1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
65 */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
get_resync_r10bio(struct bio * bio)86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 return get_resync_pages(bio)->raid_bio;
89 }
90
r10bio_pool_alloc(gfp_t gfp_flags,void * data)91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 struct r10conf *conf = data;
94 int size = offsetof(struct r10bio, devs[conf->copies]);
95
96 /* allocate a r10bio with room for raid_disks entries in the
97 * bios array */
98 return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 struct r10conf *conf = data;
119 struct r10bio *r10_bio;
120 struct bio *bio;
121 int j;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
124
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 if (!r10_bio)
127 return NULL;
128
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 nalloc = conf->copies; /* resync */
132 else
133 nalloc = 2; /* recovery */
134
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
137 nalloc_rp = nalloc;
138 else
139 nalloc_rp = nalloc * 2;
140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 if (!rps)
142 goto out_free_r10bio;
143
144 /*
145 * Allocate bios.
146 */
147 for (j = nalloc ; j-- ; ) {
148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 if (!bio)
150 goto out_free_bio;
151 r10_bio->devs[j].bio = bio;
152 if (!conf->have_replacement)
153 continue;
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 if (!bio)
156 goto out_free_bio;
157 r10_bio->devs[j].repl_bio = bio;
158 }
159 /*
160 * Allocate RESYNC_PAGES data pages and attach them
161 * where needed.
162 */
163 for (j = 0; j < nalloc; j++) {
164 struct bio *rbio = r10_bio->devs[j].repl_bio;
165 struct resync_pages *rp, *rp_repl;
166
167 rp = &rps[j];
168 if (rbio)
169 rp_repl = &rps[nalloc + j];
170
171 bio = r10_bio->devs[j].bio;
172
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
176 goto out_free_pages;
177 } else {
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
180 }
181
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
184 if (rbio) {
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
187 }
188 }
189
190 return r10_bio;
191
192 out_free_pages:
193 while (--j >= 0)
194 resync_free_pages(&rps[j]);
195
196 j = 0;
197 out_free_bio:
198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
203 }
204 kfree(rps);
205 out_free_r10bio:
206 rbio_pool_free(r10_bio, conf);
207 return NULL;
208 }
209
r10buf_pool_free(void * __r10_bio,void * data)210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 struct r10conf *conf = data;
213 struct r10bio *r10bio = __r10_bio;
214 int j;
215 struct resync_pages *rp = NULL;
216
217 for (j = conf->copies; j--; ) {
218 struct bio *bio = r10bio->devs[j].bio;
219
220 if (bio) {
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
223 bio_put(bio);
224 }
225
226 bio = r10bio->devs[j].repl_bio;
227 if (bio)
228 bio_put(bio);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r10bio, conf);
235 }
236
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 int i;
240
241 for (i = 0; i < conf->copies; i++) {
242 struct bio **bio = & r10_bio->devs[i].bio;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251 }
252
free_r10bio(struct r10bio * r10_bio)253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 struct r10conf *conf = r10_bio->mddev->private;
256
257 put_all_bios(conf, r10_bio);
258 mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
put_buf(struct r10bio * r10_bio)261 static void put_buf(struct r10bio *r10_bio)
262 {
263 struct r10conf *conf = r10_bio->mddev->private;
264
265 mempool_free(r10_bio, &conf->r10buf_pool);
266
267 lower_barrier(conf);
268 }
269
reschedule_retry(struct r10bio * r10_bio)270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 unsigned long flags;
273 struct mddev *mddev = r10_bio->mddev;
274 struct r10conf *conf = mddev->private;
275
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
278 conf->nr_queued ++;
279 spin_unlock_irqrestore(&conf->device_lock, flags);
280
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
283
284 md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
raid_end_bio_io(struct r10bio * r10_bio)292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 struct bio *bio = r10_bio->master_bio;
295 struct r10conf *conf = r10_bio->mddev->private;
296
297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 bio->bi_status = BLK_STS_IOERR;
299
300 bio_endio(bio);
301 /*
302 * Wake up any possible resync thread that waits for the device
303 * to go idle.
304 */
305 allow_barrier(conf);
306
307 free_r10bio(r10_bio);
308 }
309
310 /*
311 * Update disk head position estimator based on IRQ completion info.
312 */
update_head_pos(int slot,struct r10bio * r10_bio)313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 struct r10conf *conf = r10_bio->mddev->private;
316
317 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322 * Find the disk number which triggered given bio
323 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 struct bio *bio, int *slotp, int *replp)
326 {
327 int slot;
328 int repl = 0;
329
330 for (slot = 0; slot < conf->copies; slot++) {
331 if (r10_bio->devs[slot].bio == bio)
332 break;
333 if (r10_bio->devs[slot].repl_bio == bio) {
334 repl = 1;
335 break;
336 }
337 }
338
339 BUG_ON(slot == conf->copies);
340 update_head_pos(slot, r10_bio);
341
342 if (slotp)
343 *slotp = slot;
344 if (replp)
345 *replp = repl;
346 return r10_bio->devs[slot].devnum;
347 }
348
raid10_end_read_request(struct bio * bio)349 static void raid10_end_read_request(struct bio *bio)
350 {
351 int uptodate = !bio->bi_status;
352 struct r10bio *r10_bio = bio->bi_private;
353 int slot;
354 struct md_rdev *rdev;
355 struct r10conf *conf = r10_bio->mddev->private;
356
357 slot = r10_bio->read_slot;
358 rdev = r10_bio->devs[slot].rdev;
359 /*
360 * this branch is our 'one mirror IO has finished' event handler:
361 */
362 update_head_pos(slot, r10_bio);
363
364 if (uptodate) {
365 /*
366 * Set R10BIO_Uptodate in our master bio, so that
367 * we will return a good error code to the higher
368 * levels even if IO on some other mirrored buffer fails.
369 *
370 * The 'master' represents the composite IO operation to
371 * user-side. So if something waits for IO, then it will
372 * wait for the 'master' bio.
373 */
374 set_bit(R10BIO_Uptodate, &r10_bio->state);
375 } else {
376 /* If all other devices that store this block have
377 * failed, we want to return the error upwards rather
378 * than fail the last device. Here we redefine
379 * "uptodate" to mean "Don't want to retry"
380 */
381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 rdev->raid_disk))
383 uptodate = 1;
384 }
385 if (uptodate) {
386 raid_end_bio_io(r10_bio);
387 rdev_dec_pending(rdev, conf->mddev);
388 } else {
389 /*
390 * oops, read error - keep the refcount on the rdev
391 */
392 char b[BDEVNAME_SIZE];
393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 mdname(conf->mddev),
395 bdevname(rdev->bdev, b),
396 (unsigned long long)r10_bio->sector);
397 set_bit(R10BIO_ReadError, &r10_bio->state);
398 reschedule_retry(r10_bio);
399 }
400 }
401
close_write(struct r10bio * r10_bio)402 static void close_write(struct r10bio *r10_bio)
403 {
404 /* clear the bitmap if all writes complete successfully */
405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 r10_bio->sectors,
407 !test_bit(R10BIO_Degraded, &r10_bio->state),
408 0);
409 md_write_end(r10_bio->mddev);
410 }
411
one_write_done(struct r10bio * r10_bio)412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 if (atomic_dec_and_test(&r10_bio->remaining)) {
415 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 reschedule_retry(r10_bio);
417 else {
418 close_write(r10_bio);
419 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 reschedule_retry(r10_bio);
421 else
422 raid_end_bio_io(r10_bio);
423 }
424 }
425 }
426
raid10_end_write_request(struct bio * bio)427 static void raid10_end_write_request(struct bio *bio)
428 {
429 struct r10bio *r10_bio = bio->bi_private;
430 int dev;
431 int dec_rdev = 1;
432 struct r10conf *conf = r10_bio->mddev->private;
433 int slot, repl;
434 struct md_rdev *rdev = NULL;
435 struct bio *to_put = NULL;
436 bool discard_error;
437
438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442 if (repl)
443 rdev = conf->mirrors[dev].replacement;
444 if (!rdev) {
445 smp_rmb();
446 repl = 0;
447 rdev = conf->mirrors[dev].rdev;
448 }
449 /*
450 * this branch is our 'one mirror IO has finished' event handler:
451 */
452 if (bio->bi_status && !discard_error) {
453 if (repl)
454 /* Never record new bad blocks to replacement,
455 * just fail it.
456 */
457 md_error(rdev->mddev, rdev);
458 else {
459 set_bit(WriteErrorSeen, &rdev->flags);
460 if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 set_bit(MD_RECOVERY_NEEDED,
462 &rdev->mddev->recovery);
463
464 dec_rdev = 0;
465 if (test_bit(FailFast, &rdev->flags) &&
466 (bio->bi_opf & MD_FAILFAST)) {
467 md_error(rdev->mddev, rdev);
468 }
469
470 /*
471 * When the device is faulty, it is not necessary to
472 * handle write error.
473 */
474 if (!test_bit(Faulty, &rdev->flags))
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 else {
477 /* Fail the request */
478 set_bit(R10BIO_Degraded, &r10_bio->state);
479 r10_bio->devs[slot].bio = NULL;
480 to_put = bio;
481 dec_rdev = 1;
482 }
483 }
484 } else {
485 /*
486 * Set R10BIO_Uptodate in our master bio, so that
487 * we will return a good error code for to the higher
488 * levels even if IO on some other mirrored buffer fails.
489 *
490 * The 'master' represents the composite IO operation to
491 * user-side. So if something waits for IO, then it will
492 * wait for the 'master' bio.
493 */
494 sector_t first_bad;
495 int bad_sectors;
496
497 /*
498 * Do not set R10BIO_Uptodate if the current device is
499 * rebuilding or Faulty. This is because we cannot use
500 * such device for properly reading the data back (we could
501 * potentially use it, if the current write would have felt
502 * before rdev->recovery_offset, but for simplicity we don't
503 * check this here.
504 */
505 if (test_bit(In_sync, &rdev->flags) &&
506 !test_bit(Faulty, &rdev->flags))
507 set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509 /* Maybe we can clear some bad blocks. */
510 if (is_badblock(rdev,
511 r10_bio->devs[slot].addr,
512 r10_bio->sectors,
513 &first_bad, &bad_sectors) && !discard_error) {
514 bio_put(bio);
515 if (repl)
516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 else
518 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 dec_rdev = 0;
520 set_bit(R10BIO_MadeGood, &r10_bio->state);
521 }
522 }
523
524 /*
525 *
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 one_write_done(r10_bio);
530 if (dec_rdev)
531 rdev_dec_pending(rdev, conf->mddev);
532 if (to_put)
533 bio_put(to_put);
534 }
535
536 /*
537 * RAID10 layout manager
538 * As well as the chunksize and raid_disks count, there are two
539 * parameters: near_copies and far_copies.
540 * near_copies * far_copies must be <= raid_disks.
541 * Normally one of these will be 1.
542 * If both are 1, we get raid0.
543 * If near_copies == raid_disks, we get raid1.
544 *
545 * Chunks are laid out in raid0 style with near_copies copies of the
546 * first chunk, followed by near_copies copies of the next chunk and
547 * so on.
548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
549 * as described above, we start again with a device offset of near_copies.
550 * So we effectively have another copy of the whole array further down all
551 * the drives, but with blocks on different drives.
552 * With this layout, and block is never stored twice on the one device.
553 *
554 * raid10_find_phys finds the sector offset of a given virtual sector
555 * on each device that it is on.
556 *
557 * raid10_find_virt does the reverse mapping, from a device and a
558 * sector offset to a virtual address
559 */
560
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 int n,f;
564 sector_t sector;
565 sector_t chunk;
566 sector_t stripe;
567 int dev;
568 int slot = 0;
569 int last_far_set_start, last_far_set_size;
570
571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 last_far_set_start *= geo->far_set_size;
573
574 last_far_set_size = geo->far_set_size;
575 last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577 /* now calculate first sector/dev */
578 chunk = r10bio->sector >> geo->chunk_shift;
579 sector = r10bio->sector & geo->chunk_mask;
580
581 chunk *= geo->near_copies;
582 stripe = chunk;
583 dev = sector_div(stripe, geo->raid_disks);
584 if (geo->far_offset)
585 stripe *= geo->far_copies;
586
587 sector += stripe << geo->chunk_shift;
588
589 /* and calculate all the others */
590 for (n = 0; n < geo->near_copies; n++) {
591 int d = dev;
592 int set;
593 sector_t s = sector;
594 r10bio->devs[slot].devnum = d;
595 r10bio->devs[slot].addr = s;
596 slot++;
597
598 for (f = 1; f < geo->far_copies; f++) {
599 set = d / geo->far_set_size;
600 d += geo->near_copies;
601
602 if ((geo->raid_disks % geo->far_set_size) &&
603 (d > last_far_set_start)) {
604 d -= last_far_set_start;
605 d %= last_far_set_size;
606 d += last_far_set_start;
607 } else {
608 d %= geo->far_set_size;
609 d += geo->far_set_size * set;
610 }
611 s += geo->stride;
612 r10bio->devs[slot].devnum = d;
613 r10bio->devs[slot].addr = s;
614 slot++;
615 }
616 dev++;
617 if (dev >= geo->raid_disks) {
618 dev = 0;
619 sector += (geo->chunk_mask + 1);
620 }
621 }
622 }
623
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 struct geom *geo = &conf->geo;
627
628 if (conf->reshape_progress != MaxSector &&
629 ((r10bio->sector >= conf->reshape_progress) !=
630 conf->mddev->reshape_backwards)) {
631 set_bit(R10BIO_Previous, &r10bio->state);
632 geo = &conf->prev;
633 } else
634 clear_bit(R10BIO_Previous, &r10bio->state);
635
636 __raid10_find_phys(geo, r10bio);
637 }
638
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 sector_t offset, chunk, vchunk;
642 /* Never use conf->prev as this is only called during resync
643 * or recovery, so reshape isn't happening
644 */
645 struct geom *geo = &conf->geo;
646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 int far_set_size = geo->far_set_size;
648 int last_far_set_start;
649
650 if (geo->raid_disks % geo->far_set_size) {
651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 last_far_set_start *= geo->far_set_size;
653
654 if (dev >= last_far_set_start) {
655 far_set_size = geo->far_set_size;
656 far_set_size += (geo->raid_disks % geo->far_set_size);
657 far_set_start = last_far_set_start;
658 }
659 }
660
661 offset = sector & geo->chunk_mask;
662 if (geo->far_offset) {
663 int fc;
664 chunk = sector >> geo->chunk_shift;
665 fc = sector_div(chunk, geo->far_copies);
666 dev -= fc * geo->near_copies;
667 if (dev < far_set_start)
668 dev += far_set_size;
669 } else {
670 while (sector >= geo->stride) {
671 sector -= geo->stride;
672 if (dev < (geo->near_copies + far_set_start))
673 dev += far_set_size - geo->near_copies;
674 else
675 dev -= geo->near_copies;
676 }
677 chunk = sector >> geo->chunk_shift;
678 }
679 vchunk = chunk * geo->raid_disks + dev;
680 sector_div(vchunk, geo->near_copies);
681 return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685 * This routine returns the disk from which the requested read should
686 * be done. There is a per-array 'next expected sequential IO' sector
687 * number - if this matches on the next IO then we use the last disk.
688 * There is also a per-disk 'last know head position' sector that is
689 * maintained from IRQ contexts, both the normal and the resync IO
690 * completion handlers update this position correctly. If there is no
691 * perfect sequential match then we pick the disk whose head is closest.
692 *
693 * If there are 2 mirrors in the same 2 devices, performance degrades
694 * because position is mirror, not device based.
695 *
696 * The rdev for the device selected will have nr_pending incremented.
697 */
698
699 /*
700 * FIXME: possibly should rethink readbalancing and do it differently
701 * depending on near_copies / far_copies geometry.
702 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)703 static struct md_rdev *read_balance(struct r10conf *conf,
704 struct r10bio *r10_bio,
705 int *max_sectors)
706 {
707 const sector_t this_sector = r10_bio->sector;
708 int disk, slot;
709 int sectors = r10_bio->sectors;
710 int best_good_sectors;
711 sector_t new_distance, best_dist;
712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 int do_balance;
714 int best_dist_slot, best_pending_slot;
715 bool has_nonrot_disk = false;
716 unsigned int min_pending;
717 struct geom *geo = &conf->geo;
718
719 raid10_find_phys(conf, r10_bio);
720 rcu_read_lock();
721 best_dist_slot = -1;
722 min_pending = UINT_MAX;
723 best_dist_rdev = NULL;
724 best_pending_rdev = NULL;
725 best_dist = MaxSector;
726 best_good_sectors = 0;
727 do_balance = 1;
728 clear_bit(R10BIO_FailFast, &r10_bio->state);
729 /*
730 * Check if we can balance. We can balance on the whole
731 * device if no resync is going on (recovery is ok), or below
732 * the resync window. We take the first readable disk when
733 * above the resync window.
734 */
735 if ((conf->mddev->recovery_cp < MaxSector
736 && (this_sector + sectors >= conf->next_resync)) ||
737 (mddev_is_clustered(conf->mddev) &&
738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 this_sector + sectors)))
740 do_balance = 0;
741
742 for (slot = 0; slot < conf->copies ; slot++) {
743 sector_t first_bad;
744 int bad_sectors;
745 sector_t dev_sector;
746 unsigned int pending;
747 bool nonrot;
748
749 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 continue;
751 disk = r10_bio->devs[slot].devnum;
752 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 if (rdev == NULL ||
757 test_bit(Faulty, &rdev->flags))
758 continue;
759 if (!test_bit(In_sync, &rdev->flags) &&
760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 continue;
762
763 dev_sector = r10_bio->devs[slot].addr;
764 if (is_badblock(rdev, dev_sector, sectors,
765 &first_bad, &bad_sectors)) {
766 if (best_dist < MaxSector)
767 /* Already have a better slot */
768 continue;
769 if (first_bad <= dev_sector) {
770 /* Cannot read here. If this is the
771 * 'primary' device, then we must not read
772 * beyond 'bad_sectors' from another device.
773 */
774 bad_sectors -= (dev_sector - first_bad);
775 if (!do_balance && sectors > bad_sectors)
776 sectors = bad_sectors;
777 if (best_good_sectors > sectors)
778 best_good_sectors = sectors;
779 } else {
780 sector_t good_sectors =
781 first_bad - dev_sector;
782 if (good_sectors > best_good_sectors) {
783 best_good_sectors = good_sectors;
784 best_dist_slot = slot;
785 best_dist_rdev = rdev;
786 }
787 if (!do_balance)
788 /* Must read from here */
789 break;
790 }
791 continue;
792 } else
793 best_good_sectors = sectors;
794
795 if (!do_balance)
796 break;
797
798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 has_nonrot_disk |= nonrot;
800 pending = atomic_read(&rdev->nr_pending);
801 if (min_pending > pending && nonrot) {
802 min_pending = pending;
803 best_pending_slot = slot;
804 best_pending_rdev = rdev;
805 }
806
807 if (best_dist_slot >= 0)
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast, &r10_bio->state);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
813 */
814 if (geo->near_copies > 1 && !pending)
815 new_distance = 0;
816
817 /* for far > 1 always use the lowest address */
818 else if (geo->far_copies > 1)
819 new_distance = r10_bio->devs[slot].addr;
820 else
821 new_distance = abs(r10_bio->devs[slot].addr -
822 conf->mirrors[disk].head_position);
823
824 if (new_distance < best_dist) {
825 best_dist = new_distance;
826 best_dist_slot = slot;
827 best_dist_rdev = rdev;
828 }
829 }
830 if (slot >= conf->copies) {
831 if (has_nonrot_disk) {
832 slot = best_pending_slot;
833 rdev = best_pending_rdev;
834 } else {
835 slot = best_dist_slot;
836 rdev = best_dist_rdev;
837 }
838 }
839
840 if (slot >= 0) {
841 atomic_inc(&rdev->nr_pending);
842 r10_bio->read_slot = slot;
843 } else
844 rdev = NULL;
845 rcu_read_unlock();
846 *max_sectors = best_good_sectors;
847
848 return rdev;
849 }
850
flush_pending_writes(struct r10conf * conf)851 static void flush_pending_writes(struct r10conf *conf)
852 {
853 /* Any writes that have been queued but are awaiting
854 * bitmap updates get flushed here.
