1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
4 *
5 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
6 *
7 * This file add support for MD5 and SHA1.
8 *
9 * You could find the datasheet in Documentation/arm/sunxi.rst
10 */
11 #include "sun4i-ss.h"
12 #include <asm/unaligned.h>
13 #include <linux/scatterlist.h>
14
15 /* This is a totally arbitrary value */
16 #define SS_TIMEOUT 100
17
sun4i_hash_crainit(struct crypto_tfm * tfm)18 int sun4i_hash_crainit(struct crypto_tfm *tfm)
19 {
20 struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
21 struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
22 struct sun4i_ss_alg_template *algt;
23 int err;
24
25 memset(op, 0, sizeof(struct sun4i_tfm_ctx));
26
27 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
28 op->ss = algt->ss;
29
30 err = pm_runtime_get_sync(op->ss->dev);
31 if (err < 0)
32 return err;
33
34 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
35 sizeof(struct sun4i_req_ctx));
36 return 0;
37 }
38
sun4i_hash_craexit(struct crypto_tfm * tfm)39 void sun4i_hash_craexit(struct crypto_tfm *tfm)
40 {
41 struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
42
43 pm_runtime_put(op->ss->dev);
44 }
45
46 /* sun4i_hash_init: initialize request context */
sun4i_hash_init(struct ahash_request * areq)47 int sun4i_hash_init(struct ahash_request *areq)
48 {
49 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
50 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
51 struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
52 struct sun4i_ss_alg_template *algt;
53
54 memset(op, 0, sizeof(struct sun4i_req_ctx));
55
56 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
57 op->mode = algt->mode;
58
59 return 0;
60 }
61
sun4i_hash_export_md5(struct ahash_request * areq,void * out)62 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
63 {
64 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
65 struct md5_state *octx = out;
66 int i;
67
68 octx->byte_count = op->byte_count + op->len;
69
70 memcpy(octx->block, op->buf, op->len);
71
72 if (op->byte_count) {
73 for (i = 0; i < 4; i++)
74 octx->hash[i] = op->hash[i];
75 } else {
76 octx->hash[0] = SHA1_H0;
77 octx->hash[1] = SHA1_H1;
78 octx->hash[2] = SHA1_H2;
79 octx->hash[3] = SHA1_H3;
80 }
81
82 return 0;
83 }
84
sun4i_hash_import_md5(struct ahash_request * areq,const void * in)85 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
86 {
87 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
88 const struct md5_state *ictx = in;
89 int i;
90
91 sun4i_hash_init(areq);
92
93 op->byte_count = ictx->byte_count & ~0x3F;
94 op->len = ictx->byte_count & 0x3F;
95
96 memcpy(op->buf, ictx->block, op->len);
97
98 for (i = 0; i < 4; i++)
99 op->hash[i] = ictx->hash[i];
100
101 return 0;
102 }
103
sun4i_hash_export_sha1(struct ahash_request * areq,void * out)104 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
105 {
106 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
107 struct sha1_state *octx = out;
108 int i;
109
110 octx->count = op->byte_count + op->len;
111
112 memcpy(octx->buffer, op->buf, op->len);
113
114 if (op->byte_count) {
115 for (i = 0; i < 5; i++)
116 octx->state[i] = op->hash[i];
117 } else {
118 octx->state[0] = SHA1_H0;
119 octx->state[1] = SHA1_H1;
120 octx->state[2] = SHA1_H2;
121 octx->state[3] = SHA1_H3;
122 octx->state[4] = SHA1_H4;
123 }
124
125 return 0;
126 }
127
sun4i_hash_import_sha1(struct ahash_request * areq,const void * in)128 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
129 {
130 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
131 const struct sha1_state *ictx = in;
132 int i;
133
134 sun4i_hash_init(areq);
135
136 op->byte_count = ictx->count & ~0x3F;
137 op->len = ictx->count & 0x3F;
138
139 memcpy(op->buf, ictx->buffer, op->len);
140
141 for (i = 0; i < 5; i++)
142 op->hash[i] = ictx->state[i];
143
144 return 0;
145 }
146
147 #define SS_HASH_UPDATE 1
148 #define SS_HASH_FINAL 2
149
150 /*
151 * sun4i_hash_update: update hash engine
152 *
153 * Could be used for both SHA1 and MD5
154 * Write data by step of 32bits and put then in the SS.
