1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 *
5 * Copyright © 2006 Texas Instruments.
6 *
7 * Port to 2.6.23 Copyright © 2008 by:
8 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
9 * Troy Kisky <troy.kisky@boundarydevices.com>
10 * Dirk Behme <Dirk.Behme@gmail.com>
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
26
27 /*
28 * This is a device driver for the NAND flash controller found on the
29 * various DaVinci family chips. It handles up to four SoC chipselects,
30 * and some flavors of secondary chipselect (e.g. based on A12) as used
31 * with multichip packages.
32 *
33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34 * available on chips like the DM355 and OMAP-L137 and needed with the
35 * more error-prone MLC NAND chips.
36 *
37 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38 * outputs in a "wire-AND" configuration, with no per-chip signals.
39 */
40 struct davinci_nand_info {
41 struct nand_controller controller;
42 struct nand_chip chip;
43
44 struct platform_device *pdev;
45
46 bool is_readmode;
47
48 void __iomem *base;
49 void __iomem *vaddr;
50
51 void __iomem *current_cs;
52
53 uint32_t mask_chipsel;
54 uint32_t mask_ale;
55 uint32_t mask_cle;
56
57 uint32_t core_chipsel;
58
59 struct davinci_aemif_timing *timing;
60 };
61
62 static DEFINE_SPINLOCK(davinci_nand_lock);
63 static bool ecc4_busy;
64
to_davinci_nand(struct mtd_info * mtd)65 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
66 {
67 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
68 }
69
davinci_nand_readl(struct davinci_nand_info * info,int offset)70 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
71 int offset)
72 {
73 return __raw_readl(info->base + offset);
74 }
75
davinci_nand_writel(struct davinci_nand_info * info,int offset,unsigned long value)76 static inline void davinci_nand_writel(struct davinci_nand_info *info,
77 int offset, unsigned long value)
78 {
79 __raw_writel(value, info->base + offset);
80 }
81
82 /*----------------------------------------------------------------------*/
83
84 /*
85 * 1-bit hardware ECC ... context maintained for each core chipselect
86 */
87
nand_davinci_readecc_1bit(struct mtd_info * mtd)88 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
89 {
90 struct davinci_nand_info *info = to_davinci_nand(mtd);
91
92 return davinci_nand_readl(info, NANDF1ECC_OFFSET
93 + 4 * info->core_chipsel);
94 }
95
nand_davinci_hwctl_1bit(struct nand_chip * chip,int mode)96 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
97 {
98 struct davinci_nand_info *info;
99 uint32_t nandcfr;
100 unsigned long flags;
101
102 info = to_davinci_nand(nand_to_mtd(chip));
103
104 /* Reset ECC hardware */
105 nand_davinci_readecc_1bit(nand_to_mtd(chip));
106
107 spin_lock_irqsave(&davinci_nand_lock, flags);
108
109 /* Restart ECC hardware */
110 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111 nandcfr |= BIT(8 + info->core_chipsel);
112 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
113
114 spin_unlock_irqrestore(&davinci_nand_lock, flags);
115 }
116
117 /*
118 * Read hardware ECC value and pack into three bytes
119 */
nand_davinci_calculate_1bit(struct nand_chip * chip,const u_char * dat,u_char * ecc_code)120 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121 const u_char *dat, u_char *ecc_code)
122 {
123 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
125
126 /* invert so that erased block ecc is correct */
127 ecc24 = ~ecc24;
128 ecc_code[0] = (u_char)(ecc24);
129 ecc_code[1] = (u_char)(ecc24 >> 8);
130 ecc_code[2] = (u_char)(ecc24 >> 16);
131
132 return 0;
133 }
134
nand_davinci_correct_1bit(struct nand_chip * chip,u_char * dat,u_char * read_ecc,u_char * calc_ecc)135 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136 u_char *read_ecc, u_char *calc_ecc)
137 {
138 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139 (read_ecc[2] << 16);
140 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141 (calc_ecc[2] << 16);
142 uint32_t diff = eccCalc ^ eccNand;
143
144 if (diff) {
145 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146 /* Correctable error */
147 if ((diff >> (12 + 3)) < chip->ecc.size) {
148 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149 return 1;
150 } else {
151 return -EBADMSG;
152 }
153 } else if (!(diff & (diff - 1))) {
154 /* Single bit ECC error in the ECC itself,
155 * nothing to fix */
156 return 1;
157 } else {
158 /* Uncorrectable error */
159 return -EBADMSG;
160 }
161
162 }
163 return 0;
164 }
165
166 /*----------------------------------------------------------------------*/
167
168 /*
169 * 4-bit hardware ECC ... context maintained over entire AEMIF
170 *
171 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
172 * since that forces use of a problematic "infix OOB" layout.
