• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright (C) 2014-2017 Mentor Graphics Inc.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/clkdev.h>
10 #include <linux/ctype.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <media/v4l2-async.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-event.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-subdev.h>
27 
28 /* min/typical/max system clock (xclk) frequencies */
29 #define OV5640_XCLK_MIN  6000000
30 #define OV5640_XCLK_MAX 54000000
31 
32 #define OV5640_DEFAULT_SLAVE_ID 0x3c
33 
34 #define OV5640_REG_SYS_RESET02		0x3002
35 #define OV5640_REG_SYS_CLOCK_ENABLE02	0x3006
36 #define OV5640_REG_SYS_CTRL0		0x3008
37 #define OV5640_REG_SYS_CTRL0_SW_PWDN	0x42
38 #define OV5640_REG_SYS_CTRL0_SW_PWUP	0x02
39 #define OV5640_REG_CHIP_ID		0x300a
40 #define OV5640_REG_IO_MIPI_CTRL00	0x300e
41 #define OV5640_REG_PAD_OUTPUT_ENABLE01	0x3017
42 #define OV5640_REG_PAD_OUTPUT_ENABLE02	0x3018
43 #define OV5640_REG_PAD_OUTPUT00		0x3019
44 #define OV5640_REG_SYSTEM_CONTROL1	0x302e
45 #define OV5640_REG_SC_PLL_CTRL0		0x3034
46 #define OV5640_REG_SC_PLL_CTRL1		0x3035
47 #define OV5640_REG_SC_PLL_CTRL2		0x3036
48 #define OV5640_REG_SC_PLL_CTRL3		0x3037
49 #define OV5640_REG_SLAVE_ID		0x3100
50 #define OV5640_REG_SCCB_SYS_CTRL1	0x3103
51 #define OV5640_REG_SYS_ROOT_DIVIDER	0x3108
52 #define OV5640_REG_AWB_R_GAIN		0x3400
53 #define OV5640_REG_AWB_G_GAIN		0x3402
54 #define OV5640_REG_AWB_B_GAIN		0x3404
55 #define OV5640_REG_AWB_MANUAL_CTRL	0x3406
56 #define OV5640_REG_AEC_PK_EXPOSURE_HI	0x3500
57 #define OV5640_REG_AEC_PK_EXPOSURE_MED	0x3501
58 #define OV5640_REG_AEC_PK_EXPOSURE_LO	0x3502
59 #define OV5640_REG_AEC_PK_MANUAL	0x3503
60 #define OV5640_REG_AEC_PK_REAL_GAIN	0x350a
61 #define OV5640_REG_AEC_PK_VTS		0x350c
62 #define OV5640_REG_TIMING_DVPHO		0x3808
63 #define OV5640_REG_TIMING_DVPVO		0x380a
64 #define OV5640_REG_TIMING_HTS		0x380c
65 #define OV5640_REG_TIMING_VTS		0x380e
66 #define OV5640_REG_TIMING_TC_REG20	0x3820
67 #define OV5640_REG_TIMING_TC_REG21	0x3821
68 #define OV5640_REG_AEC_CTRL00		0x3a00
69 #define OV5640_REG_AEC_B50_STEP		0x3a08
70 #define OV5640_REG_AEC_B60_STEP		0x3a0a
71 #define OV5640_REG_AEC_CTRL0D		0x3a0d
72 #define OV5640_REG_AEC_CTRL0E		0x3a0e
73 #define OV5640_REG_AEC_CTRL0F		0x3a0f
74 #define OV5640_REG_AEC_CTRL10		0x3a10
75 #define OV5640_REG_AEC_CTRL11		0x3a11
76 #define OV5640_REG_AEC_CTRL1B		0x3a1b
77 #define OV5640_REG_AEC_CTRL1E		0x3a1e
78 #define OV5640_REG_AEC_CTRL1F		0x3a1f
79 #define OV5640_REG_HZ5060_CTRL00	0x3c00
80 #define OV5640_REG_HZ5060_CTRL01	0x3c01
81 #define OV5640_REG_SIGMADELTA_CTRL0C	0x3c0c
82 #define OV5640_REG_FRAME_CTRL01		0x4202
83 #define OV5640_REG_FORMAT_CONTROL00	0x4300
84 #define OV5640_REG_VFIFO_HSIZE		0x4602
85 #define OV5640_REG_VFIFO_VSIZE		0x4604
86 #define OV5640_REG_JPG_MODE_SELECT	0x4713
87 #define OV5640_REG_CCIR656_CTRL00	0x4730
88 #define OV5640_REG_POLARITY_CTRL00	0x4740
89 #define OV5640_REG_MIPI_CTRL00		0x4800
90 #define OV5640_REG_DEBUG_MODE		0x4814
91 #define OV5640_REG_ISP_FORMAT_MUX_CTRL	0x501f
92 #define OV5640_REG_PRE_ISP_TEST_SET1	0x503d
93 #define OV5640_REG_SDE_CTRL0		0x5580
94 #define OV5640_REG_SDE_CTRL1		0x5581
95 #define OV5640_REG_SDE_CTRL3		0x5583
96 #define OV5640_REG_SDE_CTRL4		0x5584
97 #define OV5640_REG_SDE_CTRL5		0x5585
98 #define OV5640_REG_AVG_READOUT		0x56a1
99 
100 enum ov5640_mode_id {
101 	OV5640_MODE_QCIF_176_144 = 0,
102 	OV5640_MODE_QVGA_320_240,
103 	OV5640_MODE_VGA_640_480,
104 	OV5640_MODE_NTSC_720_480,
105 	OV5640_MODE_PAL_720_576,
106 	OV5640_MODE_XGA_1024_768,
107 	OV5640_MODE_720P_1280_720,
108 	OV5640_MODE_1080P_1920_1080,
109 	OV5640_MODE_QSXGA_2592_1944,
110 	OV5640_NUM_MODES,
111 };
112 
113 enum ov5640_frame_rate {
114 	OV5640_15_FPS = 0,
115 	OV5640_30_FPS,
116 	OV5640_60_FPS,
117 	OV5640_NUM_FRAMERATES,
118 };
119 
120 enum ov5640_format_mux {
121 	OV5640_FMT_MUX_YUV422 = 0,
122 	OV5640_FMT_MUX_RGB,
123 	OV5640_FMT_MUX_DITHER,
124 	OV5640_FMT_MUX_RAW_DPC,
125 	OV5640_FMT_MUX_SNR_RAW,
126 	OV5640_FMT_MUX_RAW_CIP,
127 };
128 
129 struct ov5640_pixfmt {
130 	u32 code;
131 	u32 colorspace;
132 };
133 
134 static const struct ov5640_pixfmt ov5640_formats[] = {
135 	{ MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
136 	{ MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
137 	{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
138 	{ MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
139 	{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
140 	{ MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
141 	{ MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
142 	{ MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
143 	{ MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
144 };
145 
146 /*
147  * FIXME: remove this when a subdev API becomes available
148  * to set the MIPI CSI-2 virtual channel.
149  */
150 static unsigned int virtual_channel;
151 module_param(virtual_channel, uint, 0444);
152 MODULE_PARM_DESC(virtual_channel,
153 		 "MIPI CSI-2 virtual channel (0..3), default 0");
154 
155 static const int ov5640_framerates[] = {
156 	[OV5640_15_FPS] = 15,
157 	[OV5640_30_FPS] = 30,
158 	[OV5640_60_FPS] = 60,
159 };
160 
161 /* regulator supplies */
162 static const char * const ov5640_supply_name[] = {
163 	"DOVDD", /* Digital I/O (1.8V) supply */
164 	"AVDD",  /* Analog (2.8V) supply */
165 	"DVDD",  /* Digital Core (1.5V) supply */
166 };
167 
168 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
169 
170 /*
171  * Image size under 1280 * 960 are SUBSAMPLING
172  * Image size upper 1280 * 960 are SCALING
173  */
174 enum ov5640_downsize_mode {
175 	SUBSAMPLING,
176 	SCALING,
177 };
178 
179 struct reg_value {
180 	u16 reg_addr;
181 	u8 val;
182 	u8 mask;
183 	u32 delay_ms;
184 };
185 
186 struct ov5640_mode_info {
187 	enum ov5640_mode_id id;
188 	enum ov5640_downsize_mode dn_mode;
189 	u32 hact;
190 	u32 htot;
191 	u32 vact;
192 	u32 vtot;
193 	const struct reg_value *reg_data;
194 	u32 reg_data_size;
195 	u32 max_fps;
196 };
197 
198 struct ov5640_ctrls {
199 	struct v4l2_ctrl_handler handler;
200 	struct v4l2_ctrl *pixel_rate;
201 	struct {
202 		struct v4l2_ctrl *auto_exp;
203 		struct v4l2_ctrl *exposure;
204 	};
205 	struct {
206 		struct v4l2_ctrl *auto_wb;
207 		struct v4l2_ctrl *blue_balance;
208 		struct v4l2_ctrl *red_balance;
209 	};
210 	struct {
211 		struct v4l2_ctrl *auto_gain;
212 		struct v4l2_ctrl *gain;
213 	};
214 	struct v4l2_ctrl *brightness;
215 	struct v4l2_ctrl *light_freq;
216 	struct v4l2_ctrl *saturation;
217 	struct v4l2_ctrl *contrast;
218 	struct v4l2_ctrl *hue;
219 	struct v4l2_ctrl *test_pattern;
220 	struct v4l2_ctrl *hflip;
221 	struct v4l2_ctrl *vflip;
222 };
223 
224 struct ov5640_dev {
225 	struct i2c_client *i2c_client;
226 	struct v4l2_subdev sd;
227 	struct media_pad pad;
228 	struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
229 	struct clk *xclk; /* system clock to OV5640 */
230 	u32 xclk_freq;
231 
232 	struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
233 	struct gpio_desc *reset_gpio;
234 	struct gpio_desc *pwdn_gpio;
235 	bool   upside_down;
236 
237 	/* lock to protect all members below */
238 	struct mutex lock;
239 
240 	int power_count;
241 
242 	struct v4l2_mbus_framefmt fmt;
243 	bool pending_fmt_change;
244 
245 	const struct ov5640_mode_info *current_mode;
246 	const struct ov5640_mode_info *last_mode;
247 	enum ov5640_frame_rate current_fr;
248 	struct v4l2_fract frame_interval;
249 
250 	struct ov5640_ctrls ctrls;
251 
252 	u32 prev_sysclk, prev_hts;
253 	u32 ae_low, ae_high, ae_target;
254 
255 	bool pending_mode_change;
256 	bool streaming;
257 };
258 
to_ov5640_dev(struct v4l2_subdev * sd)259 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
260 {
261 	return container_of(sd, struct ov5640_dev, sd);
262 }
263 
ctrl_to_sd(struct v4l2_ctrl * ctrl)264 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
265 {
266 	return &container_of(ctrl->handler, struct ov5640_dev,
267 			     ctrls.handler)->sd;
268 }
269 
270 /*
271  * FIXME: all of these register tables are likely filled with
272  * entries that set the register to their power-on default values,
273  * and which are otherwise not touched by this driver. Those entries
274  * should be identified and removed to speed register load time
275  * over i2c.