155 *
156 * Since we cannot leave partial data and hash state in the engine,
157 * we need to get the hash state at the end of this function.
158 * We can get the hash state every 64 bytes
159 *
160 * So the first work is to get the number of bytes to write to SS modulo 64
161 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
162 *
163 * So at the begin of update()
164 * if op->len + areq->nbytes < 64
165 * => all data will be written to wait buffer (op->buf) and end=0
166 * if not, write all data from op->buf to the device and position end to
167 * complete to 64bytes
168 *
169 * example 1:
170 * update1 60o => op->len=60
171 * update2 60o => need one more word to have 64 bytes
172 * end=4
173 * so write all data from op->buf and one word of SGs
174 * write remaining data in op->buf
175 * final state op->len=56
176 */
sun4i_hash(struct ahash_request * areq)177 static int sun4i_hash(struct ahash_request *areq)
178 {
179 /*
180 * i is the total bytes read from SGs, to be compared to areq->nbytes
181 * i is important because we cannot rely on SG length since the sum of
182 * SG->length could be greater than areq->nbytes
183 *
184 * end is the position when we need to stop writing to the device,
185 * to be compared to i
186 *
187 * in_i: advancement in the current SG
188 */
189 unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
190 unsigned int in_i = 0;
191 u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
192 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
193 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
194 struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
195 struct sun4i_ss_ctx *ss = tfmctx->ss;
196 struct scatterlist *in_sg = areq->src;
197 struct sg_mapping_iter mi;
198 int in_r, err = 0;
199 size_t copied = 0;
200 u32 wb = 0;
201
202 dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
203 __func__, crypto_tfm_alg_name(areq->base.tfm),
204 op->byte_count, areq->nbytes, op->mode,
205 op->len, op->hash[0]);
206
207 if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
208 return 0;
209
210 /* protect against overflow */
211 if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
212 dev_err(ss->dev, "Cannot process too large request\n");
213 return -EINVAL;
214 }
215
216 if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
217 /* linearize data to op->buf */
218 copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
219 op->buf + op->len, areq->nbytes, 0);
220 op->len += copied;
221 return 0;
222 }
223
224 spin_lock_bh(&ss->slock);
225
226 /*
227 * if some data have been processed before,
228 * we need to restore the partial hash state
229 */
230 if (op->byte_count) {
231 ivmode = SS_IV_ARBITRARY;
232 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
233 writel(op->hash[i], ss->base + SS_IV0 + i * 4);
234 }
235 /* Enable the device */
236 writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
237
238 if (!(op->flags & SS_HASH_UPDATE))
239 goto hash_final;
240
241 /* start of handling data */
242 if (!(op->flags & SS_HASH_FINAL)) {
243 end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
244
245 if (end > areq->nbytes || areq->nbytes - end > 63) {
246 dev_err(ss->dev, "ERROR: Bound error %u %u\n",
247 end, areq->nbytes);
248 err = -EINVAL;
249 goto release_ss;
250 }
251 } else {
252 /* Since we have the flag final, we can go up to modulo 4 */
253 if (areq->nbytes < 4)
254 end = 0;
255 else
256 end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
257 }
258
259 /* TODO if SGlen % 4 and !op->len then DMA */
260 i = 1;
261 while (in_sg && i == 1) {
262 if (in_sg->length % 4)
263 i = 0;
264 in_sg = sg_next(in_sg);
265 }
266 if (i == 1 && !op->len && areq->nbytes)
267 dev_dbg(ss->dev, "We can DMA\n");
268
269 i = 0;
270 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