173 * Among other things, it trashes manufacturer bad block markers.
174 * Also, and specific to this hardware, it ECC-protects the "prepad"
175 * in the OOB ... while having ECC protection for parts of OOB would
176 * seem useful, the current MTD stack sometimes wants to update the
177 * OOB without recomputing ECC.
178 */
179
nand_davinci_hwctl_4bit(struct nand_chip * chip,int mode)180 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181 {
182 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183 unsigned long flags;
184 u32 val;
185
186 /* Reset ECC hardware */
187 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
188
189 spin_lock_irqsave(&davinci_nand_lock, flags);
190
191 /* Start 4-bit ECC calculation for read/write */
192 val = davinci_nand_readl(info, NANDFCR_OFFSET);
193 val &= ~(0x03 << 4);
194 val |= (info->core_chipsel << 4) | BIT(12);
195 davinci_nand_writel(info, NANDFCR_OFFSET, val);
196
197 info->is_readmode = (mode == NAND_ECC_READ);
198
199 spin_unlock_irqrestore(&davinci_nand_lock, flags);
200 }
201
202 /* Read raw ECC code after writing to NAND. */
203 static void
nand_davinci_readecc_4bit(struct davinci_nand_info * info,u32 code[4])204 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
205 {
206 const u32 mask = 0x03ff03ff;
207
208 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
212 }
213
214 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
nand_davinci_calculate_4bit(struct nand_chip * chip,const u_char * dat,u_char * ecc_code)215 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216 const u_char *dat, u_char *ecc_code)
217 {
218 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219 u32 raw_ecc[4], *p;
220 unsigned i;
221
222 /* After a read, terminate ECC calculation by a dummy read
223 * of some 4-bit ECC register. ECC covers everything that
224 * was read; correct() just uses the hardware state, so
225 * ecc_code is not needed.
226 */
227 if (info->is_readmode) {
228 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229 return 0;
230 }
231
232 /* Pack eight raw 10-bit ecc values into ten bytes, making
233 * two passes which each convert four values (in upper and
234 * lower halves of two 32-bit words) into five bytes. The
235 * ROM boot loader uses this same packing scheme.
236 */
237 nand_davinci_readecc_4bit(info, raw_ecc);
238 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239 *ecc_code++ = p[0] & 0xff;
240 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
241 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
242 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243 *ecc_code++ = (p[1] >> 18) & 0xff;
244 }
245
246 return 0;
247 }
248
249 /* Correct up to 4 bits in data we just read, using state left in the
250 * hardware plus the ecc_code computed when it was first written.
251 */
nand_davinci_correct_4bit(struct nand_chip * chip,u_char * data,u_char * ecc_code,u_char * null)252 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253 u_char *ecc_code, u_char *null)
254 {
255 int i;
256 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257 unsigned short ecc10[8];
258 unsigned short *ecc16;
259 u32 syndrome[4];
260 u32 ecc_state;
261 unsigned num_errors, corrected;
262 unsigned long timeo;
263
264 /* Unpack ten bytes into eight 10 bit values. We know we're
265 * little-endian, and use type punning for less shifting/masking.
266 */
267 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268 return -EINVAL;
269 ecc16 = (unsigned short *)ecc_code;
270
271 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
272 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
274 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
275 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
276 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
277 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
278 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
279
280 /* Tell ECC controller about the expected ECC codes. */
281 for (i = 7; i >= 0; i--)
282 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
283
284 /* Allow time for syndrome calculation ... then read it.
285 * A syndrome of all zeroes 0 means no detected errors.