855 */
856 spin_lock_irq(&conf->device_lock);
857
858 if (conf->pending_bio_list.head) {
859 struct blk_plug plug;
860 struct bio *bio;
861
862 bio = bio_list_get(&conf->pending_bio_list);
863 conf->pending_count = 0;
864 spin_unlock_irq(&conf->device_lock);
865
866 /*
867 * As this is called in a wait_event() loop (see freeze_array),
868 * current->state might be TASK_UNINTERRUPTIBLE which will
869 * cause a warning when we prepare to wait again. As it is
870 * rare that this path is taken, it is perfectly safe to force
871 * us to go around the wait_event() loop again, so the warning
872 * is a false-positive. Silence the warning by resetting
873 * thread state
874 */
875 __set_current_state(TASK_RUNNING);
876
877 blk_start_plug(&plug);
878 /* flush any pending bitmap writes to disk
879 * before proceeding w/ I/O */
880 md_bitmap_unplug(conf->mddev->bitmap);
881 wake_up(&conf->wait_barrier);
882
883 while (bio) { /* submit pending writes */
884 struct bio *next = bio->bi_next;
885 struct md_rdev *rdev = (void*)bio->bi_disk;
886 bio->bi_next = NULL;
887 bio_set_dev(bio, rdev->bdev);
888 if (test_bit(Faulty, &rdev->flags)) {
889 bio_io_error(bio);
890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
891 !blk_queue_discard(bio->bi_disk->queue)))
892 /* Just ignore it */
893 bio_endio(bio);
894 else
895 submit_bio_noacct(bio);
896 bio = next;
897 }
898 blk_finish_plug(&plug);
899 } else
900 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904 * Sometimes we need to suspend IO while we do something else,
905 * either some resync/recovery, or reconfigure the array.
906 * To do this we raise a 'barrier'.
907 * The 'barrier' is a counter that can be raised multiple times
908 * to count how many activities are happening which preclude
909 * normal IO.
910 * We can only raise the barrier if there is no pending IO.
911 * i.e. if nr_pending == 0.
912 * We choose only to raise the barrier if no-one is waiting for the
913 * barrier to go down. This means that as soon as an IO request
914 * is ready, no other operations which require a barrier will start
915 * until the IO request has had a chance.
916 *
917 * So: regular IO calls 'wait_barrier'. When that returns there
918 * is no backgroup IO happening, It must arrange to call
919 * allow_barrier when it has finished its IO.
920 * backgroup IO calls must call raise_barrier. Once that returns
921 * there is no normal IO happeing. It must arrange to call
922 * lower_barrier when the particular background IO completes.
923 */
924
raise_barrier(struct r10conf * conf,int force)925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 BUG_ON(force && !conf->barrier);
928 spin_lock_irq(&conf->resync_lock);
929
930 /* Wait until no block IO is waiting (unless 'force') */
931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 conf->resync_lock);
933
934 /* block any new IO from starting */
935 conf->barrier++;
936
937 /* Now wait for all pending IO to complete */
938 wait_event_lock_irq(conf->wait_barrier,
939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 conf->resync_lock);
941
942 spin_unlock_irq(&conf->resync_lock);
943 }
944
lower_barrier(struct r10conf * conf)945 static void lower_barrier(struct r10conf *conf)
946 {
947 unsigned long flags;
948 spin_lock_irqsave(&conf->resync_lock, flags);
949 conf->barrier--;
950 spin_unlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
952 }
953
wait_barrier(struct r10conf * conf)954 static void wait_barrier(struct r10conf *conf)
955 {
956 spin_lock_irq(&conf->resync_lock);
957 if (conf->barrier) {
958 struct bio_list *bio_list = current->bio_list;
959 conf->nr_waiting++;
960 /* Wait for the barrier to drop.
961 * However if there are already pending
962 * requests (preventing the barrier from
963 * rising completely), and the
964 * pre-process bio queue isn't empty,
965 * then don't wait, as we need to empty
966 * that queue to get the nr_pending
967 * count down.
968 */
969 raid10_log(conf->mddev, "wait barrier");
970 wait_event_lock_irq(conf->wait_barrier,
971 !conf->barrier ||
972 (atomic_read(&conf->nr_pending) &&
973 bio_list &&
974 (!bio_list_empty(&bio_list[0]) ||
975 !bio_list_empty(&bio_list[1]))) ||
976 /* move on if recovery thread is
977 * blocked by us
978 */
979 (conf->mddev->thread->tsk == current &&
980 test_bit(MD_RECOVERY_RUNNING,
981 &conf->mddev->recovery) &&
982 conf->nr_queued > 0),
983 conf->resync_lock);
984 conf->nr_waiting--;
985 if (!conf->nr_waiting)
986 wake_up(&conf->wait_barrier);
987 }
988 atomic_inc(&conf->nr_pending);
989 spin_unlock_irq(&conf->resync_lock);
990 }
991
allow_barrier(struct r10conf * conf)992 static void allow_barrier(struct r10conf *conf)
993 {
994 if ((atomic_dec_and_test(&conf->nr_pending)) ||
995 (conf->array_freeze_pending))
996 wake_up(&conf->wait_barrier);
997 }
998
freeze_array(struct r10conf * conf,int extra)999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001 /* stop syncio and normal IO and wait for everything to
1002 * go quiet.
1003 * We increment barrier and nr_waiting, and then
1004 * wait until nr_pending match nr_queued+extra
1005 * This is called in the context of one normal IO request
1006 * that has failed. Thus any sync request that might be pending
1007 * will be blocked by nr_pending, and we need to wait for
1008 * pending IO requests to complete or be queued for re-try.
1009 * Thus the number queued (nr_queued) plus this request (extra)
1010 * must match the number of pending IOs (nr_pending) before
1011 * we continue.
1012 */
1013 spin_lock_irq(&conf->resync_lock);
1014 conf->array_freeze_pending++;
1015 conf->barrier++;
1016 conf->nr_waiting++;
1017 wait_event_lock_irq_cmd(conf->wait_barrier,
1018 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019 conf->resync_lock,
1020 flush_pending_writes(conf));
1021
1022 conf->array_freeze_pending--;
1023 spin_unlock_irq(&conf->resync_lock);
1024 }
1025
unfreeze_array(struct r10conf * conf)1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028 /* reverse the effect of the freeze */
1029 spin_lock_irq(&conf->resync_lock);
1030 conf->barrier--;
1031 conf->nr_waiting--;
1032 wake_up(&conf->wait_barrier);
1033 spin_unlock_irq(&conf->resync_lock);
1034 }
1035
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037 struct md_rdev *rdev)
1038 {
1039 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040 test_bit(R10BIO_Previous, &r10_bio->state))
1041 return rdev->data_offset;
1042 else
1043 return rdev->new_data_offset;
1044 }
1045
1046 struct raid10_plug_cb {
1047 struct blk_plug_cb cb;
1048 struct bio_list pending;
1049 int pending_cnt;
1050 };
1051
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055 cb);
1056 struct mddev *mddev = plug->cb.data;
1057 struct r10conf *conf = mddev->private;
1058 struct bio *bio;
1059
1060 if (from_schedule || current->bio_list) {
1061 spin_lock_irq(&conf->device_lock);
1062 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063 conf->pending_count += plug->pending_cnt;
1064 spin_unlock_irq(&conf->device_lock);
1065 wake_up(&conf->wait_barrier);
1066 md_wakeup_thread(mddev->thread);
1067 kfree(plug);
1068 return;
1069 }
1070
1071 /* we aren't scheduling, so we can do the write-out directly. */
1072 bio = bio_list_get(&plug->pending);
1073 md_bitmap_unplug(mddev->bitmap);
1074 wake_up(&conf->wait_barrier);
1075
1076 while (bio) { /* submit pending writes */
1077 struct bio *next = bio->bi_next;
1078 struct md_rdev *rdev = (void*)bio->bi_disk;
1079 bio->bi_next = NULL;
1080 bio_set_dev(bio, rdev->bdev);
1081 if (test_bit(Faulty, &rdev->flags)) {
1082 bio_io_error(bio);
1083 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1084 !blk_queue_discard(bio->bi_disk->queue)))
1085 /* Just ignore it */
1086 bio_endio(bio);
1087 else
1088 submit_bio_noacct(bio);
1089 bio = next;
1090 }
1091 kfree(plug);
1092 }
1093
1094 /*
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1097 * currently.
1098 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1099 */
regular_request_wait(struct mddev * mddev,struct r10conf * conf,struct bio * bio,sector_t sectors)1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101 struct bio *bio, sector_t sectors)
1102 {
1103 wait_barrier(conf);
1104 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105 bio->bi_iter.bi_sector < conf->reshape_progress &&
1106 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107 raid10_log(conf->mddev, "wait reshape");
1108 allow_barrier(conf);
1109 wait_event(conf->wait_barrier,
1110 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111 conf->reshape_progress >= bio->bi_iter.bi_sector +
1112 sectors);
1113 wait_barrier(conf);
1114 }
1115 }
1116
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118 struct r10bio *r10_bio)
1119 {
1120 struct r10conf *conf = mddev->private;
1121 struct bio *read_bio;
1122 const int op = bio_op(bio);
1123 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124 int max_sectors;
1125 struct md_rdev *rdev;
1126 char b[BDEVNAME_SIZE];
1127 int slot = r10_bio->read_slot;
1128 struct md_rdev *err_rdev = NULL;
1129 gfp_t gfp = GFP_NOIO;
1130
1131 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1132 /*
1133 * This is an error retry, but we cannot
1134 * safely dereference the rdev in the r10_bio,
1135 * we must use the one in conf.
1136 * If it has already been disconnected (unlikely)
1137 * we lose the device name in error messages.
1138 */
1139 int disk;
1140 /*
1141 * As we are blocking raid10, it is a little safer to
1142 * use __GFP_HIGH.
1143 */
1144 gfp = GFP_NOIO | __GFP_HIGH;
1145
1146 rcu_read_lock();
1147 disk = r10_bio->devs[slot].devnum;
1148 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149 if (err_rdev)
1150 bdevname(err_rdev->bdev, b);
1151 else {
1152 strcpy(b, "???");
1153 /* This never gets dereferenced */
1154 err_rdev = r10_bio->devs[slot].rdev;
1155 }
1156 rcu_read_unlock();
1157 }
1158
1159 regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160 rdev = read_balance(conf, r10_bio, &max_sectors);
1161 if (!rdev) {
1162 if (err_rdev) {
1163 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164 mdname(mddev), b,
1165 (unsigned long long)r10_bio->sector);
1166 }
1167 raid_end_bio_io(r10_bio);
1168 return;
1169 }
1170 if (err_rdev)
1171 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172 mdname(mddev),
1173 bdevname(rdev->bdev, b),
1174 (unsigned long long)r10_bio->sector);
1175 if (max_sectors < bio_sectors(bio)) {
1176 struct bio *split = bio_split(bio, max_sectors,
1177 gfp, &conf->bio_split);
1178 bio_chain(split, bio);
1179 allow_barrier(conf);
1180 submit_bio_noacct(bio);
1181 wait_barrier(conf);
1182 bio = split;
1183 r10_bio->master_bio = bio;
1184 r10_bio->sectors = max_sectors;
1185 }
1186 slot = r10_bio->read_slot;
1187
1188 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190 r10_bio->devs[slot].bio = read_bio;
1191 r10_bio->devs[slot].rdev = rdev;
1192
1193 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194 choose_data_offset(r10_bio, rdev);
1195 bio_set_dev(read_bio, rdev->bdev);
1196 read_bio->bi_end_io = raid10_end_read_request;
1197 bio_set_op_attrs(read_bio, op, do_sync);
1198 if (test_bit(FailFast, &rdev->flags) &&
1199 test_bit(R10BIO_FailFast, &r10_bio->state))
1200 read_bio->bi_opf |= MD_FAILFAST;
1201 read_bio->bi_private = r10_bio;
1202
1203 if (mddev->gendisk)
1204 trace_block_bio_remap(read_bio->bi_disk->queue,
1205 read_bio, disk_devt(mddev->gendisk),
1206 r10_bio->sector);
1207 submit_bio_noacct(read_bio);
1208 return;
1209 }
1210
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1211 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212 struct bio *bio, bool replacement,
1213 int n_copy)
1214 {
1215 const int op = bio_op(bio);
1216 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218 unsigned long flags;
1219 struct blk_plug_cb *cb;
1220 struct raid10_plug_cb *plug = NULL;
1221 struct r10conf *conf = mddev->private;
1222 struct md_rdev *rdev;
1223 int devnum = r10_bio->devs[n_copy].devnum;
1224 struct bio *mbio;
1225
1226 if (replacement) {
1227 rdev = conf->mirrors[devnum].replacement;
1228 if (rdev == NULL) {
1229 /* Replacement just got moved to main 'rdev' */
1230 smp_mb();
1231 rdev = conf->mirrors[devnum].rdev;
1232 }
1233 } else
1234 rdev = conf->mirrors[devnum].rdev;
1235
1236 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237 if (replacement)
1238 r10_bio->devs[n_copy].repl_bio = mbio;
1239 else
1240 r10_bio->devs[n_copy].bio = mbio;
1241
1242 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1243 choose_data_offset(r10_bio, rdev));
1244 bio_set_dev(mbio, rdev->bdev);
1245 mbio->bi_end_io = raid10_end_write_request;
1246 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247 if (!replacement && test_bit(FailFast,
1248 &conf->mirrors[devnum].rdev->flags)
1249 && enough(conf, devnum))
1250 mbio->bi_opf |= MD_FAILFAST;
1251 mbio->bi_private = r10_bio;
1252
1253 if (conf->mddev->gendisk)
1254 trace_block_bio_remap(mbio->bi_disk->queue,
1255 mbio, disk_devt(conf->mddev->gendisk),
1256 r10_bio->sector);
1257 /* flush_pending_writes() needs access to the rdev so...*/
1258 mbio->bi_disk = (void *)rdev;
1259
1260 atomic_inc(&r10_bio->remaining);
1261
1262 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263 if (cb)
1264 plug = container_of(cb, struct raid10_plug_cb, cb);
1265 else
1266 plug = NULL;
1267 if (plug) {
1268 bio_list_add(&plug->pending, mbio);
1269 plug->pending_cnt++;
1270 } else {
1271 spin_lock_irqsave(&conf->device_lock, flags);
1272 bio_list_add(&conf->pending_bio_list, mbio);
1273 conf->pending_count++;
1274 spin_unlock_irqrestore(&conf->device_lock, flags);
1275 md_wakeup_thread(mddev->thread);
1276 }
1277 }
1278
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1279 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280 struct r10bio *r10_bio)
1281 {
1282 struct r10conf *conf = mddev->private;
1283 int i;
1284 struct md_rdev *blocked_rdev;
1285 sector_t sectors;
1286 int max_sectors;
1287
1288 if ((mddev_is_clustered(mddev) &&
1289 md_cluster_ops->area_resyncing(mddev, WRITE,
1290 bio->bi_iter.bi_sector,
1291 bio_end_sector(bio)))) {
1292 DEFINE_WAIT(w);
1293 for (;;) {
1294 prepare_to_wait(&conf->wait_barrier,
1295 &w, TASK_IDLE);
1296 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298 break;
1299 schedule();
1300 }
1301 finish_wait(&conf->wait_barrier, &w);
1302 }
1303
1304 sectors = r10_bio->sectors;
1305 regular_request_wait(mddev, conf, bio, sectors);
1306 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307 (mddev->reshape_backwards
1308 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312 /* Need to update reshape_position in metadata */
1313 mddev->reshape_position = conf->reshape_progress;
1314 set_mask_bits(&mddev->sb_flags, 0,
1315 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316 md_wakeup_thread(mddev->thread);
1317 raid10_log(conf->mddev, "wait reshape metadata");
1318 wait_event(mddev->sb_wait,
1319 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320
1321 conf->reshape_safe = mddev->reshape_position;
1322 }
1323
1324 if (conf->pending_count >= max_queued_requests) {
1325 md_wakeup_thread(mddev->thread);
1326 raid10_log(mddev, "wait queued");
1327 wait_event(conf->wait_barrier,
1328 conf->pending_count < max_queued_requests);
1329 }
1330 /* first select target devices under rcu_lock and
1331 * inc refcount on their rdev. Record them by setting
1332 * bios[x] to bio
1333 * If there are known/acknowledged bad blocks on any device
1334 * on which we have seen a write error, we want to avoid
1335 * writing to those blocks. This potentially requires several
1336 * writes to write around the bad blocks. Each set of writes
1337 * gets its own r10_bio with a set of bios attached.
1338 */
1339
1340 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341 raid10_find_phys(conf, r10_bio);
1342 retry_write:
1343 blocked_rdev = NULL;
1344 rcu_read_lock();
1345 max_sectors = r10_bio->sectors;
1346
1347 for (i = 0; i < conf->copies; i++) {
1348 int d = r10_bio->devs[i].devnum;
1349 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350 struct md_rdev *rrdev = rcu_dereference(
1351 conf->mirrors[d].replacement);
1352 if (rdev == rrdev)
1353 rrdev = NULL;
1354 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355 atomic_inc(&rdev->nr_pending);
1356 blocked_rdev = rdev;
1357 break;
1358 }
1359 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360 atomic_inc(&rrdev->nr_pending);
1361 blocked_rdev = rrdev;
1362 break;
1363 }
1364 if (rdev && (test_bit(Faulty, &rdev->flags)))
1365 rdev = NULL;
1366 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367 rrdev = NULL;
1368
1369 r10_bio->devs[i].bio = NULL;
1370 r10_bio->devs[i].repl_bio = NULL;
1371
1372 if (!rdev && !rrdev) {
1373 set_bit(R10BIO_Degraded, &r10_bio->state);
1374 continue;
1375 }
1376 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377 sector_t first_bad;
1378 sector_t dev_sector = r10_bio->devs[i].addr;
1379 int bad_sectors;
1380 int is_bad;
1381
1382 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1383 &first_bad, &bad_sectors);
1384 if (is_bad < 0) {
1385 /* Mustn't write here until the bad block
1386 * is acknowledged
1387 */
1388 atomic_inc(&rdev->nr_pending);
1389 set_bit(BlockedBadBlocks, &rdev->flags);
1390 blocked_rdev = rdev;
1391 break;
1392 }
1393 if (is_bad && first_bad <= dev_sector) {
1394 /* Cannot write here at all */
1395 bad_sectors -= (dev_sector - first_bad);
1396 if (bad_sectors < max_sectors)
1397 /* Mustn't write more than bad_sectors
1398 * to other devices yet
1399 */
1400 max_sectors = bad_sectors;
1401 /* We don't set R10BIO_Degraded as that
1402 * only applies if the disk is missing,
1403 * so it might be re-added, and we want to
1404 * know to recover this chunk.