276  */
277 /* YUV422 UYVY VGA@30fps */
278 static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
279 	{0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
280 	{0x3103, 0x03, 0, 0}, {0x3630, 0x36, 0, 0},
281 	{0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
282 	{0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
283 	{0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
284 	{0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
285 	{0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
286 	{0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
287 	{0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
288 	{0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
289 	{0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
290 	{0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
291 	{0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
292 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
293 	{0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
294 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
295 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
296 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
297 	{0x3810, 0x00, 0, 0},
298 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
299 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
300 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
301 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
302 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
303 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
304 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
305 	{0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
306 	{0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
307 	{0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
308 	{0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
309 	{0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
310 	{0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
311 	{0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
312 	{0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
313 	{0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
314 	{0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
315 	{0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
316 	{0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
317 	{0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
318 	{0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
319 	{0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
320 	{0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
321 	{0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
322 	{0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
323 	{0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
324 	{0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
325 	{0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
326 	{0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
327 	{0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
328 	{0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
329 	{0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
330 	{0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
331 	{0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
332 	{0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
333 	{0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
334 	{0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
335 	{0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
336 	{0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
337 	{0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
338 	{0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
339 	{0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
340 	{0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
341 	{0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
342 	{0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
343 	{0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
344 	{0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
345 	{0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
346 	{0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
347 	{0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
348 	{0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
349 	{0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
350 	{0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
351 	{0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
352 	{0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
353 	{0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
354 	{0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
355 	{0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
356 	{0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
357 	{0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
358 	{0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
359 	{0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
360 };
361 
362 static const struct reg_value ov5640_setting_VGA_640_480[] = {
363 	{0x3c07, 0x08, 0, 0},
364 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
365 	{0x3814, 0x31, 0, 0},
366 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
367 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
368 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
369 	{0x3810, 0x00, 0, 0},
370 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
371 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
372 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
373 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
374 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
375 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
376 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
377 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
378 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
379 };
380 
381 static const struct reg_value ov5640_setting_XGA_1024_768[] = {
382 	{0x3c07, 0x08, 0, 0},
383 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
384 	{0x3814, 0x31, 0, 0},
385 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
386 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
387 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
388 	{0x3810, 0x00, 0, 0},
389 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
390 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
391 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
392 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
393 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
394 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
395 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
396 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
397 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
398 };
399 
400 static const struct reg_value ov5640_setting_QVGA_320_240[] = {
401 	{0x3c07, 0x08, 0, 0},
402 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
403 	{0x3814, 0x31, 0, 0},
404 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
405 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
406 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
407 	{0x3810, 0x00, 0, 0},
408 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
409 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
410 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
411 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
412 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
413 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
414 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
415 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
416 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
417 };
418 
419 static const struct reg_value ov5640_setting_QCIF_176_144[] = {
420 	{0x3c07, 0x08, 0, 0},
421 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
422 	{0x3814, 0x31, 0, 0},
423 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
424 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
425 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
426 	{0x3810, 0x00, 0, 0},
427 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
428 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
429 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
430 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
431 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
432 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
433 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
434 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
435 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
436 };
437 
438 static const struct reg_value ov5640_setting_NTSC_720_480[] = {
439 	{0x3c07, 0x08, 0, 0},
440 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
441 	{0x3814, 0x31, 0, 0},
442 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
443 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
444 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
445 	{0x3810, 0x00, 0, 0},
446 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
447 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
448 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
449 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
450 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
451 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
452 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
453 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
454 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
455 };
456 
457 static const struct reg_value ov5640_setting_PAL_720_576[] = {
458 	{0x3c07, 0x08, 0, 0},
459 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
460 	{0x3814, 0x31, 0, 0},
461 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
462 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
463 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
464 	{0x3810, 0x00, 0, 0},
465 	{0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
466 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
467 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
468 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
469 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
470 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
471 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
472 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
473 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
474 };
475 
476 static const struct reg_value ov5640_setting_720P_1280_720[] = {
477 	{0x3c07, 0x07, 0, 0},
478 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
479 	{0x3814, 0x31, 0, 0},
480 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
481 	{0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
482 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
483 	{0x3810, 0x00, 0, 0},
484 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
485 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
486 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
487 	{0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
488 	{0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
489 	{0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
490 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
491 	{0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
492 	{0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
493 };
494 
495 static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
496 	{0x3c07, 0x08, 0, 0},
497 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
498 	{0x3814, 0x11, 0, 0},
499 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
500 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
501 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
502 	{0x3810, 0x00, 0, 0},
503 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
504 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
505 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
506 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
507 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
508 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
509 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
510 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
511 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
512 	{0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
513 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
514 	{0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
515 	{0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
516 	{0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
517 	{0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
518 	{0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
519 	{0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
520 	{0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
521 	{0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
522 	{0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
523 	{0x4005, 0x1a, 0, 0},
524 };
525 
526 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
527 	{0x3c07, 0x08, 0, 0},
528 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
529 	{0x3814, 0x11, 0, 0},
530 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
531 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
532 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
533 	{0x3810, 0x00, 0, 0},
534 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
535 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
536 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
537 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
538 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
539 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
540 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
541 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
542 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
543 };
544 
545 /* power-on sensor init reg table */
546 static const struct ov5640_mode_info ov5640_mode_init_data = {
547 	0, SUBSAMPLING, 640, 1896, 480, 984,
548 	ov5640_init_setting_30fps_VGA,
549 	ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
550 	OV5640_30_FPS,
551 };
552 
553 static const struct ov5640_mode_info
554 ov5640_mode_data[OV5640_NUM_MODES] = {
555 	{OV5640_MODE_QCIF_176_144, SUBSAMPLING,
556 	 176, 1896, 144, 984,
557 	 ov5640_setting_QCIF_176_144,
558 	 ARRAY_SIZE(ov5640_setting_QCIF_176_144),
559 	 OV5640_30_FPS},
560 	{OV5640_MODE_QVGA_320_240, SUBSAMPLING,
561 	 320, 1896, 240, 984,
562 	 ov5640_setting_QVGA_320_240,
563 	 ARRAY_SIZE(ov5640_setting_QVGA_320_240),
564 	 OV5640_30_FPS},
565 	{OV5640_MODE_VGA_640_480, SUBSAMPLING,
566 	 640, 1896, 480, 1080,
567 	 ov5640_setting_VGA_640_480,
568 	 ARRAY_SIZE(ov5640_setting_VGA_640_480),
569 	 OV5640_60_FPS},
570 	{OV5640_MODE_NTSC_720_480, SUBSAMPLING,
571 	 720, 1896, 480, 984,
572 	 ov5640_setting_NTSC_720_480,
573 	 ARRAY_SIZE(ov5640_setting_NTSC_720_480),
574 	OV5640_30_FPS},
575 	{OV5640_MODE_PAL_720_576, SUBSAMPLING,
576 	 720, 1896, 576, 984,
577 	 ov5640_setting_PAL_720_576,
578 	 ARRAY_SIZE(ov5640_setting_PAL_720_576),
579 	 OV5640_30_FPS},
580 	{OV5640_MODE_XGA_1024_768, SUBSAMPLING,
581 	 1024, 1896, 768, 1080,
582 	 ov5640_setting_XGA_1024_768,
583 	 ARRAY_SIZE(ov5640_setting_XGA_1024_768),
584 	 OV5640_30_FPS},
585 	{OV5640_MODE_720P_1280_720, SUBSAMPLING,
586 	 1280, 1892, 720, 740,
587 	 ov5640_setting_720P_1280_720,
588 	 ARRAY_SIZE(ov5640_setting_720P_1280_720),
589 	 OV5640_30_FPS},
590 	{OV5640_MODE_1080P_1920_1080, SCALING,
591 	 1920, 2500, 1080, 1120,
592 	 ov5640_setting_1080P_1920_1080,
593 	 ARRAY_SIZE(ov5640_setting_1080P_1920_1080),
594 	 OV5640_30_FPS},
595 	{OV5640_MODE_QSXGA_2592_1944, SCALING,
596 	 2592, 2844, 1944, 1968,
597 	 ov5640_setting_QSXGA_2592_1944,
598 	 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944),
599 	 OV5640_15_FPS},
600 };
601 
ov5640_init_slave_id(struct ov5640_dev * sensor)602 static int ov5640_init_slave_id(struct ov5640_dev *sensor)
603 {
604 	struct i2c_client *client = sensor->i2c_client;
605 	struct i2c_msg msg;
606 	u8 buf[3];
607 	int ret;
608 
609 	if (client->addr == OV5640_DEFAULT_SLAVE_ID)
610 		return 0;
611 
612 	buf[0] = OV5640_REG_SLAVE_ID >> 8;
613 	buf[1] = OV5640_REG_SLAVE_ID & 0xff;
614 	buf[2] = client->addr << 1;
615 
616 	msg.addr = OV5640_DEFAULT_SLAVE_ID;
617 	msg.flags = 0;
618 	msg.buf = buf;
619 	msg.len = sizeof(buf);
620 
621 	ret = i2c_transfer(client->adapter, &msg, 1);
622 	if (ret < 0) {
623 		dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
624 		return ret;
625 	}
626 
627 	return 0;
628 }
629 
ov5640_write_reg(struct ov5640_dev * sensor,u16 reg,u8 val)630 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
631 {
632 	struct i2c_client *client = sensor->i2c_client;
633 	struct i2c_msg msg;
634 	u8 buf[3];
635 	int ret;
636 
637 	buf[0] = reg >> 8;
638 	buf[1] = reg & 0xff;
639 	buf[2] = val;
640 
641 	msg.addr = client->addr;
642 	msg.flags = client->flags;
643 	msg.buf = buf;
644 	msg.len = sizeof(buf);
645 
646 	ret = i2c_transfer(client->adapter, &msg, 1);
647 	if (ret < 0) {
648 		dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
649 			__func__, reg, val);
650 		return ret;
651 	}
652 
653 	return 0;
654 }
655 
ov5640_read_reg(struct ov5640_dev * sensor,u16 reg,u8 * val)656 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
657 {
658 	struct i2c_client *client = sensor->i2c_client;
659 	struct i2c_msg msg[2];
660 	u8 buf[2];
661 	int ret;
662 
663 	buf[0] = reg >> 8;
664 	buf[1] = reg & 0xff;
665 
666 	msg[0].addr = client->addr;
667 	msg[0].flags = client->flags;
668 	msg[0].buf = buf;
669 	msg[0].len = sizeof(buf);
670 
671 	msg[1].addr = client->addr;
672 	msg[1].flags = client->flags | I2C_M_RD;
673 	msg[1].buf = buf;
674 	msg[1].len = 1;
675 
676 	ret = i2c_transfer(client->adapter, msg, 2);
677 	if (ret < 0) {
678 		dev_err(&client->dev, "%s: error: reg=%x\n",
679 			__func__, reg);
680 		return ret;
681 	}
682 
683 	*val = buf[0];
684 	return 0;
685 }
686 
ov5640_read_reg16(struct ov5640_dev * sensor,u16 reg,u16 * val)687 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
688 {
689 	u8 hi, lo;
690 	int ret;
691 
692 	ret = ov5640_read_reg(sensor, reg, &hi);
693 	if (ret)
694 		return ret;
695 	ret = ov5640_read_reg(sensor, reg + 1, &lo);
696 	if (ret)
697 		return ret;
698 
699 	*val = ((u16)hi << 8) | (u16)lo;
700 	return 0;
701 }
702 
ov5640_write_reg16(struct ov5640_dev * sensor,u16 reg,u16 val)703 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
704 {
705 	int ret;
706 
707 	ret = ov5640_write_reg(sensor, reg, val >> 8);
708 	if (ret)
709 		return ret;
710 
711 	return ov5640_write_reg(sensor, reg + 1, val & 0xff);
712 }
713 
ov5640_mod_reg(struct ov5640_dev * sensor,u16 reg,u8 mask,u8 val)714 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
715 			  u8 mask, u8 val)
716 {
717 	u8 readval;
718 	int ret;
719 
720 	ret = ov5640_read_reg(sensor, reg, &readval);
721 	if (ret)
722 		return ret;
723 
724 	readval &= ~mask;
725 	val &= mask;
726 	val |= readval;
727 
728 	return ov5640_write_reg(sensor, reg, val);
729 }
730 
731 /*
732  * After trying the various combinations, reading various
733  * documentations spread around the net, and from the various
734  * feedback, the clock tree is probably as follows:
735  *
736  *   +--------------+
737  *   |  Ext. Clock  |
738  *   +-+------------+
739  *     |  +----------+
740  *     +->|   PLL1   | - reg 0x3036, for the multiplier
741  *        +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
742  *          |  +--------------+
743  *          +->| System Clock |  - reg 0x3035, bits 4-7
744  *             +-+------------+
745  *               |  +--------------+
746  *               +->| MIPI Divider | - reg 0x3035, bits 0-3
747  *               |  +-+------------+
748  *               |    +----------------> MIPI SCLK
749  *               |    +  +-----+
750  *               |    +->| / 2 |-------> MIPI BIT CLK
751  *               |       +-----+
752  *               |  +--------------+
753  *               +->| PLL Root Div | - reg 0x3037, bit 4
754  *                  +-+------------+
755  *                    |  +---------+
756  *                    +->| Bit Div | - reg 0x3034, bits 0-3
757  *                       +-+-------+
758  *                         |  +-------------+
759  *                         +->| SCLK Div    | - reg 0x3108, bits 0-1
760  *                         |  +-+-----------+
761  *                         |    +---------------> SCLK
762  *                         |  +-------------+
763  *                         +->| SCLK 2X Div | - reg 0x3108, bits 2-3
764  *                         |  +-+-----------+
765  *                         |    +---------------> SCLK 2X
766  *                         |  +-------------+
767  *                         +->| PCLK Div    | - reg 0x3108, bits 4-5
768  *                            ++------------+
769  *                             +  +-----------+
770  *                             +->|   P_DIV   | - reg 0x3035, bits 0-3
771  *                                +-----+-----+
772  *                                       +------------> PCLK
773  *
774  * This is deviating from the datasheet at least for the register
775  * 0x3108, since it's said here that the PCLK would be clocked from
776  * the PLL.
777  *
778  * There seems to be also (unverified) constraints:
779  *  - the PLL pre-divider output rate should be in the 4-27MHz range
780  *  - the PLL multiplier output rate should be in the 500-1000MHz range
781  *  - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
782  *
783  * In the two latter cases, these constraints are met since our
784  * factors are hardcoded. If we were to change that, we would need to
785  * take this into account. The only varying parts are the PLL
786  * multiplier and the system clock divider, which are shared between
787  * all these clocks so won't cause any issue.
788  */
789 
790 /*
791  * This is supposed to be ranging from 1 to 8, but the value is always
792  * set to 3 in the vendor kernels.
793  */
794 #define OV5640_PLL_PREDIV	3
795 
796 #define OV5640_PLL_MULT_MIN	4
797 #define OV5640_PLL_MULT_MAX	252
798 
799 /*
800  * This is supposed to be ranging from 1 to 16, but the value is
801  * always set to either 1 or 2 in the vendor kernels.
802  */
803 #define OV5640_SYSDIV_MIN	1
804 #define OV5640_SYSDIV_MAX	16
805 
806 /*
807  * Hardcode these values for scaler and non-scaler modes.