286 */
287 davinci_nand_readl(info, NANDFSR_OFFSET);
288 nand_davinci_readecc_4bit(info, syndrome);
289 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290 return 0;
291
292 /*
293 * Clear any previous address calculation by doing a dummy read of an
294 * error address register.
295 */
296 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
297
298 /* Start address calculation, and wait for it to complete.
299 * We _could_ start reading more data while this is working,
300 * to speed up the overall page read.
301 */
302 davinci_nand_writel(info, NANDFCR_OFFSET,
303 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304
305 /*
306 * ECC_STATE field reads 0x3 (Error correction complete) immediately
307 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308 * begin trying to poll for the state, you may fall right out of your
309 * loop without any of the correction calculations having taken place.
310 * The recommendation from the hardware team is to initially delay as
311 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312 * correction state.
313 */
314 timeo = jiffies + usecs_to_jiffies(100);
315 do {
316 ecc_state = (davinci_nand_readl(info,
317 NANDFSR_OFFSET) >> 8) & 0x0f;
318 cpu_relax();
319 } while ((ecc_state < 4) && time_before(jiffies, timeo));
320
321 for (;;) {
322 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
323
324 switch ((fsr >> 8) & 0x0f) {
325 case 0: /* no error, should not happen */
326 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327 return 0;
328 case 1: /* five or more errors detected */
329 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330 return -EBADMSG;
331 case 2: /* error addresses computed */
332 case 3:
333 num_errors = 1 + ((fsr >> 16) & 0x03);
334 goto correct;
335 default: /* still working on it */
336 cpu_relax();
337 continue;
338 }
339 }
340
341 correct:
342 /* correct each error */
343 for (i = 0, corrected = 0; i < num_errors; i++) {
344 int error_address, error_value;
345
346 if (i > 1) {
347 error_address = davinci_nand_readl(info,
348 NAND_ERR_ADD2_OFFSET);
349 error_value = davinci_nand_readl(info,
350 NAND_ERR_ERRVAL2_OFFSET);
351 } else {
352 error_address = davinci_nand_readl(info,
353 NAND_ERR_ADD1_OFFSET);
354 error_value = davinci_nand_readl(info,
355 NAND_ERR_ERRVAL1_OFFSET);
356 }
357
358 if (i & 1) {
359 error_address >>= 16;
360 error_value >>= 16;
361 }
362 error_address &= 0x3ff;
363 error_address = (512 + 7) - error_address;
364
365 if (error_address < 512) {
366 data[error_address] ^= error_value;
367 corrected++;
368 }
369 }
370
371 return corrected;
372 }
373
374 /**
375 * nand_davinci_read_page_hwecc_oob_first - Hardware ECC page read with ECC
376 * data read from OOB area
377 * @chip: nand chip info structure
378 * @buf: buffer to store read data
379 * @oob_required: caller requires OOB data read to chip->oob_poi
380 * @page: page number to read
381 *
382 * Hardware ECC for large page chips, which requires the ECC data to be
383 * extracted from the OOB before the actual data is read.
384 */
nand_davinci_read_page_hwecc_oob_first(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)385 static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
386 uint8_t *buf,
387 int oob_required, int page)
388 {
389 struct mtd_info *mtd = nand_to_mtd(chip);
390 int i, eccsize = chip->ecc.size, ret;
391 int eccbytes = chip->ecc.bytes;
392 int eccsteps = chip->ecc.steps;
393 uint8_t *p = buf;
394 uint8_t *ecc_code = chip->ecc.code_buf;
395 unsigned int max_bitflips = 0;
396
397 /* Read the OOB area first */
398 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
399 if (ret)
400 return ret;
401
402 /* Move read cursor to start of page */
403 ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
404 if (ret)
405 return ret;
406
407 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
408 chip->ecc.total);
409 if (ret)
410 return ret;
411
412 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
413 int stat;
414
415 chip->ecc.hwctl(chip, NAND_ECC_READ);
416
417 ret = nand_read_data_op(chip, p, eccsize, false, false);
418 if (ret)
419 return ret;
420
421 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
422 if (stat == -EBADMSG &&
423 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
424 /* check for empty pages with bitflips */
425 stat = nand_check_erased_ecc_chunk(p, eccsize,
426 &ecc_code[i],
427 eccbytes, NULL, 0,
428 chip->ecc.strength);
429 }
430
431 if (stat < 0) {
432 mtd->ecc_stats.failed++;
433 } else {
434 mtd->ecc_stats.corrected += stat;
435 max_bitflips = max_t(unsigned int, max_bitflips, stat);
436 }
437 }
438 return max_bitflips;
439 }
440
441 /*----------------------------------------------------------------------*/
442
443 /* An ECC layout for using 4-bit ECC with small-page flash, storing
444 * ten ECC bytes plus the manufacturer's bad block marker byte, and
445 * and not overlapping the default BBT markers.