1405 * In this case the device is here, and the
1406 * fact that this chunk is not in-sync is
1407 * recorded in the bad block log.
1408 */
1409 continue;
1410 }
1411 if (is_bad) {
1412 int good_sectors = first_bad - dev_sector;
1413 if (good_sectors < max_sectors)
1414 max_sectors = good_sectors;
1415 }
1416 }
1417 if (rdev) {
1418 r10_bio->devs[i].bio = bio;
1419 atomic_inc(&rdev->nr_pending);
1420 }
1421 if (rrdev) {
1422 r10_bio->devs[i].repl_bio = bio;
1423 atomic_inc(&rrdev->nr_pending);
1424 }
1425 }
1426 rcu_read_unlock();
1427
1428 if (unlikely(blocked_rdev)) {
1429 /* Have to wait for this device to get unblocked, then retry */
1430 int j;
1431 int d;
1432
1433 for (j = 0; j < i; j++) {
1434 if (r10_bio->devs[j].bio) {
1435 d = r10_bio->devs[j].devnum;
1436 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437 }
1438 if (r10_bio->devs[j].repl_bio) {
1439 struct md_rdev *rdev;
1440 d = r10_bio->devs[j].devnum;
1441 rdev = conf->mirrors[d].replacement;
1442 if (!rdev) {
1443 /* Race with remove_disk */
1444 smp_mb();
1445 rdev = conf->mirrors[d].rdev;
1446 }
1447 rdev_dec_pending(rdev, mddev);
1448 }
1449 }
1450 allow_barrier(conf);
1451 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453 wait_barrier(conf);
1454 goto retry_write;
1455 }
1456
1457 if (max_sectors < r10_bio->sectors)
1458 r10_bio->sectors = max_sectors;
1459
1460 if (r10_bio->sectors < bio_sectors(bio)) {
1461 struct bio *split = bio_split(bio, r10_bio->sectors,
1462 GFP_NOIO, &conf->bio_split);
1463 bio_chain(split, bio);
1464 allow_barrier(conf);
1465 submit_bio_noacct(bio);
1466 wait_barrier(conf);
1467 bio = split;
1468 r10_bio->master_bio = bio;
1469 }
1470
1471 atomic_set(&r10_bio->remaining, 1);
1472 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473
1474 for (i = 0; i < conf->copies; i++) {
1475 if (r10_bio->devs[i].bio)
1476 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477 if (r10_bio->devs[i].repl_bio)
1478 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479 }
1480 one_write_done(r10_bio);
1481 }
1482
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1483 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484 {
1485 struct r10conf *conf = mddev->private;
1486 struct r10bio *r10_bio;
1487
1488 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1489
1490 r10_bio->master_bio = bio;
1491 r10_bio->sectors = sectors;
1492
1493 r10_bio->mddev = mddev;
1494 r10_bio->sector = bio->bi_iter.bi_sector;
1495 r10_bio->state = 0;
1496 r10_bio->read_slot = -1;
1497 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1498
1499 if (bio_data_dir(bio) == READ)
1500 raid10_read_request(mddev, bio, r10_bio);
1501 else
1502 raid10_write_request(mddev, bio, r10_bio);
1503 }
1504
raid10_make_request(struct mddev * mddev,struct bio * bio)1505 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1506 {
1507 struct r10conf *conf = mddev->private;
1508 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1509 int chunk_sects = chunk_mask + 1;
1510 int sectors = bio_sectors(bio);
1511
1512 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1513 && md_flush_request(mddev, bio))
1514 return true;
1515
1516 if (!md_write_start(mddev, bio))
1517 return false;
1518
1519 /*
1520 * If this request crosses a chunk boundary, we need to split
1521 * it.
1522 */
1523 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1524 sectors > chunk_sects
1525 && (conf->geo.near_copies < conf->geo.raid_disks
1526 || conf->prev.near_copies <
1527 conf->prev.raid_disks)))
1528 sectors = chunk_sects -
1529 (bio->bi_iter.bi_sector &
1530 (chunk_sects - 1));
1531 __make_request(mddev, bio, sectors);
1532
1533 /* In case raid10d snuck in to freeze_array */
1534 wake_up(&conf->wait_barrier);
1535 return true;
1536 }
1537
raid10_status(struct seq_file * seq,struct mddev * mddev)1538 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1539 {
1540 struct r10conf *conf = mddev->private;
1541 int i;
1542
1543 if (conf->geo.near_copies < conf->geo.raid_disks)
1544 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1545 if (conf->geo.near_copies > 1)
1546 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1547 if (conf->geo.far_copies > 1) {
1548 if (conf->geo.far_offset)
1549 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1550 else
1551 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1552 if (conf->geo.far_set_size != conf->geo.raid_disks)
1553 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1554 }
1555 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1556 conf->geo.raid_disks - mddev->degraded);
1557 rcu_read_lock();
1558 for (i = 0; i < conf->geo.raid_disks; i++) {
1559 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1560 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1561 }
1562 rcu_read_unlock();
1563 seq_printf(seq, "]");
1564 }
1565
1566 /* check if there are enough drives for
1567 * every block to appear on atleast one.
1568 * Don't consider the device numbered 'ignore'
1569 * as we might be about to remove it.
1570 */
_enough(struct r10conf * conf,int previous,int ignore)1571 static int _enough(struct r10conf *conf, int previous, int ignore)
1572 {
1573 int first = 0;
1574 int has_enough = 0;
1575 int disks, ncopies;
1576 if (previous) {
1577 disks = conf->prev.raid_disks;
1578 ncopies = conf->prev.near_copies;
1579 } else {
1580 disks = conf->geo.raid_disks;
1581 ncopies = conf->geo.near_copies;
1582 }
1583
1584 rcu_read_lock();
1585 do {
1586 int n = conf->copies;
1587 int cnt = 0;
1588 int this = first;
1589 while (n--) {
1590 struct md_rdev *rdev;
1591 if (this != ignore &&
1592 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1593 test_bit(In_sync, &rdev->flags))
1594 cnt++;
1595 this = (this+1) % disks;
1596 }
1597 if (cnt == 0)
1598 goto out;
1599 first = (first + ncopies) % disks;
1600 } while (first != 0);
1601 has_enough = 1;
1602 out:
1603 rcu_read_unlock();
1604 return has_enough;
1605 }
1606
enough(struct r10conf * conf,int ignore)1607 static int enough(struct r10conf *conf, int ignore)
1608 {
1609 /* when calling 'enough', both 'prev' and 'geo' must
1610 * be stable.
1611 * This is ensured if ->reconfig_mutex or ->device_lock
1612 * is held.
1613 */
1614 return _enough(conf, 0, ignore) &&
1615 _enough(conf, 1, ignore);
1616 }
1617
raid10_error(struct mddev * mddev,struct md_rdev * rdev)1618 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1619 {
1620 char b[BDEVNAME_SIZE];
1621 struct r10conf *conf = mddev->private;
1622 unsigned long flags;
1623
1624 /*
1625 * If it is not operational, then we have already marked it as dead
1626 * else if it is the last working disks with "fail_last_dev == false",
1627 * ignore the error, let the next level up know.
1628 * else mark the drive as failed
1629 */
1630 spin_lock_irqsave(&conf->device_lock, flags);
1631 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1632 && !enough(conf, rdev->raid_disk)) {
1633 /*
1634 * Don't fail the drive, just return an IO error.
1635 */
1636 spin_unlock_irqrestore(&conf->device_lock, flags);
1637 return;
1638 }
1639 if (test_and_clear_bit(In_sync, &rdev->flags))
1640 mddev->degraded++;
1641 /*
1642 * If recovery is running, make sure it aborts.
1643 */
1644 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1645 set_bit(Blocked, &rdev->flags);
1646 set_bit(Faulty, &rdev->flags);
1647 set_mask_bits(&mddev->sb_flags, 0,
1648 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1649 spin_unlock_irqrestore(&conf->device_lock, flags);
1650 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1651 "md/raid10:%s: Operation continuing on %d devices.\n",
1652 mdname(mddev), bdevname(rdev->bdev, b),
1653 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1654 }
1655
print_conf(struct r10conf * conf)1656 static void print_conf(struct r10conf *conf)
1657 {
1658 int i;
1659 struct md_rdev *rdev;
1660
1661 pr_debug("RAID10 conf printout:\n");
1662 if (!conf) {
1663 pr_debug("(!conf)\n");
1664 return;
1665 }
1666 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1667 conf->geo.raid_disks);
1668
1669 /* This is only called with ->reconfix_mutex held, so
1670 * rcu protection of rdev is not needed */
1671 for (i = 0; i < conf->geo.raid_disks; i++) {
1672 char b[BDEVNAME_SIZE];
1673 rdev = conf->mirrors[i].rdev;
1674 if (rdev)
1675 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1676 i, !test_bit(In_sync, &rdev->flags),
1677 !test_bit(Faulty, &rdev->flags),
1678 bdevname(rdev->bdev,b));
1679 }
1680 }
1681
close_sync(struct r10conf * conf)1682 static void close_sync(struct r10conf *conf)
1683 {
1684 wait_barrier(conf);
1685 allow_barrier(conf);
1686
1687 mempool_exit(&conf->r10buf_pool);
1688 }
1689
raid10_spare_active(struct mddev * mddev)1690 static int raid10_spare_active(struct mddev *mddev)
1691 {
1692 int i;
1693 struct r10conf *conf = mddev->private;
1694 struct raid10_info *tmp;
1695 int count = 0;
1696 unsigned long flags;
1697
1698 /*
1699 * Find all non-in_sync disks within the RAID10 configuration
1700 * and mark them in_sync
1701 */
1702 for (i = 0; i < conf->geo.raid_disks; i++) {
1703 tmp = conf->mirrors + i;
1704 if (tmp->replacement
1705 && tmp->replacement->recovery_offset == MaxSector
1706 && !test_bit(Faulty, &tmp->replacement->flags)
1707 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1708 /* Replacement has just become active */
1709 if (!tmp->rdev
1710 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1711 count++;
1712 if (tmp->rdev) {
1713 /* Replaced device not technically faulty,
1714 * but we need to be sure it gets removed
1715 * and never re-added.
1716 */
1717 set_bit(Faulty, &tmp->rdev->flags);
1718 sysfs_notify_dirent_safe(
1719 tmp->rdev->sysfs_state);
1720 }
1721 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1722 } else if (tmp->rdev
1723 && tmp->rdev->recovery_offset == MaxSector
1724 && !test_bit(Faulty, &tmp->rdev->flags)
1725 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1726 count++;
1727 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1728 }
1729 }
1730 spin_lock_irqsave(&conf->device_lock, flags);
1731 mddev->degraded -= count;
1732 spin_unlock_irqrestore(&conf->device_lock, flags);
1733
1734 print_conf(conf);
1735 return count;
1736 }
1737
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)1738 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1739 {
1740 struct r10conf *conf = mddev->private;
1741 int err = -EEXIST;
1742 int mirror;
1743 int first = 0;
1744 int last = conf->geo.raid_disks - 1;
1745
1746 if (mddev->recovery_cp < MaxSector)
1747 /* only hot-add to in-sync arrays, as recovery is
1748 * very different from resync
1749 */
1750 return -EBUSY;
1751 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1752 return -EINVAL;
1753
1754 if (md_integrity_add_rdev(rdev, mddev))
1755 return -ENXIO;
1756
1757 if (rdev->raid_disk >= 0)
1758 first = last = rdev->raid_disk;
1759
1760 if (rdev->saved_raid_disk >= first &&
1761 rdev->saved_raid_disk < conf->geo.raid_disks &&
1762 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1763 mirror = rdev->saved_raid_disk;
1764 else
1765 mirror = first;
1766 for ( ; mirror <= last ; mirror++) {
1767 struct raid10_info *p = &conf->mirrors[mirror];
1768 if (p->recovery_disabled == mddev->recovery_disabled)
1769 continue;
1770 if (p->rdev) {
1771 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1772 p->replacement != NULL)
1773 continue;
1774 clear_bit(In_sync, &rdev->flags);
1775 set_bit(Replacement, &rdev->flags);
1776 rdev->raid_disk = mirror;
1777 err = 0;
1778 if (mddev->gendisk)
1779 disk_stack_limits(mddev->gendisk, rdev->bdev,
1780 rdev->data_offset << 9);
1781 conf->fullsync = 1;
1782 rcu_assign_pointer(p->replacement, rdev);
1783 break;
1784 }
1785
1786 if (mddev->gendisk)
1787 disk_stack_limits(mddev->gendisk, rdev->bdev,
1788 rdev->data_offset << 9);
1789
1790 p->head_position = 0;
1791 p->recovery_disabled = mddev->recovery_disabled - 1;
1792 rdev->raid_disk = mirror;
1793 err = 0;
1794 if (rdev->saved_raid_disk != mirror)
1795 conf->fullsync = 1;
1796 rcu_assign_pointer(p->rdev, rdev);
1797 break;
1798 }
1799 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1800 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1801
1802 print_conf(conf);
1803 return err;
1804 }
1805
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1806 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1807 {
1808 struct r10conf *conf = mddev->private;
1809 int err = 0;
1810 int number = rdev->raid_disk;
1811 struct md_rdev **rdevp;
1812 struct raid10_info *p = conf->mirrors + number;
1813
1814 print_conf(conf);
1815 if (rdev == p->rdev)
1816 rdevp = &p->rdev;
1817 else if (rdev == p->replacement)
1818 rdevp = &p->replacement;
1819 else
1820 return 0;
1821
1822 if (test_bit(In_sync, &rdev->flags) ||
1823 atomic_read(&rdev->nr_pending)) {
1824 err = -EBUSY;
1825 goto abort;
1826 }
1827 /* Only remove non-faulty devices if recovery
1828 * is not possible.
1829 */
1830 if (!test_bit(Faulty, &rdev->flags) &&
1831 mddev->recovery_disabled != p->recovery_disabled &&
1832 (!p->replacement || p->replacement == rdev) &&
1833 number < conf->geo.raid_disks &&
1834 enough(conf, -1)) {
1835 err = -EBUSY;
1836 goto abort;
1837 }
1838 *rdevp = NULL;
1839 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1840 synchronize_rcu();
1841 if (atomic_read(&rdev->nr_pending)) {
1842 /* lost the race, try later */
1843 err = -EBUSY;
1844 *rdevp = rdev;
1845 goto abort;
1846 }
1847 }
1848 if (p->replacement) {
1849 /* We must have just cleared 'rdev' */
1850 p->rdev = p->replacement;
1851 clear_bit(Replacement, &p->replacement->flags);
1852 smp_mb(); /* Make sure other CPUs may see both as identical
1853 * but will never see neither -- if they are careful.
1854 */
1855 p->replacement = NULL;
1856 }
1857
1858 clear_bit(WantReplacement, &rdev->flags);
1859 err = md_integrity_register(mddev);
1860
1861 abort:
1862
1863 print_conf(conf);
1864 return err;
1865 }
1866
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)1867 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1868 {
1869 struct r10conf *conf = r10_bio->mddev->private;
1870
1871 if (!bio->bi_status)
1872 set_bit(R10BIO_Uptodate, &r10_bio->state);
1873 else
1874 /* The write handler will notice the lack of
1875 * R10BIO_Uptodate and record any errors etc
1876 */
1877 atomic_add(r10_bio->sectors,
1878 &conf->mirrors[d].rdev->corrected_errors);
1879
1880 /* for reconstruct, we always reschedule after a read.
1881 * for resync, only after all reads
1882 */
1883 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1884 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1885 atomic_dec_and_test(&r10_bio->remaining)) {
1886 /* we have read all the blocks,
1887 * do the comparison in process context in raid10d
1888 */
1889 reschedule_retry(r10_bio);
1890 }
1891 }
1892
end_sync_read(struct bio * bio)1893 static void end_sync_read(struct bio *bio)
1894 {
1895 struct r10bio *r10_bio = get_resync_r10bio(bio);
1896 struct r10conf *conf = r10_bio->mddev->private;
1897 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1898
1899 __end_sync_read(r10_bio, bio, d);
1900 }
1901
end_reshape_read(struct bio * bio)1902 static void end_reshape_read(struct bio *bio)
1903 {
1904 /* reshape read bio isn't allocated from r10buf_pool */
1905 struct r10bio *r10_bio = bio->bi_private;
1906
1907 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1908 }
1909
end_sync_request(struct r10bio * r10_bio)1910 static void end_sync_request(struct r10bio *r10_bio)
1911 {
1912 struct mddev *mddev = r10_bio->mddev;
1913
1914 while (atomic_dec_and_test(&r10_bio->remaining)) {
1915 if (r10_bio->master_bio == NULL) {
1916 /* the primary of several recovery bios */
1917 sector_t s = r10_bio->sectors;
1918 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1919 test_bit(R10BIO_WriteError, &r10_bio->state))
1920 reschedule_retry(r10_bio);
1921 else
1922 put_buf(r10_bio);
1923 md_done_sync(mddev, s, 1);
1924 break;
1925 } else {
1926 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1927 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1928 test_bit(R10BIO_WriteError, &r10_bio->state))
1929 reschedule_retry(r10_bio);
1930 else
1931 put_buf(r10_bio);
1932 r10_bio = r10_bio2;
1933 }
1934 }
1935 }
1936
end_sync_write(struct bio * bio)1937 static void end_sync_write(struct bio *bio)
1938 {
1939 struct r10bio *r10_bio = get_resync_r10bio(bio);
1940 struct mddev *mddev = r10_bio->mddev;
1941 struct r10conf *conf = mddev->private;
1942 int d;
1943 sector_t first_bad;
1944 int bad_sectors;
1945 int slot;
1946 int repl;
1947 struct md_rdev *rdev = NULL;
1948
1949 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1950 if (repl)
1951 rdev = conf->mirrors[d].replacement;
1952 else
1953 rdev = conf->mirrors[d].rdev;
1954
1955 if (bio->bi_status) {
1956 if (repl)
1957 md_error(mddev, rdev);
1958 else {
1959 set_bit(WriteErrorSeen, &rdev->flags);
1960 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1961 set_bit(MD_RECOVERY_NEEDED,
1962 &rdev->mddev->recovery);
1963 set_bit(R10BIO_WriteError, &r10_bio->state);
1964 }
1965 } else if (is_badblock(rdev,
1966 r10_bio->devs[slot].addr,
1967 r10_bio->sectors,
1968 &first_bad, &bad_sectors))
1969 set_bit(R10BIO_MadeGood, &r10_bio->state);
1970
1971 rdev_dec_pending(rdev, mddev);
1972
1973 end_sync_request(r10_bio);
1974 }
1975
1976 /*
1977 * Note: sync and recover and handled very differently for raid10
1978 * This code is for resync.
1979 * For resync, we read through virtual addresses and read all blocks.
1980 * If there is any error, we schedule a write. The lowest numbered
1981 * drive is authoritative.
1982 * However requests come for physical address, so we need to map.
1983 * For every physical address there are raid_disks/copies virtual addresses,
1984 * which is always are least one, but is not necessarly an integer.
1985 * This means that a physical address can span multiple chunks, so we may
1986 * have to submit multiple io requests for a single sync request.
