1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2017 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 * Copyright 2003 Rick Bronson
12 *
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
29 *
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 * A few words about the naming convention in this file. This convention
34 * applies to structure and function names.
35 *
36 * Prefixes:
37 *
38 * - atmel_nand_: all generic structures/functions
39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40 * (at91sam9 and avr32 SoCs)
41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42 * (sama5 SoCs and later)
43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44 * that is available in the HSMC block
45 * - <soc>_nand_: all SoC specific structures/functions
46 */
47
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66
67 #include "pmecc.h"
68
69 #define ATMEL_HSMC_NFC_CFG 0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
80
81 #define ATMEL_HSMC_NFC_CTRL 0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
84
85 #define ATMEL_HSMC_NFC_SR 0x8
86 #define ATMEL_HSMC_NFC_IER 0xc
87 #define ATMEL_HSMC_NFC_IDR 0x10
88 #define ATMEL_HSMC_NFC_IMR 0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
102 ATMEL_HSMC_NFC_SR_UNDEF | \
103 ATMEL_HSMC_NFC_SR_AWB | \
104 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
106
107 #define ATMEL_HSMC_NFC_ADDR 0x18
108 #define ATMEL_HSMC_NFC_BANK 0x1c
109
110 #define ATMEL_NFC_MAX_RB_ID 7
111
112 #define ATMEL_NFC_SRAM_SIZE 0x2400
113
114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2 BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
118 #define ATMEL_NFC_DATAEN BIT(25)
119 #define ATMEL_NFC_NFCWR BIT(26)
120
121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
122
123 #define ATMEL_NAND_ALE_OFFSET BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET BIT(22)
125
126 #define DEFAULT_TIMEOUT_MS 1000
127 #define MIN_DMA_LEN 128
128
129 static bool atmel_nand_avoid_dma __read_mostly;
130
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133
134 enum atmel_nand_rb_type {
135 ATMEL_NAND_NO_RB,
136 ATMEL_NAND_NATIVE_RB,
137 ATMEL_NAND_GPIO_RB,
138 };
139
140 struct atmel_nand_rb {
141 enum atmel_nand_rb_type type;
142 union {
143 struct gpio_desc *gpio;
144 int id;
145 };
146 };
147
148 struct atmel_nand_cs {
149 int id;
150 struct atmel_nand_rb rb;
151 struct gpio_desc *csgpio;
152 struct {
153 void __iomem *virt;
154 dma_addr_t dma;
155 } io;
156
157 struct atmel_smc_cs_conf smcconf;
158 };
159
160 struct atmel_nand {
161 struct list_head node;
162 struct device *dev;
163 struct nand_chip base;
164 struct atmel_nand_cs *activecs;
165 struct atmel_pmecc_user *pmecc;
166 struct gpio_desc *cdgpio;
167 int numcs;
168 struct atmel_nand_cs cs[];
169 };
170
to_atmel_nand(struct nand_chip * chip)171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173 return container_of(chip, struct atmel_nand, base);
174 }
175
176 enum atmel_nfc_data_xfer {
177 ATMEL_NFC_NO_DATA,
178 ATMEL_NFC_READ_DATA,
179 ATMEL_NFC_WRITE_DATA,
180 };
181
182 struct atmel_nfc_op {
183 u8 cs;
184 u8 ncmds;
185 u8 cmds[2];
186 u8 naddrs;
187 u8 addrs[5];
188 enum atmel_nfc_data_xfer data;
189 u32 wait;
190 u32 errors;
191 };
192
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195
196 struct atmel_nand_controller_ops {
197 int (*probe)(struct platform_device *pdev,
198 const struct atmel_nand_controller_caps *caps);
199 int (*remove)(struct atmel_nand_controller *nc);
200 void (*nand_init)(struct atmel_nand_controller *nc,
201 struct atmel_nand *nand);
202 int (*ecc_init)(struct nand_chip *chip);
203 int (*setup_interface)(struct atmel_nand *nand, int csline,
204 const struct nand_interface_config *conf);
205 int (*exec_op)(struct atmel_nand *nand,
206 const struct nand_operation *op, bool check_only);
207 };
208
209 struct atmel_nand_controller_caps {
210 bool has_dma;
211 bool legacy_of_bindings;
212 u32 ale_offs;
213 u32 cle_offs;
214 const char *ebi_csa_regmap_name;
215 const struct atmel_nand_controller_ops *ops;
216 };
217
218 struct atmel_nand_controller {
219 struct nand_controller base;
220 const struct atmel_nand_controller_caps *caps;
221 struct device *dev;
222 struct regmap *smc;
223 struct dma_chan *dmac;
224 struct atmel_pmecc *pmecc;
225 struct list_head chips;
226 struct clk *mck;
227 };
228
229 static inline struct atmel_nand_controller *
to_nand_controller(struct nand_controller * ctl)230 to_nand_controller(struct nand_controller *ctl)
231 {
232 return container_of(ctl, struct atmel_nand_controller, base);
233 }
234
235 struct atmel_smc_nand_ebi_csa_cfg {
236 u32 offs;
237 u32 nfd0_on_d16;
238 };
239
240 struct atmel_smc_nand_controller {
241 struct atmel_nand_controller base;
242 struct regmap *ebi_csa_regmap;
243 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244 };
245
246 static inline struct atmel_smc_nand_controller *
to_smc_nand_controller(struct nand_controller * ctl)247 to_smc_nand_controller(struct nand_controller *ctl)
248 {
249 return container_of(to_nand_controller(ctl),
250 struct atmel_smc_nand_controller, base);
251 }
252
253 struct atmel_hsmc_nand_controller {
254 struct atmel_nand_controller base;
255 struct {
256 struct gen_pool *pool;
257 void __iomem *virt;
258 dma_addr_t dma;
259 } sram;
260 const struct atmel_hsmc_reg_layout *hsmc_layout;
261 struct regmap *io;
262 struct atmel_nfc_op op;
263 struct completion complete;
264 u32 cfg;
265 int irq;
266
267 /* Only used when instantiating from legacy DT bindings. */
268 struct clk *clk;
269 };
270
271 static inline struct atmel_hsmc_nand_controller *
to_hsmc_nand_controller(struct nand_controller * ctl)272 to_hsmc_nand_controller(struct nand_controller *ctl)
273 {
274 return container_of(to_nand_controller(ctl),
275 struct atmel_hsmc_nand_controller, base);
276 }
277
atmel_nfc_op_done(struct atmel_nfc_op * op,u32 status)278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279 {
280 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281 op->wait ^= status & op->wait;
282
283 return !op->wait || op->errors;
284 }
285
atmel_nfc_interrupt(int irq,void * data)286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287 {
288 struct atmel_hsmc_nand_controller *nc = data;
289 u32 sr, rcvd;
290 bool done;
291
292 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293
294 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295 done = atmel_nfc_op_done(&nc->op, sr);
296
297 if (rcvd)
298 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299
300 if (done)
301 complete(&nc->complete);
302
303 return rcvd ? IRQ_HANDLED : IRQ_NONE;
304 }
305
atmel_nfc_wait(struct atmel_hsmc_nand_controller * nc,bool poll,unsigned int timeout_ms)306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307 unsigned int timeout_ms)
308 {
309 int ret;
310
311 if (!timeout_ms)
312 timeout_ms = DEFAULT_TIMEOUT_MS;
313
314 if (poll) {
315 u32 status;
316
317 ret = regmap_read_poll_timeout(nc->base.smc,
318 ATMEL_HSMC_NFC_SR, status,
319 atmel_nfc_op_done(&nc->op,
320 status),
321 0, timeout_ms * 1000);
322 } else {
323 init_completion(&nc->complete);
324 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326 ret = wait_for_completion_timeout(&nc->complete,
327 msecs_to_jiffies(timeout_ms));
328 if (!ret)
329 ret = -ETIMEDOUT;
330 else
331 ret = 0;
332
333 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334 }
335
336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338 ret = -ETIMEDOUT;
339 }
340
341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342 dev_err(nc->base.dev, "Access to an undefined area\n");
343 ret = -EIO;
344 }
345
346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347 dev_err(nc->base.dev, "Access while busy\n");
348 ret = -EIO;
349 }
350
351 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352 dev_err(nc->base.dev, "Wrong access size\n");
353 ret = -EIO;
354 }
355
356 return ret;
357 }
358
atmel_nand_dma_transfer_finished(void * data)359 static void atmel_nand_dma_transfer_finished(void *data)
360 {
361 struct completion *finished = data;
362
363 complete(finished);
364 }
365
atmel_nand_dma_transfer(struct atmel_nand_controller * nc,void * buf,dma_addr_t dev_dma,size_t len,enum dma_data_direction dir)366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367 void *buf, dma_addr_t dev_dma, size_t len,
368 enum dma_data_direction dir)
369 {
370 DECLARE_COMPLETION_ONSTACK(finished);
371 dma_addr_t src_dma, dst_dma, buf_dma;
372 struct dma_async_tx_descriptor *tx;
373 dma_cookie_t cookie;
374
375 buf_dma = dma_map_single(nc->dev, buf, len, dir);
376 if (dma_mapping_error(nc->dev, dev_dma)) {
377 dev_err(nc->dev,
378 "Failed to prepare a buffer for DMA access\n");
379 goto err;
380 }
381
382 if (dir == DMA_FROM_DEVICE) {
383 src_dma = dev_dma;
384 dst_dma = buf_dma;
385 } else {
386 src_dma = buf_dma;
387 dst_dma = dev_dma;
388 }
389
390 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392 if (!tx) {
393 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394 goto err_unmap;
395 }
396
397 tx->callback = atmel_nand_dma_transfer_finished;
398 tx->callback_param = &finished;
399
400 cookie = dmaengine_submit(tx);
401 if (dma_submit_error(cookie)) {
402 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403 goto err_unmap;
404 }
405
406 dma_async_issue_pending(nc->dmac);
407 wait_for_completion(&finished);
408
409 return 0;
410
411 err_unmap:
412 dma_unmap_single(nc->dev, buf_dma, len, dir);
413
414 err:
415 dev_dbg(nc->dev, "Fall back to CPU I/O\n");
416
417 return -EIO;
418 }
419
atmel_nfc_exec_op(struct atmel_hsmc_nand_controller * nc,bool poll)420 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
421 {
422 u8 *addrs = nc->op.addrs;
423 unsigned int op = 0;
424 u32 addr, val;
425 int i, ret;
426
427 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
428
429 for (i = 0; i < nc->op.ncmds; i++)
430 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
431
432 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
433 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
434
435 op |= ATMEL_NFC_CSID(nc->op.cs) |
436 ATMEL_NFC_ACYCLE(nc->op.naddrs);
437
438 if (nc->op.ncmds > 1)
439 op |= ATMEL_NFC_VCMD2;
440
441 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
442 (addrs[3] << 24);
443
444 if (nc->op.data != ATMEL_NFC_NO_DATA) {
445 op |= ATMEL_NFC_DATAEN;
446 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
447
448 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
449 op |= ATMEL_NFC_NFCWR;
450 }
451
452 /* Clear all flags. */
453 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
454
455 /* Send the command. */
456 regmap_write(nc->io, op, addr);
457
458 ret = atmel_nfc_wait(nc, poll, 0);
459 if (ret)
460 dev_err(nc->base.dev,
461 "Failed to send NAND command (err = %d)!",
462 ret);
463
464 /* Reset the op state. */
465 memset(&nc->op, 0, sizeof(nc->op));
466
467 return ret;
468 }
469
atmel_nand_data_in(struct atmel_nand * nand,void * buf,unsigned int len,bool force_8bit)470 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
471 unsigned int len, bool force_8bit)
472 {
473 struct atmel_nand_controller *nc;
474
475 nc = to_nand_controller(nand->base.controller);
476
477 /*
478 * If the controller supports DMA, the buffer address is DMA-able and
479 * len is long enough to make DMA transfers profitable, let's trigger
480 * a DMA transfer. If it fails, fallback to PIO mode.
