• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ST Microelectronics
4  * Flexible Static Memory Controller (FSMC)
5  * Driver for NAND portions
6  *
7  * Copyright © 2010 ST Microelectronics
8  * Vipin Kumar <vipin.kumar@st.com>
9  * Ashish Priyadarshi
10  *
11  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
13  *  Copyright © 2009 Alessandro Rubini
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/delay.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-direction.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/resource.h>
26 #include <linux/sched.h>
27 #include <linux/types.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/rawnand.h>
30 #include <linux/mtd/nand_ecc.h>
31 #include <linux/platform_device.h>
32 #include <linux/of.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/io.h>
35 #include <linux/slab.h>
36 #include <linux/amba/bus.h>
37 #include <mtd/mtd-abi.h>
38 
39 /* fsmc controller registers for NOR flash */
40 #define CTRL			0x0
41 	/* ctrl register definitions */
42 	#define BANK_ENABLE		BIT(0)
43 	#define MUXED			BIT(1)
44 	#define NOR_DEV			(2 << 2)
45 	#define WIDTH_16		BIT(4)
46 	#define RSTPWRDWN		BIT(6)
47 	#define WPROT			BIT(7)
48 	#define WRT_ENABLE		BIT(12)
49 	#define WAIT_ENB		BIT(13)
50 
51 #define CTRL_TIM		0x4
52 	/* ctrl_tim register definitions */
53 
54 #define FSMC_NOR_BANK_SZ	0x8
55 #define FSMC_NOR_REG_SIZE	0x40
56 
57 #define FSMC_NOR_REG(base, bank, reg)	((base) +			\
58 					 (FSMC_NOR_BANK_SZ * (bank)) +	\
59 					 (reg))
60 
61 /* fsmc controller registers for NAND flash */
62 #define FSMC_PC			0x00
63 	/* pc register definitions */
64 	#define FSMC_RESET		BIT(0)
65 	#define FSMC_WAITON		BIT(1)
66 	#define FSMC_ENABLE		BIT(2)
67 	#define FSMC_DEVTYPE_NAND	BIT(3)
68 	#define FSMC_DEVWID_16		BIT(4)
69 	#define FSMC_ECCEN		BIT(6)
70 	#define FSMC_ECCPLEN_256	BIT(7)
71 	#define FSMC_TCLR_SHIFT		(9)
72 	#define FSMC_TCLR_MASK		(0xF)
73 	#define FSMC_TAR_SHIFT		(13)
74 	#define FSMC_TAR_MASK		(0xF)
75 #define STS			0x04
76 	/* sts register definitions */
77 	#define FSMC_CODE_RDY		BIT(15)
78 #define COMM			0x08
79 	/* comm register definitions */
80 	#define FSMC_TSET_SHIFT		0
81 	#define FSMC_TSET_MASK		0xFF
82 	#define FSMC_TWAIT_SHIFT	8
83 	#define FSMC_TWAIT_MASK		0xFF
84 	#define FSMC_THOLD_SHIFT	16
85 	#define FSMC_THOLD_MASK		0xFF
86 	#define FSMC_THIZ_SHIFT		24
87 	#define FSMC_THIZ_MASK		0xFF
88 #define ATTRIB			0x0C
89 #define IOATA			0x10
90 #define ECC1			0x14
91 #define ECC2			0x18
92 #define ECC3			0x1C
93 #define FSMC_NAND_BANK_SZ	0x20
94 
95 #define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)
96 
97 /*
98  * According to SPEAr300 Reference Manual (RM0082)
99  *  TOUDEL = 7ns (Output delay from the flip-flops to the board)
100  *  TINDEL = 5ns (Input delay from the board to the flipflop)
101  */
102 #define TOUTDEL	7000
103 #define TINDEL	5000
104 
105 struct fsmc_nand_timings {
106 	u8 tclr;
107 	u8 tar;
108 	u8 thiz;
109 	u8 thold;
110 	u8 twait;
111 	u8 tset;
112 };
113 
114 enum access_mode {
115 	USE_DMA_ACCESS = 1,
116 	USE_WORD_ACCESS,
117 };
118 
119 /**
120  * struct fsmc_nand_data - structure for FSMC NAND device state
121  *
122  * @base:		Inherit from the nand_controller struct
123  * @pid:		Part ID on the AMBA PrimeCell format
124  * @nand:		Chip related info for a NAND flash.
125  *
126  * @bank:		Bank number for probed device.
127  * @dev:		Parent device
128  * @mode:		Access mode
129  * @clk:		Clock structure for FSMC.
130  *
131  * @read_dma_chan:	DMA channel for read access
132  * @write_dma_chan:	DMA channel for write access to NAND
133  * @dma_access_complete: Completion structure
134  *
135  * @dev_timings:	NAND timings
136  *
137  * @data_pa:		NAND Physical port for Data.
138  * @data_va:		NAND port for Data.
139  * @cmd_va:		NAND port for Command.
140  * @addr_va:		NAND port for Address.
141  * @regs_va:		Registers base address for a given bank.