1987 */
1988 /*
1989 * We check if all blocks are in-sync and only write to blocks that
1990 * aren't in sync
1991 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)1992 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1993 {
1994 struct r10conf *conf = mddev->private;
1995 int i, first;
1996 struct bio *tbio, *fbio;
1997 int vcnt;
1998 struct page **tpages, **fpages;
1999
2000 atomic_set(&r10_bio->remaining, 1);
2001
2002 /* find the first device with a block */
2003 for (i=0; i<conf->copies; i++)
2004 if (!r10_bio->devs[i].bio->bi_status)
2005 break;
2006
2007 if (i == conf->copies)
2008 goto done;
2009
2010 first = i;
2011 fbio = r10_bio->devs[i].bio;
2012 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2013 fbio->bi_iter.bi_idx = 0;
2014 fpages = get_resync_pages(fbio)->pages;
2015
2016 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2017 /* now find blocks with errors */
2018 for (i=0 ; i < conf->copies ; i++) {
2019 int j, d;
2020 struct md_rdev *rdev;
2021 struct resync_pages *rp;
2022
2023 tbio = r10_bio->devs[i].bio;
2024
2025 if (tbio->bi_end_io != end_sync_read)
2026 continue;
2027 if (i == first)
2028 continue;
2029
2030 tpages = get_resync_pages(tbio)->pages;
2031 d = r10_bio->devs[i].devnum;
2032 rdev = conf->mirrors[d].rdev;
2033 if (!r10_bio->devs[i].bio->bi_status) {
2034 /* We know that the bi_io_vec layout is the same for
2035 * both 'first' and 'i', so we just compare them.
2036 * All vec entries are PAGE_SIZE;
2037 */
2038 int sectors = r10_bio->sectors;
2039 for (j = 0; j < vcnt; j++) {
2040 int len = PAGE_SIZE;
2041 if (sectors < (len / 512))
2042 len = sectors * 512;
2043 if (memcmp(page_address(fpages[j]),
2044 page_address(tpages[j]),
2045 len))
2046 break;
2047 sectors -= len/512;
2048 }
2049 if (j == vcnt)
2050 continue;
2051 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2052 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2053 /* Don't fix anything. */
2054 continue;
2055 } else if (test_bit(FailFast, &rdev->flags)) {
2056 /* Just give up on this device */
2057 md_error(rdev->mddev, rdev);
2058 continue;
2059 }
2060 /* Ok, we need to write this bio, either to correct an
2061 * inconsistency or to correct an unreadable block.
2062 * First we need to fixup bv_offset, bv_len and
2063 * bi_vecs, as the read request might have corrupted these
2064 */
2065 rp = get_resync_pages(tbio);
2066 bio_reset(tbio);
2067
2068 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2069
2070 rp->raid_bio = r10_bio;
2071 tbio->bi_private = rp;
2072 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2073 tbio->bi_end_io = end_sync_write;
2074 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2075
2076 bio_copy_data(tbio, fbio);
2077
2078 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2079 atomic_inc(&r10_bio->remaining);
2080 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2081
2082 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2083 tbio->bi_opf |= MD_FAILFAST;
2084 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2085 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2086 submit_bio_noacct(tbio);
2087 }
2088
2089 /* Now write out to any replacement devices
2090 * that are active
2091 */
2092 for (i = 0; i < conf->copies; i++) {
2093 int d;
2094
2095 tbio = r10_bio->devs[i].repl_bio;
2096 if (!tbio || !tbio->bi_end_io)
2097 continue;
2098 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2099 && r10_bio->devs[i].bio != fbio)
2100 bio_copy_data(tbio, fbio);
2101 d = r10_bio->devs[i].devnum;
2102 atomic_inc(&r10_bio->remaining);
2103 md_sync_acct(conf->mirrors[d].replacement->bdev,
2104 bio_sectors(tbio));
2105 submit_bio_noacct(tbio);
2106 }
2107
2108 done:
2109 if (atomic_dec_and_test(&r10_bio->remaining)) {
2110 md_done_sync(mddev, r10_bio->sectors, 1);
2111 put_buf(r10_bio);
2112 }
2113 }
2114
2115 /*
2116 * Now for the recovery code.
2117 * Recovery happens across physical sectors.
2118 * We recover all non-is_sync drives by finding the virtual address of
2119 * each, and then choose a working drive that also has that virt address.
2120 * There is a separate r10_bio for each non-in_sync drive.
2121 * Only the first two slots are in use. The first for reading,
2122 * The second for writing.
2123 *
2124 */
fix_recovery_read_error(struct r10bio * r10_bio)2125 static void fix_recovery_read_error(struct r10bio *r10_bio)
2126 {
2127 /* We got a read error during recovery.
2128 * We repeat the read in smaller page-sized sections.
2129 * If a read succeeds, write it to the new device or record
2130 * a bad block if we cannot.
2131 * If a read fails, record a bad block on both old and
2132 * new devices.
2133 */
2134 struct mddev *mddev = r10_bio->mddev;
2135 struct r10conf *conf = mddev->private;
2136 struct bio *bio = r10_bio->devs[0].bio;
2137 sector_t sect = 0;
2138 int sectors = r10_bio->sectors;
2139 int idx = 0;
2140 int dr = r10_bio->devs[0].devnum;
2141 int dw = r10_bio->devs[1].devnum;
2142 struct page **pages = get_resync_pages(bio)->pages;
2143
2144 while (sectors) {
2145 int s = sectors;
2146 struct md_rdev *rdev;
2147 sector_t addr;
2148 int ok;
2149
2150 if (s > (PAGE_SIZE>>9))
2151 s = PAGE_SIZE >> 9;
2152
2153 rdev = conf->mirrors[dr].rdev;
2154 addr = r10_bio->devs[0].addr + sect,
2155 ok = sync_page_io(rdev,
2156 addr,
2157 s << 9,
2158 pages[idx],
2159 REQ_OP_READ, 0, false);
2160 if (ok) {
2161 rdev = conf->mirrors[dw].rdev;
2162 addr = r10_bio->devs[1].addr + sect;
2163 ok = sync_page_io(rdev,
2164 addr,
2165 s << 9,
2166 pages[idx],
2167 REQ_OP_WRITE, 0, false);
2168 if (!ok) {
2169 set_bit(WriteErrorSeen, &rdev->flags);
2170 if (!test_and_set_bit(WantReplacement,
2171 &rdev->flags))
2172 set_bit(MD_RECOVERY_NEEDED,
2173 &rdev->mddev->recovery);
2174 }
2175 }
2176 if (!ok) {
2177 /* We don't worry if we cannot set a bad block -
2178 * it really is bad so there is no loss in not
2179 * recording it yet
2180 */
2181 rdev_set_badblocks(rdev, addr, s, 0);
2182
2183 if (rdev != conf->mirrors[dw].rdev) {
2184 /* need bad block on destination too */
2185 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2186 addr = r10_bio->devs[1].addr + sect;
2187 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2188 if (!ok) {
2189 /* just abort the recovery */
2190 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2191 mdname(mddev));
2192
2193 conf->mirrors[dw].recovery_disabled
2194 = mddev->recovery_disabled;
2195 set_bit(MD_RECOVERY_INTR,
2196 &mddev->recovery);
2197 break;
2198 }
2199 }
2200 }
2201
2202 sectors -= s;
2203 sect += s;
2204 idx++;
2205 }
2206 }
2207
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2208 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2209 {
2210 struct r10conf *conf = mddev->private;
2211 int d;
2212 struct bio *wbio, *wbio2;
2213
2214 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2215 fix_recovery_read_error(r10_bio);
2216 end_sync_request(r10_bio);
2217 return;
2218 }
2219
2220 /*
2221 * share the pages with the first bio
2222 * and submit the write request
2223 */
2224 d = r10_bio->devs[1].devnum;
2225 wbio = r10_bio->devs[1].bio;
2226 wbio2 = r10_bio->devs[1].repl_bio;
2227 /* Need to test wbio2->bi_end_io before we call
2228 * submit_bio_noacct as if the former is NULL,
2229 * the latter is free to free wbio2.
2230 */
2231 if (wbio2 && !wbio2->bi_end_io)
2232 wbio2 = NULL;
2233 if (wbio->bi_end_io) {
2234 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2235 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2236 submit_bio_noacct(wbio);
2237 }
2238 if (wbio2) {
2239 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2240 md_sync_acct(conf->mirrors[d].replacement->bdev,
2241 bio_sectors(wbio2));
2242 submit_bio_noacct(wbio2);
2243 }
2244 }
2245
2246 /*
2247 * Used by fix_read_error() to decay the per rdev read_errors.
2248 * We halve the read error count for every hour that has elapsed
2249 * since the last recorded read error.
2250 *
2251 */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2252 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2253 {
2254 long cur_time_mon;
2255 unsigned long hours_since_last;
2256 unsigned int read_errors = atomic_read(&rdev->read_errors);
2257
2258 cur_time_mon = ktime_get_seconds();
2259
2260 if (rdev->last_read_error == 0) {
2261 /* first time we've seen a read error */
2262 rdev->last_read_error = cur_time_mon;
2263 return;
2264 }
2265
2266 hours_since_last = (long)(cur_time_mon -
2267 rdev->last_read_error) / 3600;
2268
2269 rdev->last_read_error = cur_time_mon;
2270
2271 /*
2272 * if hours_since_last is > the number of bits in read_errors
2273 * just set read errors to 0. We do this to avoid
2274 * overflowing the shift of read_errors by hours_since_last.
2275 */
2276 if (hours_since_last >= 8 * sizeof(read_errors))
2277 atomic_set(&rdev->read_errors, 0);
2278 else
2279 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2280 }
2281
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)2282 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2283 int sectors, struct page *page, int rw)
2284 {
2285 sector_t first_bad;
2286 int bad_sectors;
2287
2288 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2289 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2290 return -1;
2291 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2292 /* success */
2293 return 1;
2294 if (rw == WRITE) {
2295 set_bit(WriteErrorSeen, &rdev->flags);
2296 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2297 set_bit(MD_RECOVERY_NEEDED,
2298 &rdev->mddev->recovery);
2299 }
2300 /* need to record an error - either for the block or the device */
2301 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2302 md_error(rdev->mddev, rdev);
2303 return 0;
2304 }
2305
2306 /*
2307 * This is a kernel thread which:
2308 *
2309 * 1. Retries failed read operations on working mirrors.
2310 * 2. Updates the raid superblock when problems encounter.
2311 * 3. Performs writes following reads for array synchronising.
2312 */
2313
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2314 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2315 {
2316 int sect = 0; /* Offset from r10_bio->sector */
2317 int sectors = r10_bio->sectors;
2318 struct md_rdev *rdev;
2319 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2320 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2321
2322 /* still own a reference to this rdev, so it cannot
2323 * have been cleared recently.
2324 */
2325 rdev = conf->mirrors[d].rdev;
2326
2327 if (test_bit(Faulty, &rdev->flags))
2328 /* drive has already been failed, just ignore any
2329 more fix_read_error() attempts */
2330 return;
2331
2332 check_decay_read_errors(mddev, rdev);
2333 atomic_inc(&rdev->read_errors);
2334 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2335 char b[BDEVNAME_SIZE];
2336 bdevname(rdev->bdev, b);
2337
2338 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2339 mdname(mddev), b,
2340 atomic_read(&rdev->read_errors), max_read_errors);
2341 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2342 mdname(mddev), b);
2343 md_error(mddev, rdev);
2344 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2345 return;
2346 }
2347
2348 while(sectors) {
2349 int s = sectors;
2350 int sl = r10_bio->read_slot;
2351 int success = 0;
2352 int start;
2353
2354 if (s > (PAGE_SIZE>>9))
2355 s = PAGE_SIZE >> 9;
2356
2357 rcu_read_lock();
2358 do {
2359 sector_t first_bad;
2360 int bad_sectors;
2361
2362 d = r10_bio->devs[sl].devnum;
2363 rdev = rcu_dereference(conf->mirrors[d].rdev);
2364 if (rdev &&
2365 test_bit(In_sync, &rdev->flags) &&
2366 !test_bit(Faulty, &rdev->flags) &&
2367 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2368 &first_bad, &bad_sectors) == 0) {
2369 atomic_inc(&rdev->nr_pending);
2370 rcu_read_unlock();
2371 success = sync_page_io(rdev,
2372 r10_bio->devs[sl].addr +
2373 sect,
2374 s<<9,
2375 conf->tmppage,
2376 REQ_OP_READ, 0, false);
2377 rdev_dec_pending(rdev, mddev);
2378 rcu_read_lock();
2379 if (success)
2380 break;
2381 }
2382 sl++;
2383 if (sl == conf->copies)
2384 sl = 0;
2385 } while (!success && sl != r10_bio->read_slot);
2386 rcu_read_unlock();
2387
2388 if (!success) {
2389 /* Cannot read from anywhere, just mark the block
2390 * as bad on the first device to discourage future
2391 * reads.
2392 */
2393 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2394 rdev = conf->mirrors[dn].rdev;
2395
2396 if (!rdev_set_badblocks(
2397 rdev,
2398 r10_bio->devs[r10_bio->read_slot].addr
2399 + sect,
2400 s, 0)) {
2401 md_error(mddev, rdev);
2402 r10_bio->devs[r10_bio->read_slot].bio
2403 = IO_BLOCKED;
2404 }
2405 break;
2406 }
2407
2408 start = sl;
2409 /* write it back and re-read */
2410 rcu_read_lock();
2411 while (sl != r10_bio->read_slot) {
2412 char b[BDEVNAME_SIZE];
2413
2414 if (sl==0)
2415 sl = conf->copies;
2416 sl--;
2417 d = r10_bio->devs[sl].devnum;
2418 rdev = rcu_dereference(conf->mirrors[d].rdev);
2419 if (!rdev ||
2420 test_bit(Faulty, &rdev->flags) ||
2421 !test_bit(In_sync, &rdev->flags))
2422 continue;
2423
2424 atomic_inc(&rdev->nr_pending);
2425 rcu_read_unlock();
2426 if (r10_sync_page_io(rdev,
2427 r10_bio->devs[sl].addr +
2428 sect,
2429 s, conf->tmppage, WRITE)
2430 == 0) {
2431 /* Well, this device is dead */
2432 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2433 mdname(mddev), s,
2434 (unsigned long long)(
2435 sect +
2436 choose_data_offset(r10_bio,
2437 rdev)),
2438 bdevname(rdev->bdev, b));
2439 pr_notice("md/raid10:%s: %s: failing drive\n",
2440 mdname(mddev),
2441 bdevname(rdev->bdev, b));
2442 }
2443 rdev_dec_pending(rdev, mddev);
2444 rcu_read_lock();
2445 }
2446 sl = start;
2447 while (sl != r10_bio->read_slot) {
2448 char b[BDEVNAME_SIZE];
2449
2450 if (sl==0)
2451 sl = conf->copies;
2452 sl--;
2453 d = r10_bio->devs[sl].devnum;
2454 rdev = rcu_dereference(conf->mirrors[d].rdev);
2455 if (!rdev ||
2456 test_bit(Faulty, &rdev->flags) ||
2457 !test_bit(In_sync, &rdev->flags))
2458 continue;
2459
2460 atomic_inc(&rdev->nr_pending);
2461 rcu_read_unlock();
2462 switch (r10_sync_page_io(rdev,
2463 r10_bio->devs[sl].addr +
2464 sect,
2465 s, conf->tmppage,
2466 READ)) {
2467 case 0:
2468 /* Well, this device is dead */
2469 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2470 mdname(mddev), s,
2471 (unsigned long long)(
2472 sect +
2473 choose_data_offset(r10_bio, rdev)),
2474 bdevname(rdev->bdev, b));
2475 pr_notice("md/raid10:%s: %s: failing drive\n",
2476 mdname(mddev),
2477 bdevname(rdev->bdev, b));
2478 break;
2479 case 1:
2480 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2481 mdname(mddev), s,
2482 (unsigned long long)(
2483 sect +
2484 choose_data_offset(r10_bio, rdev)),
2485 bdevname(rdev->bdev, b));
2486 atomic_add(s, &rdev->corrected_errors);
2487 }
2488
2489 rdev_dec_pending(rdev, mddev);
2490 rcu_read_lock();
2491 }
2492 rcu_read_unlock();
2493
2494 sectors -= s;
2495 sect += s;
2496 }
2497 }
2498
narrow_write_error(struct r10bio * r10_bio,int i)2499 static int narrow_write_error(struct r10bio *r10_bio, int i)
2500 {
2501 struct bio *bio = r10_bio->master_bio;
2502 struct mddev *mddev = r10_bio->mddev;
2503 struct r10conf *conf = mddev->private;
2504 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2505 /* bio has the data to be written to slot 'i' where
2506 * we just recently had a write error.
2507 * We repeatedly clone the bio and trim down to one block,
2508 * then try the write. Where the write fails we record
2509 * a bad block.
2510 * It is conceivable that the bio doesn't exactly align with
2511 * blocks. We must handle this.
2512 *
2513 * We currently own a reference to the rdev.
2514 */
2515
2516 int block_sectors;
2517 sector_t sector;
2518 int sectors;
2519 int sect_to_write = r10_bio->sectors;
2520 int ok = 1;
2521
2522 if (rdev->badblocks.shift < 0)
2523 return 0;
2524
2525 block_sectors = roundup(1 << rdev->badblocks.shift,
2526 bdev_logical_block_size(rdev->bdev) >> 9);
2527 sector = r10_bio->sector;
2528 sectors = ((r10_bio->sector + block_sectors)
2529 & ~(sector_t)(block_sectors - 1))
2530 - sector;
2531
2532 while (sect_to_write) {
2533 struct bio *wbio;
2534 sector_t wsector;
2535 if (sectors > sect_to_write)
2536 sectors = sect_to_write;
2537 /* Write at 'sector' for 'sectors' */
2538 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2539 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2540 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2541 wbio->bi_iter.bi_sector = wsector +
2542 choose_data_offset(r10_bio, rdev);
2543 bio_set_dev(wbio, rdev->bdev);
2544 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2545
2546 if (submit_bio_wait(wbio) < 0)
2547 /* Failure! */
2548 ok = rdev_set_badblocks(rdev, wsector,
2549 sectors, 0)
2550 && ok;
2551
2552 bio_put(wbio);
2553 sect_to_write -= sectors;
2554 sector += sectors;
2555 sectors = block_sectors;
2556 }
2557 return ok;
2558 }
2559
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2560 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2561 {
2562 int slot = r10_bio->read_slot;
2563 struct bio *bio;
2564 struct r10conf *conf = mddev->private;
2565 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2566
2567 /* we got a read error. Maybe the drive is bad. Maybe just
2568 * the block and we can fix it.
2569 * We freeze all other IO, and try reading the block from
2570 * other devices. When we find one, we re-write
2571 * and check it that fixes the read error.
2572 * This is all done synchronously while the array is
2573 * frozen.
2574 */
2575 bio = r10_bio->devs[slot].bio;
2576 bio_put(bio);
2577 r10_bio->devs[slot].bio = NULL;
2578
2579 if (mddev->ro)
2580 r10_bio->devs[slot].bio = IO_BLOCKED;
2581 else if (!test_bit(FailFast, &rdev->flags)) {
2582 freeze_array(conf, 1);
2583 fix_read_error(conf, mddev, r10_bio);
2584 unfreeze_array(conf);
2585 } else
2586 md_error(mddev, rdev);
2587
2588 rdev_dec_pending(rdev, mddev);
2589 allow_barrier(conf);
2590 r10_bio->state = 0;
2591 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2592 }
2593
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2594 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2595 {
2596 /* Some sort of write request has finished and it
2597 * succeeded in writing where we thought there was a
2598 * bad block. So forget the bad block.
2599 * Or possibly if failed and we need to record
2600 * a bad block.