446 */
hwecc4_ooblayout_small_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)447 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
448 struct mtd_oob_region *oobregion)
449 {
450 if (section > 2)
451 return -ERANGE;
452
453 if (!section) {
454 oobregion->offset = 0;
455 oobregion->length = 5;
456 } else if (section == 1) {
457 oobregion->offset = 6;
458 oobregion->length = 2;
459 } else {
460 oobregion->offset = 13;
461 oobregion->length = 3;
462 }
463
464 return 0;
465 }
466
hwecc4_ooblayout_small_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)467 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
468 struct mtd_oob_region *oobregion)
469 {
470 if (section > 1)
471 return -ERANGE;
472
473 if (!section) {
474 oobregion->offset = 8;
475 oobregion->length = 5;
476 } else {
477 oobregion->offset = 16;
478 oobregion->length = mtd->oobsize - 16;
479 }
480
481 return 0;
482 }
483
484 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
485 .ecc = hwecc4_ooblayout_small_ecc,
486 .free = hwecc4_ooblayout_small_free,
487 };
488
489 #if defined(CONFIG_OF)
490 static const struct of_device_id davinci_nand_of_match[] = {
491 {.compatible = "ti,davinci-nand", },
492 {.compatible = "ti,keystone-nand", },
493 {},
494 };
495 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
496
497 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)498 *nand_davinci_get_pdata(struct platform_device *pdev)
499 {
500 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
501 struct davinci_nand_pdata *pdata;
502 const char *mode;
503 u32 prop;
504
505 pdata = devm_kzalloc(&pdev->dev,
506 sizeof(struct davinci_nand_pdata),
507 GFP_KERNEL);
508 pdev->dev.platform_data = pdata;
509 if (!pdata)
510 return ERR_PTR(-ENOMEM);
511 if (!of_property_read_u32(pdev->dev.of_node,
512 "ti,davinci-chipselect", &prop))
513 pdata->core_chipsel = prop;
514 else
515 return ERR_PTR(-EINVAL);
516
517 if (!of_property_read_u32(pdev->dev.of_node,
518 "ti,davinci-mask-ale", &prop))
519 pdata->mask_ale = prop;
520 if (!of_property_read_u32(pdev->dev.of_node,
521 "ti,davinci-mask-cle", &prop))
522 pdata->mask_cle = prop;
523 if (!of_property_read_u32(pdev->dev.of_node,
524 "ti,davinci-mask-chipsel", &prop))
525 pdata->mask_chipsel = prop;
526 if (!of_property_read_string(pdev->dev.of_node,
527 "ti,davinci-ecc-mode", &mode)) {
528 if (!strncmp("none", mode, 4))
529 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
530 if (!strncmp("soft", mode, 4))
531 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
532 if (!strncmp("hw", mode, 2))
533 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
534 }
535 if (!of_property_read_u32(pdev->dev.of_node,
536 "ti,davinci-ecc-bits", &prop))
537 pdata->ecc_bits = prop;
538
539 if (!of_property_read_u32(pdev->dev.of_node,
540 "ti,davinci-nand-buswidth", &prop) && prop == 16)
541 pdata->options |= NAND_BUSWIDTH_16;
542
543 if (of_property_read_bool(pdev->dev.of_node,
544 "ti,davinci-nand-use-bbt"))
545 pdata->bbt_options = NAND_BBT_USE_FLASH;
546
547 /*
548 * Since kernel v4.8, this driver has been fixed to enable
549 * use of 4-bit hardware ECC with subpages and verified on
550 * TI's keystone EVMs (K2L, K2HK and K2E).
