mem(struct file * file,char __user * buf,size_t count,loff_t * ppos)115 static ssize_t read_mem(struct file *file, char __user *buf,
116 size_t count, loff_t *ppos)
117 {
118 phys_addr_t p = *ppos;
119 ssize_t read, sz;
120 void *ptr;
121 char *bounce;
122 int err;
123
124 if (p != *ppos)
125 return 0;
126
127 if (!valid_phys_addr_range(p, count))
128 return -EFAULT;
129 read = 0;
130 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
131 /* we don't have page 0 mapped on sparc and m68k.. */
132 if (p < PAGE_SIZE) {
133 sz = size_inside_page(p, count);
134 if (sz > 0) {
135 if (clear_user(buf, sz))
136 return -EFAULT;
137 buf += sz;
138 p += sz;
139 count -= sz;
140 read += sz;
141 }
142 }
143 #endif
144
145 bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
146 if (!bounce)
147 return -ENOMEM;
148
149 while (count > 0) {
150 unsigned long remaining;
151 int allowed, probe;
152
153 sz = size_inside_page(p, count);
154
155 err = -EPERM;
156 allowed = page_is_allowed(p >> PAGE_SHIFT);
157 if (!allowed)
158 goto failed;
159
160 err = -EFAULT;
161 if (allowed == 2) {
162 /* Show zeros for restricted memory. */
163 remaining = clear_user(buf, sz);
164 } else {
165 /*
166 * On ia64 if a page has been mapped somewhere as
167 * uncached, then it must also be accessed uncached
168 * by the kernel or data corruption may occur.
169 */
170 ptr = xlate_dev_mem_ptr(p);
171 if (!ptr)
172 goto failed;
173
174 probe = copy_from_kernel_nofault(bounce, ptr, sz);
175 unxlate_dev_mem_ptr(p, ptr);
176 if (probe)
177 goto failed;
178
179 remaining = copy_to_user(buf, bounce, sz);
180 }
181
182 if (remaining)
183 goto failed;
184
185 buf += sz;
186 p += sz;
187 count -= sz;
188 read += sz;
189 if (should_stop_iteration())
190 break;
191 }
192 kfree(bounce);
193
194 *ppos += read;
195 return read;
196
197 failed:
198 kfree(bounce);
199 return err;
200 }
201
write_mem(struct file * file,const char __user * buf,size_t count,loff_t * ppos)202 static ssize_t write_mem(struct file *file, const char __user *buf,
203 size_t count, loff_t *ppos)
204 {
205 phys_addr_t p = *ppos;
206 ssize_t written, sz;
207 unsigned long copied;
208 void *ptr;
209
210 if (p != *ppos)
211 return -EFBIG;
212
213 if (!valid_phys_addr_range(p, count))
214 return -EFAULT;
215
216 written = 0;
217
218 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
219 /* we don't have page 0 mapped on sparc and m68k.. */
220 if (p < PAGE_SIZE) {
221 sz = size_inside_page(p, count);
222 /* Hmm. Do something? */
223 buf += sz;
224 p += sz;
225 count -= sz;
226 written += sz;
227 }
228 #endif
229
230 while (count > 0) {
231 int allowed;
232
233 sz = size_inside_page(p, count);
234
235 allowed = page_is_allowed(p >> PAGE_SHIFT);
236 if (!allowed)
237 return -EPERM;
238
239 /* Skip actual writing when a page is marked as restricted. */
240 if (allowed == 1) {
241 /*
242 * On ia64 if a page has been mapped somewhere as
243 * uncached, then it must also be accessed uncached
244 * by the kernel or data corruption may occur.
245 */
246 ptr = xlate_dev_mem_ptr(p);
247 if (!ptr) {
248 if (written)
249 break;
250 return -EFAULT;
251 }
252
253 copied = copy_from_user(ptr, buf, sz);
254 unxlate_dev_mem_ptr(p, ptr);
255 if (copied) {
256 written += sz - copied;
257 if (written)
258 break;
259 return -EFAULT;
260 }
261 }
262
263 buf += sz;
264 p += sz;
265 count -= sz;
266 written += sz;
267 if (should_stop_iteration())
268 break;
269 }
270
271 *ppos += written;
272 return written;
273 }
274
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)275 int __weak phys_mem_access_prot_allowed(struct file *file,
276 unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
277 {
278 return 1;
279 }
280
281 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
282
283 /*
284 * Architectures vary in how they handle caching for addresses
285 * outside of main memory.