2601 */
2602 int m;
2603 struct md_rdev *rdev;
2604
2605 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2606 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2607 for (m = 0; m < conf->copies; m++) {
2608 int dev = r10_bio->devs[m].devnum;
2609 rdev = conf->mirrors[dev].rdev;
2610 if (r10_bio->devs[m].bio == NULL ||
2611 r10_bio->devs[m].bio->bi_end_io == NULL)
2612 continue;
2613 if (!r10_bio->devs[m].bio->bi_status) {
2614 rdev_clear_badblocks(
2615 rdev,
2616 r10_bio->devs[m].addr,
2617 r10_bio->sectors, 0);
2618 } else {
2619 if (!rdev_set_badblocks(
2620 rdev,
2621 r10_bio->devs[m].addr,
2622 r10_bio->sectors, 0))
2623 md_error(conf->mddev, rdev);
2624 }
2625 rdev = conf->mirrors[dev].replacement;
2626 if (r10_bio->devs[m].repl_bio == NULL ||
2627 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2628 continue;
2629
2630 if (!r10_bio->devs[m].repl_bio->bi_status) {
2631 rdev_clear_badblocks(
2632 rdev,
2633 r10_bio->devs[m].addr,
2634 r10_bio->sectors, 0);
2635 } else {
2636 if (!rdev_set_badblocks(
2637 rdev,
2638 r10_bio->devs[m].addr,
2639 r10_bio->sectors, 0))
2640 md_error(conf->mddev, rdev);
2641 }
2642 }
2643 put_buf(r10_bio);
2644 } else {
2645 bool fail = false;
2646 for (m = 0; m < conf->copies; m++) {
2647 int dev = r10_bio->devs[m].devnum;
2648 struct bio *bio = r10_bio->devs[m].bio;
2649 rdev = conf->mirrors[dev].rdev;
2650 if (bio == IO_MADE_GOOD) {
2651 rdev_clear_badblocks(
2652 rdev,
2653 r10_bio->devs[m].addr,
2654 r10_bio->sectors, 0);
2655 rdev_dec_pending(rdev, conf->mddev);
2656 } else if (bio != NULL && bio->bi_status) {
2657 fail = true;
2658 if (!narrow_write_error(r10_bio, m)) {
2659 md_error(conf->mddev, rdev);
2660 set_bit(R10BIO_Degraded,
2661 &r10_bio->state);
2662 }
2663 rdev_dec_pending(rdev, conf->mddev);
2664 }
2665 bio = r10_bio->devs[m].repl_bio;
2666 rdev = conf->mirrors[dev].replacement;
2667 if (rdev && bio == IO_MADE_GOOD) {
2668 rdev_clear_badblocks(
2669 rdev,
2670 r10_bio->devs[m].addr,
2671 r10_bio->sectors, 0);
2672 rdev_dec_pending(rdev, conf->mddev);
2673 }
2674 }
2675 if (fail) {
2676 spin_lock_irq(&conf->device_lock);
2677 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2678 conf->nr_queued++;
2679 spin_unlock_irq(&conf->device_lock);
2680 /*
2681 * In case freeze_array() is waiting for condition
2682 * nr_pending == nr_queued + extra to be true.
2683 */
2684 wake_up(&conf->wait_barrier);
2685 md_wakeup_thread(conf->mddev->thread);
2686 } else {
2687 if (test_bit(R10BIO_WriteError,
2688 &r10_bio->state))
2689 close_write(r10_bio);
2690 raid_end_bio_io(r10_bio);
2691 }
2692 }
2693 }
2694
raid10d(struct md_thread * thread)2695 static void raid10d(struct md_thread *thread)
2696 {
2697 struct mddev *mddev = thread->mddev;
2698 struct r10bio *r10_bio;
2699 unsigned long flags;
2700 struct r10conf *conf = mddev->private;
2701 struct list_head *head = &conf->retry_list;
2702 struct blk_plug plug;
2703
2704 md_check_recovery(mddev);
2705
2706 if (!list_empty_careful(&conf->bio_end_io_list) &&
2707 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2708 LIST_HEAD(tmp);
2709 spin_lock_irqsave(&conf->device_lock, flags);
2710 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2711 while (!list_empty(&conf->bio_end_io_list)) {
2712 list_move(conf->bio_end_io_list.prev, &tmp);
2713 conf->nr_queued--;
2714 }
2715 }
2716 spin_unlock_irqrestore(&conf->device_lock, flags);
2717 while (!list_empty(&tmp)) {
2718 r10_bio = list_first_entry(&tmp, struct r10bio,
2719 retry_list);
2720 list_del(&r10_bio->retry_list);
2721 if (mddev->degraded)
2722 set_bit(R10BIO_Degraded, &r10_bio->state);
2723
2724 if (test_bit(R10BIO_WriteError,
2725 &r10_bio->state))
2726 close_write(r10_bio);
2727 raid_end_bio_io(r10_bio);
2728 }
2729 }
2730
2731 blk_start_plug(&plug);
2732 for (;;) {
2733
2734 flush_pending_writes(conf);
2735
2736 spin_lock_irqsave(&conf->device_lock, flags);
2737 if (list_empty(head)) {
2738 spin_unlock_irqrestore(&conf->device_lock, flags);
2739 break;
2740 }
2741 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2742 list_del(head->prev);
2743 conf->nr_queued--;
2744 spin_unlock_irqrestore(&conf->device_lock, flags);
2745
2746 mddev = r10_bio->mddev;
2747 conf = mddev->private;
2748 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2749 test_bit(R10BIO_WriteError, &r10_bio->state))
2750 handle_write_completed(conf, r10_bio);
2751 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2752 reshape_request_write(mddev, r10_bio);
2753 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2754 sync_request_write(mddev, r10_bio);
2755 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2756 recovery_request_write(mddev, r10_bio);
2757 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2758 handle_read_error(mddev, r10_bio);
2759 else
2760 WARN_ON_ONCE(1);
2761
2762 cond_resched();
2763 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2764 md_check_recovery(mddev);
2765 }
2766 blk_finish_plug(&plug);
2767 }
2768
init_resync(struct r10conf * conf)2769 static int init_resync(struct r10conf *conf)
2770 {
2771 int ret, buffs, i;
2772
2773 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2774 BUG_ON(mempool_initialized(&conf->r10buf_pool));
2775 conf->have_replacement = 0;
2776 for (i = 0; i < conf->geo.raid_disks; i++)
2777 if (conf->mirrors[i].replacement)
2778 conf->have_replacement = 1;
2779 ret = mempool_init(&conf->r10buf_pool, buffs,
2780 r10buf_pool_alloc, r10buf_pool_free, conf);
2781 if (ret)
2782 return ret;
2783 conf->next_resync = 0;
2784 return 0;
2785 }
2786
raid10_alloc_init_r10buf(struct r10conf * conf)2787 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2788 {
2789 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2790 struct rsync_pages *rp;
2791 struct bio *bio;
2792 int nalloc;
2793 int i;
2794
2795 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2796 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2797 nalloc = conf->copies; /* resync */
2798 else
2799 nalloc = 2; /* recovery */
2800
2801 for (i = 0; i < nalloc; i++) {
2802 bio = r10bio->devs[i].bio;
2803 rp = bio->bi_private;
2804 bio_reset(bio);
2805 bio->bi_private = rp;
2806 bio = r10bio->devs[i].repl_bio;
2807 if (bio) {
2808 rp = bio->bi_private;
2809 bio_reset(bio);
2810 bio->bi_private = rp;
2811 }
2812 }
2813 return r10bio;
2814 }
2815
2816 /*
2817 * Set cluster_sync_high since we need other nodes to add the
2818 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2819 */
raid10_set_cluster_sync_high(struct r10conf * conf)2820 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2821 {
2822 sector_t window_size;
2823 int extra_chunk, chunks;
2824
2825 /*
2826 * First, here we define "stripe" as a unit which across
2827 * all member devices one time, so we get chunks by use
2828 * raid_disks / near_copies. Otherwise, if near_copies is
2829 * close to raid_disks, then resync window could increases
2830 * linearly with the increase of raid_disks, which means
2831 * we will suspend a really large IO window while it is not
2832 * necessary. If raid_disks is not divisible by near_copies,
2833 * an extra chunk is needed to ensure the whole "stripe" is
2834 * covered.
2835 */
2836
2837 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2838 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2839 extra_chunk = 0;
2840 else
2841 extra_chunk = 1;
2842 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2843
2844 /*
2845 * At least use a 32M window to align with raid1's resync window
2846 */
2847 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2848 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2849
2850 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2851 }
2852
2853 /*
2854 * perform a "sync" on one "block"
2855 *
2856 * We need to make sure that no normal I/O request - particularly write
2857 * requests - conflict with active sync requests.
2858 *
2859 * This is achieved by tracking pending requests and a 'barrier' concept
2860 * that can be installed to exclude normal IO requests.
2861 *
2862 * Resync and recovery are handled very differently.
2863 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2864 *
2865 * For resync, we iterate over virtual addresses, read all copies,
2866 * and update if there are differences. If only one copy is live,
2867 * skip it.
2868 * For recovery, we iterate over physical addresses, read a good
2869 * value for each non-in_sync drive, and over-write.
2870 *
2871 * So, for recovery we may have several outstanding complex requests for a
2872 * given address, one for each out-of-sync device. We model this by allocating
2873 * a number of r10_bio structures, one for each out-of-sync device.
2874 * As we setup these structures, we collect all bio's together into a list
2875 * which we then process collectively to add pages, and then process again
2876 * to pass to submit_bio_noacct.
2877 *
2878 * The r10_bio structures are linked using a borrowed master_bio pointer.
2879 * This link is counted in ->remaining. When the r10_bio that points to NULL
2880 * has its remaining count decremented to 0, the whole complex operation
2881 * is complete.
2882 *
2883 */
2884
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2885 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2886 int *skipped)
2887 {
2888 struct r10conf *conf = mddev->private;
2889 struct r10bio *r10_bio;
2890 struct bio *biolist = NULL, *bio;
2891 sector_t max_sector, nr_sectors;
2892 int i;
2893 int max_sync;
2894 sector_t sync_blocks;
2895 sector_t sectors_skipped = 0;
2896 int chunks_skipped = 0;
2897 sector_t chunk_mask = conf->geo.chunk_mask;
2898 int page_idx = 0;
2899
2900 if (!mempool_initialized(&conf->r10buf_pool))
2901 if (init_resync(conf))
2902 return 0;
2903
2904 /*
2905 * Allow skipping a full rebuild for incremental assembly
2906 * of a clean array, like RAID1 does.
2907 */
2908 if (mddev->bitmap == NULL &&
2909 mddev->recovery_cp == MaxSector &&
2910 mddev->reshape_position == MaxSector &&
2911 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2912 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2913 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2914 conf->fullsync == 0) {
2915 *skipped = 1;
2916 return mddev->dev_sectors - sector_nr;
2917 }
2918
2919 skipped:
2920 max_sector = mddev->dev_sectors;
2921 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2922 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2923 max_sector = mddev->resync_max_sectors;
2924 if (sector_nr >= max_sector) {
2925 conf->cluster_sync_low = 0;
2926 conf->cluster_sync_high = 0;
2927
2928 /* If we aborted, we need to abort the
2929 * sync on the 'current' bitmap chucks (there can
2930 * be several when recovering multiple devices).
2931 * as we may have started syncing it but not finished.
2932 * We can find the current address in
2933 * mddev->curr_resync, but for recovery,
2934 * we need to convert that to several
2935 * virtual addresses.
2936 */
2937 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2938 end_reshape(conf);
2939 close_sync(conf);
2940 return 0;
2941 }
2942
2943 if (mddev->curr_resync < max_sector) { /* aborted */
2944 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2945 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2946 &sync_blocks, 1);
2947 else for (i = 0; i < conf->geo.raid_disks; i++) {
2948 sector_t sect =
2949 raid10_find_virt(conf, mddev->curr_resync, i);
2950 md_bitmap_end_sync(mddev->bitmap, sect,
2951 &sync_blocks, 1);
2952 }
2953 } else {
2954 /* completed sync */
2955 if ((!mddev->bitmap || conf->fullsync)
2956 && conf->have_replacement
2957 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2958 /* Completed a full sync so the replacements
2959 * are now fully recovered.
2960 */
2961 rcu_read_lock();
2962 for (i = 0; i < conf->geo.raid_disks; i++) {
2963 struct md_rdev *rdev =
2964 rcu_dereference(conf->mirrors[i].replacement);
2965 if (rdev)
2966 rdev->recovery_offset = MaxSector;
2967 }
2968 rcu_read_unlock();
2969 }
2970 conf->fullsync = 0;
2971 }
2972 md_bitmap_close_sync(mddev->bitmap);
2973 close_sync(conf);
2974 *skipped = 1;
2975 return sectors_skipped;
2976 }
2977
2978 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2979 return reshape_request(mddev, sector_nr, skipped);
2980
2981 if (chunks_skipped >= conf->geo.raid_disks) {
2982 /* if there has been nothing to do on any drive,
2983 * then there is nothing to do at all..
2984 */
2985 *skipped = 1;
2986 return (max_sector - sector_nr) + sectors_skipped;
2987 }
2988
2989 if (max_sector > mddev->resync_max)
2990 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2991
2992 /* make sure whole request will fit in a chunk - if chunks
2993 * are meaningful
2994 */
2995 if (conf->geo.near_copies < conf->geo.raid_disks &&
2996 max_sector > (sector_nr | chunk_mask))
2997 max_sector = (sector_nr | chunk_mask) + 1;
2998
2999 /*
3000 * If there is non-resync activity waiting for a turn, then let it
3001 * though before starting on this new sync request.
3002 */
3003 if (conf->nr_waiting)
3004 schedule_timeout_uninterruptible(1);
3005
3006 /* Again, very different code for resync and recovery.
3007 * Both must result in an r10bio with a list of bios that
3008 * have bi_end_io, bi_sector, bi_disk set,
3009 * and bi_private set to the r10bio.
3010 * For recovery, we may actually create several r10bios
3011 * with 2 bios in each, that correspond to the bios in the main one.
3012 * In this case, the subordinate r10bios link back through a
3013 * borrowed master_bio pointer, and the counter in the master
3014 * includes a ref from each subordinate.
3015 */
3016 /* First, we decide what to do and set ->bi_end_io
3017 * To end_sync_read if we want to read, and
3018 * end_sync_write if we will want to write.
3019 */
3020
3021 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3022 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3023 /* recovery... the complicated one */
3024 int j;
3025 r10_bio = NULL;
3026
3027 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3028 int still_degraded;
3029 struct r10bio *rb2;
3030 sector_t sect;
3031 int must_sync;
3032 int any_working;
3033 int need_recover = 0;
3034 int need_replace = 0;
3035 struct raid10_info *mirror = &conf->mirrors[i];
3036 struct md_rdev *mrdev, *mreplace;
3037
3038 rcu_read_lock();
3039 mrdev = rcu_dereference(mirror->rdev);
3040 mreplace = rcu_dereference(mirror->replacement);
3041
3042 if (mrdev != NULL &&
3043 !test_bit(Faulty, &mrdev->flags) &&
3044 !test_bit(In_sync, &mrdev->flags))
3045 need_recover = 1;
3046 if (mreplace != NULL &&
3047 !test_bit(Faulty, &mreplace->flags))
3048 need_replace = 1;
3049
3050 if (!need_recover && !need_replace) {
3051 rcu_read_unlock();
3052 continue;
3053 }
3054
3055 still_degraded = 0;
3056 /* want to reconstruct this device */
3057 rb2 = r10_bio;
3058 sect = raid10_find_virt(conf, sector_nr, i);
3059 if (sect >= mddev->resync_max_sectors) {
3060 /* last stripe is not complete - don't
3061 * try to recover this sector.
3062 */
3063 rcu_read_unlock();
3064 continue;
3065 }
3066 if (mreplace && test_bit(Faulty, &mreplace->flags))
3067 mreplace = NULL;
3068 /* Unless we are doing a full sync, or a replacement
3069 * we only need to recover the block if it is set in
3070 * the bitmap
3071 */
3072 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3073 &sync_blocks, 1);
3074 if (sync_blocks < max_sync)
3075 max_sync = sync_blocks;
3076 if (!must_sync &&
3077 mreplace == NULL &&
3078 !conf->fullsync) {
3079 /* yep, skip the sync_blocks here, but don't assume
3080 * that there will never be anything to do here
3081 */
3082 chunks_skipped = -1;
3083 rcu_read_unlock();
3084 continue;
3085 }
3086 atomic_inc(&mrdev->nr_pending);
3087 if (mreplace)
3088 atomic_inc(&mreplace->nr_pending);
3089 rcu_read_unlock();
3090
3091 r10_bio = raid10_alloc_init_r10buf(conf);
3092 r10_bio->state = 0;
3093 raise_barrier(conf, rb2 != NULL);
3094 atomic_set(&r10_bio->remaining, 0);
3095
3096 r10_bio->master_bio = (struct bio*)rb2;
3097 if (rb2)
3098 atomic_inc(&rb2->remaining);
3099 r10_bio->mddev = mddev;
3100 set_bit(R10BIO_IsRecover, &r10_bio->state);
3101 r10_bio->sector = sect;
3102
3103 raid10_find_phys(conf, r10_bio);
3104
3105 /* Need to check if the array will still be
3106 * degraded
3107 */
3108 rcu_read_lock();
3109 for (j = 0; j < conf->geo.raid_disks; j++) {
3110 struct md_rdev *rdev = rcu_dereference(
3111 conf->mirrors[j].rdev);
3112 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3113 still_degraded = 1;
3114 break;
3115 }
3116 }
3117
3118 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3119 &sync_blocks, still_degraded);
3120
3121 any_working = 0;
3122 for (j=0; j<conf->copies;j++) {
3123 int k;
3124 int d = r10_bio->devs[j].devnum;
3125 sector_t from_addr, to_addr;
3126 struct md_rdev *rdev =
3127 rcu_dereference(conf->mirrors[d].rdev);
3128 sector_t sector, first_bad;
3129 int bad_sectors;
3130 if (!rdev ||
3131 !test_bit(In_sync, &rdev->flags))
3132 continue;
3133 /* This is where we read from */
3134 any_working = 1;
3135 sector = r10_bio->devs[j].addr;
3136
3137 if (is_badblock(rdev, sector, max_sync,
3138 &first_bad, &bad_sectors)) {
3139 if (first_bad > sector)
3140 max_sync = first_bad - sector;
3141 else {
3142 bad_sectors -= (sector
3143 - first_bad);
3144 if (max_sync > bad_sectors)
3145 max_sync = bad_sectors;
3146 continue;
3147 }
3148 }
3149 bio = r10_bio->devs[0].bio;
3150 bio->bi_next = biolist;
3151 biolist = bio;
3152 bio->bi_end_io = end_sync_read;
3153 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3154 if (test_bit(FailFast, &rdev->flags))
3155 bio->bi_opf |= MD_FAILFAST;
3156 from_addr = r10_bio->devs[j].addr;
3157 bio->bi_iter.bi_sector = from_addr +
3158 rdev->data_offset;
3159 bio_set_dev(bio, rdev->bdev);
3160 atomic_inc(&rdev->nr_pending);
3161 /* and we write to 'i' (if not in_sync) */
3162
3163 for (k=0; k<conf->copies; k++)
3164 if (r10_bio->devs[k].devnum == i)
3165 break;
3166 BUG_ON(k == conf->copies);
3167 to_addr = r10_bio->devs[k].addr;
3168 r10_bio->devs[0].devnum = d;
3169 r10_bio->devs[0].addr = from_addr;
3170 r10_bio->devs[1].devnum = i;
3171 r10_bio->devs[1].addr = to_addr;
3172
3173 if (need_recover) {
3174 bio = r10_bio->devs[1].bio;
3175 bio->bi_next = biolist;
3176 biolist = bio;
3177 bio->bi_end_io = end_sync_write;
3178 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3179 bio->bi_iter.bi_sector = to_addr
3180 + mrdev->data_offset;
3181 bio_set_dev(bio, mrdev->bdev);
3182 atomic_inc(&r10_bio->remaining);
3183 } else
3184 r10_bio->devs[1].bio->bi_end_io = NULL;
3185
3186 /* and maybe write to replacement */
3187 bio = r10_bio->devs[1].repl_bio;
3188 if (bio)
3189 bio->bi_end_io = NULL;
3190 /* Note: if need_replace, then bio
3191 * cannot be NULL as r10buf_pool_alloc will
3192 * have allocated it.