481 */
482 if (nc->dmac && virt_addr_valid(buf) &&
483 len >= MIN_DMA_LEN && !force_8bit &&
484 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
485 DMA_FROM_DEVICE))
486 return;
487
488 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
489 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
490 else
491 ioread8_rep(nand->activecs->io.virt, buf, len);
492 }
493
atmel_nand_data_out(struct atmel_nand * nand,const void * buf,unsigned int len,bool force_8bit)494 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
495 unsigned int len, bool force_8bit)
496 {
497 struct atmel_nand_controller *nc;
498
499 nc = to_nand_controller(nand->base.controller);
500
501 /*
502 * If the controller supports DMA, the buffer address is DMA-able and
503 * len is long enough to make DMA transfers profitable, let's trigger
504 * a DMA transfer. If it fails, fallback to PIO mode.
505 */
506 if (nc->dmac && virt_addr_valid(buf) &&
507 len >= MIN_DMA_LEN && !force_8bit &&
508 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
509 len, DMA_TO_DEVICE))
510 return;
511
512 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
513 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
514 else
515 iowrite8_rep(nand->activecs->io.virt, buf, len);
516 }
517
atmel_nand_waitrdy(struct atmel_nand * nand,unsigned int timeout_ms)518 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
519 {
520 if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
521 return nand_soft_waitrdy(&nand->base, timeout_ms);
522
523 return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
524 timeout_ms);
525 }
526
atmel_hsmc_nand_waitrdy(struct atmel_nand * nand,unsigned int timeout_ms)527 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
528 unsigned int timeout_ms)
529 {
530 struct atmel_hsmc_nand_controller *nc;
531 u32 status, mask;
532
533 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
534 return atmel_nand_waitrdy(nand, timeout_ms);
535
536 nc = to_hsmc_nand_controller(nand->base.controller);
537 mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
538 return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
539 status, status & mask,
540 10, timeout_ms * 1000);
541 }
542
atmel_nand_select_target(struct atmel_nand * nand,unsigned int cs)543 static void atmel_nand_select_target(struct atmel_nand *nand,
544 unsigned int cs)
545 {
546 nand->activecs = &nand->cs[cs];
547 }
548
atmel_hsmc_nand_select_target(struct atmel_nand * nand,unsigned int cs)549 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
550 unsigned int cs)
551 {
552 struct mtd_info *mtd = nand_to_mtd(&nand->base);
553 struct atmel_hsmc_nand_controller *nc;
554 u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
555 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
556 ATMEL_HSMC_NFC_CFG_RSPARE;
557
558 nand->activecs = &nand->cs[cs];
559 nc = to_hsmc_nand_controller(nand->base.controller);
560 if (nc->cfg == cfg)
561 return;
562
563 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
564 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
565 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
566 ATMEL_HSMC_NFC_CFG_RSPARE |
567 ATMEL_HSMC_NFC_CFG_WSPARE,
568 cfg);
569 nc->cfg = cfg;
570 }
571
atmel_smc_nand_exec_instr(struct atmel_nand * nand,const struct nand_op_instr * instr)572 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
573 const struct nand_op_instr *instr)
574 {
575 struct atmel_nand_controller *nc;
576 unsigned int i;
577
578 nc = to_nand_controller(nand->base.controller);
579 switch (instr->type) {
580 case NAND_OP_CMD_INSTR:
581 writeb(instr->ctx.cmd.opcode,
582 nand->activecs->io.virt + nc->caps->cle_offs);
583 return 0;
584 case NAND_OP_ADDR_INSTR:
585 for (i = 0; i < instr->ctx.addr.naddrs; i++)
586 writeb(instr->ctx.addr.addrs[i],
587 nand->activecs->io.virt + nc->caps->ale_offs);
588 return 0;
589 case NAND_OP_DATA_IN_INSTR:
590 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
591 instr->ctx.data.len,
592 instr->ctx.data.force_8bit);
593 return 0;
594 case NAND_OP_DATA_OUT_INSTR:
595 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
596 instr->ctx.data.len,
597 instr->ctx.data.force_8bit);
598 return 0;
599 case NAND_OP_WAITRDY_INSTR:
600 return atmel_nand_waitrdy(nand,
601 instr->ctx.waitrdy.timeout_ms);
602 default:
603 break;
604 }
605
606 return -EINVAL;
607 }
608
atmel_smc_nand_exec_op(struct atmel_nand * nand,const struct nand_operation * op,bool check_only)609 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
610 const struct nand_operation *op,
611 bool check_only)
612 {
613 unsigned int i;
614 int ret = 0;
615
616 if (check_only)
617 return 0;
618
619 atmel_nand_select_target(nand, op->cs);
620 gpiod_set_value(nand->activecs->csgpio, 0);
621 for (i = 0; i < op->ninstrs; i++) {
622 ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
623 if (ret)
624 break;
625 }
626 gpiod_set_value(nand->activecs->csgpio, 1);
627
628 return ret;
629 }
630
atmel_hsmc_exec_cmd_addr(struct nand_chip * chip,const struct nand_subop * subop)631 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
632 const struct nand_subop *subop)
633 {
634 struct atmel_nand *nand = to_atmel_nand(chip);
635 struct atmel_hsmc_nand_controller *nc;
636 unsigned int i, j;
637
638 nc = to_hsmc_nand_controller(chip->controller);
639
640 nc->op.cs = nand->activecs->id;
641 for (i = 0; i < subop->ninstrs; i++) {
642 const struct nand_op_instr *instr = &subop->instrs[i];
643
644 if (instr->type == NAND_OP_CMD_INSTR) {
645 nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
646 continue;
647 }
648
649 for (j = nand_subop_get_addr_start_off(subop, i);
650 j < nand_subop_get_num_addr_cyc(subop, i); j++) {
651 nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
652 nc->op.naddrs++;
653 }
654 }
655
656 return atmel_nfc_exec_op(nc, true);
657 }
658
atmel_hsmc_exec_rw(struct nand_chip * chip,const struct nand_subop * subop)659 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
660 const struct nand_subop *subop)
661 {
662 const struct nand_op_instr *instr = subop->instrs;
663 struct atmel_nand *nand = to_atmel_nand(chip);
664
665 if (instr->type == NAND_OP_DATA_IN_INSTR)
666 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
667 instr->ctx.data.len,
668 instr->ctx.data.force_8bit);
669 else
670 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
671 instr->ctx.data.len,
672 instr->ctx.data.force_8bit);
673
674 return 0;
675 }
676
atmel_hsmc_exec_waitrdy(struct nand_chip * chip,const struct nand_subop * subop)677 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
678 const struct nand_subop *subop)
679 {
680 const struct nand_op_instr *instr = subop->instrs;
681 struct atmel_nand *nand = to_atmel_nand(chip);
682
683 return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
684 }
685
686 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
687 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
688 NAND_OP_PARSER_PAT_CMD_ELEM(true),
689 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
690 NAND_OP_PARSER_PAT_CMD_ELEM(true)),
691 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
692 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
693 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
694 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
695 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
696 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
697 );
698
atmel_hsmc_nand_exec_op(struct atmel_nand * nand,const struct nand_operation * op,bool check_only)699 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
700 const struct nand_operation *op,
701 bool check_only)
702 {
703 int ret;
704
705 if (check_only)
706 return nand_op_parser_exec_op(&nand->base,
707 &atmel_hsmc_op_parser, op, true);
708
709 atmel_hsmc_nand_select_target(nand, op->cs);
710 ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
711 false);
712
713 return ret;
714 }
715
atmel_nfc_copy_to_sram(struct nand_chip * chip,const u8 * buf,bool oob_required)716 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
717 bool oob_required)
718 {
719 struct mtd_info *mtd = nand_to_mtd(chip);
720 struct atmel_hsmc_nand_controller *nc;
721 int ret = -EIO;
722
723 nc = to_hsmc_nand_controller(chip->controller);
724
725 if (nc->base.dmac)
726 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
727 nc->sram.dma, mtd->writesize,
728 DMA_TO_DEVICE);
729
730 /* Falling back to CPU copy. */
731 if (ret)
732 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
733
734 if (oob_required)
735 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
736 mtd->oobsize);
737 }
738
atmel_nfc_copy_from_sram(struct nand_chip * chip,u8 * buf,bool oob_required)739 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
740 bool oob_required)
741 {
742 struct mtd_info *mtd = nand_to_mtd(chip);
743 struct atmel_hsmc_nand_controller *nc;
744 int ret = -EIO;
745
746 nc = to_hsmc_nand_controller(chip->controller);
747
748 if (nc->base.dmac)
749 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
750 mtd->writesize, DMA_FROM_DEVICE);
751
752 /* Falling back to CPU copy. */
753 if (ret)
754 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
755
756 if (oob_required)
757 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
758 mtd->oobsize);
759 }
760
atmel_nfc_set_op_addr(struct nand_chip * chip,int page,int column)761 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
762 {
763 struct mtd_info *mtd = nand_to_mtd(chip);
764 struct atmel_hsmc_nand_controller *nc;
765
766 nc = to_hsmc_nand_controller(chip->controller);
767
768 if (column >= 0) {
769 nc->op.addrs[nc->op.naddrs++] = column;
770
771 /*
772 * 2 address cycles for the column offset on large page NANDs.