271 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
272 sg_miter_next(&mi);
273 in_i = 0;
274
275 do {
276 /*
277 * we need to linearize in two case:
278 * - the buffer is already used
279 * - the SG does not have enough byte remaining ( < 4)
280 */
281 if (op->len || (mi.length - in_i) < 4) {
282 /*
283 * if we have entered here we have two reason to stop
284 * - the buffer is full
285 * - reach the end
286 */
287 while (op->len < 64 && i < end) {
288 /* how many bytes we can read from current SG */
289 in_r = min(end - i, 64 - op->len);
290 in_r = min_t(size_t, mi.length - in_i, in_r);
291 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
292 op->len += in_r;
293 i += in_r;
294 in_i += in_r;
295 if (in_i == mi.length) {
296 sg_miter_next(&mi);
297 in_i = 0;
298 }
299 }
300 if (op->len > 3 && !(op->len % 4)) {
301 /* write buf to the device */
302 writesl(ss->base + SS_RXFIFO, op->buf,
303 op->len / 4);
304 op->byte_count += op->len;
305 op->len = 0;
306 }
307 }
308 if (mi.length - in_i > 3 && i < end) {
309 /* how many bytes we can read from current SG */
310 in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
311 in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
312 /* how many bytes we can write in the device*/
313 todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
314 writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
315 op->byte_count += todo * 4;
316 i += todo * 4;
317 in_i += todo * 4;
318 rx_cnt -= todo;
319 if (!rx_cnt) {
320 spaces = readl(ss->base + SS_FCSR);
321 rx_cnt = SS_RXFIFO_SPACES(spaces);
322 }
323 if (in_i == mi.length) {
324 sg_miter_next(&mi);
325 in_i = 0;
326 }
327 }
328 } while (i < end);
329
330 /*
331 * Now we have written to the device all that we can,
332 * store the remaining bytes in op->buf
333 */
334 if ((areq->nbytes - i) < 64) {
335 while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
336 /* how many bytes we can read from current SG */
337 in_r = min(areq->nbytes - i, 64 - op->len);
338 in_r = min_t(size_t, mi.length - in_i, in_r);
339 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
340 op->len += in_r;
341 i += in_r;
342 in_i += in_r;
343 if (in_i == mi.length) {
344 sg_miter_next(&mi);
345 in_i = 0;
346 }
347 }
348 }
349
350 sg_miter_stop(&mi);
351
352 /*
353 * End of data process
354 * Now if we have the flag final go to finalize part
355 * If not, store the partial hash
356 */
357 if (op->flags & SS_HASH_FINAL)
358 goto hash_final;
359
360 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
361 i = 0;
362 do {
363 v = readl(ss->base + SS_CTL);
364 i++;
365 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
366 if (unlikely(i >= SS_TIMEOUT)) {
367 dev_err_ratelimited(ss->dev,
368 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
369 i, SS_TIMEOUT, v, areq->nbytes);
370 err = -EIO;
371 goto release_ss;
372 }
373
374 /*
375 * The datasheet isn't very clear about when to retrieve the digest. The
376 * bit SS_DATA_END is cleared when the engine has processed the data and
377 * when the digest is computed *but* it doesn't mean the digest is
378 * available in the digest registers. Hence the delay to be sure we can
379 * read it.
380 */
381 ndelay(1);
382
383 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
384 op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
385
386 goto release_ss;
387
388 /*
389 * hash_final: finalize hashing operation
390 *
391 * If we have some remaining bytes, we write them.
392 * Then ask the SS for finalizing the hashing operation
393 *
394 * I do not check RX FIFO size in this function since the size is 32
395 * after each enabling and this function neither write more than 32 words.
396 * If we come from the update part, we cannot have more than
397 * 3 remaining bytes to write and SS is fast enough to not care about it.