286 *
287 */
288 #ifdef pgprot_noncached
uncached_access(struct file * file,phys_addr_t addr)289 static int uncached_access(struct file *file, phys_addr_t addr)
290 {
291 #if defined(CONFIG_IA64)
292 /*
293 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
294 * attribute aliases.
295 */
296 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
297 #elif defined(CONFIG_MIPS)
298 {
299 extern int __uncached_access(struct file *file,
300 unsigned long addr);
301
302 return __uncached_access(file, addr);
303 }
304 #else
305 /*
306 * Accessing memory above the top the kernel knows about or through a
307 * file pointer
308 * that was marked O_DSYNC will be done non-cached.
309 */
310 if (file->f_flags & O_DSYNC)
311 return 1;
312 return addr >= __pa(high_memory);
313 #endif
314 }
315 #endif
316
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)317 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
318 unsigned long size, pgprot_t vma_prot)
319 {
320 #ifdef pgprot_noncached
321 phys_addr_t offset = pfn << PAGE_SHIFT;
322
323 if (uncached_access(file, offset))
324 return pgprot_noncached(vma_prot);
325 #endif
326 return vma_prot;
327 }
328 #endif
329
330 #ifndef CONFIG_MMU
get_unmapped_area_mem(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)331 static unsigned long get_unmapped_area_mem(struct file *file,
332 unsigned long addr,
333 unsigned long len,
334 unsigned long pgoff,
335 unsigned long flags)
336 {
337 if (!valid_mmap_phys_addr_range(pgoff, len))
338 return (unsigned long) -EINVAL;
339 return pgoff << PAGE_SHIFT;
340 }
341
342 /* permit direct mmap, for read, write or exec */
memory_mmap_capabilities(struct file * file)343 static unsigned memory_mmap_capabilities(struct file *file)
344 {
345 return NOMMU_MAP_DIRECT |
346 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
347 }
348
zero_mmap_capabilities(struct file * file)349 static unsigned zero_mmap_capabilities(struct file *file)
350 {
351 return NOMMU_MAP_COPY;
352 }
353
354 /* can't do an in-place private mapping if there's no MMU */
private_mapping_ok(struct vm_area_struct * vma)355 static inline int private_mapping_ok(struct vm_area_struct *vma)
356 {
357 return vma->vm_flags & VM_MAYSHARE;
358 }
359 #else
360
private_mapping_ok(struct vm_area_struct * vma)361 static inline int private_mapping_ok(struct vm_area_struct *vma)
362 {
363 return 1;
364 }
365 #endif
366
367 static const struct vm_operations_struct mmap_mem_ops = {
368 #ifdef CONFIG_HAVE_IOREMAP_PROT
369 .access = generic_access_phys
370 #endif
371 };
372
mmap_mem(struct file * file,struct vm_area_struct * vma)373 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
374 {
375 size_t size = vma->vm_end - vma->vm_start;
376 phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
377
378 /* Does it even fit in phys_addr_t? */
379 if (offset >> PAGE_SHIFT != vma->vm_pgoff)
380 return -EINVAL;
381
382 /* It's illegal to wrap around the end of the physical address space. */
383 if (offset + (phys_addr_t)size - 1 < offset)
384 return -EINVAL;
385
386 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
387 return -EINVAL;
388
389 if (!private_mapping_ok(vma))
390 return -ENOSYS;
391
392 if (!range_is_allowed(vma->vm_pgoff, size))
393 return -EPERM;
394
395 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
396 &vma->vm_page_prot))
397 return -EINVAL;
398
399 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
400 size,
401 vma->vm_page_prot);
402
403 vma->vm_ops = &mmap_mem_ops;
404
405 /* Remap-pfn-range will mark the range VM_IO */
406 if (remap_pfn_range(vma,
407 vma->vm_start,
408 vma->vm_pgoff,
409 size,
410 vma->vm_page_prot)) {
411 return -EAGAIN;
412 }
413 return 0;
414 }
415
mmap_kmem(struct file * file,struct vm_area_struct * vma)416 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
417 {
418 unsigned long pfn;
419
420 /* Turn a kernel-virtual address into a physical page frame */
421 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
422
423 /*
424 * RED-PEN: on some architectures there is more mapped memory than
425 * available in mem_map which pfn_valid checks for. Perhaps should add a
426 * new macro here.