808  * FIXME: to be re-calcualted for 1 data lanes setups
809  */
810 #define OV5640_MIPI_DIV_PCLK	2
811 #define OV5640_MIPI_DIV_SCLK	1
812 
813 /*
814  * This is supposed to be ranging from 1 to 2, but the value is always
815  * set to 2 in the vendor kernels.
816  */
817 #define OV5640_PLL_ROOT_DIV			2
818 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2		BIT(4)
819 
820 /*
821  * We only supports 8-bit formats at the moment
822  */
823 #define OV5640_BIT_DIV				2
824 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT		0x08
825 
826 /*
827  * This is supposed to be ranging from 1 to 8, but the value is always
828  * set to 2 in the vendor kernels.
829  */
830 #define OV5640_SCLK_ROOT_DIV	2
831 
832 /*
833  * This is hardcoded so that the consistency is maintained between SCLK and
834  * SCLK 2x.
835  */
836 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
837 
838 /*
839  * This is supposed to be ranging from 1 to 8, but the value is always
840  * set to 1 in the vendor kernels.
841  */
842 #define OV5640_PCLK_ROOT_DIV			1
843 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS	0x00
844 
ov5640_compute_sys_clk(struct ov5640_dev * sensor,u8 pll_prediv,u8 pll_mult,u8 sysdiv)845 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
846 					    u8 pll_prediv, u8 pll_mult,
847 					    u8 sysdiv)
848 {
849 	unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
850 
851 	/* PLL1 output cannot exceed 1GHz. */
852 	if (sysclk / 1000000 > 1000)
853 		return 0;
854 
855 	return sysclk / sysdiv;
856 }
857 
ov5640_calc_sys_clk(struct ov5640_dev * sensor,unsigned long rate,u8 * pll_prediv,u8 * pll_mult,u8 * sysdiv)858 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
859 					 unsigned long rate,
860 					 u8 *pll_prediv, u8 *pll_mult,
861 					 u8 *sysdiv)
862 {
863 	unsigned long best = ~0;
864 	u8 best_sysdiv = 1, best_mult = 1;
865 	u8 _sysdiv, _pll_mult;
866 
867 	for (_sysdiv = OV5640_SYSDIV_MIN;
868 	     _sysdiv <= OV5640_SYSDIV_MAX;
869 	     _sysdiv++) {
870 		for (_pll_mult = OV5640_PLL_MULT_MIN;
871 		     _pll_mult <= OV5640_PLL_MULT_MAX;
872 		     _pll_mult++) {
873 			unsigned long _rate;
874 
875 			/*
876 			 * The PLL multiplier cannot be odd if above
877 			 * 127.
878 			 */
879 			if (_pll_mult > 127 && (_pll_mult % 2))
880 				continue;
881 
882 			_rate = ov5640_compute_sys_clk(sensor,
883 						       OV5640_PLL_PREDIV,
884 						       _pll_mult, _sysdiv);
885 
886 			/*
887 			 * We have reached the maximum allowed PLL1 output,
888 			 * increase sysdiv.
889 			 */
890 			if (!_rate)
891 				break;
892 
893 			/*
894 			 * Prefer rates above the expected clock rate than
895 			 * below, even if that means being less precise.
896 			 */
897 			if (_rate < rate)
898 				continue;
899 
900 			if (abs(rate - _rate) < abs(rate - best)) {
901 				best = _rate;
902 				best_sysdiv = _sysdiv;
903 				best_mult = _pll_mult;
904 			}
905 
906 			if (_rate == rate)
907 				goto out;
908 		}
909 	}
910 
911 out:
912 	*sysdiv = best_sysdiv;
913 	*pll_prediv = OV5640_PLL_PREDIV;
914 	*pll_mult = best_mult;
915 
916 	return best;
917 }
918 
919 /*
920  * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
921  *			    for the MIPI CSI-2 output.
922  *
923  * @rate: The requested bandwidth per lane in bytes per second.
924  *	  'Bandwidth Per Lane' is calculated as:
925  *	  bpl = HTOT * VTOT * FPS * bpp / num_lanes;
926  *
927  * This function use the requested bandwidth to calculate:
928  * - sample_rate = bpl / (bpp / num_lanes);
929  *	         = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
930  *
931  * - mipi_sclk   = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
932  *
933  * with these fixed parameters:
934  *	PLL_RDIV	= 2;
935  *	BIT_DIVIDER	= 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
936  *	PCLK_DIV	= 1;
937  *
938  * The MIPI clock generation differs for modes that use the scaler and modes
939  * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
940  * BIT CLk, and thus:
941  *
942  * - mipi_sclk = bpl / MIPI_DIV / 2;
943  *   MIPI_DIV = 1;
944  *
945  * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
946  * from the pixel clock, and thus:
947  *
948  * - sample_rate = bpl / (bpp / num_lanes);
949  *	         = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
950  *		 = bpl / (4 * MIPI_DIV / num_lanes);
951  * - MIPI_DIV	 = bpp / (4 * num_lanes);
952  *
953  * FIXME: this have been tested with 16bpp and 2 lanes setup only.
954  * MIPI_DIV is fixed to value 2, but it -might- be changed according to the
955  * above formula for setups with 1 lane or image formats with different bpp.
956  *
957  * FIXME: this deviates from the sensor manual documentation which is quite
958  * thin on the MIPI clock tree generation part.
959  */
ov5640_set_mipi_pclk(struct ov5640_dev * sensor,unsigned long rate)960 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
961 				unsigned long rate)
962 {
963 	const struct ov5640_mode_info *mode = sensor->current_mode;
964 	u8 prediv, mult, sysdiv;
965 	u8 mipi_div;
966 	int ret;
967 
968 	/*
969 	 * 1280x720 is reported to use 'SUBSAMPLING' only,
970 	 * but according to the sensor manual it goes through the
971 	 * scaler before subsampling.
972 	 */
973 	if (mode->dn_mode == SCALING ||
974 	   (mode->id == OV5640_MODE_720P_1280_720))
975 		mipi_div = OV5640_MIPI_DIV_SCLK;
976 	else
977 		mipi_div = OV5640_MIPI_DIV_PCLK;
978 
979 	ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
980 
981 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
982 			     0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
983 
984 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
985 			     0xff, sysdiv << 4 | mipi_div);
986 	if (ret)
987 		return ret;
988 
989 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
990 	if (ret)
991 		return ret;
992 
993 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
994 			     0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
995 	if (ret)
996 		return ret;
997 
998 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
999 			      0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
1000 }
1001 
ov5640_calc_pclk(struct ov5640_dev * sensor,unsigned long rate,u8 * pll_prediv,u8 * pll_mult,u8 * sysdiv,u8 * pll_rdiv,u8 * bit_div,u8 * pclk_div)1002 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
1003 				      unsigned long rate,
1004 				      u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
1005 				      u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
1006 {
1007 	unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
1008 				OV5640_PCLK_ROOT_DIV;
1009 
1010 	_rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
1011 				    sysdiv);
1012 	*pll_rdiv = OV5640_PLL_ROOT_DIV;
1013 	*bit_div = OV5640_BIT_DIV;
1014 	*pclk_div = OV5640_PCLK_ROOT_DIV;
1015 
1016 	return _rate / *pll_rdiv / *bit_div / *pclk_div;
1017 }
1018 
ov5640_set_dvp_pclk(struct ov5640_dev * sensor,unsigned long rate)1019 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
1020 {
1021 	u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
1022 	int ret;
1023 
1024 	ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
1025 			 &bit_div, &pclk_div);
1026 
1027 	if (bit_div == 2)
1028 		bit_div = 8;
1029 
1030 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1031 			     0x0f, bit_div);
1032 	if (ret)
1033 		return ret;
1034 
1035 	/*
1036 	 * We need to set sysdiv according to the clock, and to clear
1037 	 * the MIPI divider.
1038 	 */
1039 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1040 			     0xff, sysdiv << 4);
1041 	if (ret)
1042 		return ret;
1043 
1044 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
1045 			     0xff, mult);
1046 	if (ret)
1047 		return ret;
1048 
1049 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1050 			     0x1f, prediv | ((pll_rdiv - 1) << 4));
1051 	if (ret)
1052 		return ret;
1053 
1054 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
1055 			      (ilog2(pclk_div) << 4));
1056 }
1057 
1058 /* set JPEG framing sizes */
ov5640_set_jpeg_timings(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1059 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
1060 				   const struct ov5640_mode_info *mode)
1061 {
1062 	int ret;
1063 
1064 	/*
1065 	 * compression mode 3 timing
1066 	 *
1067 	 * Data is transmitted with programmable width (VFIFO_HSIZE).
1068 	 * No padding done. Last line may have less data. Varying
1069 	 * number of lines per frame, depending on amount of data.
1070 	 */
1071 	ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
1072 	if (ret < 0)
1073 		return ret;
1074 
1075 	ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
1076 	if (ret < 0)
1077 		return ret;
1078 
1079 	return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
1080 }
1081 
1082 /* download ov5640 settings to sensor through i2c */
ov5640_set_timings(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1083 static int ov5640_set_timings(struct ov5640_dev *sensor,
1084 			      const struct ov5640_mode_info *mode)
1085 {
1086 	int ret;
1087 
1088 	if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
1089 		ret = ov5640_set_jpeg_timings(sensor, mode);
1090 		if (ret < 0)
1091 			return ret;
1092 	}
1093 
1094 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
1095 	if (ret < 0)
1096 		return ret;
1097 
1098 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
1099 	if (ret < 0)
1100 		return ret;
1101 
1102 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
1103 	if (ret < 0)
1104 		return ret;
1105 
1106 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
1107 }
1108 
ov5640_load_regs(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1109 static int ov5640_load_regs(struct ov5640_dev *sensor,
1110 			    const struct ov5640_mode_info *mode)
1111 {
1112 	const struct reg_value *regs = mode->reg_data;
1113 	unsigned int i;
1114 	u32 delay_ms;
1115 	u16 reg_addr;
1116 	u8 mask, val;
1117 	int ret = 0;
1118 
1119 	for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
1120 		delay_ms = regs->delay_ms;
1121 		reg_addr = regs->reg_addr;
1122 		val = regs->val;
1123 		mask = regs->mask;
1124 
1125 		/* remain in power down mode for DVP */
1126 		if (regs->reg_addr == OV5640_REG_SYS_CTRL0 &&
1127 		    val == OV5640_REG_SYS_CTRL0_SW_PWUP &&
1128 		    sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
1129 			continue;
1130 
1131 		if (mask)
1132 			ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
1133 		else
1134 			ret = ov5640_write_reg(sensor, reg_addr, val);
1135 		if (ret)
1136 			break;
1137 
1138 		if (delay_ms)
1139 			usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
1140 	}
1141 
1142 	return ov5640_set_timings(sensor, mode);
1143 }
1144 
ov5640_set_autoexposure(struct ov5640_dev * sensor,bool on)1145 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
1146 {
1147 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1148 			      BIT(0), on ? 0 : BIT(0));
1149 }
1150 
1151 /* read exposure, in number of line periods */
ov5640_get_exposure(struct ov5640_dev * sensor)1152 static int ov5640_get_exposure(struct ov5640_dev *sensor)
1153 {
1154 	int exp, ret;
1155 	u8 temp;
1156 
1157 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
1158 	if (ret)
1159 		return ret;
1160 	exp = ((int)temp & 0x0f) << 16;
1161 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
1162 	if (ret)
1163 		return ret;
1164 	exp |= ((int)temp << 8);
1165 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
1166 	if (ret)
1167 		return ret;
1168 	exp |= (int)temp;
1169 
1170 	return exp >> 4;
1171 }
1172 
1173 /* write exposure, given number of line periods */
ov5640_set_exposure(struct ov5640_dev * sensor,u32 exposure)1174 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
1175 {
1176 	int ret;
1177 
1178 	exposure <<= 4;
1179 
1180 	ret = ov5640_write_reg(sensor,
1181 			       OV5640_REG_AEC_PK_EXPOSURE_LO,
1182 			       exposure & 0xff);
1183 	if (ret)
1184 		return ret;
1185 	ret = ov5640_write_reg(sensor,
1186 			       OV5640_REG_AEC_PK_EXPOSURE_MED,
1187 			       (exposure >> 8) & 0xff);
1188 	if (ret)
1189 		return ret;
1190 	return ov5640_write_reg(sensor,
1191 				OV5640_REG_AEC_PK_EXPOSURE_HI,
1192 				(exposure >> 16) & 0x0f);
1193 }
1194 
ov5640_get_gain(struct ov5640_dev * sensor)1195 static int ov5640_get_gain(struct ov5640_dev *sensor)
1196 {
1197 	u16 gain;
1198 	int ret;
1199 
1200 	ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
1201 	if (ret)
1202 		return ret;
1203 
1204 	return gain & 0x3ff;
1205 }
1206 
ov5640_set_gain(struct ov5640_dev * sensor,int gain)1207 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
1208 {
1209 	return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
1210 				  (u16)gain & 0x3ff);
1211 }
1212 
ov5640_set_autogain(struct ov5640_dev * sensor,bool on)1213 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
1214 {
1215 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1216 			      BIT(1), on ? 0 : BIT(1));
1217 }
1218 
ov5640_set_stream_dvp(struct ov5640_dev * sensor,bool on)1219 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
1220 {
1221 	return ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, on ?