551 * However, in the interest of not breaking systems using
552 * existing UBI partitions, sub-page writes are not being
553 * (re)enabled. If you want to use subpage writes on Keystone
554 * platforms (i.e. do not have any existing UBI partitions),
555 * then use "ti,davinci-nand" as the compatible in your
556 * device-tree file.
557 */
558 if (of_device_is_compatible(pdev->dev.of_node,
559 "ti,keystone-nand")) {
560 pdata->options |= NAND_NO_SUBPAGE_WRITE;
561 }
562 }
563
564 return dev_get_platdata(&pdev->dev);
565 }
566 #else
567 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)568 *nand_davinci_get_pdata(struct platform_device *pdev)
569 {
570 return dev_get_platdata(&pdev->dev);
571 }
572 #endif
573
davinci_nand_attach_chip(struct nand_chip * chip)574 static int davinci_nand_attach_chip(struct nand_chip *chip)
575 {
576 struct mtd_info *mtd = nand_to_mtd(chip);
577 struct davinci_nand_info *info = to_davinci_nand(mtd);
578 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
579 int ret = 0;
580
581 if (IS_ERR(pdata))
582 return PTR_ERR(pdata);
583
584 /* Use board-specific ECC config */
585 info->chip.ecc.engine_type = pdata->engine_type;
586 info->chip.ecc.placement = pdata->ecc_placement;
587
588 switch (info->chip.ecc.engine_type) {
589 case NAND_ECC_ENGINE_TYPE_NONE:
590 pdata->ecc_bits = 0;
591 break;
592 case NAND_ECC_ENGINE_TYPE_SOFT:
593 pdata->ecc_bits = 0;
594 /*
595 * This driver expects Hamming based ECC when engine_type is set
596 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
597 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
598 * field to davinci_nand_pdata.
599 */
600 info->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
601 break;
602 case NAND_ECC_ENGINE_TYPE_ON_HOST:
603 if (pdata->ecc_bits == 4) {
604 int chunks = mtd->writesize / 512;
605
606 if (!chunks || mtd->oobsize < 16) {
607 dev_dbg(&info->pdev->dev, "too small\n");
608 return -EINVAL;
609 }
610
611 /*
612 * No sanity checks: CPUs must support this,
613 * and the chips may not use NAND_BUSWIDTH_16.
614 */
615
616 /* No sharing 4-bit hardware between chipselects yet */
617 spin_lock_irq(&davinci_nand_lock);
618 if (ecc4_busy)
619 ret = -EBUSY;
620 else
621 ecc4_busy = true;
622 spin_unlock_irq(&davinci_nand_lock);
623
624 if (ret == -EBUSY)
625 return ret;
626
627 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
628 info->chip.ecc.correct = nand_davinci_correct_4bit;
629 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
630 info->chip.ecc.bytes = 10;
631 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
632 info->chip.ecc.algo = NAND_ECC_ALGO_BCH;
633
634 /*
635 * Update ECC layout if needed ... for 1-bit HW ECC, the
636 * default is OK, but it allocates 6 bytes when only 3
637 * are needed (for each 512 bytes). For 4-bit HW ECC,
638 * the default is not usable: 10 bytes needed, not 6.
639 *
640 * For small page chips, preserve the manufacturer's
641 * badblock marking data ... and make sure a flash BBT
642 * table marker fits in the free bytes.