427 *
428 * RED-PEN: vmalloc is not supported right now.
429 */
430 if (!pfn_valid(pfn))
431 return -EIO;
432
433 vma->vm_pgoff = pfn;
434 return mmap_mem(file, vma);
435 }
436
437 /*
438 * This function reads the *virtual* memory as seen by the kernel.
439 */
read_kmem(struct file * file,char __user * buf,size_t count,loff_t * ppos)440 static ssize_t read_kmem(struct file *file, char __user *buf,
441 size_t count, loff_t *ppos)
442 {
443 unsigned long p = *ppos;
444 ssize_t low_count, read, sz;
445 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
446 int err = 0;
447
448 read = 0;
449 if (p < (unsigned long) high_memory) {
450 low_count = count;
451 if (count > (unsigned long)high_memory - p)
452 low_count = (unsigned long)high_memory - p;
453
454 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
455 /* we don't have page 0 mapped on sparc and m68k.. */
456 if (p < PAGE_SIZE && low_count > 0) {
457 sz = size_inside_page(p, low_count);
458 if (clear_user(buf, sz))
459 return -EFAULT;
460 buf += sz;
461 p += sz;
462 read += sz;
463 low_count -= sz;
464 count -= sz;
465 }
466 #endif
467 while (low_count > 0) {
468 sz = size_inside_page(p, low_count);
469
470 /*
471 * On ia64 if a page has been mapped somewhere as
472 * uncached, then it must also be accessed uncached
473 * by the kernel or data corruption may occur
474 */
475 kbuf = xlate_dev_kmem_ptr((void *)p);
476 if (!virt_addr_valid(kbuf))
477 return -ENXIO;
478
479 if (copy_to_user(buf, kbuf, sz))
480 return -EFAULT;
481 buf += sz;
482 p += sz;
483 read += sz;
484 low_count -= sz;
485 count -= sz;
486 if (should_stop_iteration()) {
487 count = 0;
488 break;
489 }
490 }
491 }
492
493 if (count > 0) {
494 kbuf = (char *)__get_free_page(GFP_KERNEL);
495 if (!kbuf)
496 return -ENOMEM;
497 while (count > 0) {
498 sz = size_inside_page(p, count);
499 if (!is_vmalloc_or_module_addr((void *)p)) {
500 err = -ENXIO;
501 break;
502 }
503 sz = vread(kbuf, (char *)p, sz);
504 if (!sz)
505 break;
506 if (copy_to_user(buf, kbuf, sz)) {
507 err = -EFAULT;
508 break;
509 }
510 count -= sz;
511 buf += sz;
512 read += sz;
513 p += sz;
514 if (should_stop_iteration())
515 break;
516 }
517 free_page((unsigned long)kbuf);
518 }
519 *ppos = p;
520 return read ? read : err;
521 }
522
523
do_write_kmem(unsigned long p,const char __user * buf,size_t count,loff_t * ppos)524 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
525 size_t count, loff_t *ppos)
526 {
527 ssize_t written, sz;
528 unsigned long copied;
529
530 written = 0;
531 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
532 /* we don't have page 0 mapped on sparc and m68k.. */
533 if (p < PAGE_SIZE) {
534 sz = size_inside_page(p, count);
535 /* Hmm. Do something? */
536 buf += sz;
537 p += sz;
538 count -= sz;
539 written += sz;
540 }
541 #endif
542
543 while (count > 0) {
544 void *ptr;
545
546 sz = size_inside_page(p, count);
547
548 /*
549 * On ia64 if a page has been mapped somewhere as uncached, then
550 * it must also be accessed uncached by the kernel or data
551 * corruption may occur.