1222 				OV5640_REG_SYS_CTRL0_SW_PWUP :
1223 				OV5640_REG_SYS_CTRL0_SW_PWDN);
1224 }
1225 
ov5640_set_stream_mipi(struct ov5640_dev * sensor,bool on)1226 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
1227 {
1228 	int ret;
1229 
1230 	/*
1231 	 * Enable/disable the MIPI interface
1232 	 *
1233 	 * 0x300e = on ? 0x45 : 0x40
1234 	 *
1235 	 * FIXME: the sensor manual (version 2.03) reports
1236 	 * [7:5] = 000  : 1 data lane mode
1237 	 * [7:5] = 001  : 2 data lanes mode
1238 	 * But this settings do not work, while the following ones
1239 	 * have been validated for 2 data lanes mode.
1240 	 *
1241 	 * [7:5] = 010	: 2 data lanes mode
1242 	 * [4] = 0	: Power up MIPI HS Tx
1243 	 * [3] = 0	: Power up MIPI LS Rx
1244 	 * [2] = 1/0	: MIPI interface enable/disable
1245 	 * [1:0] = 01/00: FIXME: 'debug'
1246 	 */
1247 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
1248 			       on ? 0x45 : 0x40);
1249 	if (ret)
1250 		return ret;
1251 
1252 	return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
1253 				on ? 0x00 : 0x0f);
1254 }
1255 
ov5640_get_sysclk(struct ov5640_dev * sensor)1256 static int ov5640_get_sysclk(struct ov5640_dev *sensor)
1257 {
1258 	 /* calculate sysclk */
1259 	u32 xvclk = sensor->xclk_freq / 10000;
1260 	u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
1261 	u32 sclk_rdiv_map[] = {1, 2, 4, 8};
1262 	u32 bit_div2x = 1, sclk_rdiv, sysclk;
1263 	u8 temp1, temp2;
1264 	int ret;
1265 
1266 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
1267 	if (ret)
1268 		return ret;
1269 	temp2 = temp1 & 0x0f;
1270 	if (temp2 == 8 || temp2 == 10)
1271 		bit_div2x = temp2 / 2;
1272 
1273 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
1274 	if (ret)
1275 		return ret;
1276 	sysdiv = temp1 >> 4;
1277 	if (sysdiv == 0)
1278 		sysdiv = 16;
1279 
1280 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
1281 	if (ret)
1282 		return ret;
1283 	multiplier = temp1;
1284 
1285 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
1286 	if (ret)
1287 		return ret;
1288 	prediv = temp1 & 0x0f;
1289 	pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
1290 
1291 	ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
1292 	if (ret)
1293 		return ret;
1294 	temp2 = temp1 & 0x03;
1295 	sclk_rdiv = sclk_rdiv_map[temp2];
1296 
1297 	if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
1298 		return -EINVAL;
1299 
1300 	VCO = xvclk * multiplier / prediv;
1301 
1302 	sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
1303 
1304 	return sysclk;
1305 }
1306 
ov5640_set_night_mode(struct ov5640_dev * sensor)1307 static int ov5640_set_night_mode(struct ov5640_dev *sensor)
1308 {
1309 	 /* read HTS from register settings */
1310 	u8 mode;
1311 	int ret;
1312 
1313 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
1314 	if (ret)
1315 		return ret;
1316 	mode &= 0xfb;
1317 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
1318 }
1319 
ov5640_get_hts(struct ov5640_dev * sensor)1320 static int ov5640_get_hts(struct ov5640_dev *sensor)
1321 {
1322 	/* read HTS from register settings */
1323 	u16 hts;
1324 	int ret;
1325 
1326 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
1327 	if (ret)
1328 		return ret;
1329 	return hts;
1330 }
1331 
ov5640_get_vts(struct ov5640_dev * sensor)1332 static int ov5640_get_vts(struct ov5640_dev *sensor)
1333 {
1334 	u16 vts;
1335 	int ret;
1336 
1337 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
1338 	if (ret)
1339 		return ret;
1340 	return vts;
1341 }
1342 
ov5640_set_vts(struct ov5640_dev * sensor,int vts)1343 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
1344 {
1345 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
1346 }
1347 
ov5640_get_light_freq(struct ov5640_dev * sensor)1348 static int ov5640_get_light_freq(struct ov5640_dev *sensor)
1349 {
1350 	/* get banding filter value */
1351 	int ret, light_freq = 0;
1352 	u8 temp, temp1;
1353 
1354 	ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
1355 	if (ret)
1356 		return ret;
1357 
1358 	if (temp & 0x80) {
1359 		/* manual */
1360 		ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
1361 				      &temp1);
1362 		if (ret)
1363 			return ret;
1364 		if (temp1 & 0x04) {
1365 			/* 50Hz */
1366 			light_freq = 50;
1367 		} else {
1368 			/* 60Hz */
1369 			light_freq = 60;
1370 		}
1371 	} else {
1372 		/* auto */
1373 		ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
1374 				      &temp1);
1375 		if (ret)
1376 			return ret;
1377 
1378 		if (temp1 & 0x01) {
1379 			/* 50Hz */
1380 			light_freq = 50;
1381 		} else {
1382 			/* 60Hz */
1383 		}
1384 	}
1385 
1386 	return light_freq;
1387 }
1388 
ov5640_set_bandingfilter(struct ov5640_dev * sensor)1389 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
1390 {
1391 	u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
1392 	int ret;
1393 
1394 	/* read preview PCLK */
1395 	ret = ov5640_get_sysclk(sensor);
1396 	if (ret < 0)
1397 		return ret;
1398 	if (ret == 0)
1399 		return -EINVAL;
1400 	sensor->prev_sysclk = ret;
1401 	/* read preview HTS */
1402 	ret = ov5640_get_hts(sensor);
1403 	if (ret < 0)
1404 		return ret;
1405 	if (ret == 0)
1406 		return -EINVAL;
1407 	sensor->prev_hts = ret;
1408 
1409 	/* read preview VTS */
1410 	ret = ov5640_get_vts(sensor);
1411 	if (ret < 0)
1412 		return ret;
1413 	prev_vts = ret;
1414 
1415 	/* calculate banding filter */
1416 	/* 60Hz */
1417 	band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
1418 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
1419 	if (ret)
1420 		return ret;
1421 	if (!band_step60)
1422 		return -EINVAL;
1423 	max_band60 = (int)((prev_vts - 4) / band_step60);
1424 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
1425 	if (ret)
1426 		return ret;
1427 
1428 	/* 50Hz */
1429 	band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
1430 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
1431 	if (ret)
1432 		return ret;
1433 	if (!band_step50)
1434 		return -EINVAL;
1435 	max_band50 = (int)((prev_vts - 4) / band_step50);
1436 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
1437 }
1438 
ov5640_set_ae_target(struct ov5640_dev * sensor,int target)1439 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
1440 {
1441 	/* stable in high */
1442 	u32 fast_high, fast_low;
1443 	int ret;
1444 
1445 	sensor->ae_low = target * 23 / 25;	/* 0.92 */
1446 	sensor->ae_high = target * 27 / 25;	/* 1.08 */
1447 
1448 	fast_high = sensor->ae_high << 1;
1449 	if (fast_high > 255)
1450 		fast_high = 255;
1451 
1452 	fast_low = sensor->ae_low >> 1;
1453 
1454 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
1455 	if (ret)
1456 		return ret;
1457 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
1458 	if (ret)
1459 		return ret;
1460 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
1461 	if (ret)
1462 		return ret;
1463 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
1464 	if (ret)
1465 		return ret;
1466 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
1467 	if (ret)
1468 		return ret;
1469 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
1470 }
1471 
ov5640_get_binning(struct ov5640_dev * sensor)1472 static int ov5640_get_binning(struct ov5640_dev *sensor)
1473 {
1474 	u8 temp;
1475 	int ret;
1476 
1477 	ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
1478 	if (ret)
1479 		return ret;
1480 
1481 	return temp & BIT(0);
1482 }
1483 
ov5640_set_binning(struct ov5640_dev * sensor,bool enable)1484 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
1485 {
1486 	int ret;
1487 
1488 	/*
1489 	 * TIMING TC REG21:
1490 	 * - [0]:	Horizontal binning enable
1491 	 */
1492 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
1493 			     BIT(0), enable ? BIT(0) : 0);
1494 	if (ret)
1495 		return ret;
1496 	/*
1497 	 * TIMING TC REG20:
1498 	 * - [0]:	Undocumented, but hardcoded init sequences
1499 	 *		are always setting REG21/REG20 bit 0 to same value...
1500 	 */
1501 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
1502 			      BIT(0), enable ? BIT(0) : 0);
1503 }
1504 
ov5640_set_virtual_channel(struct ov5640_dev * sensor)1505 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
1506 {
1507 	struct i2c_client *client = sensor->i2c_client;
1508 	u8 temp, channel = virtual_channel;
1509 	int ret;
1510 
1511 	if (channel > 3) {
1512 		dev_err(&client->dev,
1513 			"%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
1514 			__func__, channel);
1515 		return -EINVAL;
1516 	}
1517 
1518 	ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
1519 	if (ret)
1520 		return ret;
1521 	temp &= ~(3 << 6);
1522 	temp |= (channel << 6);
1523 	return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
1524 }
1525 
1526 static const struct ov5640_mode_info *
ov5640_find_mode(struct ov5640_dev * sensor,enum ov5640_frame_rate fr,int width,int height,bool nearest)1527 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
1528 		 int width, int height, bool nearest)
1529 {
1530 	const struct ov5640_mode_info *mode;
1531 
1532 	mode = v4l2_find_nearest_size(ov5640_mode_data,
1533 				      ARRAY_SIZE(ov5640_mode_data),
1534 				      hact, vact,
1535 				      width, height);
1536 
1537 	if (!mode ||
1538 	    (!nearest && (mode->hact != width || mode->vact != height)))
1539 		return NULL;
1540 
1541 	/* Check to see if the current mode exceeds the max frame rate */
1542 	if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps])
1543 		return NULL;
1544 
1545 	return mode;
1546 }
1547 
ov5640_calc_pixel_rate(struct ov5640_dev * sensor)1548 static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor)
1549 {
1550 	u64 rate;
1551 
1552 	rate = sensor->current_mode->vtot * sensor->current_mode->htot;
1553 	rate *= ov5640_framerates[sensor->current_fr];
1554 
1555 	return rate;
1556 }
1557 
1558 /*
1559  * sensor changes between scaling and subsampling, go through
1560  * exposure calculation
1561  */
ov5640_set_mode_exposure_calc(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1562 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
1563 					 const struct ov5640_mode_info *mode)
1564 {
1565 	u32 prev_shutter, prev_gain16;
1566 	u32 cap_shutter, cap_gain16;
1567 	u32 cap_sysclk, cap_hts, cap_vts;
1568 	u32 light_freq, cap_bandfilt, cap_maxband;
1569 	u32 cap_gain16_shutter;
1570 	u8 average;
1571 	int ret;
1572 
1573 	if (!mode->reg_data)
1574 		return -EINVAL;
1575 
1576 	/* read preview shutter */
1577 	ret = ov5640_get_exposure(sensor);
1578 	if (ret < 0)
1579 		return ret;
1580 	prev_shutter = ret;
1581 	ret = ov5640_get_binning(sensor);
1582 	if (ret < 0)
1583 		return ret;
1584 	if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
1585 	    mode->id != OV5640_MODE_1080P_1920_1080)
1586 		prev_shutter *= 2;
1587 
1588 	/* read preview gain */
1589 	ret = ov5640_get_gain(sensor);
1590 	if (ret < 0)
1591 		return ret;
1592 	prev_gain16 = ret;
1593 
1594 	/* get average */
1595 	ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
1596 	if (ret)
1597 		return ret;
1598 
1599 	/* turn off night mode for capture */
1600 	ret = ov5640_set_night_mode(sensor);
1601 	if (ret < 0)
1602 		return ret;
1603 
1604 	/* Write capture setting */
1605 	ret = ov5640_load_regs(sensor, mode);
1606 	if (ret < 0)
1607 		return ret;
1608 
1609 	/* read capture VTS */
1610 	ret = ov5640_get_vts(sensor);
1611 	if (ret < 0)
1612 		return ret;
1613 	cap_vts = ret;
1614 	ret = ov5640_get_hts(sensor);
1615 	if (ret < 0)
1616 		return ret;
1617 	if (ret == 0)
1618 		return -EINVAL;
1619 	cap_hts = ret;
1620 
1621 	ret = ov5640_get_sysclk(sensor);
1622 	if (ret < 0)
1623 		return ret;
1624 	if (ret == 0)
1625 		return -EINVAL;
1626 	cap_sysclk = ret;
1627 
1628 	/* calculate capture banding filter */
1629 	ret = ov5640_get_light_freq(sensor);