773 */
774 if (mtd->writesize > 512)
775 nc->op.addrs[nc->op.naddrs++] = column >> 8;
776 }
777
778 if (page >= 0) {
779 nc->op.addrs[nc->op.naddrs++] = page;
780 nc->op.addrs[nc->op.naddrs++] = page >> 8;
781
782 if (chip->options & NAND_ROW_ADDR_3)
783 nc->op.addrs[nc->op.naddrs++] = page >> 16;
784 }
785 }
786
atmel_nand_pmecc_enable(struct nand_chip * chip,int op,bool raw)787 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
788 {
789 struct atmel_nand *nand = to_atmel_nand(chip);
790 struct atmel_nand_controller *nc;
791 int ret;
792
793 nc = to_nand_controller(chip->controller);
794
795 if (raw)
796 return 0;
797
798 ret = atmel_pmecc_enable(nand->pmecc, op);
799 if (ret)
800 dev_err(nc->dev,
801 "Failed to enable ECC engine (err = %d)\n", ret);
802
803 return ret;
804 }
805
atmel_nand_pmecc_disable(struct nand_chip * chip,bool raw)806 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
807 {
808 struct atmel_nand *nand = to_atmel_nand(chip);
809
810 if (!raw)
811 atmel_pmecc_disable(nand->pmecc);
812 }
813
atmel_nand_pmecc_generate_eccbytes(struct nand_chip * chip,bool raw)814 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
815 {
816 struct atmel_nand *nand = to_atmel_nand(chip);
817 struct mtd_info *mtd = nand_to_mtd(chip);
818 struct atmel_nand_controller *nc;
819 struct mtd_oob_region oobregion;
820 void *eccbuf;
821 int ret, i;
822
823 nc = to_nand_controller(chip->controller);
824
825 if (raw)
826 return 0;
827
828 ret = atmel_pmecc_wait_rdy(nand->pmecc);
829 if (ret) {
830 dev_err(nc->dev,
831 "Failed to transfer NAND page data (err = %d)\n",
832 ret);
833 return ret;
834 }
835
836 mtd_ooblayout_ecc(mtd, 0, &oobregion);
837 eccbuf = chip->oob_poi + oobregion.offset;
838
839 for (i = 0; i < chip->ecc.steps; i++) {
840 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
841 eccbuf);
842 eccbuf += chip->ecc.bytes;
843 }
844
845 return 0;
846 }
847
atmel_nand_pmecc_correct_data(struct nand_chip * chip,void * buf,bool raw)848 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
849 bool raw)
850 {
851 struct atmel_nand *nand = to_atmel_nand(chip);
852 struct mtd_info *mtd = nand_to_mtd(chip);
853 struct atmel_nand_controller *nc;
854 struct mtd_oob_region oobregion;
855 int ret, i, max_bitflips = 0;
856 void *databuf, *eccbuf;
857
858 nc = to_nand_controller(chip->controller);
859
860 if (raw)
861 return 0;
862
863 ret = atmel_pmecc_wait_rdy(nand->pmecc);
864 if (ret) {
865 dev_err(nc->dev,
866 "Failed to read NAND page data (err = %d)\n",
867 ret);
868 return ret;
869 }
870
871 mtd_ooblayout_ecc(mtd, 0, &oobregion);
872 eccbuf = chip->oob_poi + oobregion.offset;
873 databuf = buf;
874
875 for (i = 0; i < chip->ecc.steps; i++) {
876 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
877 eccbuf);
878 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
879 ret = nand_check_erased_ecc_chunk(databuf,
880 chip->ecc.size,
881 eccbuf,
882 chip->ecc.bytes,
883 NULL, 0,
884 chip->ecc.strength);
885
886 if (ret >= 0) {
887 mtd->ecc_stats.corrected += ret;
888 max_bitflips = max(ret, max_bitflips);
889 } else {
890 mtd->ecc_stats.failed++;
891 }
892
893 databuf += chip->ecc.size;
894 eccbuf += chip->ecc.bytes;
895 }
896
897 return max_bitflips;
898 }
899
atmel_nand_pmecc_write_pg(struct nand_chip * chip,const u8 * buf,bool oob_required,int page,bool raw)900 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
901 bool oob_required, int page, bool raw)
902 {
903 struct mtd_info *mtd = nand_to_mtd(chip);
904 struct atmel_nand *nand = to_atmel_nand(chip);
905 int ret;
906
907 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
908
909 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
910 if (ret)
911 return ret;
912
913 nand_write_data_op(chip, buf, mtd->writesize, false);
914
915 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
916 if (ret) {
917 atmel_pmecc_disable(nand->pmecc);
918 return ret;
919 }
920
921 atmel_nand_pmecc_disable(chip, raw);
922
923 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
924
925 return nand_prog_page_end_op(chip);
926 }
927
atmel_nand_pmecc_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)928 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
929 int oob_required, int page)
930 {
931 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
932 }
933
atmel_nand_pmecc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)934 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
935 const u8 *buf, int oob_required,
936 int page)
937 {
938 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
939 }
940
atmel_nand_pmecc_read_pg(struct nand_chip * chip,u8 * buf,bool oob_required,int page,bool raw)941 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
942 bool oob_required, int page, bool raw)
943 {
944 struct mtd_info *mtd = nand_to_mtd(chip);
945 int ret;
946
947 nand_read_page_op(chip, page, 0, NULL, 0);
948
949 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
950 if (ret)
951 return ret;
952
953 ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
954 if (ret)
955 goto out_disable;
956
957 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
958 if (ret)
959 goto out_disable;
960
961 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
962
963 out_disable:
964 atmel_nand_pmecc_disable(chip, raw);
965
966 return ret;
967 }
968
atmel_nand_pmecc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)969 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
970 int oob_required, int page)
971 {
972 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
973 }
974
atmel_nand_pmecc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)975 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
976 int oob_required, int page)
977 {
978 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
979 }
980
atmel_hsmc_nand_pmecc_write_pg(struct nand_chip * chip,const u8 * buf,bool oob_required,int page,bool raw)981 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
982 const u8 *buf, bool oob_required,
983 int page, bool raw)
984 {
985 struct mtd_info *mtd = nand_to_mtd(chip);
986 struct atmel_nand *nand = to_atmel_nand(chip);
987 struct atmel_hsmc_nand_controller *nc;
988 int ret;
989
990 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
991 nc = to_hsmc_nand_controller(chip->controller);
992
993 atmel_nfc_copy_to_sram(chip, buf, false);
994
995 nc->op.cmds[0] = NAND_CMD_SEQIN;
996 nc->op.ncmds = 1;
997 atmel_nfc_set_op_addr(chip, page, 0x0);
998 nc->op.cs = nand->activecs->id;
999 nc->op.data = ATMEL_NFC_WRITE_DATA;
1000
1001 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1002 if (ret)
1003 return ret;
1004
1005 ret = atmel_nfc_exec_op(nc, false);
1006 if (ret) {
1007 atmel_nand_pmecc_disable(chip, raw);
1008 dev_err(nc->base.dev,
1009 "Failed to transfer NAND page data (err = %d)\n",
1010 ret);
1011 return ret;
1012 }
1013
1014 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1015
1016 atmel_nand_pmecc_disable(chip, raw);
1017
1018 if (ret)
1019 return ret;
1020
1021 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1022
1023 return nand_prog_page_end_op(chip);
1024 }
1025
atmel_hsmc_nand_pmecc_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1026 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1027 const u8 *buf, int oob_required,
1028 int page)
1029 {
1030 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1031 false);
1032 }
1033
atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1034 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1035 const u8 *buf,
1036 int oob_required, int page)
1037 {
1038 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1039 true);
1040 }
1041
atmel_hsmc_nand_pmecc_read_pg(struct nand_chip * chip,u8 * buf,bool oob_required,int page,bool raw)1042 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1043 bool oob_required, int page,
1044 bool raw)
1045 {
1046 struct mtd_info *mtd = nand_to_mtd(chip);
1047 struct atmel_nand *nand = to_atmel_nand(chip);
1048 struct atmel_hsmc_nand_controller *nc;
1049 int ret;
1050
1051 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1052 nc = to_hsmc_nand_controller(chip->controller);
1053
1054 /*
1055 * Optimized read page accessors only work when the NAND R/B pin is
1056 * connected to a native SoC R/B pin. If that's not the case, fallback
1057 * to the non-optimized one.