552 */
553 ptr = xlate_dev_kmem_ptr((void *)p);
554 if (!virt_addr_valid(ptr))
555 return -ENXIO;
556
557 copied = copy_from_user(ptr, buf, sz);
558 if (copied) {
559 written += sz - copied;
560 if (written)
561 break;
562 return -EFAULT;
563 }
564 buf += sz;
565 p += sz;
566 count -= sz;
567 written += sz;
568 if (should_stop_iteration())
569 break;
570 }
571
572 *ppos += written;
573 return written;
574 }
575
576 /*
577 * This function writes to the *virtual* memory as seen by the kernel.
578 */
write_kmem(struct file * file,const char __user * buf,size_t count,loff_t * ppos)579 static ssize_t write_kmem(struct file *file, const char __user *buf,
580 size_t count, loff_t *ppos)
581 {
582 unsigned long p = *ppos;
583 ssize_t wrote = 0;
584 ssize_t virtr = 0;
585 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
586 int err = 0;
587
588 if (p < (unsigned long) high_memory) {
589 unsigned long to_write = min_t(unsigned long, count,
590 (unsigned long)high_memory - p);
591 wrote = do_write_kmem(p, buf, to_write, ppos);
592 if (wrote != to_write)
593 return wrote;
594 p += wrote;
595 buf += wrote;
596 count -= wrote;
597 }
598
599 if (count > 0) {
600 kbuf = (char *)__get_free_page(GFP_KERNEL);
601 if (!kbuf)
602 return wrote ? wrote : -ENOMEM;
603 while (count > 0) {
604 unsigned long sz = size_inside_page(p, count);
605 unsigned long n;
606
607 if (!is_vmalloc_or_module_addr((void *)p)) {
608 err = -ENXIO;
609 break;
610 }
611 n = copy_from_user(kbuf, buf, sz);
612 if (n) {
613 err = -EFAULT;
614 break;
615 }
616 vwrite(kbuf, (char *)p, sz);
617 count -= sz;
618 buf += sz;
619 virtr += sz;
620 p += sz;
621 if (should_stop_iteration())
622 break;
623 }
624 free_page((unsigned long)kbuf);
625 }
626
627 *ppos = p;
628 return virtr + wrote ? : err;
629 }
630
read_port(struct file * file,char __user * buf,size_t count,loff_t * ppos)631 static ssize_t read_port(struct file *file, char __user *buf,
632 size_t count, loff_t *ppos)
633 {
634 unsigned long i = *ppos;
635 char __user *tmp = buf;
636
637 if (!access_ok(buf, count))
638 return -EFAULT;
639 while (count-- > 0 && i < 65536) {
640 if (__put_user(inb(i), tmp) < 0)
641 return -EFAULT;
642 i++;
643 tmp++;
644 }
645 *ppos = i;
646 return tmp-buf;
647 }
648
write_port(struct file * file,const char __user * buf,size_t count,loff_t * ppos)649 static ssize_t write_port(struct file *file, const char __user *buf,
650 size_t count, loff_t *ppos)
651 {
652 unsigned long i = *ppos;
653 const char __user *tmp = buf;
654
655 if (!access_ok(buf, count))
656 return -EFAULT;
657 while (count-- > 0 && i < 65536) {
658 char c;
659
660 if (__get_user(c, tmp)) {
661 if (tmp > buf)
662 break;
663 return -EFAULT;
664 }
665 outb(c, i);
666 i++;
667 tmp++;
668 }
669 *ppos = i;
670 return tmp-buf;
671 }
672
read_null(struct file * file,char __user * buf,size_t count,loff_t * ppos)673 static ssize_t read_null(struct file *file, char __user *buf,
674 size_t count, loff_t *ppos)
675 {
676 return 0;
677 }
678
write_null(struct file * file,const char __user * buf,size_t count,loff_t * ppos)679 static ssize_t write_null(struct file *file, const char __user *buf,
680 size_t count, loff_t *ppos)
681 {
682 return count;
683 }
684
read_iter_null(struct kiocb * iocb,struct iov_iter * to)685 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
686 {
687 return 0;
688 }
689
write_iter_null(struct kiocb * iocb,struct iov_iter * from)690 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
691 {
692 size_t count = iov_iter_count(from);
693 iov_iter_advance(from, count);
694 return count;
695 }
696
pipe_to_null(struct pipe_inode_info * info,struct pipe_buffer * buf,struct splice_desc * sd)697 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
698 struct splice_desc *sd)
699 {
700 return sd->len;
701 }
702
splice_write_null(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)703 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
704 loff_t *ppos, size_t len, unsigned int flags)
705 {
706 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
707 }
708
read_iter_zero(struct kiocb * iocb,struct iov_iter * iter)709 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
710 {