1630 	if (ret < 0)
1631 		return ret;
1632 	light_freq = ret;
1633 
1634 	if (light_freq == 60) {
1635 		/* 60Hz */
1636 		cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
1637 	} else {
1638 		/* 50Hz */
1639 		cap_bandfilt = cap_sysclk * 100 / cap_hts;
1640 	}
1641 
1642 	if (!sensor->prev_sysclk) {
1643 		ret = ov5640_get_sysclk(sensor);
1644 		if (ret < 0)
1645 			return ret;
1646 		if (ret == 0)
1647 			return -EINVAL;
1648 		sensor->prev_sysclk = ret;
1649 	}
1650 
1651 	if (!cap_bandfilt)
1652 		return -EINVAL;
1653 
1654 	cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
1655 
1656 	/* calculate capture shutter/gain16 */
1657 	if (average > sensor->ae_low && average < sensor->ae_high) {
1658 		/* in stable range */
1659 		cap_gain16_shutter =
1660 			prev_gain16 * prev_shutter *
1661 			cap_sysclk / sensor->prev_sysclk *
1662 			sensor->prev_hts / cap_hts *
1663 			sensor->ae_target / average;
1664 	} else {
1665 		cap_gain16_shutter =
1666 			prev_gain16 * prev_shutter *
1667 			cap_sysclk / sensor->prev_sysclk *
1668 			sensor->prev_hts / cap_hts;
1669 	}
1670 
1671 	/* gain to shutter */
1672 	if (cap_gain16_shutter < (cap_bandfilt * 16)) {
1673 		/* shutter < 1/100 */
1674 		cap_shutter = cap_gain16_shutter / 16;
1675 		if (cap_shutter < 1)
1676 			cap_shutter = 1;
1677 
1678 		cap_gain16 = cap_gain16_shutter / cap_shutter;
1679 		if (cap_gain16 < 16)
1680 			cap_gain16 = 16;
1681 	} else {
1682 		if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
1683 			/* exposure reach max */
1684 			cap_shutter = cap_bandfilt * cap_maxband;
1685 			if (!cap_shutter)
1686 				return -EINVAL;
1687 
1688 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1689 		} else {
1690 			/* 1/100 < (cap_shutter = n/100) =< max */
1691 			cap_shutter =
1692 				((int)(cap_gain16_shutter / 16 / cap_bandfilt))
1693 				* cap_bandfilt;
1694 			if (!cap_shutter)
1695 				return -EINVAL;
1696 
1697 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1698 		}
1699 	}
1700 
1701 	/* set capture gain */
1702 	ret = ov5640_set_gain(sensor, cap_gain16);
1703 	if (ret)
1704 		return ret;
1705 
1706 	/* write capture shutter */
1707 	if (cap_shutter > (cap_vts - 4)) {
1708 		cap_vts = cap_shutter + 4;
1709 		ret = ov5640_set_vts(sensor, cap_vts);
1710 		if (ret < 0)
1711 			return ret;
1712 	}
1713 
1714 	/* set exposure */
1715 	return ov5640_set_exposure(sensor, cap_shutter);
1716 }
1717 
1718 /*
1719  * if sensor changes inside scaling or subsampling
1720  * change mode directly
1721  */
ov5640_set_mode_direct(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1722 static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
1723 				  const struct ov5640_mode_info *mode)
1724 {
1725 	if (!mode->reg_data)
1726 		return -EINVAL;
1727 
1728 	/* Write capture setting */
1729 	return ov5640_load_regs(sensor, mode);
1730 }
1731 
ov5640_set_mode(struct ov5640_dev * sensor)1732 static int ov5640_set_mode(struct ov5640_dev *sensor)
1733 {
1734 	const struct ov5640_mode_info *mode = sensor->current_mode;
1735 	const struct ov5640_mode_info *orig_mode = sensor->last_mode;
1736 	enum ov5640_downsize_mode dn_mode, orig_dn_mode;
1737 	bool auto_gain = sensor->ctrls.auto_gain->val == 1;
1738 	bool auto_exp =  sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
1739 	unsigned long rate;
1740 	int ret;
1741 
1742 	dn_mode = mode->dn_mode;
1743 	orig_dn_mode = orig_mode->dn_mode;
1744 
1745 	/* auto gain and exposure must be turned off when changing modes */
1746 	if (auto_gain) {
1747 		ret = ov5640_set_autogain(sensor, false);
1748 		if (ret)
1749 			return ret;
1750 	}
1751 
1752 	if (auto_exp) {
1753 		ret = ov5640_set_autoexposure(sensor, false);
1754 		if (ret)
1755 			goto restore_auto_gain;
1756 	}
1757 
1758 	/*
1759 	 * All the formats we support have 16 bits per pixel, seems to require
1760 	 * the same rate than YUV, so we can just use 16 bpp all the time.
1761 	 */
1762 	rate = ov5640_calc_pixel_rate(sensor) * 16;
1763 	if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
1764 		rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
1765 		ret = ov5640_set_mipi_pclk(sensor, rate);
1766 	} else {
1767 		rate = rate / sensor->ep.bus.parallel.bus_width;
1768 		ret = ov5640_set_dvp_pclk(sensor, rate);
1769 	}
1770 
1771 	if (ret < 0)
1772 		return 0;
1773 
1774 	if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
1775 	    (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
1776 		/*
1777 		 * change between subsampling and scaling
1778 		 * go through exposure calculation
1779 		 */
1780 		ret = ov5640_set_mode_exposure_calc(sensor, mode);
1781 	} else {
1782 		/*
1783 		 * change inside subsampling or scaling
1784 		 * download firmware directly
1785 		 */
1786 		ret = ov5640_set_mode_direct(sensor, mode);
1787 	}
1788 	if (ret < 0)
1789 		goto restore_auto_exp_gain;
1790 
1791 	/* restore auto gain and exposure */
1792 	if (auto_gain)
1793 		ov5640_set_autogain(sensor, true);
1794 	if (auto_exp)
1795 		ov5640_set_autoexposure(sensor, true);
1796 
1797 	ret = ov5640_set_binning(sensor, dn_mode != SCALING);
1798 	if (ret < 0)
1799 		return ret;
1800 	ret = ov5640_set_ae_target(sensor, sensor->ae_target);
1801 	if (ret < 0)
1802 		return ret;
1803 	ret = ov5640_get_light_freq(sensor);
1804 	if (ret < 0)
1805 		return ret;
1806 	ret = ov5640_set_bandingfilter(sensor);
1807 	if (ret < 0)
1808 		return ret;
1809 	ret = ov5640_set_virtual_channel(sensor);
1810 	if (ret < 0)
1811 		return ret;
1812 
1813 	sensor->pending_mode_change = false;
1814 	sensor->last_mode = mode;
1815 
1816 	return 0;
1817 
1818 restore_auto_exp_gain:
1819 	if (auto_exp)
1820 		ov5640_set_autoexposure(sensor, true);
1821 restore_auto_gain:
1822 	if (auto_gain)
1823 		ov5640_set_autogain(sensor, true);
1824 
1825 	return ret;
1826 }
1827 
1828 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
1829 			       struct v4l2_mbus_framefmt *format);
1830 
1831 /* restore the last set video mode after chip power-on */
ov5640_restore_mode(struct ov5640_dev * sensor)1832 static int ov5640_restore_mode(struct ov5640_dev *sensor)
1833 {
1834 	int ret;
1835 
1836 	/* first load the initial register values */
1837 	ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
1838 	if (ret < 0)
1839 		return ret;
1840 	sensor->last_mode = &ov5640_mode_init_data;
1841 
1842 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
1843 			     (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
1844 			     ilog2(OV5640_SCLK_ROOT_DIV));
1845 	if (ret)
1846 		return ret;
1847 
1848 	/* now restore the last capture mode */
1849 	ret = ov5640_set_mode(sensor);
1850 	if (ret < 0)
1851 		return ret;
1852 
1853 	return ov5640_set_framefmt(sensor, &sensor->fmt);
1854 }
1855 
ov5640_power(struct ov5640_dev * sensor,bool enable)1856 static void ov5640_power(struct ov5640_dev *sensor, bool enable)
1857 {
1858 	gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
1859 }
1860 
ov5640_reset(struct ov5640_dev * sensor)1861 static void ov5640_reset(struct ov5640_dev *sensor)
1862 {
1863 	if (!sensor->reset_gpio)
1864 		return;
1865 
1866 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1867 
1868 	/* camera power cycle */
1869 	ov5640_power(sensor, false);
1870 	usleep_range(5000, 10000);
1871 	ov5640_power(sensor, true);
1872 	usleep_range(5000, 10000);
1873 
1874 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1875 	usleep_range(1000, 2000);
1876 
1877 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1878 	usleep_range(20000, 25000);
1879 }
1880 
ov5640_set_power_on(struct ov5640_dev * sensor)1881 static int ov5640_set_power_on(struct ov5640_dev *sensor)
1882 {
1883 	struct i2c_client *client = sensor->i2c_client;
1884 	int ret;
1885 
1886 	ret = clk_prepare_enable(sensor->xclk);
1887 	if (ret) {
1888 		dev_err(&client->dev, "%s: failed to enable clock\n",
1889 			__func__);
1890 		return ret;
1891 	}
1892 
1893 	ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
1894 				    sensor->supplies);
1895 	if (ret) {
1896 		dev_err(&client->dev, "%s: failed to enable regulators\n",
1897 			__func__);
1898 		goto xclk_off;
1899 	}
1900 
1901 	ov5640_reset(sensor);
1902 	ov5640_power(sensor, true);
1903 
1904 	ret = ov5640_init_slave_id(sensor);
1905 	if (ret)
1906 		goto power_off;
1907 
1908 	return 0;
1909 
1910 power_off:
1911 	ov5640_power(sensor, false);
1912 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1913 xclk_off:
1914 	clk_disable_unprepare(sensor->xclk);
1915 	return ret;
1916 }
1917 
ov5640_set_power_off(struct ov5640_dev * sensor)1918 static void ov5640_set_power_off(struct ov5640_dev *sensor)
1919 {
1920 	ov5640_power(sensor, false);
1921 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1922 	clk_disable_unprepare(sensor->xclk);
1923 }
1924 
ov5640_set_power_mipi(struct ov5640_dev * sensor,bool on)1925 static int ov5640_set_power_mipi(struct ov5640_dev *sensor, bool on)
1926 {
1927 	int ret;
1928 
1929 	if (!on) {
1930 		/* Reset MIPI bus settings to their default values. */
1931 		ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58);
1932 		ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x04);
1933 		ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x00);
1934 		return 0;
1935 	}
1936 
1937 	/*
1938 	 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode
1939 	 *
1940 	 * 0x300e = 0x40
1941 	 * [7:5] = 010	: 2 data lanes mode (see FIXME note in
1942 	 *		  "ov5640_set_stream_mipi()")
1943 	 * [4] = 0	: Power up MIPI HS Tx
1944 	 * [3] = 0	: Power up MIPI LS Rx
1945 	 * [2] = 0	: MIPI interface disabled
1946 	 */
1947 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x40);
1948 	if (ret)
1949 		return ret;
1950 
1951 	/*
1952 	 * Gate clock and set LP11 in 'no packets mode' (idle)
1953 	 *
1954 	 * 0x4800 = 0x24
1955 	 * [5] = 1	: Gate clock when 'no packets'
1956 	 * [2] = 1	: MIPI bus in LP11 when 'no packets'
1957 	 */
1958 	ret = ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x24);
1959 	if (ret)
1960 		return ret;
1961 
1962 	/*
1963 	 * Set data lanes and clock in LP11 when 'sleeping'
1964 	 *
1965 	 * 0x3019 = 0x70
1966 	 * [6] = 1	: MIPI data lane 2 in LP11 when 'sleeping'
1967 	 * [5] = 1	: MIPI data lane 1 in LP11 when 'sleeping'
1968 	 * [4] = 1	: MIPI clock lane in LP11 when 'sleeping'
1969 	 */
1970 	ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x70);
1971 	if (ret)
1972 		return ret;
1973 
1974 	/* Give lanes some time to coax into LP11 state. */
1975 	usleep_range(500, 1000);
1976 
1977 	return 0;
1978 }
1979 
ov5640_set_power_dvp(struct ov5640_dev * sensor,bool on)1980 static int ov5640_set_power_dvp(struct ov5640_dev *sensor, bool on)
1981 {
1982 	unsigned int flags = sensor->ep.bus.parallel.flags;
1983 	bool bt656 = sensor->ep.bus_type == V4L2_MBUS_BT656;
1984 	u8 polarities = 0;
1985 	int ret;
1986 
1987 	if (!on) {
1988 		/* Reset settings to their default values. */
1989 		ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, 0x00);
1990 		ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58);
1991 		ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, 0x20);
1992 		ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 0x00);
1993 		ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0x00);
1994 		return 0;
1995 	}
1996 
1997 	/*
1998 	 * Note about parallel port configuration.
1999 	 *
2000 	 * When configured in parallel mode, the OV5640 will
2001 	 * output 10 bits data on DVP data lines [9:0].
2002 	 * If only 8 bits data are wanted, the 8 bits data lines
2003 	 * of the camera interface must be physically connected
2004 	 * on the DVP data lines [9:2].
2005 	 *
2006 	 * Control lines polarity can be configured through
2007 	 * devicetree endpoint control lines properties.