1058 */
1059 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1060 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1061 raw);
1062
1063 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1064
1065 if (mtd->writesize > 512)
1066 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1067
1068 atmel_nfc_set_op_addr(chip, page, 0x0);
1069 nc->op.cs = nand->activecs->id;
1070 nc->op.data = ATMEL_NFC_READ_DATA;
1071
1072 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1073 if (ret)
1074 return ret;
1075
1076 ret = atmel_nfc_exec_op(nc, false);
1077 if (ret) {
1078 atmel_nand_pmecc_disable(chip, raw);
1079 dev_err(nc->base.dev,
1080 "Failed to load NAND page data (err = %d)\n",
1081 ret);
1082 return ret;
1083 }
1084
1085 atmel_nfc_copy_from_sram(chip, buf, true);
1086
1087 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1088
1089 atmel_nand_pmecc_disable(chip, raw);
1090
1091 return ret;
1092 }
1093
atmel_hsmc_nand_pmecc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1094 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1095 int oob_required, int page)
1096 {
1097 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1098 false);
1099 }
1100
atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1101 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1102 u8 *buf, int oob_required,
1103 int page)
1104 {
1105 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1106 true);
1107 }
1108
atmel_nand_pmecc_init(struct nand_chip * chip)1109 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1110 {
1111 const struct nand_ecc_props *requirements =
1112 nanddev_get_ecc_requirements(&chip->base);
1113 struct mtd_info *mtd = nand_to_mtd(chip);
1114 struct nand_device *nanddev = mtd_to_nanddev(mtd);
1115 struct atmel_nand *nand = to_atmel_nand(chip);
1116 struct atmel_nand_controller *nc;
1117 struct atmel_pmecc_user_req req;
1118
1119 nc = to_nand_controller(chip->controller);
1120
1121 if (!nc->pmecc) {
1122 dev_err(nc->dev, "HW ECC not supported\n");
1123 return -ENOTSUPP;
1124 }
1125
1126 if (nc->caps->legacy_of_bindings) {
1127 u32 val;
1128
1129 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1130 &val))
1131 chip->ecc.strength = val;
1132
1133 if (!of_property_read_u32(nc->dev->of_node,
1134 "atmel,pmecc-sector-size",
1135 &val))
1136 chip->ecc.size = val;
1137 }
1138
1139 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1140 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1141 else if (chip->ecc.strength)
1142 req.ecc.strength = chip->ecc.strength;
1143 else if (requirements->strength)
1144 req.ecc.strength = requirements->strength;
1145 else
1146 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1147
1148 if (chip->ecc.size)
1149 req.ecc.sectorsize = chip->ecc.size;
1150 else if (requirements->step_size)
1151 req.ecc.sectorsize = requirements->step_size;
1152 else
1153 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1154
1155 req.pagesize = mtd->writesize;
1156 req.oobsize = mtd->oobsize;
1157
1158 if (mtd->writesize <= 512) {
1159 req.ecc.bytes = 4;
1160 req.ecc.ooboffset = 0;
1161 } else {
1162 req.ecc.bytes = mtd->oobsize - 2;
1163 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1164 }
1165
1166 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1167 if (IS_ERR(nand->pmecc))
1168 return PTR_ERR(nand->pmecc);
1169
1170 chip->ecc.algo = NAND_ECC_ALGO_BCH;
1171 chip->ecc.size = req.ecc.sectorsize;
1172 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1173 chip->ecc.strength = req.ecc.strength;
1174
1175 chip->options |= NAND_NO_SUBPAGE_WRITE;
1176
1177 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1178
1179 return 0;
1180 }
1181
atmel_nand_ecc_init(struct nand_chip * chip)1182 static int atmel_nand_ecc_init(struct nand_chip *chip)
1183 {
1184 struct atmel_nand_controller *nc;
1185 int ret;
1186
1187 nc = to_nand_controller(chip->controller);
1188
1189 switch (chip->ecc.engine_type) {
1190 case NAND_ECC_ENGINE_TYPE_NONE:
1191 case NAND_ECC_ENGINE_TYPE_SOFT:
1192 /*
1193 * Nothing to do, the core will initialize everything for us.
1194 */
1195 break;
1196
1197 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1198 ret = atmel_nand_pmecc_init(chip);
1199 if (ret)
1200 return ret;
1201
1202 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1203 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1204 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1205 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1206 break;
1207
1208 default:
1209 /* Other modes are not supported. */
1210 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1211 chip->ecc.engine_type);
1212 return -ENOTSUPP;
1213 }
1214
1215 return 0;
1216 }
1217
atmel_hsmc_nand_ecc_init(struct nand_chip * chip)1218 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1219 {
1220 int ret;
1221
1222 ret = atmel_nand_ecc_init(chip);
1223 if (ret)
1224 return ret;
1225
1226 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1227 return 0;
1228
1229 /* Adjust the ECC operations for the HSMC IP. */
1230 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1231 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1232 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1233 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1234
1235 return 0;
1236 }
1237
atmel_smc_nand_prepare_smcconf(struct atmel_nand * nand,const struct nand_interface_config * conf,struct atmel_smc_cs_conf * smcconf)1238 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1239 const struct nand_interface_config *conf,
1240 struct atmel_smc_cs_conf *smcconf)
1241 {
1242 u32 ncycles, totalcycles, timeps, mckperiodps;
1243 struct atmel_nand_controller *nc;
1244 int ret;
1245
1246 nc = to_nand_controller(nand->base.controller);
1247
1248 /* DDR interface not supported. */
1249 if (conf->type != NAND_SDR_IFACE)
1250 return -ENOTSUPP;
1251
1252 /*
1253 * tRC < 30ns implies EDO mode. This controller does not support this
1254 * mode.
1255 */
1256 if (conf->timings.sdr.tRC_min < 30000)
1257 return -ENOTSUPP;
1258
1259 atmel_smc_cs_conf_init(smcconf);
1260
1261 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1262 mckperiodps *= 1000;
1263
1264 /*
1265 * Set write pulse timing. This one is easy to extract:
1266 *
1267 * NWE_PULSE = tWP
1268 */
1269 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1270 totalcycles = ncycles;
1271 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1272 ncycles);
1273 if (ret)
1274 return ret;
1275
1276 /*
1277 * The write setup timing depends on the operation done on the NAND.
1278 * All operations goes through the same data bus, but the operation
1279 * type depends on the address we are writing to (ALE/CLE address
1280 * lines).
1281 * Since we have no way to differentiate the different operations at
1282 * the SMC level, we must consider the worst case (the biggest setup
1283 * time among all operation types):
1284 *
1285 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1286 */
1287 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1288 conf->timings.sdr.tALS_min);
1289 timeps = max(timeps, conf->timings.sdr.tDS_min);
1290 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1291 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1292 totalcycles += ncycles;
1293 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1294 ncycles);
1295 if (ret)
1296 return ret;
1297
1298 /*
1299 * As for the write setup timing, the write hold timing depends on the
1300 * operation done on the NAND:
1301 *
1302 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1303 */
1304 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1305 conf->timings.sdr.tALH_min);
1306 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1307 conf->timings.sdr.tWH_min);
1308 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1309 totalcycles += ncycles;
1310
1311 /*
1312 * The write cycle timing is directly matching tWC, but is also
1313 * dependent on the other timings on the setup and hold timings we
1314 * calculated earlier, which gives:
1315 *
1316 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1317 */
1318 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1319 ncycles = max(totalcycles, ncycles);
1320 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1321 ncycles);
1322 if (ret)
1323 return ret;
1324
1325 /*
1326 * We don't want the CS line to be toggled between each byte/word
1327 * transfer to the NAND. The only way to guarantee that is to have the
1328 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1329 *
1330 * NCS_WR_PULSE = NWE_CYCLE
1331 */
1332 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1333 ncycles);
1334 if (ret)
1335 return ret;
1336
1337 /*
1338 * As for the write setup timing, the read hold timing depends on the
1339 * operation done on the NAND:
1340 *
1341 * NRD_HOLD = max(tREH, tRHOH)
1342 */
1343 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1344 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1345 totalcycles = ncycles;
1346
1347 /*
1348 * TDF = tRHZ - NRD_HOLD
1349 */
1350 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1351 ncycles -= totalcycles;
1352
1353 /*
1354 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1355 * we might end up with a config that does not fit in the TDF field.
1356 * Just take the max value in this case and hope that the NAND is more
1357 * tolerant than advertised.
1358 */
1359 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1360 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1361 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1362 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1363
1364 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1365 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1366
1367 /*
1368 * Read pulse timing directly matches tRP:
1369 *
1370 * NRD_PULSE = tRP
1371 */
1372 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1373 totalcycles += ncycles;
1374 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1375 ncycles);
1376 if (ret)
1377 return ret;
1378
1379 /*
1380 * The write cycle timing is directly matching tWC, but is also
1381 * dependent on the setup and hold timings we calculated earlier,
1382 * which gives:
1383 *
1384 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1385 *
1386 * NRD_SETUP is always 0.