398 */
399
400 hash_final:
401
402 /* write the remaining words of the wait buffer */
403 if (op->len) {
404 nwait = op->len / 4;
405 if (nwait) {
406 writesl(ss->base + SS_RXFIFO, op->buf, nwait);
407 op->byte_count += 4 * nwait;
408 }
409
410 nbw = op->len - 4 * nwait;
411 if (nbw) {
412 wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
413 wb &= GENMASK((nbw * 8) - 1, 0);
414
415 op->byte_count += nbw;
416 }
417 }
418
419 /* write the remaining bytes of the nbw buffer */
420 wb |= ((1 << 7) << (nbw * 8));
421 ((__le32 *)bf)[j++] = cpu_to_le32(wb);
422
423 /*
424 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
425 * I take the operations from other MD5/SHA1 implementations
426 */
427
428 /* last block size */
429 fill = 64 - (op->byte_count % 64);
430 min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
431
432 /* if we can't fill all data, jump to the next 64 block */
433 if (fill < min_fill)
434 fill += 64;
435
436 j += (fill - min_fill) / sizeof(u32);
437
438 /* write the length of data */
439 if (op->mode == SS_OP_SHA1) {
440 __be64 *bits = (__be64 *)&bf[j];
441 *bits = cpu_to_be64(op->byte_count << 3);
442 j += 2;
443 } else {
444 __le64 *bits = (__le64 *)&bf[j];
445 *bits = cpu_to_le64(op->byte_count << 3);
446 j += 2;
447 }
448 writesl(ss->base + SS_RXFIFO, bf, j);
449
450 /* Tell the SS to stop the hashing */
451 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
452
453 /*
454 * Wait for SS to finish the hash.
455 * The timeout could happen only in case of bad overclocking
456 * or driver bug.
457 */
458 i = 0;
459 do {
460 v = readl(ss->base + SS_CTL);
461 i++;
462 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
463 if (unlikely(i >= SS_TIMEOUT)) {
464 dev_err_ratelimited(ss->dev,
465 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
466 i, SS_TIMEOUT, v, areq->nbytes);
467 err = -EIO;
468 goto release_ss;
469 }
470
471 /*
472 * The datasheet isn't very clear about when to retrieve the digest. The
473 * bit SS_DATA_END is cleared when the engine has processed the data and
474 * when the digest is computed *but* it doesn't mean the digest is
475 * available in the digest registers. Hence the delay to be sure we can
476 * read it.
477 */
478 ndelay(1);
479
480 /* Get the hash from the device */
481 if (op->mode == SS_OP_SHA1) {
482 for (i = 0; i < 5; i++) {
483 v = readl(ss->base + SS_MD0 + i * 4);
484 if (ss->variant->sha1_in_be)
485 put_unaligned_le32(v, areq->result + i * 4);
486 else
487 put_unaligned_be32(v, areq->result + i * 4);
488 }
489 } else {
490 for (i = 0; i < 4; i++) {
491 v = readl(ss->base + SS_MD0 + i * 4);
492 put_unaligned_le32(v, areq->result + i * 4);
493 }
494 }
495
496 release_ss:
497 writel(0, ss->base + SS_CTL);
498 spin_unlock_bh(&ss->slock);
499 return err;
500 }
501
sun4i_hash_final(struct ahash_request * areq)502 int sun4i_hash_final(struct ahash_request *areq)
503 {
504 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
505
506 op->flags = SS_HASH_FINAL;
507 return sun4i_hash(areq);
508 }
509
sun4i_hash_update(struct ahash_request * areq)510 int sun4i_hash_update(struct ahash_request *areq)
511 {
512 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
513
514 op->flags = SS_HASH_UPDATE;
515 return sun4i_hash(areq);
516 }
517
518 /* sun4i_hash_finup: finalize hashing operation after an update */
sun4i_hash_finup(struct ahash_request * areq)519 int sun4i_hash_finup(struct ahash_request *areq)
520 {
521 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
522
523 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
524 return sun4i_hash(areq);
525 }
526
527 /* combo of init/update/final functions */
sun4i_hash_digest(struct ahash_request * areq)528 int sun4i_hash_digest(struct ahash_request *areq)
529 {
530 int err;
531 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
532
533 err = sun4i_hash_init(areq);
534 if (err)
535 return err;
536
537 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
538 return sun4i_hash(areq);
539 }
540