2008 	 * If no endpoint control lines properties are set,
2009 	 * polarity will be as below:
2010 	 * - VSYNC:	active high
2011 	 * - HREF:	active low
2012 	 * - PCLK:	active low
2013 	 *
2014 	 * VSYNC & HREF are not configured if BT656 bus mode is selected
2015 	 */
2016 
2017 	/*
2018 	 * BT656 embedded synchronization configuration
2019 	 *
2020 	 * CCIR656 CTRL00
2021 	 * - [7]:	SYNC code selection (0: auto generate sync code,
2022 	 *		1: sync code from regs 0x4732-0x4735)
2023 	 * - [6]:	f value in CCIR656 SYNC code when fixed f value
2024 	 * - [5]:	Fixed f value
2025 	 * - [4:3]:	Blank toggle data options (00: data=1'h040/1'h200,
2026 	 *		01: data from regs 0x4736-0x4738, 10: always keep 0)
2027 	 * - [1]:	Clip data disable
2028 	 * - [0]:	CCIR656 mode enable
2029 	 *
2030 	 * Default CCIR656 SAV/EAV mode with default codes
2031 	 * SAV=0xff000080 & EAV=0xff00009d is enabled here with settings:
2032 	 * - CCIR656 mode enable
2033 	 * - auto generation of sync codes
2034 	 * - blank toggle data 1'h040/1'h200
2035 	 * - clip reserved data (0x00 & 0xff changed to 0x01 & 0xfe)
2036 	 */
2037 	ret = ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00,
2038 			       bt656 ? 0x01 : 0x00);
2039 	if (ret)
2040 		return ret;
2041 
2042 	/*
2043 	 * configure parallel port control lines polarity
2044 	 *
2045 	 * POLARITY CTRL0
2046 	 * - [5]:	PCLK polarity (0: active low, 1: active high)
2047 	 * - [1]:	HREF polarity (0: active low, 1: active high)
2048 	 * - [0]:	VSYNC polarity (mismatch here between
2049 	 *		datasheet and hardware, 0 is active high
2050 	 *		and 1 is active low...)
2051 	 */
2052 	if (!bt656) {
2053 		if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2054 			polarities |= BIT(1);
2055 		if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2056 			polarities |= BIT(0);
2057 	}
2058 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2059 		polarities |= BIT(5);
2060 
2061 	ret = ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, polarities);
2062 	if (ret)
2063 		return ret;
2064 
2065 	/*
2066 	 * powerdown MIPI TX/RX PHY & enable DVP
2067 	 *
2068 	 * MIPI CONTROL 00
2069 	 * [4] = 1	: Power down MIPI HS Tx
2070 	 * [3] = 1	: Power down MIPI LS Rx
2071 	 * [2] = 0	: DVP enable (MIPI disable)
2072 	 */
2073 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x18);
2074 	if (ret)
2075 		return ret;
2076 
2077 	/*
2078 	 * enable VSYNC/HREF/PCLK DVP control lines
2079 	 * & D[9:6] DVP data lines
2080 	 *
2081 	 * PAD OUTPUT ENABLE 01
2082 	 * - 6:		VSYNC output enable
2083 	 * - 5:		HREF output enable
2084 	 * - 4:		PCLK output enable
2085 	 * - [3:0]:	D[9:6] output enable
2086 	 */
2087 	ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01,
2088 			       bt656 ? 0x1f : 0x7f);
2089 	if (ret)
2090 		return ret;
2091 
2092 	/*
2093 	 * enable D[5:0] DVP data lines
2094 	 *
2095 	 * PAD OUTPUT ENABLE 02
2096 	 * - [7:2]:	D[5:0] output enable
2097 	 */
2098 	return ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0xfc);
2099 }
2100 
ov5640_set_power(struct ov5640_dev * sensor,bool on)2101 static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
2102 {
2103 	int ret = 0;
2104 
2105 	if (on) {
2106 		ret = ov5640_set_power_on(sensor);
2107 		if (ret)
2108 			return ret;
2109 
2110 		ret = ov5640_restore_mode(sensor);
2111 		if (ret)
2112 			goto power_off;
2113 	}
2114 
2115 	if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2116 		ret = ov5640_set_power_mipi(sensor, on);
2117 	else
2118 		ret = ov5640_set_power_dvp(sensor, on);
2119 	if (ret)
2120 		goto power_off;
2121 
2122 	if (!on)
2123 		ov5640_set_power_off(sensor);
2124 
2125 	return 0;
2126 
2127 power_off:
2128 	ov5640_set_power_off(sensor);
2129 	return ret;
2130 }
2131 
2132 /* --------------- Subdev Operations --------------- */
2133 
ov5640_s_power(struct v4l2_subdev * sd,int on)2134 static int ov5640_s_power(struct v4l2_subdev *sd, int on)
2135 {
2136 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2137 	int ret = 0;
2138 
2139 	mutex_lock(&sensor->lock);
2140 
2141 	/*
2142 	 * If the power count is modified from 0 to != 0 or from != 0 to 0,
2143 	 * update the power state.
2144 	 */
2145 	if (sensor->power_count == !on) {
2146 		ret = ov5640_set_power(sensor, !!on);
2147 		if (ret)
2148 			goto out;
2149 	}
2150 
2151 	/* Update the power count. */
2152 	sensor->power_count += on ? 1 : -1;
2153 	WARN_ON(sensor->power_count < 0);
2154 out:
2155 	mutex_unlock(&sensor->lock);
2156 
2157 	if (on && !ret && sensor->power_count == 1) {
2158 		/* restore controls */
2159 		ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
2160 	}
2161 
2162 	return ret;
2163 }
2164 
ov5640_try_frame_interval(struct ov5640_dev * sensor,struct v4l2_fract * fi,u32 width,u32 height)2165 static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
2166 				     struct v4l2_fract *fi,
2167 				     u32 width, u32 height)
2168 {
2169 	const struct ov5640_mode_info *mode;
2170 	enum ov5640_frame_rate rate = OV5640_15_FPS;
2171 	int minfps, maxfps, best_fps, fps;
2172 	int i;
2173 
2174 	minfps = ov5640_framerates[OV5640_15_FPS];
2175 	maxfps = ov5640_framerates[OV5640_60_FPS];
2176 
2177 	if (fi->numerator == 0) {
2178 		fi->denominator = maxfps;
2179 		fi->numerator = 1;
2180 		rate = OV5640_60_FPS;
2181 		goto find_mode;
2182 	}
2183 
2184 	fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
2185 			minfps, maxfps);
2186 
2187 	best_fps = minfps;
2188 	for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
2189 		int curr_fps = ov5640_framerates[i];
2190 
2191 		if (abs(curr_fps - fps) < abs(best_fps - fps)) {
2192 			best_fps = curr_fps;
2193 			rate = i;
2194 		}
2195 	}
2196 
2197 	fi->numerator = 1;
2198 	fi->denominator = best_fps;
2199 
2200 find_mode:
2201 	mode = ov5640_find_mode(sensor, rate, width, height, false);
2202 	return mode ? rate : -EINVAL;
2203 }
2204 
ov5640_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * format)2205 static int ov5640_get_fmt(struct v4l2_subdev *sd,
2206 			  struct v4l2_subdev_pad_config *cfg,
2207 			  struct v4l2_subdev_format *format)
2208 {
2209 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2210 	struct v4l2_mbus_framefmt *fmt;
2211 
2212 	if (format->pad != 0)
2213 		return -EINVAL;
2214 
2215 	mutex_lock(&sensor->lock);
2216 
2217 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2218 		fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg,
2219 						 format->pad);
2220 	else
2221 		fmt = &sensor->fmt;
2222 
2223 	format->format = *fmt;
2224 
2225 	mutex_unlock(&sensor->lock);
2226 
2227 	return 0;
2228 }
2229 
ov5640_try_fmt_internal(struct v4l2_subdev * sd,struct v4l2_mbus_framefmt * fmt,enum ov5640_frame_rate fr,const struct ov5640_mode_info ** new_mode)2230 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
2231 				   struct v4l2_mbus_framefmt *fmt,
2232 				   enum ov5640_frame_rate fr,
2233 				   const struct ov5640_mode_info **new_mode)
2234 {
2235 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2236 	const struct ov5640_mode_info *mode;
2237 	int i;
2238 
2239 	mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
2240 	if (!mode)
2241 		return -EINVAL;
2242 	fmt->width = mode->hact;
2243 	fmt->height = mode->vact;
2244 
2245 	if (new_mode)
2246 		*new_mode = mode;
2247 
2248 	for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
2249 		if (ov5640_formats[i].code == fmt->code)
2250 			break;
2251 	if (i >= ARRAY_SIZE(ov5640_formats))
2252 		i = 0;
2253 
2254 	fmt->code = ov5640_formats[i].code;
2255 	fmt->colorspace = ov5640_formats[i].colorspace;
2256 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2257 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2258 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2259 
2260 	return 0;
2261 }
2262 
ov5640_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * format)2263 static int ov5640_set_fmt(struct v4l2_subdev *sd,
2264 			  struct v4l2_subdev_pad_config *cfg,
2265 			  struct v4l2_subdev_format *format)
2266 {
2267 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2268 	const struct ov5640_mode_info *new_mode;
2269 	struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
2270 	struct v4l2_mbus_framefmt *fmt;
2271 	int ret;
2272 
2273 	if (format->pad != 0)
2274 		return -EINVAL;
2275 
2276 	mutex_lock(&sensor->lock);
2277 
2278 	if (sensor->streaming) {
2279 		ret = -EBUSY;
2280 		goto out;
2281 	}
2282 
2283 	ret = ov5640_try_fmt_internal(sd, mbus_fmt,
2284 				      sensor->current_fr, &new_mode);
2285 	if (ret)
2286 		goto out;
2287 
2288 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2289 		fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
2290 	else
2291 		fmt = &sensor->fmt;
2292 
2293 	*fmt = *mbus_fmt;
2294 
2295 	if (new_mode != sensor->current_mode) {
2296 		sensor->current_mode = new_mode;
2297 		sensor->pending_mode_change = true;
2298 	}
2299 	if (mbus_fmt->code != sensor->fmt.code)
2300 		sensor->pending_fmt_change = true;
2301 
2302 	__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2303 				 ov5640_calc_pixel_rate(sensor));
2304 out:
2305 	mutex_unlock(&sensor->lock);
2306 	return ret;
2307 }
2308 
ov5640_set_framefmt(struct ov5640_dev * sensor,struct v4l2_mbus_framefmt * format)2309 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
2310 			       struct v4l2_mbus_framefmt *format)
2311 {
2312 	int ret = 0;
2313 	bool is_jpeg = false;
2314 	u8 fmt, mux;
2315 
2316 	switch (format->code) {
2317 	case MEDIA_BUS_FMT_UYVY8_2X8:
2318 		/* YUV422, UYVY */
2319 		fmt = 0x3f;
2320 		mux = OV5640_FMT_MUX_YUV422;
2321 		break;
2322 	case MEDIA_BUS_FMT_YUYV8_2X8:
2323 		/* YUV422, YUYV */
2324 		fmt = 0x30;
2325 		mux = OV5640_FMT_MUX_YUV422;
2326 		break;
2327 	case MEDIA_BUS_FMT_RGB565_2X8_LE:
2328 		/* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
2329 		fmt = 0x6F;
2330 		mux = OV5640_FMT_MUX_RGB;
2331 		break;
2332 	case MEDIA_BUS_FMT_RGB565_2X8_BE:
2333 		/* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
2334 		fmt = 0x61;
2335 		mux = OV5640_FMT_MUX_RGB;
2336 		break;
2337 	case MEDIA_BUS_FMT_JPEG_1X8:
2338 		/* YUV422, YUYV */
2339 		fmt = 0x30;
2340 		mux = OV5640_FMT_MUX_YUV422;
2341 		is_jpeg = true;
2342 		break;
2343 	case MEDIA_BUS_FMT_SBGGR8_1X8:
2344 		/* Raw, BGBG... / GRGR... */
2345 		fmt = 0x00;
2346 		mux = OV5640_FMT_MUX_RAW_DPC;
2347 		break;
2348 	case MEDIA_BUS_FMT_SGBRG8_1X8:
2349 		/* Raw bayer, GBGB... / RGRG... */
2350 		fmt = 0x01;
2351 		mux = OV5640_FMT_MUX_RAW_DPC;
2352 		break;
2353 	case MEDIA_BUS_FMT_SGRBG8_1X8:
2354 		/* Raw bayer, GRGR... / BGBG... */
2355 		fmt = 0x02;
2356 		mux = OV5640_FMT_MUX_RAW_DPC;
2357 		break;
2358 	case MEDIA_BUS_FMT_SRGGB8_1X8:
2359 		/* Raw bayer, RGRG... / GBGB... */
2360 		fmt = 0x03;
2361 		mux = OV5640_FMT_MUX_RAW_DPC;
2362 		break;
2363 	default:
2364 		return -EINVAL;
2365 	}
2366 
2367 	/* FORMAT CONTROL00: YUV and RGB formatting */
2368 	ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
2369 	if (ret)
2370 		return ret;
2371 
2372 	/* FORMAT MUX CONTROL: ISP YUV or RGB */
2373 	ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
2374 	if (ret)
2375 		return ret;
2376 
2377 	/*
2378 	 * TIMING TC REG21:
2379 	 * - [5]:	JPEG enable
2380 	 */
2381 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2382 			     BIT(5), is_jpeg ? BIT(5) : 0);
2383 	if (ret)
2384 		return ret;
2385 
2386 	/*
2387 	 * SYSTEM RESET02:
2388 	 * - [4]:	Reset JFIFO
2389 	 * - [3]:	Reset SFIFO
2390 	 * - [2]:	Reset JPEG
2391 	 */
2392 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
2393 			     BIT(4) | BIT(3) | BIT(2),
2394 			     is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
2395 	if (ret)
2396 		return ret;
2397 
2398 	/*
2399 	 * CLOCK ENABLE02:
2400 	 * - [5]:	Enable JPEG 2x clock
2401 	 * - [3]:	Enable JPEG clock
2402 	 */
2403 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
2404 			      BIT(5) | BIT(3),
2405 			      is_jpeg ? (BIT(5) | BIT(3)) : 0);
2406 }
2407 
2408 /*
2409  * Sensor Controls.