1387 */
1388 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1389 ncycles = max(totalcycles, ncycles);
1390 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1391 ncycles);
1392 if (ret)
1393 return ret;
1394
1395 /*
1396 * We don't want the CS line to be toggled between each byte/word
1397 * transfer from the NAND. The only way to guarantee that is to have
1398 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1399 *
1400 * NCS_RD_PULSE = NRD_CYCLE
1401 */
1402 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1403 ncycles);
1404 if (ret)
1405 return ret;
1406
1407 /* Txxx timings are directly matching tXXX ones. */
1408 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1409 ret = atmel_smc_cs_conf_set_timing(smcconf,
1410 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1411 ncycles);
1412 if (ret)
1413 return ret;
1414
1415 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1416 ret = atmel_smc_cs_conf_set_timing(smcconf,
1417 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1418 ncycles);
1419 /*
1420 * Version 4 of the ONFI spec mandates that tADL be at least 400
1421 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1422 * fit in the tADL field of the SMC reg. We need to relax the check and
1423 * accept the -ERANGE return code.
1424 *
1425 * Note that previous versions of the ONFI spec had a lower tADL_min
1426 * (100 or 200 ns). It's not clear why this timing constraint got
1427 * increased but it seems most NANDs are fine with values lower than
1428 * 400ns, so we should be safe.
1429 */
1430 if (ret && ret != -ERANGE)
1431 return ret;
1432
1433 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1434 ret = atmel_smc_cs_conf_set_timing(smcconf,
1435 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1436 ncycles);
1437 if (ret)
1438 return ret;
1439
1440 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1441 ret = atmel_smc_cs_conf_set_timing(smcconf,
1442 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1443 ncycles);
1444 if (ret)
1445 return ret;
1446
1447 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1448 ret = atmel_smc_cs_conf_set_timing(smcconf,
1449 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1450 ncycles);
1451 if (ret)
1452 return ret;
1453
1454 /* Attach the CS line to the NFC logic. */
1455 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1456
1457 /* Set the appropriate data bus width. */
1458 if (nand->base.options & NAND_BUSWIDTH_16)
1459 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1460
1461 /* Operate in NRD/NWE READ/WRITEMODE. */
1462 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1463 ATMEL_SMC_MODE_WRITEMODE_NWE;
1464
1465 return 0;
1466 }
1467
atmel_smc_nand_setup_interface(struct atmel_nand * nand,int csline,const struct nand_interface_config * conf)1468 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1469 int csline,
1470 const struct nand_interface_config *conf)
1471 {
1472 struct atmel_nand_controller *nc;
1473 struct atmel_smc_cs_conf smcconf;
1474 struct atmel_nand_cs *cs;
1475 int ret;
1476
1477 nc = to_nand_controller(nand->base.controller);
1478
1479 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1480 if (ret)
1481 return ret;
1482
1483 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1484 return 0;
1485
1486 cs = &nand->cs[csline];
1487 cs->smcconf = smcconf;
1488 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1489
1490 return 0;
1491 }
1492
atmel_hsmc_nand_setup_interface(struct atmel_nand * nand,int csline,const struct nand_interface_config * conf)1493 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1494 int csline,
1495 const struct nand_interface_config *conf)
1496 {
1497 struct atmel_hsmc_nand_controller *nc;
1498 struct atmel_smc_cs_conf smcconf;
1499 struct atmel_nand_cs *cs;
1500 int ret;
1501
1502 nc = to_hsmc_nand_controller(nand->base.controller);
1503
1504 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1505 if (ret)
1506 return ret;
1507
1508 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1509 return 0;
1510
1511 cs = &nand->cs[csline];
1512 cs->smcconf = smcconf;
1513
1514 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1515 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1516
1517 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1518 &cs->smcconf);
1519
1520 return 0;
1521 }
1522
atmel_nand_setup_interface(struct nand_chip * chip,int csline,const struct nand_interface_config * conf)1523 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1524 const struct nand_interface_config *conf)
1525 {
1526 struct atmel_nand *nand = to_atmel_nand(chip);
1527 struct atmel_nand_controller *nc;
1528
1529 nc = to_nand_controller(nand->base.controller);
1530
1531 if (csline >= nand->numcs ||
1532 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1533 return -EINVAL;
1534
1535 return nc->caps->ops->setup_interface(nand, csline, conf);
1536 }
1537
atmel_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)1538 static int atmel_nand_exec_op(struct nand_chip *chip,
1539 const struct nand_operation *op,
1540 bool check_only)
1541 {
1542 struct atmel_nand *nand = to_atmel_nand(chip);
1543 struct atmel_nand_controller *nc;
1544
1545 nc = to_nand_controller(nand->base.controller);
1546
1547 return nc->caps->ops->exec_op(nand, op, check_only);
1548 }
1549
atmel_nand_init(struct atmel_nand_controller * nc,struct atmel_nand * nand)1550 static void atmel_nand_init(struct atmel_nand_controller *nc,
1551 struct atmel_nand *nand)
1552 {
1553 struct nand_chip *chip = &nand->base;
1554 struct mtd_info *mtd = nand_to_mtd(chip);
1555
1556 mtd->dev.parent = nc->dev;
1557 nand->base.controller = &nc->base;
1558
1559 if (!nc->mck || !nc->caps->ops->setup_interface)
1560 chip->options |= NAND_KEEP_TIMINGS;
1561
1562 /*
1563 * Use a bounce buffer when the buffer passed by the MTD user is not
1564 * suitable for DMA.
1565 */
1566 if (nc->dmac)
1567 chip->options |= NAND_USES_DMA;
1568
1569 /* Default to HW ECC if pmecc is available. */
1570 if (nc->pmecc)
1571 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1572 }
1573
atmel_smc_nand_init(struct atmel_nand_controller * nc,struct atmel_nand * nand)1574 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1575 struct atmel_nand *nand)
1576 {
1577 struct nand_chip *chip = &nand->base;
1578 struct atmel_smc_nand_controller *smc_nc;
1579 int i;
1580
1581 atmel_nand_init(nc, nand);
1582
1583 smc_nc = to_smc_nand_controller(chip->controller);
1584 if (!smc_nc->ebi_csa_regmap)
1585 return;
1586
1587 /* Attach the CS to the NAND Flash logic. */
1588 for (i = 0; i < nand->numcs; i++)
1589 regmap_update_bits(smc_nc->ebi_csa_regmap,
1590 smc_nc->ebi_csa->offs,
1591 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1592
1593 if (smc_nc->ebi_csa->nfd0_on_d16)
1594 regmap_update_bits(smc_nc->ebi_csa_regmap,
1595 smc_nc->ebi_csa->offs,
1596 smc_nc->ebi_csa->nfd0_on_d16,
1597 smc_nc->ebi_csa->nfd0_on_d16);
1598 }
1599
atmel_nand_controller_remove_nand(struct atmel_nand * nand)1600 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1601 {
1602 struct nand_chip *chip = &nand->base;
1603 struct mtd_info *mtd = nand_to_mtd(chip);
1604 int ret;
1605
1606 ret = mtd_device_unregister(mtd);
1607 if (ret)
1608 return ret;
1609
1610 nand_cleanup(chip);
1611 list_del(&nand->node);
1612
1613 return 0;
1614 }
1615
atmel_nand_create(struct atmel_nand_controller * nc,struct device_node * np,int reg_cells)1616 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1617 struct device_node *np,
1618 int reg_cells)
1619 {
1620 struct atmel_nand *nand;
1621 struct gpio_desc *gpio;
1622 int numcs, ret, i;
1623
1624 numcs = of_property_count_elems_of_size(np, "reg",
1625 reg_cells * sizeof(u32));
1626 if (numcs < 1) {
1627 dev_err(nc->dev, "Missing or invalid reg property\n");
1628 return ERR_PTR(-EINVAL);
1629 }
1630
1631 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1632 if (!nand) {
1633 dev_err(nc->dev, "Failed to allocate NAND object\n");
1634 return ERR_PTR(-ENOMEM);
1635 }
1636
1637 nand->numcs = numcs;
1638
1639 gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1640 "det", GPIOD_IN, "nand-det");
1641 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1642 dev_err(nc->dev,
1643 "Failed to get detect gpio (err = %ld)\n",
1644 PTR_ERR(gpio));
1645 return ERR_CAST(gpio);
1646 }
1647
1648 if (!IS_ERR(gpio))
1649 nand->cdgpio = gpio;
1650
1651 for (i = 0; i < numcs; i++) {
1652 struct resource res;
1653 u32 val;
1654
1655 ret = of_address_to_resource(np, 0, &res);
1656 if (ret) {
1657 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1658 ret);
1659 return ERR_PTR(ret);
1660 }
1661
1662 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1663 &val);
1664 if (ret) {
1665 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1666 ret);
1667 return ERR_PTR(ret);
1668 }
1669
1670 nand->cs[i].id = val;
1671
1672 nand->cs[i].io.dma = res.start;
1673 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1674 if (IS_ERR(nand->cs[i].io.virt))
1675 return ERR_CAST(nand->cs[i].io.virt);
1676
1677 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1678 if (val > ATMEL_NFC_MAX_RB_ID)
1679 return ERR_PTR(-EINVAL);
1680
1681 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1682 nand->cs[i].rb.id = val;
1683 } else {
1684 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1685 of_fwnode_handle(np),
1686 "rb", i, GPIOD_IN,
1687 "nand-rb");
1688 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1689 dev_err(nc->dev,
1690 "Failed to get R/B gpio (err = %ld)\n",
1691 PTR_ERR(gpio));
1692 return ERR_CAST(gpio);
1693 }
1694
1695 if (!IS_ERR(gpio)) {
1696 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1697 nand->cs[i].rb.gpio = gpio;
1698 }
1699 }
1700
1701 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1702 of_fwnode_handle(np),
1703 "cs", i, GPIOD_OUT_HIGH,
1704 "nand-cs");
1705 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1706 dev_err(nc->dev,
1707 "Failed to get CS gpio (err = %ld)\n",
1708 PTR_ERR(gpio));
1709 return ERR_CAST(gpio);
1710 }
1711
1712 if (!IS_ERR(gpio))
1713 nand->cs[i].csgpio = gpio;
1714 }
1715
1716 nand_set_flash_node(&nand->base, np);
1717
1718 return nand;
1719 }
1720
1721 static int
atmel_nand_controller_add_nand(struct atmel_nand_controller * nc,struct atmel_nand * nand)1722 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1723 struct atmel_nand *nand)
1724 {
1725 struct nand_chip *chip = &nand->base;
1726 struct mtd_info *mtd = nand_to_mtd(chip);
1727 int ret;
1728
1729 /* No card inserted, skip this NAND. */
1730 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1731 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1732 return 0;
1733 }
1734
1735 nc->caps->ops->nand_init(nc, nand);
1736
1737 ret = nand_scan(chip, nand->numcs);
1738 if (ret) {
1739 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1740 return ret;
1741 }
1742
1743 ret = mtd_device_register(mtd, NULL, 0);
1744 if (ret) {
1745 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1746 nand_cleanup(chip);
1747 return ret;
1748 }
1749
1750 list_add_tail(&nand->node, &nc->chips);
1751
1752 return 0;
1753 }
1754
1755 static int
atmel_nand_controller_remove_nands(struct atmel_nand_controller * nc)1756 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1757 {
1758 struct atmel_nand *nand, *tmp;
1759 int ret;
1760
1761 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1762 ret = atmel_nand_controller_remove_nand(nand);
1763 if (ret)
1764 return ret;
1765 }
1766
1767 return 0;
1768 }
1769
1770 static int
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller * nc)1771 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1772 {
1773 struct device *dev = nc->dev;
1774 struct platform_device *pdev = to_platform_device(dev);
1775 struct atmel_nand *nand;
1776 struct gpio_desc *gpio;
1777 struct resource *res;
1778
1779 /*
1780 * Legacy bindings only allow connecting a single NAND with a unique CS
1781 * line to the controller.