643 */
644 if (chunks == 1) {
645 mtd_set_ooblayout(mtd,
646 &hwecc4_small_ooblayout_ops);
647 } else if (chunks == 4 || chunks == 8) {
648 mtd_set_ooblayout(mtd,
649 nand_get_large_page_ooblayout());
650 info->chip.ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
651 } else {
652 return -EIO;
653 }
654 } else {
655 /* 1bit ecc hamming */
656 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
657 info->chip.ecc.correct = nand_davinci_correct_1bit;
658 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
659 info->chip.ecc.bytes = 3;
660 info->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
661 }
662 info->chip.ecc.size = 512;
663 info->chip.ecc.strength = pdata->ecc_bits;
664 break;
665 default:
666 return -EINVAL;
667 }
668
669 return ret;
670 }
671
nand_davinci_data_in(struct davinci_nand_info * info,void * buf,unsigned int len,bool force_8bit)672 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
673 unsigned int len, bool force_8bit)
674 {
675 u32 alignment = ((uintptr_t)buf | len) & 3;
676
677 if (force_8bit || (alignment & 1))
678 ioread8_rep(info->current_cs, buf, len);
679 else if (alignment & 3)
680 ioread16_rep(info->current_cs, buf, len >> 1);
681 else
682 ioread32_rep(info->current_cs, buf, len >> 2);
683 }
684
nand_davinci_data_out(struct davinci_nand_info * info,const void * buf,unsigned int len,bool force_8bit)685 static void nand_davinci_data_out(struct davinci_nand_info *info,
686 const void *buf, unsigned int len,
687 bool force_8bit)
688 {
689 u32 alignment = ((uintptr_t)buf | len) & 3;
690
691 if (force_8bit || (alignment & 1))
692 iowrite8_rep(info->current_cs, buf, len);
693 else if (alignment & 3)
694 iowrite16_rep(info->current_cs, buf, len >> 1);
695 else
696 iowrite32_rep(info->current_cs, buf, len >> 2);
697 }
698
davinci_nand_exec_instr(struct davinci_nand_info * info,const struct nand_op_instr * instr)699 static int davinci_nand_exec_instr(struct davinci_nand_info *info,
700 const struct nand_op_instr *instr)
701 {
702 unsigned int i, timeout_us;
703 u32 status;
704 int ret;
705
706 switch (instr->type) {
707 case NAND_OP_CMD_INSTR:
708 iowrite8(instr->ctx.cmd.opcode,
709 info->current_cs + info->mask_cle);
710 break;
711
712 case NAND_OP_ADDR_INSTR:
713 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
714 iowrite8(instr->ctx.addr.addrs[i],
715 info->current_cs + info->mask_ale);
716 }
717 break;
718
719 case NAND_OP_DATA_IN_INSTR:
720 nand_davinci_data_in(info, instr->ctx.data.buf.in,
721 instr->ctx.data.len,
722 instr->ctx.data.force_8bit);
723 break;
724
725 case NAND_OP_DATA_OUT_INSTR:
726 nand_davinci_data_out(info, instr->ctx.data.buf.out,
727 instr->ctx.data.len,
728 instr->ctx.data.force_8bit);
729 break;
730
731 case NAND_OP_WAITRDY_INSTR:
732 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
733 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
734 status, status & BIT(0), 100,
735 timeout_us);
736 if (ret)
737 return ret;
738
739 break;
740 }
741
742 if (instr->delay_ns)
743 ndelay(instr->delay_ns);
744
745 return 0;
746 }
747
davinci_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)748 static int davinci_nand_exec_op(struct nand_chip *chip,
749 const struct nand_operation *op,
750 bool check_only)
751 {
752 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
753 unsigned int i;
754
755 if (check_only)
756 return 0;
757
758 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
759
760 for (i = 0; i < op->ninstrs; i++) {
761 int ret;
762
763 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
764 if (ret)
765 return ret;
766 }
767
768 return 0;
769 }
770
771 static const struct nand_controller_ops davinci_nand_controller_ops = {
772 .attach_chip = davinci_nand_attach_chip,
773 .exec_op = davinci_nand_exec_op,
774 };
775
nand_davinci_probe(struct platform_device * pdev)776 static int nand_davinci_probe(struct platform_device *pdev)
777 {
778 struct davinci_nand_pdata *pdata;
779 struct davinci_nand_info *info;
780 struct resource *res1;
781 struct resource *res2;
782 void __iomem *vaddr;
783 void __iomem *base;
784 int ret;
785 uint32_t val;
786 struct mtd_info *mtd;
787
788 pdata = nand_davinci_get_pdata(pdev);
789 if (IS_ERR(pdata))
790 return PTR_ERR(pdata);
791
792 /* insist on board-specific configuration */
793 if (!pdata)
794 return -ENODEV;
795
796 /* which external chipselect will we be managing? */
797 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
798 return -ENODEV;
799
800 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
801 if (!info)
802 return -ENOMEM;
803
804 platform_set_drvdata(pdev, info);
805
806 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
807 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
808 if (!res1 || !res2) {
809 dev_err(&pdev->dev, "resource missing\n");
810 return -EINVAL;
811 }
812
813 vaddr = devm_ioremap_resource(&pdev->dev, res1);
814 if (IS_ERR(vaddr))
815 return PTR_ERR(vaddr);
816
817 /*
818 * This registers range is used to setup NAND settings. In case with
819 * TI AEMIF driver, the same memory address range is requested already
820 * by AEMIF, so we cannot request it twice, just ioremap.