2410  */
2411 
ov5640_set_ctrl_hue(struct ov5640_dev * sensor,int value)2412 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
2413 {
2414 	int ret;
2415 
2416 	if (value) {
2417 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2418 				     BIT(0), BIT(0));
2419 		if (ret)
2420 			return ret;
2421 		ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
2422 	} else {
2423 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
2424 	}
2425 
2426 	return ret;
2427 }
2428 
ov5640_set_ctrl_contrast(struct ov5640_dev * sensor,int value)2429 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
2430 {
2431 	int ret;
2432 
2433 	if (value) {
2434 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2435 				     BIT(2), BIT(2));
2436 		if (ret)
2437 			return ret;
2438 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
2439 				       value & 0xff);
2440 	} else {
2441 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
2442 	}
2443 
2444 	return ret;
2445 }
2446 
ov5640_set_ctrl_saturation(struct ov5640_dev * sensor,int value)2447 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
2448 {
2449 	int ret;
2450 
2451 	if (value) {
2452 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2453 				     BIT(1), BIT(1));
2454 		if (ret)
2455 			return ret;
2456 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
2457 				       value & 0xff);
2458 		if (ret)
2459 			return ret;
2460 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
2461 				       value & 0xff);
2462 	} else {
2463 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
2464 	}
2465 
2466 	return ret;
2467 }
2468 
ov5640_set_ctrl_white_balance(struct ov5640_dev * sensor,int awb)2469 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
2470 {
2471 	int ret;
2472 
2473 	ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
2474 			     BIT(0), awb ? 0 : 1);
2475 	if (ret)
2476 		return ret;
2477 
2478 	if (!awb) {
2479 		u16 red = (u16)sensor->ctrls.red_balance->val;
2480 		u16 blue = (u16)sensor->ctrls.blue_balance->val;
2481 
2482 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
2483 		if (ret)
2484 			return ret;
2485 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
2486 	}
2487 
2488 	return ret;
2489 }
2490 
ov5640_set_ctrl_exposure(struct ov5640_dev * sensor,enum v4l2_exposure_auto_type auto_exposure)2491 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
2492 				    enum v4l2_exposure_auto_type auto_exposure)
2493 {
2494 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2495 	bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
2496 	int ret = 0;
2497 
2498 	if (ctrls->auto_exp->is_new) {
2499 		ret = ov5640_set_autoexposure(sensor, auto_exp);
2500 		if (ret)
2501 			return ret;
2502 	}
2503 
2504 	if (!auto_exp && ctrls->exposure->is_new) {
2505 		u16 max_exp;
2506 
2507 		ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
2508 					&max_exp);
2509 		if (ret)
2510 			return ret;
2511 		ret = ov5640_get_vts(sensor);
2512 		if (ret < 0)
2513 			return ret;
2514 		max_exp += ret;
2515 		ret = 0;
2516 
2517 		if (ctrls->exposure->val < max_exp)
2518 			ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
2519 	}
2520 
2521 	return ret;
2522 }
2523 
ov5640_set_ctrl_gain(struct ov5640_dev * sensor,bool auto_gain)2524 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
2525 {
2526 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2527 	int ret = 0;
2528 
2529 	if (ctrls->auto_gain->is_new) {
2530 		ret = ov5640_set_autogain(sensor, auto_gain);
2531 		if (ret)
2532 			return ret;
2533 	}
2534 
2535 	if (!auto_gain && ctrls->gain->is_new)
2536 		ret = ov5640_set_gain(sensor, ctrls->gain->val);
2537 
2538 	return ret;
2539 }
2540 
2541 static const char * const test_pattern_menu[] = {
2542 	"Disabled",
2543 	"Color bars",
2544 	"Color bars w/ rolling bar",
2545 	"Color squares",
2546 	"Color squares w/ rolling bar",
2547 };
2548 
2549 #define OV5640_TEST_ENABLE		BIT(7)
2550 #define OV5640_TEST_ROLLING		BIT(6)	/* rolling horizontal bar */
2551 #define OV5640_TEST_TRANSPARENT		BIT(5)
2552 #define OV5640_TEST_SQUARE_BW		BIT(4)	/* black & white squares */
2553 #define OV5640_TEST_BAR_STANDARD	(0 << 2)
2554 #define OV5640_TEST_BAR_VERT_CHANGE_1	(1 << 2)
2555 #define OV5640_TEST_BAR_HOR_CHANGE	(2 << 2)
2556 #define OV5640_TEST_BAR_VERT_CHANGE_2	(3 << 2)
2557 #define OV5640_TEST_BAR			(0 << 0)
2558 #define OV5640_TEST_RANDOM		(1 << 0)
2559 #define OV5640_TEST_SQUARE		(2 << 0)
2560 #define OV5640_TEST_BLACK		(3 << 0)
2561 
2562 static const u8 test_pattern_val[] = {
2563 	0,
2564 	OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
2565 		OV5640_TEST_BAR,
2566 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
2567 		OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
2568 	OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
2569 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
2570 };
2571 
ov5640_set_ctrl_test_pattern(struct ov5640_dev * sensor,int value)2572 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
2573 {
2574 	return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
2575 				test_pattern_val[value]);
2576 }
2577 
ov5640_set_ctrl_light_freq(struct ov5640_dev * sensor,int value)2578 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
2579 {
2580 	int ret;
2581 
2582 	ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
2583 			     (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
2584 			     0 : BIT(7));
2585 	if (ret)
2586 		return ret;
2587 
2588 	return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
2589 			      (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
2590 			      BIT(2) : 0);
2591 }
2592 
ov5640_set_ctrl_hflip(struct ov5640_dev * sensor,int value)2593 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
2594 {
2595 	/*
2596 	 * If sensor is mounted upside down, mirror logic is inversed.
2597 	 *
2598 	 * Sensor is a BSI (Back Side Illuminated) one,
2599 	 * so image captured is physically mirrored.
2600 	 * This is why mirror logic is inversed in
2601 	 * order to cancel this mirror effect.
2602 	 */
2603 
2604 	/*
2605 	 * TIMING TC REG21:
2606 	 * - [2]:	ISP mirror
2607 	 * - [1]:	Sensor mirror
2608 	 */
2609 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2610 			      BIT(2) | BIT(1),
2611 			      (!(value ^ sensor->upside_down)) ?
2612 			      (BIT(2) | BIT(1)) : 0);
2613 }
2614 
ov5640_set_ctrl_vflip(struct ov5640_dev * sensor,int value)2615 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
2616 {
2617 	/* If sensor is mounted upside down, flip logic is inversed */
2618 
2619 	/*
2620 	 * TIMING TC REG20:
2621 	 * - [2]:	ISP vflip
2622 	 * - [1]:	Sensor vflip
2623 	 */
2624 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
2625 			      BIT(2) | BIT(1),
2626 			      (value ^ sensor->upside_down) ?
2627 			      (BIT(2) | BIT(1)) : 0);
2628 }
2629 
ov5640_g_volatile_ctrl(struct v4l2_ctrl * ctrl)2630 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2631 {
2632 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2633 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2634 	int val;
2635 
2636 	/* v4l2_ctrl_lock() locks our own mutex */
2637 
2638 	switch (ctrl->id) {
2639 	case V4L2_CID_AUTOGAIN:
2640 		val = ov5640_get_gain(sensor);
2641 		if (val < 0)
2642 			return val;
2643 		sensor->ctrls.gain->val = val;
2644 		break;
2645 	case V4L2_CID_EXPOSURE_AUTO:
2646 		val = ov5640_get_exposure(sensor);
2647 		if (val < 0)
2648 			return val;
2649 		sensor->ctrls.exposure->val = val;
2650 		break;
2651 	}
2652 
2653 	return 0;
2654 }
2655 
ov5640_s_ctrl(struct v4l2_ctrl * ctrl)2656 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
2657 {
2658 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2659 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2660 	int ret;
2661 
2662 	/* v4l2_ctrl_lock() locks our own mutex */
2663 
2664 	/*
2665 	 * If the device is not powered up by the host driver do
2666 	 * not apply any controls to H/W at this time. Instead
2667 	 * the controls will be restored right after power-up.
2668 	 */
2669 	if (sensor->power_count == 0)
2670 		return 0;
2671 
2672 	switch (ctrl->id) {
2673 	case V4L2_CID_AUTOGAIN:
2674 		ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
2675 		break;
2676 	case V4L2_CID_EXPOSURE_AUTO:
2677 		ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
2678 		break;
2679 	case V4L2_CID_AUTO_WHITE_BALANCE:
2680 		ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
2681 		break;
2682 	case V4L2_CID_HUE:
2683 		ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
2684 		break;
2685 	case V4L2_CID_CONTRAST:
2686 		ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
2687 		break;
2688 	case V4L2_CID_SATURATION:
2689 		ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
2690 		break;
2691 	case V4L2_CID_TEST_PATTERN:
2692 		ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
2693 		break;
2694 	case V4L2_CID_POWER_LINE_FREQUENCY:
2695 		ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
2696 		break;
2697 	case V4L2_CID_HFLIP:
2698 		ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
2699 		break;
2700 	case V4L2_CID_VFLIP:
2701 		ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
2702 		break;
2703 	default:
2704 		ret = -EINVAL;
2705 		break;
2706 	}
2707 
2708 	return ret;
2709 }
2710 
2711 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
2712 	.g_volatile_ctrl = ov5640_g_volatile_ctrl,
2713 	.s_ctrl = ov5640_s_ctrl,
2714 };
2715 
ov5640_init_controls(struct ov5640_dev * sensor)2716 static int ov5640_init_controls(struct ov5640_dev *sensor)
2717 {
2718 	const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
2719 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2720 	struct v4l2_ctrl_handler *hdl = &ctrls->handler;
2721 	int ret;
2722 
2723 	v4l2_ctrl_handler_init(hdl, 32);
2724 
2725 	/* we can use our own mutex for the ctrl lock */
2726 	hdl->lock = &sensor->lock;
2727 
2728 	/* Clock related controls */
2729 	ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
2730 					      0, INT_MAX, 1,
2731 					      ov5640_calc_pixel_rate(sensor));
2732 
2733 	/* Auto/manual white balance */
2734 	ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
2735 					   V4L2_CID_AUTO_WHITE_BALANCE,
2736 					   0, 1, 1, 1);
2737 	ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
2738 						0, 4095, 1, 0);
2739 	ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
2740 					       0, 4095, 1, 0);
2741 	/* Auto/manual exposure */
2742 	ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
2743 						 V4L2_CID_EXPOSURE_AUTO,
2744 						 V4L2_EXPOSURE_MANUAL, 0,
2745 						 V4L2_EXPOSURE_AUTO);
2746 	ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
2747 					    0, 65535, 1, 0);
2748 	/* Auto/manual gain */
2749 	ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
2750 					     0, 1, 1, 1);
2751 	ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
2752 					0, 1023, 1, 0);
2753 
2754 	ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
2755 					      0, 255, 1, 64);
2756 	ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
2757 				       0, 359, 1, 0);
2758 	ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
2759 					    0, 255, 1, 0);
2760 	ctrls->test_pattern =
2761 		v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
2762 					     ARRAY_SIZE(test_pattern_menu) - 1,
2763 					     0, 0, test_pattern_menu);
2764 	ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
2765 					 0, 1, 1, 0);
2766 	ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
2767 					 0, 1, 1, 0);
2768 
2769 	ctrls->light_freq =
2770 		v4l2_ctrl_new_std_menu(hdl, ops,
2771 				       V4L2_CID_POWER_LINE_FREQUENCY,
2772 				       V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
2773 				       V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
2774 
2775 	if (hdl->error) {
2776 		ret = hdl->error;
2777 		goto free_ctrls;
2778 	}
2779 
2780 	ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY;
2781 	ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
2782 	ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
2783 
2784 	v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
2785 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
2786 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
2787 
2788 	sensor->sd.ctrl_handler = hdl;