3193 */
3194 if (!need_replace)
3195 break;
3196 bio->bi_next = biolist;
3197 biolist = bio;
3198 bio->bi_end_io = end_sync_write;
3199 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3200 bio->bi_iter.bi_sector = to_addr +
3201 mreplace->data_offset;
3202 bio_set_dev(bio, mreplace->bdev);
3203 atomic_inc(&r10_bio->remaining);
3204 break;
3205 }
3206 rcu_read_unlock();
3207 if (j == conf->copies) {
3208 /* Cannot recover, so abort the recovery or
3209 * record a bad block */
3210 if (any_working) {
3211 /* problem is that there are bad blocks
3212 * on other device(s)
3213 */
3214 int k;
3215 for (k = 0; k < conf->copies; k++)
3216 if (r10_bio->devs[k].devnum == i)
3217 break;
3218 if (!test_bit(In_sync,
3219 &mrdev->flags)
3220 && !rdev_set_badblocks(
3221 mrdev,
3222 r10_bio->devs[k].addr,
3223 max_sync, 0))
3224 any_working = 0;
3225 if (mreplace &&
3226 !rdev_set_badblocks(
3227 mreplace,
3228 r10_bio->devs[k].addr,
3229 max_sync, 0))
3230 any_working = 0;
3231 }
3232 if (!any_working) {
3233 if (!test_and_set_bit(MD_RECOVERY_INTR,
3234 &mddev->recovery))
3235 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3236 mdname(mddev));
3237 mirror->recovery_disabled
3238 = mddev->recovery_disabled;
3239 }
3240 put_buf(r10_bio);
3241 if (rb2)
3242 atomic_dec(&rb2->remaining);
3243 r10_bio = rb2;
3244 rdev_dec_pending(mrdev, mddev);
3245 if (mreplace)
3246 rdev_dec_pending(mreplace, mddev);
3247 break;
3248 }
3249 rdev_dec_pending(mrdev, mddev);
3250 if (mreplace)
3251 rdev_dec_pending(mreplace, mddev);
3252 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3253 /* Only want this if there is elsewhere to
3254 * read from. 'j' is currently the first
3255 * readable copy.
3256 */
3257 int targets = 1;
3258 for (; j < conf->copies; j++) {
3259 int d = r10_bio->devs[j].devnum;
3260 if (conf->mirrors[d].rdev &&
3261 test_bit(In_sync,
3262 &conf->mirrors[d].rdev->flags))
3263 targets++;
3264 }
3265 if (targets == 1)
3266 r10_bio->devs[0].bio->bi_opf
3267 &= ~MD_FAILFAST;
3268 }
3269 }
3270 if (biolist == NULL) {
3271 while (r10_bio) {
3272 struct r10bio *rb2 = r10_bio;
3273 r10_bio = (struct r10bio*) rb2->master_bio;
3274 rb2->master_bio = NULL;
3275 put_buf(rb2);
3276 }
3277 goto giveup;
3278 }
3279 } else {
3280 /* resync. Schedule a read for every block at this virt offset */
3281 int count = 0;
3282
3283 /*
3284 * Since curr_resync_completed could probably not update in
3285 * time, and we will set cluster_sync_low based on it.
3286 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3287 * safety reason, which ensures curr_resync_completed is
3288 * updated in bitmap_cond_end_sync.
3289 */
3290 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3291 mddev_is_clustered(mddev) &&
3292 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3293
3294 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3295 &sync_blocks, mddev->degraded) &&
3296 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3297 &mddev->recovery)) {
3298 /* We can skip this block */
3299 *skipped = 1;
3300 return sync_blocks + sectors_skipped;
3301 }
3302 if (sync_blocks < max_sync)
3303 max_sync = sync_blocks;
3304 r10_bio = raid10_alloc_init_r10buf(conf);
3305 r10_bio->state = 0;
3306
3307 r10_bio->mddev = mddev;
3308 atomic_set(&r10_bio->remaining, 0);
3309 raise_barrier(conf, 0);
3310 conf->next_resync = sector_nr;
3311
3312 r10_bio->master_bio = NULL;
3313 r10_bio->sector = sector_nr;
3314 set_bit(R10BIO_IsSync, &r10_bio->state);
3315 raid10_find_phys(conf, r10_bio);
3316 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3317
3318 for (i = 0; i < conf->copies; i++) {
3319 int d = r10_bio->devs[i].devnum;
3320 sector_t first_bad, sector;
3321 int bad_sectors;
3322 struct md_rdev *rdev;
3323
3324 if (r10_bio->devs[i].repl_bio)
3325 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3326
3327 bio = r10_bio->devs[i].bio;
3328 bio->bi_status = BLK_STS_IOERR;
3329 rcu_read_lock();
3330 rdev = rcu_dereference(conf->mirrors[d].rdev);
3331 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3332 rcu_read_unlock();
3333 continue;
3334 }
3335 sector = r10_bio->devs[i].addr;
3336 if (is_badblock(rdev, sector, max_sync,
3337 &first_bad, &bad_sectors)) {
3338 if (first_bad > sector)
3339 max_sync = first_bad - sector;
3340 else {
3341 bad_sectors -= (sector - first_bad);
3342 if (max_sync > bad_sectors)
3343 max_sync = bad_sectors;
3344 rcu_read_unlock();
3345 continue;
3346 }
3347 }
3348 atomic_inc(&rdev->nr_pending);
3349 atomic_inc(&r10_bio->remaining);
3350 bio->bi_next = biolist;
3351 biolist = bio;
3352 bio->bi_end_io = end_sync_read;
3353 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3354 if (test_bit(FailFast, &rdev->flags))
3355 bio->bi_opf |= MD_FAILFAST;
3356 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3357 bio_set_dev(bio, rdev->bdev);
3358 count++;
3359
3360 rdev = rcu_dereference(conf->mirrors[d].replacement);
3361 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3362 rcu_read_unlock();
3363 continue;
3364 }
3365 atomic_inc(&rdev->nr_pending);
3366
3367 /* Need to set up for writing to the replacement */
3368 bio = r10_bio->devs[i].repl_bio;
3369 bio->bi_status = BLK_STS_IOERR;
3370
3371 sector = r10_bio->devs[i].addr;
3372 bio->bi_next = biolist;
3373 biolist = bio;
3374 bio->bi_end_io = end_sync_write;
3375 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3376 if (test_bit(FailFast, &rdev->flags))
3377 bio->bi_opf |= MD_FAILFAST;
3378 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3379 bio_set_dev(bio, rdev->bdev);
3380 count++;
3381 rcu_read_unlock();
3382 }
3383
3384 if (count < 2) {
3385 for (i=0; i<conf->copies; i++) {
3386 int d = r10_bio->devs[i].devnum;
3387 if (r10_bio->devs[i].bio->bi_end_io)
3388 rdev_dec_pending(conf->mirrors[d].rdev,
3389 mddev);
3390 if (r10_bio->devs[i].repl_bio &&
3391 r10_bio->devs[i].repl_bio->bi_end_io)
3392 rdev_dec_pending(
3393 conf->mirrors[d].replacement,
3394 mddev);
3395 }
3396 put_buf(r10_bio);
3397 biolist = NULL;
3398 goto giveup;
3399 }
3400 }
3401
3402 nr_sectors = 0;
3403 if (sector_nr + max_sync < max_sector)
3404 max_sector = sector_nr + max_sync;
3405 do {
3406 struct page *page;
3407 int len = PAGE_SIZE;
3408 if (sector_nr + (len>>9) > max_sector)
3409 len = (max_sector - sector_nr) << 9;
3410 if (len == 0)
3411 break;
3412 for (bio= biolist ; bio ; bio=bio->bi_next) {
3413 struct resync_pages *rp = get_resync_pages(bio);
3414 page = resync_fetch_page(rp, page_idx);
3415 /*
3416 * won't fail because the vec table is big enough
3417 * to hold all these pages
3418 */
3419 bio_add_page(bio, page, len, 0);
3420 }
3421 nr_sectors += len>>9;
3422 sector_nr += len>>9;
3423 } while (++page_idx < RESYNC_PAGES);
3424 r10_bio->sectors = nr_sectors;
3425
3426 if (mddev_is_clustered(mddev) &&
3427 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3428 /* It is resync not recovery */
3429 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3430 conf->cluster_sync_low = mddev->curr_resync_completed;
3431 raid10_set_cluster_sync_high(conf);
3432 /* Send resync message */
3433 md_cluster_ops->resync_info_update(mddev,
3434 conf->cluster_sync_low,
3435 conf->cluster_sync_high);
3436 }
3437 } else if (mddev_is_clustered(mddev)) {
3438 /* This is recovery not resync */
3439 sector_t sect_va1, sect_va2;
3440 bool broadcast_msg = false;
3441
3442 for (i = 0; i < conf->geo.raid_disks; i++) {
3443 /*
3444 * sector_nr is a device address for recovery, so we
3445 * need translate it to array address before compare
3446 * with cluster_sync_high.
3447 */
3448 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3449
3450 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3451 broadcast_msg = true;
3452 /*
3453 * curr_resync_completed is similar as
3454 * sector_nr, so make the translation too.
3455 */
3456 sect_va2 = raid10_find_virt(conf,
3457 mddev->curr_resync_completed, i);
3458
3459 if (conf->cluster_sync_low == 0 ||
3460 conf->cluster_sync_low > sect_va2)
3461 conf->cluster_sync_low = sect_va2;
3462 }
3463 }
3464 if (broadcast_msg) {
3465 raid10_set_cluster_sync_high(conf);
3466 md_cluster_ops->resync_info_update(mddev,
3467 conf->cluster_sync_low,
3468 conf->cluster_sync_high);
3469 }
3470 }
3471
3472 while (biolist) {
3473 bio = biolist;
3474 biolist = biolist->bi_next;
3475
3476 bio->bi_next = NULL;
3477 r10_bio = get_resync_r10bio(bio);
3478 r10_bio->sectors = nr_sectors;
3479
3480 if (bio->bi_end_io == end_sync_read) {
3481 md_sync_acct_bio(bio, nr_sectors);
3482 bio->bi_status = 0;
3483 submit_bio_noacct(bio);
3484 }
3485 }
3486
3487 if (sectors_skipped)
3488 /* pretend they weren't skipped, it makes
3489 * no important difference in this case
3490 */
3491 md_done_sync(mddev, sectors_skipped, 1);
3492
3493 return sectors_skipped + nr_sectors;
3494 giveup:
3495 /* There is nowhere to write, so all non-sync
3496 * drives must be failed or in resync, all drives
3497 * have a bad block, so try the next chunk...
3498 */
3499 if (sector_nr + max_sync < max_sector)
3500 max_sector = sector_nr + max_sync;
3501
3502 sectors_skipped += (max_sector - sector_nr);
3503 chunks_skipped ++;
3504 sector_nr = max_sector;
3505 goto skipped;
3506 }
3507
3508 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3509 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3510 {
3511 sector_t size;
3512 struct r10conf *conf = mddev->private;
3513
3514 if (!raid_disks)
3515 raid_disks = min(conf->geo.raid_disks,
3516 conf->prev.raid_disks);
3517 if (!sectors)
3518 sectors = conf->dev_sectors;
3519
3520 size = sectors >> conf->geo.chunk_shift;
3521 sector_div(size, conf->geo.far_copies);
3522 size = size * raid_disks;
3523 sector_div(size, conf->geo.near_copies);
3524
3525 return size << conf->geo.chunk_shift;
3526 }
3527
calc_sectors(struct r10conf * conf,sector_t size)3528 static void calc_sectors(struct r10conf *conf, sector_t size)
3529 {
3530 /* Calculate the number of sectors-per-device that will
3531 * actually be used, and set conf->dev_sectors and
3532 * conf->stride
3533 */
3534
3535 size = size >> conf->geo.chunk_shift;
3536 sector_div(size, conf->geo.far_copies);
3537 size = size * conf->geo.raid_disks;
3538 sector_div(size, conf->geo.near_copies);
3539 /* 'size' is now the number of chunks in the array */
3540 /* calculate "used chunks per device" */
3541 size = size * conf->copies;
3542
3543 /* We need to round up when dividing by raid_disks to
3544 * get the stride size.
3545 */
3546 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3547
3548 conf->dev_sectors = size << conf->geo.chunk_shift;
3549
3550 if (conf->geo.far_offset)
3551 conf->geo.stride = 1 << conf->geo.chunk_shift;
3552 else {
3553 sector_div(size, conf->geo.far_copies);
3554 conf->geo.stride = size << conf->geo.chunk_shift;
3555 }
3556 }
3557
3558 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3559 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3560 {
3561 int nc, fc, fo;
3562 int layout, chunk, disks;
3563 switch (new) {
3564 case geo_old:
3565 layout = mddev->layout;
3566 chunk = mddev->chunk_sectors;
3567 disks = mddev->raid_disks - mddev->delta_disks;
3568 break;
3569 case geo_new:
3570 layout = mddev->new_layout;
3571 chunk = mddev->new_chunk_sectors;
3572 disks = mddev->raid_disks;
3573 break;
3574 default: /* avoid 'may be unused' warnings */
3575 case geo_start: /* new when starting reshape - raid_disks not
3576 * updated yet. */
3577 layout = mddev->new_layout;
3578 chunk = mddev->new_chunk_sectors;
3579 disks = mddev->raid_disks + mddev->delta_disks;
3580 break;
3581 }
3582 if (layout >> 19)
3583 return -1;
3584 if (chunk < (PAGE_SIZE >> 9) ||
3585 !is_power_of_2(chunk))
3586 return -2;
3587 nc = layout & 255;
3588 fc = (layout >> 8) & 255;
3589 fo = layout & (1<<16);
3590 geo->raid_disks = disks;
3591 geo->near_copies = nc;
3592 geo->far_copies = fc;
3593 geo->far_offset = fo;
3594 switch (layout >> 17) {
3595 case 0: /* original layout. simple but not always optimal */
3596 geo->far_set_size = disks;
3597 break;
3598 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3599 * actually using this, but leave code here just in case.*/
3600 geo->far_set_size = disks/fc;
3601 WARN(geo->far_set_size < fc,
3602 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3603 break;
3604 case 2: /* "improved" layout fixed to match documentation */
3605 geo->far_set_size = fc * nc;
3606 break;
3607 default: /* Not a valid layout */
3608 return -1;
3609 }
3610 geo->chunk_mask = chunk - 1;
3611 geo->chunk_shift = ffz(~chunk);
3612 return nc*fc;
3613 }
3614
setup_conf(struct mddev * mddev)3615 static struct r10conf *setup_conf(struct mddev *mddev)
3616 {
3617 struct r10conf *conf = NULL;
3618 int err = -EINVAL;
3619 struct geom geo;
3620 int copies;
3621
3622 copies = setup_geo(&geo, mddev, geo_new);
3623
3624 if (copies == -2) {
3625 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3626 mdname(mddev), PAGE_SIZE);
3627 goto out;
3628 }
3629
3630 if (copies < 2 || copies > mddev->raid_disks) {
3631 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3632 mdname(mddev), mddev->new_layout);
3633 goto out;
3634 }
3635
3636 err = -ENOMEM;
3637 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3638 if (!conf)
3639 goto out;
3640
3641 /* FIXME calc properly */
3642 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3643 sizeof(struct raid10_info),
3644 GFP_KERNEL);
3645 if (!conf->mirrors)
3646 goto out;
3647
3648 conf->tmppage = alloc_page(GFP_KERNEL);
3649 if (!conf->tmppage)
3650 goto out;
3651
3652 conf->geo = geo;
3653 conf->copies = copies;
3654 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3655 rbio_pool_free, conf);
3656 if (err)
3657 goto out;
3658
3659 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3660 if (err)
3661 goto out;
3662
3663 calc_sectors(conf, mddev->dev_sectors);
3664 if (mddev->reshape_position == MaxSector) {
3665 conf->prev = conf->geo;
3666 conf->reshape_progress = MaxSector;
3667 } else {
3668 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3669 err = -EINVAL;
3670 goto out;
3671 }
3672 conf->reshape_progress = mddev->reshape_position;
3673 if (conf->prev.far_offset)
3674 conf->prev.stride = 1 << conf->prev.chunk_shift;
3675 else
3676 /* far_copies must be 1 */
3677 conf->prev.stride = conf->dev_sectors;
3678 }
3679 conf->reshape_safe = conf->reshape_progress;
3680 spin_lock_init(&conf->device_lock);
3681 INIT_LIST_HEAD(&conf->retry_list);
3682 INIT_LIST_HEAD(&conf->bio_end_io_list);
3683
3684 spin_lock_init(&conf->resync_lock);
3685 init_waitqueue_head(&conf->wait_barrier);
3686 atomic_set(&conf->nr_pending, 0);
3687
3688 err = -ENOMEM;
3689 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3690 if (!conf->thread)
3691 goto out;
3692
3693 conf->mddev = mddev;
3694 return conf;
3695
3696 out:
3697 if (conf) {
3698 mempool_exit(&conf->r10bio_pool);
3699 kfree(conf->mirrors);
3700 safe_put_page(conf->tmppage);
3701 bioset_exit(&conf->bio_split);
3702 kfree(conf);
3703 }
3704 return ERR_PTR(err);
3705 }
3706
raid10_set_io_opt(struct r10conf * conf)3707 static void raid10_set_io_opt(struct r10conf *conf)
3708 {
3709 int raid_disks = conf->geo.raid_disks;
3710
3711 if (!(conf->geo.raid_disks % conf->geo.near_copies))
3712 raid_disks /= conf->geo.near_copies;
3713 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3714 raid_disks);
3715 }
3716
raid10_run(struct mddev * mddev)3717 static int raid10_run(struct mddev *mddev)
3718 {
3719 struct r10conf *conf;
3720 int i, disk_idx;
3721 struct raid10_info *disk;
3722 struct md_rdev *rdev;
3723 sector_t size;
3724 sector_t min_offset_diff = 0;
3725 int first = 1;
3726 bool discard_supported = false;
3727
3728 if (mddev_init_writes_pending(mddev) < 0)
3729 return -ENOMEM;
3730
3731 if (mddev->private == NULL) {
3732 conf = setup_conf(mddev);
3733 if (IS_ERR(conf))
3734 return PTR_ERR(conf);
3735 mddev->private = conf;
3736 }
3737 conf = mddev->private;
3738 if (!conf)
3739 goto out;
3740
3741 if (mddev_is_clustered(conf->mddev)) {
3742 int fc, fo;
3743
3744 fc = (mddev->layout >> 8) & 255;
3745 fo = mddev->layout & (1<<16);
3746 if (fc > 1 || fo > 0) {
3747 pr_err("only near layout is supported by clustered"
3748 " raid10\n");
3749 goto out_free_conf;
3750 }
3751 }
3752
3753 mddev->thread = conf->thread;
3754 conf->thread = NULL;
3755
3756 if (mddev->queue) {
3757 blk_queue_max_discard_sectors(mddev->queue,
3758 mddev->chunk_sectors);
3759 blk_queue_max_write_same_sectors(mddev->queue, 0);
3760 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3761 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3762 raid10_set_io_opt(conf);
3763 }
3764
3765 rdev_for_each(rdev, mddev) {
3766 long long diff;
3767
3768 disk_idx = rdev->raid_disk;
3769 if (disk_idx < 0)
3770 continue;
3771 if (disk_idx >= conf->geo.raid_disks &&
3772 disk_idx >= conf->prev.raid_disks)
3773 continue;
3774 disk = conf->mirrors + disk_idx;
3775
3776 if (test_bit(Replacement, &rdev->flags)) {
3777 if (disk->replacement)
3778 goto out_free_conf;
3779 disk->replacement = rdev;
3780 } else {
3781 if (disk->rdev)
3782 goto out_free_conf;
3783 disk->rdev = rdev;
3784 }
3785 diff = (rdev->new_data_offset - rdev->data_offset);