1782 */
1783 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1784 GFP_KERNEL);
1785 if (!nand)
1786 return -ENOMEM;
1787
1788 nand->numcs = 1;
1789
1790 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1791 nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1792 if (IS_ERR(nand->cs[0].io.virt))
1793 return PTR_ERR(nand->cs[0].io.virt);
1794
1795 nand->cs[0].io.dma = res->start;
1796
1797 /*
1798 * The old driver was hardcoding the CS id to 3 for all sama5
1799 * controllers. Since this id is only meaningful for the sama5
1800 * controller we can safely assign this id to 3 no matter the
1801 * controller.
1802 * If one wants to connect a NAND to a different CS line, he will
1803 * have to use the new bindings.
1804 */
1805 nand->cs[0].id = 3;
1806
1807 /* R/B GPIO. */
1808 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
1809 if (IS_ERR(gpio)) {
1810 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1811 PTR_ERR(gpio));
1812 return PTR_ERR(gpio);
1813 }
1814
1815 if (gpio) {
1816 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1817 nand->cs[0].rb.gpio = gpio;
1818 }
1819
1820 /* CS GPIO. */
1821 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1822 if (IS_ERR(gpio)) {
1823 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1824 PTR_ERR(gpio));
1825 return PTR_ERR(gpio);
1826 }
1827
1828 nand->cs[0].csgpio = gpio;
1829
1830 /* Card detect GPIO. */
1831 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1832 if (IS_ERR(gpio)) {
1833 dev_err(dev,
1834 "Failed to get detect gpio (err = %ld)\n",
1835 PTR_ERR(gpio));
1836 return PTR_ERR(gpio);
1837 }
1838
1839 nand->cdgpio = gpio;
1840
1841 nand_set_flash_node(&nand->base, nc->dev->of_node);
1842
1843 return atmel_nand_controller_add_nand(nc, nand);
1844 }
1845
atmel_nand_controller_add_nands(struct atmel_nand_controller * nc)1846 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1847 {
1848 struct device_node *np, *nand_np;
1849 struct device *dev = nc->dev;
1850 int ret, reg_cells;
1851 u32 val;
1852
1853 /* We do not retrieve the SMC syscon when parsing old DTs. */
1854 if (nc->caps->legacy_of_bindings)
1855 return atmel_nand_controller_legacy_add_nands(nc);
1856
1857 np = dev->of_node;
1858
1859 ret = of_property_read_u32(np, "#address-cells", &val);
1860 if (ret) {
1861 dev_err(dev, "missing #address-cells property\n");
1862 return ret;
1863 }
1864
1865 reg_cells = val;
1866
1867 ret = of_property_read_u32(np, "#size-cells", &val);
1868 if (ret) {
1869 dev_err(dev, "missing #size-cells property\n");
1870 return ret;
1871 }
1872
1873 reg_cells += val;
1874
1875 for_each_child_of_node(np, nand_np) {
1876 struct atmel_nand *nand;
1877
1878 nand = atmel_nand_create(nc, nand_np, reg_cells);
1879 if (IS_ERR(nand)) {
1880 ret = PTR_ERR(nand);
1881 goto err;
1882 }
1883
1884 ret = atmel_nand_controller_add_nand(nc, nand);
1885 if (ret)
1886 goto err;
1887 }
1888
1889 return 0;
1890
1891 err:
1892 atmel_nand_controller_remove_nands(nc);
1893
1894 return ret;
1895 }
1896
atmel_nand_controller_cleanup(struct atmel_nand_controller * nc)1897 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1898 {
1899 if (nc->dmac)
1900 dma_release_channel(nc->dmac);
1901
1902 clk_put(nc->mck);
1903 }
1904
1905 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1906 .offs = AT91SAM9260_MATRIX_EBICSA,
1907 };
1908
1909 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1910 .offs = AT91SAM9261_MATRIX_EBICSA,
1911 };
1912
1913 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1914 .offs = AT91SAM9263_MATRIX_EBI0CSA,
1915 };
1916
1917 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1918 .offs = AT91SAM9RL_MATRIX_EBICSA,
1919 };
1920
1921 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1922 .offs = AT91SAM9G45_MATRIX_EBICSA,
1923 };
1924
1925 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1926 .offs = AT91SAM9N12_MATRIX_EBICSA,
1927 };
1928
1929 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1930 .offs = AT91SAM9X5_MATRIX_EBICSA,
1931 };
1932
1933 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1934 .offs = AT91_SFR_CCFG_EBICSA,
1935 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1936 };
1937
1938 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = {
1939 {
1940 .compatible = "atmel,at91sam9260-matrix",
1941 .data = &at91sam9260_ebi_csa,
1942 },
1943 {
1944 .compatible = "atmel,at91sam9261-matrix",
1945 .data = &at91sam9261_ebi_csa,
1946 },
1947 {
1948 .compatible = "atmel,at91sam9263-matrix",
1949 .data = &at91sam9263_ebi_csa,
1950 },
1951 {
1952 .compatible = "atmel,at91sam9rl-matrix",
1953 .data = &at91sam9rl_ebi_csa,
1954 },
1955 {
1956 .compatible = "atmel,at91sam9g45-matrix",
1957 .data = &at91sam9g45_ebi_csa,
1958 },
1959 {
1960 .compatible = "atmel,at91sam9n12-matrix",
1961 .data = &at91sam9n12_ebi_csa,
1962 },
1963 {
1964 .compatible = "atmel,at91sam9x5-matrix",
1965 .data = &at91sam9x5_ebi_csa,
1966 },
1967 {
1968 .compatible = "microchip,sam9x60-sfr",
1969 .data = &sam9x60_ebi_csa,
1970 },
1971 { /* sentinel */ },
1972 };
1973
atmel_nand_attach_chip(struct nand_chip * chip)1974 static int atmel_nand_attach_chip(struct nand_chip *chip)
1975 {
1976 struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1977 struct atmel_nand *nand = to_atmel_nand(chip);
1978 struct mtd_info *mtd = nand_to_mtd(chip);
1979 int ret;
1980
1981 ret = nc->caps->ops->ecc_init(chip);
1982 if (ret)
1983 return ret;
1984
1985 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1986 /*
1987 * We keep the MTD name unchanged to avoid breaking platforms
1988 * where the MTD cmdline parser is used and the bootloader
1989 * has not been updated to use the new naming scheme.
1990 */
1991 mtd->name = "atmel_nand";
1992 } else if (!mtd->name) {
1993 /*
1994 * If the new bindings are used and the bootloader has not been
1995 * updated to pass a new mtdparts parameter on the cmdline, you
1996 * should define the following property in your nand node:
1997 *
1998 * label = "atmel_nand";
1999 *
2000 * This way, mtd->name will be set by the core when
2001 * nand_set_flash_node() is called.