2789 	return 0;
2790 
2791 free_ctrls:
2792 	v4l2_ctrl_handler_free(hdl);
2793 	return ret;
2794 }
2795 
ov5640_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_size_enum * fse)2796 static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
2797 				  struct v4l2_subdev_pad_config *cfg,
2798 				  struct v4l2_subdev_frame_size_enum *fse)
2799 {
2800 	if (fse->pad != 0)
2801 		return -EINVAL;
2802 	if (fse->index >= OV5640_NUM_MODES)
2803 		return -EINVAL;
2804 
2805 	fse->min_width =
2806 		ov5640_mode_data[fse->index].hact;
2807 	fse->max_width = fse->min_width;
2808 	fse->min_height =
2809 		ov5640_mode_data[fse->index].vact;
2810 	fse->max_height = fse->min_height;
2811 
2812 	return 0;
2813 }
2814 
ov5640_enum_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_interval_enum * fie)2815 static int ov5640_enum_frame_interval(
2816 	struct v4l2_subdev *sd,
2817 	struct v4l2_subdev_pad_config *cfg,
2818 	struct v4l2_subdev_frame_interval_enum *fie)
2819 {
2820 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2821 	struct v4l2_fract tpf;
2822 	int ret;
2823 
2824 	if (fie->pad != 0)
2825 		return -EINVAL;
2826 	if (fie->index >= OV5640_NUM_FRAMERATES)
2827 		return -EINVAL;
2828 
2829 	tpf.numerator = 1;
2830 	tpf.denominator = ov5640_framerates[fie->index];
2831 
2832 	ret = ov5640_try_frame_interval(sensor, &tpf,
2833 					fie->width, fie->height);
2834 	if (ret < 0)
2835 		return -EINVAL;
2836 
2837 	fie->interval = tpf;
2838 	return 0;
2839 }
2840 
ov5640_g_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)2841 static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
2842 				   struct v4l2_subdev_frame_interval *fi)
2843 {
2844 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2845 
2846 	mutex_lock(&sensor->lock);
2847 	fi->interval = sensor->frame_interval;
2848 	mutex_unlock(&sensor->lock);
2849 
2850 	return 0;
2851 }
2852 
ov5640_s_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)2853 static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
2854 				   struct v4l2_subdev_frame_interval *fi)
2855 {
2856 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2857 	const struct ov5640_mode_info *mode;
2858 	int frame_rate, ret = 0;
2859 
2860 	if (fi->pad != 0)
2861 		return -EINVAL;
2862 
2863 	mutex_lock(&sensor->lock);
2864 
2865 	if (sensor->streaming) {
2866 		ret = -EBUSY;
2867 		goto out;
2868 	}
2869 
2870 	mode = sensor->current_mode;
2871 
2872 	frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
2873 					       mode->hact, mode->vact);
2874 	if (frame_rate < 0) {
2875 		/* Always return a valid frame interval value */
2876 		fi->interval = sensor->frame_interval;
2877 		goto out;
2878 	}
2879 
2880 	mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
2881 				mode->vact, true);
2882 	if (!mode) {
2883 		ret = -EINVAL;
2884 		goto out;
2885 	}
2886 
2887 	if (mode != sensor->current_mode ||
2888 	    frame_rate != sensor->current_fr) {
2889 		sensor->current_fr = frame_rate;
2890 		sensor->frame_interval = fi->interval;
2891 		sensor->current_mode = mode;
2892 		sensor->pending_mode_change = true;
2893 
2894 		__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2895 					 ov5640_calc_pixel_rate(sensor));
2896 	}
2897 out:
2898 	mutex_unlock(&sensor->lock);
2899 	return ret;
2900 }
2901 
ov5640_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_mbus_code_enum * code)2902 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
2903 				 struct v4l2_subdev_pad_config *cfg,
2904 				 struct v4l2_subdev_mbus_code_enum *code)
2905 {
2906 	if (code->pad != 0)
2907 		return -EINVAL;
2908 	if (code->index >= ARRAY_SIZE(ov5640_formats))
2909 		return -EINVAL;
2910 
2911 	code->code = ov5640_formats[code->index].code;
2912 	return 0;
2913 }
2914 
ov5640_s_stream(struct v4l2_subdev * sd,int enable)2915 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
2916 {
2917 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2918 	int ret = 0;
2919 
2920 	mutex_lock(&sensor->lock);
2921 
2922 	if (sensor->streaming == !enable) {
2923 		if (enable && sensor->pending_mode_change) {
2924 			ret = ov5640_set_mode(sensor);
2925 			if (ret)
2926 				goto out;
2927 		}
2928 
2929 		if (enable && sensor->pending_fmt_change) {
2930 			ret = ov5640_set_framefmt(sensor, &sensor->fmt);
2931 			if (ret)
2932 				goto out;
2933 			sensor->pending_fmt_change = false;
2934 		}
2935 
2936 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2937 			ret = ov5640_set_stream_mipi(sensor, enable);
2938 		else
2939 			ret = ov5640_set_stream_dvp(sensor, enable);
2940 
2941 		if (!ret)
2942 			sensor->streaming = enable;
2943 	}
2944 out:
2945 	mutex_unlock(&sensor->lock);
2946 	return ret;
2947 }
2948 
2949 static const struct v4l2_subdev_core_ops ov5640_core_ops = {
2950 	.s_power = ov5640_s_power,
2951 	.log_status = v4l2_ctrl_subdev_log_status,
2952 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
2953 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2954 };
2955 
2956 static const struct v4l2_subdev_video_ops ov5640_video_ops = {
2957 	.g_frame_interval = ov5640_g_frame_interval,
2958 	.s_frame_interval = ov5640_s_frame_interval,
2959 	.s_stream = ov5640_s_stream,
2960 };
2961 
2962 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
2963 	.enum_mbus_code = ov5640_enum_mbus_code,
2964 	.get_fmt = ov5640_get_fmt,
2965 	.set_fmt = ov5640_set_fmt,
2966 	.enum_frame_size = ov5640_enum_frame_size,
2967 	.enum_frame_interval = ov5640_enum_frame_interval,
2968 };
2969 
2970 static const struct v4l2_subdev_ops ov5640_subdev_ops = {
2971 	.core = &ov5640_core_ops,
2972 	.video = &ov5640_video_ops,
2973 	.pad = &ov5640_pad_ops,
2974 };
2975 
ov5640_get_regulators(struct ov5640_dev * sensor)2976 static int ov5640_get_regulators(struct ov5640_dev *sensor)
2977 {
2978 	int i;
2979 
2980 	for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
2981 		sensor->supplies[i].supply = ov5640_supply_name[i];
2982 
2983 	return devm_regulator_bulk_get(&sensor->i2c_client->dev,
2984 				       OV5640_NUM_SUPPLIES,
2985 				       sensor->supplies);
2986 }
2987 
ov5640_check_chip_id(struct ov5640_dev * sensor)2988 static int ov5640_check_chip_id(struct ov5640_dev *sensor)
2989 {
2990 	struct i2c_client *client = sensor->i2c_client;
2991 	int ret = 0;
2992 	u16 chip_id;
2993 
2994 	ret = ov5640_set_power_on(sensor);
2995 	if (ret)
2996 		return ret;
2997 
2998 	ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
2999 	if (ret) {
3000 		dev_err(&client->dev, "%s: failed to read chip identifier\n",
3001 			__func__);
3002 		goto power_off;
3003 	}
3004 
3005 	if (chip_id != 0x5640) {
3006 		dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
3007 			__func__, chip_id);
3008 		ret = -ENXIO;
3009 	}
3010 
3011 power_off:
3012 	ov5640_set_power_off(sensor);
3013 	return ret;
3014 }
3015 
ov5640_probe(struct i2c_client * client)3016 static int ov5640_probe(struct i2c_client *client)
3017 {
3018 	struct device *dev = &client->dev;
3019 	struct fwnode_handle *endpoint;
3020 	struct ov5640_dev *sensor;
3021 	struct v4l2_mbus_framefmt *fmt;
3022 	u32 rotation;
3023 	int ret;
3024 
3025 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
3026 	if (!sensor)
3027 		return -ENOMEM;
3028 
3029 	sensor->i2c_client = client;
3030 
3031 	/*
3032 	 * default init sequence initialize sensor to
3033 	 * YUV422 UYVY VGA@30fps
3034 	 */
3035 	fmt = &sensor->fmt;
3036 	fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
3037 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
3038 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
3039 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
3040 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
3041 	fmt->width = 640;
3042 	fmt->height = 480;
3043 	fmt->field = V4L2_FIELD_NONE;
3044 	sensor->frame_interval.numerator = 1;
3045 	sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
3046 	sensor->current_fr = OV5640_30_FPS;
3047 	sensor->current_mode =
3048 		&ov5640_mode_data[OV5640_MODE_VGA_640_480];
3049 	sensor->last_mode = sensor->current_mode;
3050 
3051 	sensor->ae_target = 52;
3052 
3053 	/* optional indication of physical rotation of sensor */
3054 	ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
3055 				       &rotation);
3056 	if (!ret) {
3057 		switch (rotation) {
3058 		case 180:
3059 			sensor->upside_down = true;
3060 			fallthrough;
3061 		case 0:
3062 			break;
3063 		default:
3064 			dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
3065 				 rotation);
3066 		}
3067 	}
3068 
3069 	endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
3070 						  NULL);
3071 	if (!endpoint) {
3072 		dev_err(dev, "endpoint node not found\n");
3073 		return -EINVAL;
3074 	}
3075 
3076 	ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
3077 	fwnode_handle_put(endpoint);
3078 	if (ret) {
3079 		dev_err(dev, "Could not parse endpoint\n");
3080 		return ret;
3081 	}
3082 
3083 	if (sensor->ep.bus_type != V4L2_MBUS_PARALLEL &&
3084 	    sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY &&
3085 	    sensor->ep.bus_type != V4L2_MBUS_BT656) {
3086 		dev_err(dev, "Unsupported bus type %d\n", sensor->ep.bus_type);
3087 		return -EINVAL;
3088 	}
3089 
3090 	/* get system clock (xclk) */
3091 	sensor->xclk = devm_clk_get(dev, "xclk");
3092 	if (IS_ERR(sensor->xclk)) {
3093 		dev_err(dev, "failed to get xclk\n");
3094 		return PTR_ERR(sensor->xclk);
3095 	}
3096 
3097 	sensor->xclk_freq = clk_get_rate(sensor->xclk);
3098 	if (sensor->xclk_freq < OV5640_XCLK_MIN ||
3099 	    sensor->xclk_freq > OV5640_XCLK_MAX) {
3100 		dev_err(dev, "xclk frequency out of range: %d Hz\n",
3101 			sensor->xclk_freq);
3102 		return -EINVAL;
3103 	}
3104 
3105 	/* request optional power down pin */
3106 	sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
3107 						    GPIOD_OUT_HIGH);
3108 	if (IS_ERR(sensor->pwdn_gpio))
3109 		return PTR_ERR(sensor->pwdn_gpio);
3110 
3111 	/* request optional reset pin */
3112 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
3113 						     GPIOD_OUT_HIGH);
3114 	if (IS_ERR(sensor->reset_gpio))
3115 		return PTR_ERR(sensor->reset_gpio);
3116 
3117 	v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
3118 
3119 	sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
3120 			    V4L2_SUBDEV_FL_HAS_EVENTS;
3121 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
3122 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3123 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
3124 	if (ret)
3125 		return ret;
3126 
3127 	ret = ov5640_get_regulators(sensor);
3128 	if (ret)
3129 		return ret;
3130 
3131 	mutex_init(&sensor->lock);
3132 
3133 	ret = ov5640_check_chip_id(sensor);
3134 	if (ret)
3135 		goto entity_cleanup;
3136 
3137 	ret = ov5640_init_controls(sensor);
3138 	if (ret)
3139 		goto entity_cleanup;
3140 
3141 	ret = v4l2_async_register_subdev_sensor_common(&sensor->sd);
3142 	if (ret)
3143 		goto free_ctrls;
3144 
3145 	return 0;
3146 
3147 free_ctrls:
3148 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3149 entity_cleanup:
3150 	media_entity_cleanup(&sensor->sd.entity);
3151 	mutex_destroy(&sensor->lock);
3152 	return ret;
3153 }
3154 
ov5640_remove(struct i2c_client * client)3155 static int ov5640_remove(struct i2c_client *client)
3156 {
3157 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3158 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
3159 
3160 	v4l2_async_unregister_subdev(&sensor->sd);
3161 	media_entity_cleanup(&sensor->sd.entity);
3162 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3163 	mutex_destroy(&sensor->lock);
3164 
3165 	return 0;
3166 }
3167 
3168 static const struct i2c_device_id ov5640_id[] = {
3169 	{"ov5640", 0},
3170 	{},
3171 };
3172 MODULE_DEVICE_TABLE(i2c, ov5640_id);
3173 
3174 static const struct of_device_id ov5640_dt_ids[] = {
3175 	{ .compatible = "ovti,ov5640" },
3176 	{ /* sentinel */ }
3177 };
3178 MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
3179 
3180 static struct i2c_driver ov5640_i2c_driver = {
3181 	.driver = {
3182 		.name  = "ov5640",
3183 		.of_match_table	= ov5640_dt_ids,
3184 	},
3185 	.id_table = ov5640_id,
3186 	.probe_new = ov5640_probe,
3187 	.remove   = ov5640_remove,
3188 };
3189 
3190 module_i2c_driver(ov5640_i2c_driver);
3191 
3192 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
3193 MODULE_LICENSE("GPL");
3194