821 * The AEMIF and NAND drivers not use the same registers in this range.
822 */
823 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
824 if (!base) {
825 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
826 return -EADDRNOTAVAIL;
827 }
828
829 info->pdev = pdev;
830 info->base = base;
831 info->vaddr = vaddr;
832
833 mtd = nand_to_mtd(&info->chip);
834 mtd->dev.parent = &pdev->dev;
835 nand_set_flash_node(&info->chip, pdev->dev.of_node);
836
837 /* options such as NAND_BBT_USE_FLASH */
838 info->chip.bbt_options = pdata->bbt_options;
839 /* options such as 16-bit widths */
840 info->chip.options = pdata->options;
841 info->chip.bbt_td = pdata->bbt_td;
842 info->chip.bbt_md = pdata->bbt_md;
843 info->timing = pdata->timing;
844
845 info->current_cs = info->vaddr;
846 info->core_chipsel = pdata->core_chipsel;
847 info->mask_chipsel = pdata->mask_chipsel;
848
849 /* use nandboot-capable ALE/CLE masks by default */
850 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
851 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
852
853 spin_lock_irq(&davinci_nand_lock);
854
855 /* put CSxNAND into NAND mode */
856 val = davinci_nand_readl(info, NANDFCR_OFFSET);
857 val |= BIT(info->core_chipsel);
858 davinci_nand_writel(info, NANDFCR_OFFSET, val);
859
860 spin_unlock_irq(&davinci_nand_lock);
861
862 /* Scan to find existence of the device(s) */
863 nand_controller_init(&info->controller);
864 info->controller.ops = &davinci_nand_controller_ops;
865 info->chip.controller = &info->controller;
866 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
867 if (ret < 0) {
868 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
869 return ret;
870 }
871
872 if (pdata->parts)
873 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
874 else
875 ret = mtd_device_register(mtd, NULL, 0);
876 if (ret < 0)
877 goto err_cleanup_nand;
878
879 val = davinci_nand_readl(info, NRCSR_OFFSET);
880 dev_info(&pdev->dev, "controller rev. %d.%d\n",
881 (val >> 8) & 0xff, val & 0xff);
882
883 return 0;
884
885 err_cleanup_nand:
886 nand_cleanup(&info->chip);
887
888 return ret;
889 }
890
nand_davinci_remove(struct platform_device * pdev)891 static int nand_davinci_remove(struct platform_device *pdev)
892 {
893 struct davinci_nand_info *info = platform_get_drvdata(pdev);
894 struct nand_chip *chip = &info->chip;
895 int ret;
896
897 spin_lock_irq(&davinci_nand_lock);
898 if (info->chip.ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
899 ecc4_busy = false;
900 spin_unlock_irq(&davinci_nand_lock);
901
902 ret = mtd_device_unregister(nand_to_mtd(chip));
903 WARN_ON(ret);
904 nand_cleanup(chip);
905
906 return 0;
907 }
908
909 static struct platform_driver nand_davinci_driver = {
910 .probe = nand_davinci_probe,
911 .remove = nand_davinci_remove,
912 .driver = {
913 .name = "davinci_nand",
914 .of_match_table = of_match_ptr(davinci_nand_of_match),
915 },
916 };
917 MODULE_ALIAS("platform:davinci_nand");
918
919 module_platform_driver(nand_davinci_driver);
920
921 MODULE_LICENSE("GPL");
922 MODULE_AUTHOR("Texas Instruments");
923 MODULE_DESCRIPTION("Davinci NAND flash driver");
924
925