711 size_t written = 0;
712
713 while (iov_iter_count(iter)) {
714 size_t chunk = iov_iter_count(iter), n;
715
716 if (chunk > PAGE_SIZE)
717 chunk = PAGE_SIZE; /* Just for latency reasons */
718 n = iov_iter_zero(chunk, iter);
719 if (!n && iov_iter_count(iter))
720 return written ? written : -EFAULT;
721 written += n;
722 if (signal_pending(current))
723 return written ? written : -ERESTARTSYS;
724 cond_resched();
725 }
726 return written;
727 }
728
read_zero(struct file * file,char __user * buf,size_t count,loff_t * ppos)729 static ssize_t read_zero(struct file *file, char __user *buf,
730 size_t count, loff_t *ppos)
731 {
732 size_t cleared = 0;
733
734 while (count) {
735 size_t chunk = min_t(size_t, count, PAGE_SIZE);
736 size_t left;
737
738 left = clear_user(buf + cleared, chunk);
739 if (unlikely(left)) {
740 cleared += (chunk - left);
741 if (!cleared)
742 return -EFAULT;
743 break;
744 }
745 cleared += chunk;
746 count -= chunk;
747
748 if (signal_pending(current))
749 break;
750 cond_resched();
751 }
752
753 return cleared;
754 }
755
mmap_zero(struct file * file,struct vm_area_struct * vma)756 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
757 {
758 #ifndef CONFIG_MMU
759 return -ENOSYS;
760 #endif
761 if (vma->vm_flags & VM_SHARED)
762 return shmem_zero_setup(vma);
763 vma_set_anonymous(vma);
764 return 0;
765 }
766
get_unmapped_area_zero(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)767 static unsigned long get_unmapped_area_zero(struct file *file,
768 unsigned long addr, unsigned long len,
769 unsigned long pgoff, unsigned long flags)
770 {
771 #ifdef CONFIG_MMU
772 if (flags & MAP_SHARED) {
773 /*
774 * mmap_zero() will call shmem_zero_setup() to create a file,
775 * so use shmem's get_unmapped_area in case it can be huge;
776 * and pass NULL for file as in mmap.c's get_unmapped_area(),
777 * so as not to confuse shmem with our handle on "/dev/zero".
778 */
779 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
780 }
781
782 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
783 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
784 #else
785 return -ENOSYS;
786 #endif
787 }
788
write_full(struct file * file,const char __user * buf,size_t count,loff_t * ppos)789 static ssize_t write_full(struct file *file, const char __user *buf,
790 size_t count, loff_t *ppos)
791 {
792 return -ENOSPC;
793 }
794
795 /*
796 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
797 * can fopen() both devices with "a" now. This was previously impossible.
798 * -- SRB.
799 */
null_lseek(struct file * file,loff_t offset,int orig)800 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
801 {
802 return file->f_pos = 0;
803 }
804
805 /*
806 * The memory devices use the full 32/64 bits of the offset, and so we cannot
807 * check against negative addresses: they are ok. The return value is weird,
808 * though, in that case (0).
809 *
810 * also note that seeking relative to the "end of file" isn't supported:
811 * it has no meaning, so it returns -EINVAL.
812 */
memory_lseek(struct file * file,loff_t offset,int orig)813 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
814 {
815 loff_t ret;
816
817 inode_lock(file_inode(file));
818 switch (orig) {
819 case SEEK_CUR:
820 offset += file->f_pos;
821 fallthrough;
822 case SEEK_SET:
823 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
824 if ((unsigned long long)offset >= -MAX_ERRNO) {
825 ret = -EOVERFLOW;
826 break;
827 }
828 file->f_pos = offset;
829 ret = file->f_pos;
830 force_successful_syscall_return();
831 break;
832 default:
833 ret = -EINVAL;
834 }
835 inode_unlock(file_inode(file));
836 return ret;
837 }
838
839 static struct inode *devmem_inode;
840
841 #ifdef CONFIG_IO_STRICT_DEVMEM
revoke_devmem(struct resource * res)842 void revoke_devmem(struct resource *res)
843 {
844 /* pairs with smp_store_release() in devmem_init_inode() */
845 struct inode *inode = smp_load_acquire(&devmem_inode);
846
847 /*
848 * Check that the initialization has completed. Losing the race
849 * is ok because it means drivers are claiming resources before
850 * the fs_initcall level of init and prevent /dev/mem from
851 * establishing mappings.