3786 if (!mddev->reshape_backwards)
3787 diff = -diff;
3788 if (diff < 0)
3789 diff = 0;
3790 if (first || diff < min_offset_diff)
3791 min_offset_diff = diff;
3792
3793 if (mddev->gendisk)
3794 disk_stack_limits(mddev->gendisk, rdev->bdev,
3795 rdev->data_offset << 9);
3796
3797 disk->head_position = 0;
3798
3799 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3800 discard_supported = true;
3801 first = 0;
3802 }
3803
3804 if (mddev->queue) {
3805 if (discard_supported)
3806 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3807 mddev->queue);
3808 else
3809 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3810 mddev->queue);
3811 }
3812 /* need to check that every block has at least one working mirror */
3813 if (!enough(conf, -1)) {
3814 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3815 mdname(mddev));
3816 goto out_free_conf;
3817 }
3818
3819 if (conf->reshape_progress != MaxSector) {
3820 /* must ensure that shape change is supported */
3821 if (conf->geo.far_copies != 1 &&
3822 conf->geo.far_offset == 0)
3823 goto out_free_conf;
3824 if (conf->prev.far_copies != 1 &&
3825 conf->prev.far_offset == 0)
3826 goto out_free_conf;
3827 }
3828
3829 mddev->degraded = 0;
3830 for (i = 0;
3831 i < conf->geo.raid_disks
3832 || i < conf->prev.raid_disks;
3833 i++) {
3834
3835 disk = conf->mirrors + i;
3836
3837 if (!disk->rdev && disk->replacement) {
3838 /* The replacement is all we have - use it */
3839 disk->rdev = disk->replacement;
3840 disk->replacement = NULL;
3841 clear_bit(Replacement, &disk->rdev->flags);
3842 }
3843
3844 if (!disk->rdev ||
3845 !test_bit(In_sync, &disk->rdev->flags)) {
3846 disk->head_position = 0;
3847 mddev->degraded++;
3848 if (disk->rdev &&
3849 disk->rdev->saved_raid_disk < 0)
3850 conf->fullsync = 1;
3851 }
3852
3853 if (disk->replacement &&
3854 !test_bit(In_sync, &disk->replacement->flags) &&
3855 disk->replacement->saved_raid_disk < 0) {
3856 conf->fullsync = 1;
3857 }
3858
3859 disk->recovery_disabled = mddev->recovery_disabled - 1;
3860 }
3861
3862 if (mddev->recovery_cp != MaxSector)
3863 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3864 mdname(mddev));
3865 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3866 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3867 conf->geo.raid_disks);
3868 /*
3869 * Ok, everything is just fine now
3870 */
3871 mddev->dev_sectors = conf->dev_sectors;
3872 size = raid10_size(mddev, 0, 0);
3873 md_set_array_sectors(mddev, size);
3874 mddev->resync_max_sectors = size;
3875 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3876
3877 if (md_integrity_register(mddev))
3878 goto out_free_conf;
3879
3880 if (conf->reshape_progress != MaxSector) {
3881 unsigned long before_length, after_length;
3882
3883 before_length = ((1 << conf->prev.chunk_shift) *
3884 conf->prev.far_copies);
3885 after_length = ((1 << conf->geo.chunk_shift) *
3886 conf->geo.far_copies);
3887
3888 if (max(before_length, after_length) > min_offset_diff) {
3889 /* This cannot work */
3890 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3891 goto out_free_conf;
3892 }
3893 conf->offset_diff = min_offset_diff;
3894
3895 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3896 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3897 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3898 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3899 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3900 "reshape");
3901 if (!mddev->sync_thread)
3902 goto out_free_conf;
3903 }
3904
3905 return 0;
3906
3907 out_free_conf:
3908 md_unregister_thread(&mddev->thread);
3909 mempool_exit(&conf->r10bio_pool);
3910 safe_put_page(conf->tmppage);
3911 kfree(conf->mirrors);
3912 kfree(conf);
3913 mddev->private = NULL;
3914 out:
3915 return -EIO;
3916 }
3917
raid10_free(struct mddev * mddev,void * priv)3918 static void raid10_free(struct mddev *mddev, void *priv)
3919 {
3920 struct r10conf *conf = priv;
3921
3922 mempool_exit(&conf->r10bio_pool);
3923 safe_put_page(conf->tmppage);
3924 kfree(conf->mirrors);
3925 kfree(conf->mirrors_old);
3926 kfree(conf->mirrors_new);
3927 bioset_exit(&conf->bio_split);
3928 kfree(conf);
3929 }
3930
raid10_quiesce(struct mddev * mddev,int quiesce)3931 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3932 {
3933 struct r10conf *conf = mddev->private;
3934
3935 if (quiesce)
3936 raise_barrier(conf, 0);
3937 else
3938 lower_barrier(conf);
3939 }
3940
raid10_resize(struct mddev * mddev,sector_t sectors)3941 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3942 {
3943 /* Resize of 'far' arrays is not supported.
3944 * For 'near' and 'offset' arrays we can set the
3945 * number of sectors used to be an appropriate multiple
3946 * of the chunk size.
3947 * For 'offset', this is far_copies*chunksize.
3948 * For 'near' the multiplier is the LCM of
3949 * near_copies and raid_disks.
3950 * So if far_copies > 1 && !far_offset, fail.
3951 * Else find LCM(raid_disks, near_copy)*far_copies and
3952 * multiply by chunk_size. Then round to this number.
3953 * This is mostly done by raid10_size()
3954 */
3955 struct r10conf *conf = mddev->private;
3956 sector_t oldsize, size;
3957
3958 if (mddev->reshape_position != MaxSector)
3959 return -EBUSY;
3960
3961 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3962 return -EINVAL;
3963
3964 oldsize = raid10_size(mddev, 0, 0);
3965 size = raid10_size(mddev, sectors, 0);
3966 if (mddev->external_size &&
3967 mddev->array_sectors > size)
3968 return -EINVAL;
3969 if (mddev->bitmap) {
3970 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3971 if (ret)
3972 return ret;
3973 }
3974 md_set_array_sectors(mddev, size);
3975 if (sectors > mddev->dev_sectors &&
3976 mddev->recovery_cp > oldsize) {
3977 mddev->recovery_cp = oldsize;
3978 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3979 }
3980 calc_sectors(conf, sectors);
3981 mddev->dev_sectors = conf->dev_sectors;
3982 mddev->resync_max_sectors = size;
3983 return 0;
3984 }
3985
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)3986 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3987 {
3988 struct md_rdev *rdev;
3989 struct r10conf *conf;
3990
3991 if (mddev->degraded > 0) {
3992 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3993 mdname(mddev));
3994 return ERR_PTR(-EINVAL);
3995 }
3996 sector_div(size, devs);
3997
3998 /* Set new parameters */
3999 mddev->new_level = 10;
4000 /* new layout: far_copies = 1, near_copies = 2 */
4001 mddev->new_layout = (1<<8) + 2;
4002 mddev->new_chunk_sectors = mddev->chunk_sectors;
4003 mddev->delta_disks = mddev->raid_disks;
4004 mddev->raid_disks *= 2;
4005 /* make sure it will be not marked as dirty */
4006 mddev->recovery_cp = MaxSector;
4007 mddev->dev_sectors = size;
4008
4009 conf = setup_conf(mddev);
4010 if (!IS_ERR(conf)) {
4011 rdev_for_each(rdev, mddev)
4012 if (rdev->raid_disk >= 0) {
4013 rdev->new_raid_disk = rdev->raid_disk * 2;
4014 rdev->sectors = size;
4015 }
4016 conf->barrier = 1;
4017 }
4018
4019 return conf;
4020 }
4021
raid10_takeover(struct mddev * mddev)4022 static void *raid10_takeover(struct mddev *mddev)
4023 {
4024 struct r0conf *raid0_conf;
4025
4026 /* raid10 can take over:
4027 * raid0 - providing it has only two drives
4028 */
4029 if (mddev->level == 0) {
4030 /* for raid0 takeover only one zone is supported */
4031 raid0_conf = mddev->private;
4032 if (raid0_conf->nr_strip_zones > 1) {
4033 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4034 mdname(mddev));
4035 return ERR_PTR(-EINVAL);
4036 }
4037 return raid10_takeover_raid0(mddev,
4038 raid0_conf->strip_zone->zone_end,
4039 raid0_conf->strip_zone->nb_dev);
4040 }
4041 return ERR_PTR(-EINVAL);
4042 }
4043
raid10_check_reshape(struct mddev * mddev)4044 static int raid10_check_reshape(struct mddev *mddev)
4045 {
4046 /* Called when there is a request to change
4047 * - layout (to ->new_layout)
4048 * - chunk size (to ->new_chunk_sectors)
4049 * - raid_disks (by delta_disks)
4050 * or when trying to restart a reshape that was ongoing.
4051 *
4052 * We need to validate the request and possibly allocate
4053 * space if that might be an issue later.
4054 *
4055 * Currently we reject any reshape of a 'far' mode array,
4056 * allow chunk size to change if new is generally acceptable,
4057 * allow raid_disks to increase, and allow
4058 * a switch between 'near' mode and 'offset' mode.
4059 */
4060 struct r10conf *conf = mddev->private;
4061 struct geom geo;
4062
4063 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4064 return -EINVAL;
4065
4066 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4067 /* mustn't change number of copies */
4068 return -EINVAL;
4069 if (geo.far_copies > 1 && !geo.far_offset)
4070 /* Cannot switch to 'far' mode */
4071 return -EINVAL;
4072
4073 if (mddev->array_sectors & geo.chunk_mask)
4074 /* not factor of array size */
4075 return -EINVAL;
4076
4077 if (!enough(conf, -1))
4078 return -EINVAL;
4079
4080 kfree(conf->mirrors_new);
4081 conf->mirrors_new = NULL;
4082 if (mddev->delta_disks > 0) {
4083 /* allocate new 'mirrors' list */
4084 conf->mirrors_new =
4085 kcalloc(mddev->raid_disks + mddev->delta_disks,
4086 sizeof(struct raid10_info),
4087 GFP_KERNEL);
4088 if (!conf->mirrors_new)
4089 return -ENOMEM;
4090 }
4091 return 0;
4092 }
4093
4094 /*
4095 * Need to check if array has failed when deciding whether to:
4096 * - start an array
4097 * - remove non-faulty devices
4098 * - add a spare
4099 * - allow a reshape
4100 * This determination is simple when no reshape is happening.
4101 * However if there is a reshape, we need to carefully check
4102 * both the before and after sections.
4103 * This is because some failed devices may only affect one
4104 * of the two sections, and some non-in_sync devices may
4105 * be insync in the section most affected by failed devices.
4106 */
calc_degraded(struct r10conf * conf)4107 static int calc_degraded(struct r10conf *conf)
4108 {
4109 int degraded, degraded2;
4110 int i;
4111
4112 rcu_read_lock();
4113 degraded = 0;
4114 /* 'prev' section first */
4115 for (i = 0; i < conf->prev.raid_disks; i++) {
4116 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4117 if (!rdev || test_bit(Faulty, &rdev->flags))
4118 degraded++;
4119 else if (!test_bit(In_sync, &rdev->flags))
4120 /* When we can reduce the number of devices in
4121 * an array, this might not contribute to
4122 * 'degraded'. It does now.
4123 */
4124 degraded++;
4125 }
4126 rcu_read_unlock();
4127 if (conf->geo.raid_disks == conf->prev.raid_disks)
4128 return degraded;
4129 rcu_read_lock();
4130 degraded2 = 0;
4131 for (i = 0; i < conf->geo.raid_disks; i++) {
4132 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4133 if (!rdev || test_bit(Faulty, &rdev->flags))
4134 degraded2++;
4135 else if (!test_bit(In_sync, &rdev->flags)) {
4136 /* If reshape is increasing the number of devices,
4137 * this section has already been recovered, so
4138 * it doesn't contribute to degraded.
4139 * else it does.
4140 */
4141 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4142 degraded2++;
4143 }
4144 }
4145 rcu_read_unlock();
4146 if (degraded2 > degraded)
4147 return degraded2;
4148 return degraded;
4149 }
4150
raid10_start_reshape(struct mddev * mddev)4151 static int raid10_start_reshape(struct mddev *mddev)
4152 {
4153 /* A 'reshape' has been requested. This commits
4154 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4155 * This also checks if there are enough spares and adds them
4156 * to the array.
4157 * We currently require enough spares to make the final
4158 * array non-degraded. We also require that the difference
4159 * between old and new data_offset - on each device - is
4160 * enough that we never risk over-writing.
4161 */
4162
4163 unsigned long before_length, after_length;
4164 sector_t min_offset_diff = 0;
4165 int first = 1;
4166 struct geom new;
4167 struct r10conf *conf = mddev->private;
4168 struct md_rdev *rdev;
4169 int spares = 0;
4170 int ret;
4171
4172 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4173 return -EBUSY;
4174
4175 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4176 return -EINVAL;
4177
4178 before_length = ((1 << conf->prev.chunk_shift) *
4179 conf->prev.far_copies);
4180 after_length = ((1 << conf->geo.chunk_shift) *
4181 conf->geo.far_copies);
4182
4183 rdev_for_each(rdev, mddev) {
4184 if (!test_bit(In_sync, &rdev->flags)
4185 && !test_bit(Faulty, &rdev->flags))
4186 spares++;
4187 if (rdev->raid_disk >= 0) {
4188 long long diff = (rdev->new_data_offset
4189 - rdev->data_offset);
4190 if (!mddev->reshape_backwards)
4191 diff = -diff;
4192 if (diff < 0)
4193 diff = 0;
4194 if (first || diff < min_offset_diff)
4195 min_offset_diff = diff;
4196 first = 0;
4197 }
4198 }
4199
4200 if (max(before_length, after_length) > min_offset_diff)
4201 return -EINVAL;
4202
4203 if (spares < mddev->delta_disks)
4204 return -EINVAL;
4205
4206 conf->offset_diff = min_offset_diff;
4207 spin_lock_irq(&conf->device_lock);
4208 if (conf->mirrors_new) {
4209 memcpy(conf->mirrors_new, conf->mirrors,
4210 sizeof(struct raid10_info)*conf->prev.raid_disks);
4211 smp_mb();
4212 kfree(conf->mirrors_old);
4213 conf->mirrors_old = conf->mirrors;
4214 conf->mirrors = conf->mirrors_new;
4215 conf->mirrors_new = NULL;
4216 }
4217 setup_geo(&conf->geo, mddev, geo_start);
4218 smp_mb();
4219 if (mddev->reshape_backwards) {
4220 sector_t size = raid10_size(mddev, 0, 0);
4221 if (size < mddev->array_sectors) {
4222 spin_unlock_irq(&conf->device_lock);
4223 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4224 mdname(mddev));
4225 return -EINVAL;
4226 }
4227 mddev->resync_max_sectors = size;
4228 conf->reshape_progress = size;
4229 } else
4230 conf->reshape_progress = 0;
4231 conf->reshape_safe = conf->reshape_progress;
4232 spin_unlock_irq(&conf->device_lock);
4233
4234 if (mddev->delta_disks && mddev->bitmap) {
4235 struct mdp_superblock_1 *sb = NULL;
4236 sector_t oldsize, newsize;
4237
4238 oldsize = raid10_size(mddev, 0, 0);
4239 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4240
4241 if (!mddev_is_clustered(mddev)) {
4242 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4243 if (ret)
4244 goto abort;
4245 else
4246 goto out;
4247 }
4248
4249 rdev_for_each(rdev, mddev) {
4250 if (rdev->raid_disk > -1 &&
4251 !test_bit(Faulty, &rdev->flags))
4252 sb = page_address(rdev->sb_page);
4253 }
4254
4255 /*
4256 * some node is already performing reshape, and no need to
4257 * call md_bitmap_resize again since it should be called when
4258 * receiving BITMAP_RESIZE msg
4259 */
4260 if ((sb && (le32_to_cpu(sb->feature_map) &
4261 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4262 goto out;
4263
4264 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4265 if (ret)
4266 goto abort;
4267
4268 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4269 if (ret) {
4270 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4271 goto abort;
4272 }
4273 }
4274 out:
4275 if (mddev->delta_disks > 0) {
4276 rdev_for_each(rdev, mddev)
4277 if (rdev->raid_disk < 0 &&
4278 !test_bit(Faulty, &rdev->flags)) {
4279 if (raid10_add_disk(mddev, rdev) == 0) {
4280 if (rdev->raid_disk >=
4281 conf->prev.raid_disks)
4282 set_bit(In_sync, &rdev->flags);
4283 else
4284 rdev->recovery_offset = 0;
4285
4286 /* Failure here is OK */
4287 sysfs_link_rdev(mddev, rdev);
4288 }
4289 } else if (rdev->raid_disk >= conf->prev.raid_disks
4290 && !test_bit(Faulty, &rdev->flags)) {
4291 /* This is a spare that was manually added */
4292 set_bit(In_sync, &rdev->flags);
4293 }
4294 }
4295 /* When a reshape changes the number of devices,
4296 * ->degraded is measured against the larger of the
4297 * pre and post numbers.
4298 */
4299 spin_lock_irq(&conf->device_lock);
4300 mddev->degraded = calc_degraded(conf);
4301 spin_unlock_irq(&conf->device_lock);
4302 mddev->raid_disks = conf->geo.raid_disks;
4303 mddev->reshape_position = conf->reshape_progress;
4304 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4305
4306 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4307 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4308 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4309 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4310 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4311
4312 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4313 "reshape");
4314 if (!mddev->sync_thread) {
4315 ret = -EAGAIN;
4316 goto abort;
4317 }
4318 conf->reshape_checkpoint = jiffies;
4319 md_wakeup_thread(mddev->sync_thread);
4320 md_new_event(mddev);
4321 return 0;
4322
4323 abort:
4324 mddev->recovery = 0;
4325 spin_lock_irq(&conf->device_lock);
4326 conf->geo = conf->prev;
4327 mddev->raid_disks = conf->geo.raid_disks;
4328 rdev_for_each(rdev, mddev)
4329 rdev->new_data_offset = rdev->data_offset;
4330 smp_wmb();
4331 conf->reshape_progress = MaxSector;
4332 conf->reshape_safe = MaxSector;
4333 mddev->reshape_position = MaxSector;
4334 spin_unlock_irq(&conf->device_lock);
4335 return ret;
4336 }
4337
4338 /* Calculate the last device-address that could contain
4339 * any block from the chunk that includes the array-address 's'
4340 * and report the next address.