2002 */
2003 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2004 "%s:nand.%d", dev_name(nc->dev),
2005 nand->cs[0].id);
2006 if (!mtd->name) {
2007 dev_err(nc->dev, "Failed to allocate mtd->name\n");
2008 return -ENOMEM;
2009 }
2010 }
2011
2012 return 0;
2013 }
2014
2015 static const struct nand_controller_ops atmel_nand_controller_ops = {
2016 .attach_chip = atmel_nand_attach_chip,
2017 .setup_interface = atmel_nand_setup_interface,
2018 .exec_op = atmel_nand_exec_op,
2019 };
2020
atmel_nand_controller_init(struct atmel_nand_controller * nc,struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2021 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2022 struct platform_device *pdev,
2023 const struct atmel_nand_controller_caps *caps)
2024 {
2025 struct device *dev = &pdev->dev;
2026 struct device_node *np = dev->of_node;
2027 int ret;
2028
2029 nand_controller_init(&nc->base);
2030 nc->base.ops = &atmel_nand_controller_ops;
2031 INIT_LIST_HEAD(&nc->chips);
2032 nc->dev = dev;
2033 nc->caps = caps;
2034
2035 platform_set_drvdata(pdev, nc);
2036
2037 nc->pmecc = devm_atmel_pmecc_get(dev);
2038 if (IS_ERR(nc->pmecc))
2039 return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2040 "Could not get PMECC object\n");
2041
2042 if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2043 dma_cap_mask_t mask;
2044
2045 dma_cap_zero(mask);
2046 dma_cap_set(DMA_MEMCPY, mask);
2047
2048 nc->dmac = dma_request_channel(mask, NULL, NULL);
2049 if (!nc->dmac)
2050 dev_err(nc->dev, "Failed to request DMA channel\n");
2051 }
2052
2053 /* We do not retrieve the SMC syscon when parsing old DTs. */
2054 if (nc->caps->legacy_of_bindings)
2055 return 0;
2056
2057 nc->mck = of_clk_get(dev->parent->of_node, 0);
2058 if (IS_ERR(nc->mck)) {
2059 dev_err(dev, "Failed to retrieve MCK clk\n");
2060 return PTR_ERR(nc->mck);
2061 }
2062
2063 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2064 if (!np) {
2065 dev_err(dev, "Missing or invalid atmel,smc property\n");
2066 return -EINVAL;
2067 }
2068
2069 nc->smc = syscon_node_to_regmap(np);
2070 of_node_put(np);
2071 if (IS_ERR(nc->smc)) {
2072 ret = PTR_ERR(nc->smc);
2073 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2074 return ret;
2075 }
2076
2077 return 0;
2078 }
2079
2080 static int
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller * nc)2081 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2082 {
2083 struct device *dev = nc->base.dev;
2084 const struct of_device_id *match;
2085 struct device_node *np;
2086 int ret;
2087
2088 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
2089 if (nc->base.caps->legacy_of_bindings)
2090 return 0;
2091
2092 np = of_parse_phandle(dev->parent->of_node,
2093 nc->base.caps->ebi_csa_regmap_name, 0);
2094 if (!np)
2095 return 0;
2096
2097 match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2098 if (!match) {
2099 of_node_put(np);
2100 return 0;
2101 }
2102
2103 nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2104 of_node_put(np);
2105 if (IS_ERR(nc->ebi_csa_regmap)) {
2106 ret = PTR_ERR(nc->ebi_csa_regmap);
2107 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2108 return ret;
2109 }
2110
2111 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2112
2113 /*
2114 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2115 * add 4 to ->ebi_csa->offs.
2116 */
2117 if (of_device_is_compatible(dev->parent->of_node,
2118 "atmel,at91sam9263-ebi1"))
2119 nc->ebi_csa->offs += 4;
2120
2121 return 0;
2122 }
2123
2124 static int
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller * nc)2125 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2126 {
2127 struct regmap_config regmap_conf = {
2128 .reg_bits = 32,
2129 .val_bits = 32,
2130 .reg_stride = 4,
2131 };
2132
2133 struct device *dev = nc->base.dev;
2134 struct device_node *nand_np, *nfc_np;
2135 void __iomem *iomem;
2136 struct resource res;
2137 int ret;
2138
2139 nand_np = dev->of_node;
2140 nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2141 if (!nfc_np) {
2142 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2143 return -ENODEV;
2144 }
2145
2146 nc->clk = of_clk_get(nfc_np, 0);
2147 if (IS_ERR(nc->clk)) {
2148 ret = PTR_ERR(nc->clk);
2149 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2150 ret);
2151 goto out;
2152 }
2153
2154 ret = clk_prepare_enable(nc->clk);
2155 if (ret) {
2156 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2157 ret);
2158 goto out;
2159 }
2160
2161 nc->irq = of_irq_get(nand_np, 0);
2162 if (nc->irq <= 0) {
2163 ret = nc->irq ?: -ENXIO;
2164 if (ret != -EPROBE_DEFER)
2165 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2166 ret);
2167 goto out;
2168 }
2169
2170 ret = of_address_to_resource(nfc_np, 0, &res);
2171 if (ret) {
2172 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2173 ret);
2174 goto out;
2175 }
2176
2177 iomem = devm_ioremap_resource(dev, &res);
2178 if (IS_ERR(iomem)) {
2179 ret = PTR_ERR(iomem);
2180 goto out;
2181 }
2182
2183 regmap_conf.name = "nfc-io";
2184 regmap_conf.max_register = resource_size(&res) - 4;
2185 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2186 if (IS_ERR(nc->io)) {
2187 ret = PTR_ERR(nc->io);
2188 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2189 ret);
2190 goto out;
2191 }
2192
2193 ret = of_address_to_resource(nfc_np, 1, &res);
2194 if (ret) {
2195 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2196 ret);
2197 goto out;
2198 }
2199
2200 iomem = devm_ioremap_resource(dev, &res);
2201 if (IS_ERR(iomem)) {
2202 ret = PTR_ERR(iomem);
2203 goto out;
2204 }
2205
2206 regmap_conf.name = "smc";
2207 regmap_conf.max_register = resource_size(&res) - 4;
2208 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2209 if (IS_ERR(nc->base.smc)) {
2210 ret = PTR_ERR(nc->base.smc);
2211 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2212 ret);
2213 goto out;
2214 }
2215
2216 ret = of_address_to_resource(nfc_np, 2, &res);
2217 if (ret) {
2218 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2219 ret);
2220 goto out;
2221 }
2222
2223 nc->sram.virt = devm_ioremap_resource(dev, &res);
2224 if (IS_ERR(nc->sram.virt)) {
2225 ret = PTR_ERR(nc->sram.virt);
2226 goto out;
2227 }
2228
2229 nc->sram.dma = res.start;
2230
2231 out:
2232 of_node_put(nfc_np);
2233
2234 return ret;
2235 }
2236
2237 static int
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller * nc)2238 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2239 {
2240 struct device *dev = nc->base.dev;
2241 struct device_node *np;
2242 int ret;
2243
2244 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2245 if (!np) {
2246 dev_err(dev, "Missing or invalid atmel,smc property\n");
2247 return -EINVAL;
2248 }
2249
2250 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2251
2252 nc->irq = of_irq_get(np, 0);
2253 of_node_put(np);
2254 if (nc->irq <= 0) {
2255 ret = nc->irq ?: -ENXIO;
2256 if (ret != -EPROBE_DEFER)
2257 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2258 ret);
2259 return ret;
2260 }
2261
2262 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2263 if (!np) {
2264 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2265 return -EINVAL;
2266 }
2267
2268 nc->io = syscon_node_to_regmap(np);
2269 of_node_put(np);
2270 if (IS_ERR(nc->io)) {
2271 ret = PTR_ERR(nc->io);
2272 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2273 return ret;
2274 }
2275
2276 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2277 "atmel,nfc-sram", 0);
2278 if (!nc->sram.pool) {
2279 dev_err(nc->base.dev, "Missing SRAM\n");
2280 return -ENOMEM;
2281 }
2282
2283 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2284 ATMEL_NFC_SRAM_SIZE,
2285 &nc->sram.dma);
2286 if (!nc->sram.virt) {
2287 dev_err(nc->base.dev,
2288 "Could not allocate memory from the NFC SRAM pool\n");
2289 return -ENOMEM;
2290 }
2291
2292 return 0;
2293 }
2294
2295 static int
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller * nc)2296 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2297 {
2298 struct atmel_hsmc_nand_controller *hsmc_nc;
2299 int ret;
2300
2301 ret = atmel_nand_controller_remove_nands(nc);
2302 if (ret)
2303 return ret;
2304
2305 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2306 regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2307 ATMEL_HSMC_NFC_CTRL_DIS);
2308
2309 if (hsmc_nc->sram.pool)
2310 gen_pool_free(hsmc_nc->sram.pool,
2311 (unsigned long)hsmc_nc->sram.virt,
2312 ATMEL_NFC_SRAM_SIZE);
2313
2314 if (hsmc_nc->clk) {
2315 clk_disable_unprepare(hsmc_nc->clk);
2316 clk_put(hsmc_nc->clk);
2317 }
2318
2319 atmel_nand_controller_cleanup(nc);
2320
2321 return 0;
2322 }
2323
atmel_hsmc_nand_controller_probe(struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2324 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2325 const struct atmel_nand_controller_caps *caps)
2326 {
2327 struct device *dev = &pdev->dev;
2328 struct atmel_hsmc_nand_controller *nc;
2329 int ret;
2330
2331 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2332 if (!nc)
2333 return -ENOMEM;
2334
2335 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2336 if (ret)
2337 return ret;
2338
2339 if (caps->legacy_of_bindings)
2340 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2341 else
2342 ret = atmel_hsmc_nand_controller_init(nc);
2343
2344 if (ret)
2345 return ret;
2346
2347 /* Make sure all irqs are masked before registering our IRQ handler. */
2348 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2349 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2350 IRQF_SHARED, "nfc", nc);
2351 if (ret) {
2352 dev_err(dev,
2353 "Could not get register NFC interrupt handler (err = %d)\n",
2354 ret);
2355 goto err;
2356 }
2357
2358 /* Initial NFC configuration. */
2359 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2360 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2361 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2362 ATMEL_HSMC_NFC_CTRL_EN);
2363
2364 ret = atmel_nand_controller_add_nands(&nc->base);
2365 if (ret)
2366 goto err;
2367
2368 return 0;
2369
2370 err:
2371 atmel_hsmc_nand_controller_remove(&nc->base);
2372
2373 return ret;
2374 }
2375
2376 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2377 .probe = atmel_hsmc_nand_controller_probe,
2378 .remove = atmel_hsmc_nand_controller_remove,
2379 .ecc_init = atmel_hsmc_nand_ecc_init,
2380 .nand_init = atmel_nand_init,
2381 .setup_interface = atmel_hsmc_nand_setup_interface,
2382 .exec_op = atmel_hsmc_nand_exec_op,
2383 };
2384
2385 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2386 .has_dma = true,
2387 .ale_offs = BIT(21),
2388 .cle_offs = BIT(22),
2389 .ops = &atmel_hsmc_nc_ops,
2390 };
2391
2392 /* Only used to parse old bindings. */
2393 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2394 .has_dma = true,
2395 .ale_offs = BIT(21),
2396 .cle_offs = BIT(22),
2397 .ops = &atmel_hsmc_nc_ops,
2398 .legacy_of_bindings = true,
2399 };
2400
atmel_smc_nand_controller_probe(struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2401 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2402 const struct atmel_nand_controller_caps *caps)
2403 {
2404 struct device *dev = &pdev->dev;
2405 struct atmel_smc_nand_controller *nc;
2406 int ret;
2407
2408 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2409 if (!nc)
2410 return -ENOMEM;
2411
2412 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2413 if (ret)
2414 return ret;
2415
2416 ret = atmel_smc_nand_controller_init(nc);
2417 if (ret)
2418 return ret;
2419
2420 return atmel_nand_controller_add_nands(&nc->base);
2421 }
2422
2423 static int
atmel_smc_nand_controller_remove(struct atmel_nand_controller * nc)2424 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2425 {
2426 int ret;
2427
2428 ret = atmel_nand_controller_remove_nands(nc);
2429 if (ret)
2430 return ret;
2431
2432 atmel_nand_controller_cleanup(nc);
2433
2434 return 0;
2435 }
2436
2437 /*
2438 * The SMC reg layout of at91rm9200 is completely different which prevents us
2439 * from re-using atmel_smc_nand_setup_interface() for the
2440 * ->setup_interface() hook.