852 */
853 if (!inode)
854 return;
855
856 /*
857 * The expectation is that the driver has successfully marked
858 * the resource busy by this point, so devmem_is_allowed()
859 * should start returning false, however for performance this
860 * does not iterate the entire resource range.
861 */
862 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
863 devmem_is_allowed(PHYS_PFN(res->end))) {
864 /*
865 * *cringe* iomem=relaxed says "go ahead, what's the
866 * worst that can happen?"
867 */
868 return;
869 }
870
871 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
872 }
873 #endif
874
open_port(struct inode * inode,struct file * filp)875 static int open_port(struct inode *inode, struct file *filp)
876 {
877 int rc;
878
879 if (!capable(CAP_SYS_RAWIO))
880 return -EPERM;
881
882 rc = security_locked_down(LOCKDOWN_DEV_MEM);
883 if (rc)
884 return rc;
885
886 if (iminor(inode) != DEVMEM_MINOR)
887 return 0;
888
889 /*
890 * Use a unified address space to have a single point to manage
891 * revocations when drivers want to take over a /dev/mem mapped
892 * range.
893 */
894 inode->i_mapping = devmem_inode->i_mapping;
895 filp->f_mapping = inode->i_mapping;
896
897 return 0;
898 }
899
900 #define zero_lseek null_lseek
901 #define full_lseek null_lseek
902 #define write_zero write_null
903 #define write_iter_zero write_iter_null
904 #define open_mem open_port
905 #define open_kmem open_mem
906
907 static const struct file_operations __maybe_unused mem_fops = {
908 .llseek = memory_lseek,
909 .read = read_mem,
910 .write = write_mem,
911 .mmap = mmap_mem,
912 .open = open_mem,
913 #ifndef CONFIG_MMU
914 .get_unmapped_area = get_unmapped_area_mem,
915 .mmap_capabilities = memory_mmap_capabilities,
916 #endif
917 };
918
919 static const struct file_operations __maybe_unused kmem_fops = {
920 .llseek = memory_lseek,
921 .read = read_kmem,
922 .write = write_kmem,
923 .mmap = mmap_kmem,
924 .open = open_kmem,
925 #ifndef CONFIG_MMU
926 .get_unmapped_area = get_unmapped_area_mem,
927 .mmap_capabilities = memory_mmap_capabilities,
928 #endif
929 };
930
931 static const struct file_operations null_fops = {
932 .llseek = null_lseek,
933 .read = read_null,
934 .write = write_null,
935 .read_iter = read_iter_null,
936 .write_iter = write_iter_null,
937 .splice_write = splice_write_null,
938 };
939
940 static const struct file_operations __maybe_unused port_fops = {
941 .llseek = memory_lseek,
942 .read = read_port,
943 .write = write_port,
944 .open = open_port,
945 };
946
947 static const struct file_operations zero_fops = {
948 .llseek = zero_lseek,
949 .write = write_zero,
950 .read_iter = read_iter_zero,
951 .read = read_zero,
952 .write_iter = write_iter_zero,
953 .mmap = mmap_zero,
954 .get_unmapped_area = get_unmapped_area_zero,
955 #ifndef CONFIG_MMU
956 .mmap_capabilities = zero_mmap_capabilities,
957 #endif
958 };
959
960 static const struct file_operations full_fops = {
961 .llseek = full_lseek,
962 .read_iter = read_iter_zero,
963 .write = write_full,
964 };
965
966 static const struct memdev {
967 const char *name;
968 umode_t mode;
969 const struct file_operations *fops;
970 fmode_t fmode;
971 } devlist[] = {
972 #ifdef CONFIG_DEVMEM
973 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
974 #endif
975 #ifdef CONFIG_DEVKMEM
976 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
977 #endif