4341 * i.e. the address returned will be chunk-aligned and after
4342 * any data that is in the chunk containing 's'.
4343 */
last_dev_address(sector_t s,struct geom * geo)4344 static sector_t last_dev_address(sector_t s, struct geom *geo)
4345 {
4346 s = (s | geo->chunk_mask) + 1;
4347 s >>= geo->chunk_shift;
4348 s *= geo->near_copies;
4349 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4350 s *= geo->far_copies;
4351 s <<= geo->chunk_shift;
4352 return s;
4353 }
4354
4355 /* Calculate the first device-address that could contain
4356 * any block from the chunk that includes the array-address 's'.
4357 * This too will be the start of a chunk
4358 */
first_dev_address(sector_t s,struct geom * geo)4359 static sector_t first_dev_address(sector_t s, struct geom *geo)
4360 {
4361 s >>= geo->chunk_shift;
4362 s *= geo->near_copies;
4363 sector_div(s, geo->raid_disks);
4364 s *= geo->far_copies;
4365 s <<= geo->chunk_shift;
4366 return s;
4367 }
4368
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4369 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4370 int *skipped)
4371 {
4372 /* We simply copy at most one chunk (smallest of old and new)
4373 * at a time, possibly less if that exceeds RESYNC_PAGES,
4374 * or we hit a bad block or something.
4375 * This might mean we pause for normal IO in the middle of
4376 * a chunk, but that is not a problem as mddev->reshape_position
4377 * can record any location.
4378 *
4379 * If we will want to write to a location that isn't
4380 * yet recorded as 'safe' (i.e. in metadata on disk) then
4381 * we need to flush all reshape requests and update the metadata.
4382 *
4383 * When reshaping forwards (e.g. to more devices), we interpret
4384 * 'safe' as the earliest block which might not have been copied
4385 * down yet. We divide this by previous stripe size and multiply
4386 * by previous stripe length to get lowest device offset that we
4387 * cannot write to yet.
4388 * We interpret 'sector_nr' as an address that we want to write to.
4389 * From this we use last_device_address() to find where we might
4390 * write to, and first_device_address on the 'safe' position.
4391 * If this 'next' write position is after the 'safe' position,
4392 * we must update the metadata to increase the 'safe' position.
4393 *
4394 * When reshaping backwards, we round in the opposite direction
4395 * and perform the reverse test: next write position must not be
4396 * less than current safe position.
4397 *
4398 * In all this the minimum difference in data offsets
4399 * (conf->offset_diff - always positive) allows a bit of slack,
4400 * so next can be after 'safe', but not by more than offset_diff
4401 *
4402 * We need to prepare all the bios here before we start any IO
4403 * to ensure the size we choose is acceptable to all devices.
4404 * The means one for each copy for write-out and an extra one for
4405 * read-in.
4406 * We store the read-in bio in ->master_bio and the others in
4407 * ->devs[x].bio and ->devs[x].repl_bio.
4408 */
4409 struct r10conf *conf = mddev->private;
4410 struct r10bio *r10_bio;
4411 sector_t next, safe, last;
4412 int max_sectors;
4413 int nr_sectors;
4414 int s;
4415 struct md_rdev *rdev;
4416 int need_flush = 0;
4417 struct bio *blist;
4418 struct bio *bio, *read_bio;
4419 int sectors_done = 0;
4420 struct page **pages;
4421
4422 if (sector_nr == 0) {
4423 /* If restarting in the middle, skip the initial sectors */
4424 if (mddev->reshape_backwards &&
4425 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4426 sector_nr = (raid10_size(mddev, 0, 0)
4427 - conf->reshape_progress);
4428 } else if (!mddev->reshape_backwards &&
4429 conf->reshape_progress > 0)
4430 sector_nr = conf->reshape_progress;
4431 if (sector_nr) {
4432 mddev->curr_resync_completed = sector_nr;
4433 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4434 *skipped = 1;
4435 return sector_nr;
4436 }
4437 }
4438
4439 /* We don't use sector_nr to track where we are up to
4440 * as that doesn't work well for ->reshape_backwards.
4441 * So just use ->reshape_progress.
4442 */
4443 if (mddev->reshape_backwards) {
4444 /* 'next' is the earliest device address that we might
4445 * write to for this chunk in the new layout
4446 */
4447 next = first_dev_address(conf->reshape_progress - 1,
4448 &conf->geo);
4449
4450 /* 'safe' is the last device address that we might read from
4451 * in the old layout after a restart
4452 */
4453 safe = last_dev_address(conf->reshape_safe - 1,
4454 &conf->prev);
4455
4456 if (next + conf->offset_diff < safe)
4457 need_flush = 1;
4458
4459 last = conf->reshape_progress - 1;
4460 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4461 & conf->prev.chunk_mask);
4462 if (sector_nr + RESYNC_SECTORS < last)
4463 sector_nr = last + 1 - RESYNC_SECTORS;
4464 } else {
4465 /* 'next' is after the last device address that we
4466 * might write to for this chunk in the new layout
4467 */
4468 next = last_dev_address(conf->reshape_progress, &conf->geo);
4469
4470 /* 'safe' is the earliest device address that we might
4471 * read from in the old layout after a restart
4472 */
4473 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4474
4475 /* Need to update metadata if 'next' might be beyond 'safe'
4476 * as that would possibly corrupt data
4477 */
4478 if (next > safe + conf->offset_diff)
4479 need_flush = 1;
4480
4481 sector_nr = conf->reshape_progress;
4482 last = sector_nr | (conf->geo.chunk_mask
4483 & conf->prev.chunk_mask);
4484
4485 if (sector_nr + RESYNC_SECTORS <= last)
4486 last = sector_nr + RESYNC_SECTORS - 1;
4487 }
4488
4489 if (need_flush ||
4490 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4491 /* Need to update reshape_position in metadata */
4492 wait_barrier(conf);
4493 mddev->reshape_position = conf->reshape_progress;
4494 if (mddev->reshape_backwards)
4495 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4496 - conf->reshape_progress;
4497 else
4498 mddev->curr_resync_completed = conf->reshape_progress;
4499 conf->reshape_checkpoint = jiffies;
4500 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4501 md_wakeup_thread(mddev->thread);
4502 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4503 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4504 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4505 allow_barrier(conf);
4506 return sectors_done;
4507 }
4508 conf->reshape_safe = mddev->reshape_position;
4509 allow_barrier(conf);
4510 }
4511
4512 raise_barrier(conf, 0);
4513 read_more:
4514 /* Now schedule reads for blocks from sector_nr to last */
4515 r10_bio = raid10_alloc_init_r10buf(conf);
4516 r10_bio->state = 0;
4517 raise_barrier(conf, 1);
4518 atomic_set(&r10_bio->remaining, 0);
4519 r10_bio->mddev = mddev;
4520 r10_bio->sector = sector_nr;
4521 set_bit(R10BIO_IsReshape, &r10_bio->state);
4522 r10_bio->sectors = last - sector_nr + 1;
4523 rdev = read_balance(conf, r10_bio, &max_sectors);
4524 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4525
4526 if (!rdev) {
4527 /* Cannot read from here, so need to record bad blocks
4528 * on all the target devices.
4529 */
4530 // FIXME
4531 mempool_free(r10_bio, &conf->r10buf_pool);
4532 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4533 return sectors_done;
4534 }
4535
4536 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4537
4538 bio_set_dev(read_bio, rdev->bdev);
4539 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4540 + rdev->data_offset);
4541 read_bio->bi_private = r10_bio;
4542 read_bio->bi_end_io = end_reshape_read;
4543 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4544 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4545 read_bio->bi_status = 0;
4546 read_bio->bi_vcnt = 0;
4547 read_bio->bi_iter.bi_size = 0;
4548 r10_bio->master_bio = read_bio;
4549 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4550
4551 /*
4552 * Broadcast RESYNC message to other nodes, so all nodes would not
4553 * write to the region to avoid conflict.
4554 */
4555 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4556 struct mdp_superblock_1 *sb = NULL;
4557 int sb_reshape_pos = 0;
4558
4559 conf->cluster_sync_low = sector_nr;
4560 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4561 sb = page_address(rdev->sb_page);
4562 if (sb) {
4563 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4564 /*
4565 * Set cluster_sync_low again if next address for array
4566 * reshape is less than cluster_sync_low. Since we can't
4567 * update cluster_sync_low until it has finished reshape.
4568 */
4569 if (sb_reshape_pos < conf->cluster_sync_low)
4570 conf->cluster_sync_low = sb_reshape_pos;
4571 }
4572
4573 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4574 conf->cluster_sync_high);
4575 }
4576
4577 /* Now find the locations in the new layout */
4578 __raid10_find_phys(&conf->geo, r10_bio);
4579
4580 blist = read_bio;
4581 read_bio->bi_next = NULL;
4582
4583 rcu_read_lock();
4584 for (s = 0; s < conf->copies*2; s++) {
4585 struct bio *b;
4586 int d = r10_bio->devs[s/2].devnum;
4587 struct md_rdev *rdev2;
4588 if (s&1) {
4589 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4590 b = r10_bio->devs[s/2].repl_bio;
4591 } else {
4592 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4593 b = r10_bio->devs[s/2].bio;
4594 }
4595 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4596 continue;
4597
4598 bio_set_dev(b, rdev2->bdev);
4599 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4600 rdev2->new_data_offset;
4601 b->bi_end_io = end_reshape_write;
4602 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4603 b->bi_next = blist;
4604 blist = b;
4605 }
4606
4607 /* Now add as many pages as possible to all of these bios. */
4608
4609 nr_sectors = 0;
4610 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4611 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4612 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4613 int len = (max_sectors - s) << 9;
4614 if (len > PAGE_SIZE)
4615 len = PAGE_SIZE;
4616 for (bio = blist; bio ; bio = bio->bi_next) {
4617 /*
4618 * won't fail because the vec table is big enough
4619 * to hold all these pages
4620 */
4621 bio_add_page(bio, page, len, 0);
4622 }
4623 sector_nr += len >> 9;
4624 nr_sectors += len >> 9;
4625 }
4626 rcu_read_unlock();
4627 r10_bio->sectors = nr_sectors;
4628
4629 /* Now submit the read */
4630 md_sync_acct_bio(read_bio, r10_bio->sectors);
4631 atomic_inc(&r10_bio->remaining);
4632 read_bio->bi_next = NULL;
4633 submit_bio_noacct(read_bio);
4634 sectors_done += nr_sectors;
4635 if (sector_nr <= last)
4636 goto read_more;
4637
4638 lower_barrier(conf);
4639
4640 /* Now that we have done the whole section we can
4641 * update reshape_progress
4642 */
4643 if (mddev->reshape_backwards)
4644 conf->reshape_progress -= sectors_done;
4645 else
4646 conf->reshape_progress += sectors_done;
4647
4648 return sectors_done;
4649 }
4650
4651 static void end_reshape_request(struct r10bio *r10_bio);
4652 static int handle_reshape_read_error(struct mddev *mddev,
4653 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4654 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4655 {
4656 /* Reshape read completed. Hopefully we have a block
4657 * to write out.
4658 * If we got a read error then we do sync 1-page reads from
4659 * elsewhere until we find the data - or give up.
4660 */
4661 struct r10conf *conf = mddev->private;
4662 int s;
4663
4664 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4665 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4666 /* Reshape has been aborted */
4667 md_done_sync(mddev, r10_bio->sectors, 0);
4668 return;
4669 }
4670
4671 /* We definitely have the data in the pages, schedule the
4672 * writes.
4673 */
4674 atomic_set(&r10_bio->remaining, 1);
4675 for (s = 0; s < conf->copies*2; s++) {
4676 struct bio *b;
4677 int d = r10_bio->devs[s/2].devnum;
4678 struct md_rdev *rdev;
4679 rcu_read_lock();
4680 if (s&1) {
4681 rdev = rcu_dereference(conf->mirrors[d].replacement);
4682 b = r10_bio->devs[s/2].repl_bio;
4683 } else {
4684 rdev = rcu_dereference(conf->mirrors[d].rdev);
4685 b = r10_bio->devs[s/2].bio;
4686 }
4687 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4688 rcu_read_unlock();
4689 continue;
4690 }
4691 atomic_inc(&rdev->nr_pending);
4692 rcu_read_unlock();
4693 md_sync_acct_bio(b, r10_bio->sectors);
4694 atomic_inc(&r10_bio->remaining);
4695 b->bi_next = NULL;
4696 submit_bio_noacct(b);
4697 }
4698 end_reshape_request(r10_bio);
4699 }
4700
end_reshape(struct r10conf * conf)4701 static void end_reshape(struct r10conf *conf)
4702 {
4703 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4704 return;
4705
4706 spin_lock_irq(&conf->device_lock);
4707 conf->prev = conf->geo;
4708 md_finish_reshape(conf->mddev);
4709 smp_wmb();
4710 conf->reshape_progress = MaxSector;
4711 conf->reshape_safe = MaxSector;
4712 spin_unlock_irq(&conf->device_lock);
4713
4714 if (conf->mddev->queue)
4715 raid10_set_io_opt(conf);
4716 conf->fullsync = 0;
4717 }
4718
raid10_update_reshape_pos(struct mddev * mddev)4719 static void raid10_update_reshape_pos(struct mddev *mddev)
4720 {
4721 struct r10conf *conf = mddev->private;
4722 sector_t lo, hi;
4723
4724 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4725 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4726 || mddev->reshape_position == MaxSector)
4727 conf->reshape_progress = mddev->reshape_position;
4728 else
4729 WARN_ON_ONCE(1);
4730 }
4731
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4732 static int handle_reshape_read_error(struct mddev *mddev,
4733 struct r10bio *r10_bio)
4734 {
4735 /* Use sync reads to get the blocks from somewhere else */
4736 int sectors = r10_bio->sectors;
4737 struct r10conf *conf = mddev->private;
4738 struct r10bio *r10b;
4739 int slot = 0;
4740 int idx = 0;
4741 struct page **pages;
4742
4743 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4744 if (!r10b) {
4745 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4746 return -ENOMEM;
4747 }
4748
4749 /* reshape IOs share pages from .devs[0].bio */
4750 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4751
4752 r10b->sector = r10_bio->sector;
4753 __raid10_find_phys(&conf->prev, r10b);
4754
4755 while (sectors) {
4756 int s = sectors;
4757 int success = 0;
4758 int first_slot = slot;
4759
4760 if (s > (PAGE_SIZE >> 9))
4761 s = PAGE_SIZE >> 9;
4762
4763 rcu_read_lock();
4764 while (!success) {
4765 int d = r10b->devs[slot].devnum;
4766 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4767 sector_t addr;
4768 if (rdev == NULL ||
4769 test_bit(Faulty, &rdev->flags) ||
4770 !test_bit(In_sync, &rdev->flags))
4771 goto failed;
4772
4773 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4774 atomic_inc(&rdev->nr_pending);
4775 rcu_read_unlock();
4776 success = sync_page_io(rdev,
4777 addr,
4778 s << 9,
4779 pages[idx],
4780 REQ_OP_READ, 0, false);
4781 rdev_dec_pending(rdev, mddev);
4782 rcu_read_lock();
4783 if (success)
4784 break;
4785 failed:
4786 slot++;
4787 if (slot >= conf->copies)
4788 slot = 0;
4789 if (slot == first_slot)
4790 break;
4791 }
4792 rcu_read_unlock();
4793 if (!success) {
4794 /* couldn't read this block, must give up */
4795 set_bit(MD_RECOVERY_INTR,
4796 &mddev->recovery);
4797 kfree(r10b);
4798 return -EIO;
4799 }
4800 sectors -= s;
4801 idx++;
4802 }
4803 kfree(r10b);
4804 return 0;
4805 }
4806
end_reshape_write(struct bio * bio)4807 static void end_reshape_write(struct bio *bio)
4808 {
4809 struct r10bio *r10_bio = get_resync_r10bio(bio);
4810 struct mddev *mddev = r10_bio->mddev;
4811 struct r10conf *conf = mddev->private;
4812 int d;
4813 int slot;
4814 int repl;
4815 struct md_rdev *rdev = NULL;
4816
4817 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4818 if (repl)
4819 rdev = conf->mirrors[d].replacement;
4820 if (!rdev) {
4821 smp_mb();
4822 rdev = conf->mirrors[d].rdev;
4823 }
4824
4825 if (bio->bi_status) {
4826 /* FIXME should record badblock */
4827 md_error(mddev, rdev);
4828 }
4829
4830 rdev_dec_pending(rdev, mddev);
4831 end_reshape_request(r10_bio);
4832 }
4833
end_reshape_request(struct r10bio * r10_bio)4834 static void end_reshape_request(struct r10bio *r10_bio)
4835 {
4836 if (!atomic_dec_and_test(&r10_bio->remaining))
4837 return;
4838 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4839 bio_put(r10_bio->master_bio);
4840 put_buf(r10_bio);
4841 }
4842
raid10_finish_reshape(struct mddev * mddev)4843 static void raid10_finish_reshape(struct mddev *mddev)
4844 {
4845 struct r10conf *conf = mddev->private;
4846
4847 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4848 return;
4849
4850 if (mddev->delta_disks > 0) {
4851 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4852 mddev->recovery_cp = mddev->resync_max_sectors;
4853 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4854 }
4855 mddev->resync_max_sectors = mddev->array_sectors;
4856 } else {
4857 int d;
4858 rcu_read_lock();
4859 for (d = conf->geo.raid_disks ;
4860 d < conf->geo.raid_disks - mddev->delta_disks;
4861 d++) {
4862 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4863 if (rdev)
4864 clear_bit(In_sync, &rdev->flags);
4865 rdev = rcu_dereference(conf->mirrors[d].replacement);
4866 if (rdev)
4867 clear_bit(In_sync, &rdev->flags);
4868 }
4869 rcu_read_unlock();
4870 }
4871 mddev->layout = mddev->new_layout;
4872 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4873 mddev->reshape_position = MaxSector;
4874 mddev->delta_disks = 0;
4875 mddev->reshape_backwards = 0;
4876 }
4877
4878 static struct md_personality raid10_personality =
4879 {
4880 .name = "raid10",
4881 .level = 10,
4882 .owner = THIS_MODULE,
4883 .make_request = raid10_make_request,
4884 .run = raid10_run,
4885 .free = raid10_free,
4886 .status = raid10_status,
4887 .error_handler = raid10_error,
4888 .hot_add_disk = raid10_add_disk,
4889 .hot_remove_disk= raid10_remove_disk,
4890 .spare_active = raid10_spare_active,
4891 .sync_request = raid10_sync_request,
4892 .quiesce = raid10_quiesce,
4893 .size = raid10_size,
4894 .resize = raid10_resize,
4895 .takeover = raid10_takeover,
4896 .check_reshape = raid10_check_reshape,
4897 .start_reshape = raid10_start_reshape,
4898 .finish_reshape = raid10_finish_reshape,
4899 .update_reshape_pos = raid10_update_reshape_pos,
4900 };
4901
raid_init(void)4902 static int __init raid_init(void)
4903 {
4904 return register_md_personality(&raid10_personality);
4905 }
4906
raid_exit(void)4907 static void raid_exit(void)
4908 {
4909 unregister_md_personality(&raid10_personality);
4910 }
4911
4912 module_init(raid_init);
4913 module_exit(raid_exit);
4914 MODULE_LICENSE("GPL");
4915 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4916 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4917 MODULE_ALIAS("md-raid10");
4918 MODULE_ALIAS("md-level-10");
4919
4920 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4921