2441 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2442 * ->setup_interface() unassigned.
2443 */
2444 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2445 .probe = atmel_smc_nand_controller_probe,
2446 .remove = atmel_smc_nand_controller_remove,
2447 .ecc_init = atmel_nand_ecc_init,
2448 .nand_init = atmel_smc_nand_init,
2449 .exec_op = atmel_smc_nand_exec_op,
2450 };
2451
2452 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2453 .ale_offs = BIT(21),
2454 .cle_offs = BIT(22),
2455 .ebi_csa_regmap_name = "atmel,matrix",
2456 .ops = &at91rm9200_nc_ops,
2457 };
2458
2459 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2460 .probe = atmel_smc_nand_controller_probe,
2461 .remove = atmel_smc_nand_controller_remove,
2462 .ecc_init = atmel_nand_ecc_init,
2463 .nand_init = atmel_smc_nand_init,
2464 .setup_interface = atmel_smc_nand_setup_interface,
2465 .exec_op = atmel_smc_nand_exec_op,
2466 };
2467
2468 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2469 .ale_offs = BIT(21),
2470 .cle_offs = BIT(22),
2471 .ebi_csa_regmap_name = "atmel,matrix",
2472 .ops = &atmel_smc_nc_ops,
2473 };
2474
2475 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2476 .ale_offs = BIT(22),
2477 .cle_offs = BIT(21),
2478 .ebi_csa_regmap_name = "atmel,matrix",
2479 .ops = &atmel_smc_nc_ops,
2480 };
2481
2482 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2483 .has_dma = true,
2484 .ale_offs = BIT(21),
2485 .cle_offs = BIT(22),
2486 .ebi_csa_regmap_name = "atmel,matrix",
2487 .ops = &atmel_smc_nc_ops,
2488 };
2489
2490 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2491 .has_dma = true,
2492 .ale_offs = BIT(21),
2493 .cle_offs = BIT(22),
2494 .ebi_csa_regmap_name = "microchip,sfr",
2495 .ops = &atmel_smc_nc_ops,
2496 };
2497
2498 /* Only used to parse old bindings. */
2499 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2500 .ale_offs = BIT(21),
2501 .cle_offs = BIT(22),
2502 .ops = &atmel_smc_nc_ops,
2503 .legacy_of_bindings = true,
2504 };
2505
2506 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2507 .ale_offs = BIT(22),
2508 .cle_offs = BIT(21),
2509 .ops = &atmel_smc_nc_ops,
2510 .legacy_of_bindings = true,
2511 };
2512
2513 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2514 .has_dma = true,
2515 .ale_offs = BIT(21),
2516 .cle_offs = BIT(22),
2517 .ops = &atmel_smc_nc_ops,
2518 .legacy_of_bindings = true,
2519 };
2520
2521 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2522 {
2523 .compatible = "atmel,at91rm9200-nand-controller",
2524 .data = &atmel_rm9200_nc_caps,
2525 },
2526 {
2527 .compatible = "atmel,at91sam9260-nand-controller",
2528 .data = &atmel_sam9260_nc_caps,
2529 },
2530 {
2531 .compatible = "atmel,at91sam9261-nand-controller",
2532 .data = &atmel_sam9261_nc_caps,
2533 },
2534 {
2535 .compatible = "atmel,at91sam9g45-nand-controller",
2536 .data = &atmel_sam9g45_nc_caps,
2537 },
2538 {
2539 .compatible = "atmel,sama5d3-nand-controller",
2540 .data = &atmel_sama5_nc_caps,
2541 },
2542 {
2543 .compatible = "microchip,sam9x60-nand-controller",
2544 .data = µchip_sam9x60_nc_caps,
2545 },
2546 /* Support for old/deprecated bindings: */
2547 {
2548 .compatible = "atmel,at91rm9200-nand",
2549 .data = &atmel_rm9200_nand_caps,
2550 },
2551 {
2552 .compatible = "atmel,sama5d4-nand",
2553 .data = &atmel_rm9200_nand_caps,
2554 },
2555 {
2556 .compatible = "atmel,sama5d2-nand",
2557 .data = &atmel_rm9200_nand_caps,
2558 },
2559 { /* sentinel */ },
2560 };
2561 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2562
atmel_nand_controller_probe(struct platform_device * pdev)2563 static int atmel_nand_controller_probe(struct platform_device *pdev)
2564 {
2565 const struct atmel_nand_controller_caps *caps;
2566
2567 if (pdev->id_entry)
2568 caps = (void *)pdev->id_entry->driver_data;
2569 else
2570 caps = of_device_get_match_data(&pdev->dev);
2571
2572 if (!caps) {
2573 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2574 return -EINVAL;
2575 }
2576
2577 if (caps->legacy_of_bindings) {
2578 struct device_node *nfc_node;
2579 u32 ale_offs = 21;
2580
2581 /*
2582 * If we are parsing legacy DT props and the DT contains a
2583 * valid NFC node, forward the request to the sama5 logic.
2584 */
2585 nfc_node = of_get_compatible_child(pdev->dev.of_node,
2586 "atmel,sama5d3-nfc");
2587 if (nfc_node) {
2588 caps = &atmel_sama5_nand_caps;
2589 of_node_put(nfc_node);
2590 }
2591
2592 /*
2593 * Even if the compatible says we are dealing with an
2594 * at91rm9200 controller, the atmel,nand-has-dma specify that
2595 * this controller supports DMA, which means we are in fact
2596 * dealing with an at91sam9g45+ controller.
2597 */
2598 if (!caps->has_dma &&
2599 of_property_read_bool(pdev->dev.of_node,
2600 "atmel,nand-has-dma"))
2601 caps = &atmel_sam9g45_nand_caps;
2602
2603 /*
2604 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2605 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2606 * actually dealing with an at91sam9261 controller.
2607 */
2608 of_property_read_u32(pdev->dev.of_node,
2609 "atmel,nand-addr-offset", &ale_offs);
2610 if (ale_offs != 21)
2611 caps = &atmel_sam9261_nand_caps;
2612 }
2613
2614 return caps->ops->probe(pdev, caps);
2615 }
2616
atmel_nand_controller_remove(struct platform_device * pdev)2617 static int atmel_nand_controller_remove(struct platform_device *pdev)
2618 {
2619 struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2620
2621 return nc->caps->ops->remove(nc);
2622 }
2623
atmel_nand_controller_resume(struct device * dev)2624 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2625 {
2626 struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2627 struct atmel_nand *nand;
2628
2629 if (nc->pmecc)
2630 atmel_pmecc_reset(nc->pmecc);
2631
2632 list_for_each_entry(nand, &nc->chips, node) {
2633 int i;
2634
2635 for (i = 0; i < nand->numcs; i++)
2636 nand_reset(&nand->base, i);
2637 }
2638
2639 return 0;
2640 }
2641
2642 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2643 atmel_nand_controller_resume);
2644
2645 static struct platform_driver atmel_nand_controller_driver = {
2646 .driver = {
2647 .name = "atmel-nand-controller",
2648 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2649 .pm = &atmel_nand_controller_pm_ops,
2650 },
2651 .probe = atmel_nand_controller_probe,
2652 .remove = atmel_nand_controller_remove,
2653 };
2654 module_platform_driver(atmel_nand_controller_driver);
2655
2656 MODULE_LICENSE("GPL");
2657 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2658 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2659 MODULE_ALIAS("platform:atmel-nand-controller");
2660