978 [3] = { "null", 0666, &null_fops, 0 },
979 #ifdef CONFIG_DEVPORT
980 [4] = { "port", 0, &port_fops, 0 },
981 #endif
982 [5] = { "zero", 0666, &zero_fops, 0 },
983 [7] = { "full", 0666, &full_fops, 0 },
984 [8] = { "random", 0666, &random_fops, 0 },
985 [9] = { "urandom", 0666, &urandom_fops, 0 },
986 #ifdef CONFIG_PRINTK
987 [11] = { "kmsg", 0644, &kmsg_fops, 0 },
988 #endif
989 };
990
memory_open(struct inode * inode,struct file * filp)991 static int memory_open(struct inode *inode, struct file *filp)
992 {
993 int minor;
994 const struct memdev *dev;
995
996 minor = iminor(inode);
997 if (minor >= ARRAY_SIZE(devlist))
998 return -ENXIO;
999
1000 dev = &devlist[minor];
1001 if (!dev->fops)
1002 return -ENXIO;
1003
1004 filp->f_op = dev->fops;
1005 filp->f_mode |= dev->fmode;
1006
1007 if (dev->fops->open)
1008 return dev->fops->open(inode, filp);
1009
1010 return 0;
1011 }
1012
1013 static const struct file_operations memory_fops = {
1014 .open = memory_open,
1015 .llseek = noop_llseek,
1016 };
1017
mem_devnode(struct device * dev,umode_t * mode)1018 static char *mem_devnode(struct device *dev, umode_t *mode)
1019 {
1020 if (mode && devlist[MINOR(dev->devt)].mode)
1021 *mode = devlist[MINOR(dev->devt)].mode;
1022 return NULL;
1023 }
1024
1025 static struct class *mem_class;
1026
devmem_fs_init_fs_context(struct fs_context * fc)1027 static int devmem_fs_init_fs_context(struct fs_context *fc)
1028 {
1029 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1030 }
1031
1032 static struct file_system_type devmem_fs_type = {
1033 .name = "devmem",
1034 .owner = THIS_MODULE,
1035 .init_fs_context = devmem_fs_init_fs_context,
1036 .kill_sb = kill_anon_super,
1037 };
1038
devmem_init_inode(void)1039 static int devmem_init_inode(void)
1040 {
1041 static struct vfsmount *devmem_vfs_mount;
1042 static int devmem_fs_cnt;
1043 struct inode *inode;
1044 int rc;
1045
1046 rc = simple_pin_fs(&devmem_fs_type, &devmem_vfs_mount, &devmem_fs_cnt);
1047 if (rc < 0) {
1048 pr_err("Cannot mount /dev/mem pseudo filesystem: %d\n", rc);
1049 return rc;
1050 }
1051
1052 inode = alloc_anon_inode(devmem_vfs_mount->mnt_sb);
1053 if (IS_ERR(inode)) {
1054 rc = PTR_ERR(inode);
1055 pr_err("Cannot allocate inode for /dev/mem: %d\n", rc);
1056 simple_release_fs(&devmem_vfs_mount, &devmem_fs_cnt);
1057 return rc;
1058 }
1059
1060 /*
1061 * Publish /dev/mem initialized.
1062 * Pairs with smp_load_acquire() in revoke_devmem().
1063 */
1064 smp_store_release(&devmem_inode, inode);
1065
1066 return 0;
1067 }
1068
chr_dev_init(void)1069 static int __init chr_dev_init(void)
1070 {
1071 int minor;
1072
1073 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
1074 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
1075
1076 mem_class = class_create(THIS_MODULE, "mem");
1077 if (IS_ERR(mem_class))
1078 return PTR_ERR(mem_class);
1079
1080 mem_class->devnode = mem_devnode;
1081 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
1082 if (!devlist[minor].name)
1083 continue;
1084
1085 /*
1086 * Create /dev/port?
1087 */
1088 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
1089 continue;
1090 if ((minor == DEVMEM_MINOR) && devmem_init_inode() != 0)
1091 continue;
1092
1093 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
1094 NULL, devlist[minor].name);
1095 }
1096
1097 return tty_init();
1098 }
1099
1100 fs_initcall(chr_dev_init);
1101