142  */
143 struct fsmc_nand_data {
144 	struct nand_controller	base;
145 	u32			pid;
146 	struct nand_chip	nand;
147 
148 	unsigned int		bank;
149 	struct device		*dev;
150 	enum access_mode	mode;
151 	struct clk		*clk;
152 
153 	/* DMA related objects */
154 	struct dma_chan		*read_dma_chan;
155 	struct dma_chan		*write_dma_chan;
156 	struct completion	dma_access_complete;
157 
158 	struct fsmc_nand_timings *dev_timings;
159 
160 	dma_addr_t		data_pa;
161 	void __iomem		*data_va;
162 	void __iomem		*cmd_va;
163 	void __iomem		*addr_va;
164 	void __iomem		*regs_va;
165 };
166 
fsmc_ecc1_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)167 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
168 				   struct mtd_oob_region *oobregion)
169 {
170 	struct nand_chip *chip = mtd_to_nand(mtd);
171 
172 	if (section >= chip->ecc.steps)
173 		return -ERANGE;
174 
175 	oobregion->offset = (section * 16) + 2;
176 	oobregion->length = 3;
177 
178 	return 0;
179 }
180 
fsmc_ecc1_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)181 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
182 				    struct mtd_oob_region *oobregion)
183 {
184 	struct nand_chip *chip = mtd_to_nand(mtd);
185 
186 	if (section >= chip->ecc.steps)
187 		return -ERANGE;
188 
189 	oobregion->offset = (section * 16) + 8;
190 
191 	if (section < chip->ecc.steps - 1)
192 		oobregion->length = 8;
193 	else
194 		oobregion->length = mtd->oobsize - oobregion->offset;
195 
196 	return 0;
197 }
198 
199 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
200 	.ecc = fsmc_ecc1_ooblayout_ecc,
201 	.free = fsmc_ecc1_ooblayout_free,
202 };
203 
204 /*
205  * ECC placement definitions in oobfree type format.
206  * There are 13 bytes of ecc for every 512 byte block and it has to be read
207  * consecutively and immediately after the 512 byte data block for hardware to
208  * generate the error bit offsets in 512 byte data.
209  */
fsmc_ecc4_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)210 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
211 				   struct mtd_oob_region *oobregion)
212 {
213 	struct nand_chip *chip = mtd_to_nand(mtd);
214 
215 	if (section >= chip->ecc.steps)
216 		return -ERANGE;
217 
218 	oobregion->length = chip->ecc.bytes;
219 
220 	if (!section && mtd->writesize <= 512)
221 		oobregion->offset = 0;
222 	else
223 		oobregion->offset = (section * 16) + 2;
224 
225 	return 0;
226 }
227 
fsmc_ecc4_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)228 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
229 				    struct mtd_oob_region *oobregion)
230 {
231 	struct nand_chip *chip = mtd_to_nand(mtd);
232 
233 	if (section >= chip->ecc.steps)
234 		return -ERANGE;
235 
236 	oobregion->offset = (section * 16) + 15;
237 
238 	if (section < chip->ecc.steps - 1)
239 		oobregion->length = 3;
240 	else
241 		oobregion->length = mtd->oobsize - oobregion->offset;
242 
243 	return 0;
244 }
245 
246 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
247 	.ecc = fsmc_ecc4_ooblayout_ecc,
248 	.free = fsmc_ecc4_ooblayout_free,
249 };
250 
nand_to_fsmc(struct nand_chip * chip)251 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
252 {
253 	return container_of(chip, struct fsmc_nand_data, nand);
254 }
255 
256 /*
257  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
258  *
259  * This routine initializes timing parameters related to NAND memory access in
260  * FSMC registers
261  */
fsmc_nand_setup(struct fsmc_nand_data * host,struct fsmc_nand_timings * tims)262 static void fsmc_nand_setup(struct fsmc_nand_data *host,
263 			    struct fsmc_nand_timings *tims)
264 {
265 	u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
266 	u32 tclr, tar, thiz, thold, twait, tset;
267 
268 	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
269 	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
270 	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
271 	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
272 	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
273 	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
274 
275 	if (host->nand.options & NAND_BUSWIDTH_16)
276 		value |= FSMC_DEVWID_16;
277 
278 	writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
279 	writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
280 	writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
281 }
282 
fsmc_calc_timings(struct fsmc_nand_data * host,const struct nand_sdr_timings * sdrt,struct fsmc_nand_timings * tims)283 static int fsmc_calc_timings(struct fsmc_nand_data *host,
284 			     const struct nand_sdr_timings *sdrt,
285 			     struct fsmc_nand_timings *tims)
286 {
287 	unsigned long hclk = clk_get_rate(host->clk);
288 	unsigned long hclkn = NSEC_PER_SEC / hclk;
289 	u32 thiz, thold, twait, tset, twait_min;
290 
291 	if (sdrt->tRC_min < 30000)
292 		return -EOPNOTSUPP;
293 
294 	tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
295 	if (tims->tar > FSMC_TAR_MASK)
296 		tims->tar = FSMC_TAR_MASK;
297 	tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
298 	if (tims->tclr > FSMC_TCLR_MASK)
299 		tims->tclr = FSMC_TCLR_MASK;
300 
301 	thiz = sdrt->tCS_min - sdrt->tWP_min;
302 	tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
303 
304 	thold = sdrt->tDH_min;
305 	if (thold < sdrt->tCH_min)
306 		thold = sdrt->tCH_min;
307 	if (thold < sdrt->tCLH_min)
308 		thold = sdrt->tCLH_min;
309 	if (thold < sdrt->tWH_min)
310 		thold = sdrt->tWH_min;
311 	if (thold < sdrt->tALH_min)
312 		thold = sdrt->tALH_min;
313 	if (thold < sdrt->tREH_min)
314 		thold = sdrt->tREH_min;
315 	tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
316 	if (tims->thold == 0)
317 		tims->thold = 1;
318 	else if (tims->thold > FSMC_THOLD_MASK)
319 		tims->thold = FSMC_THOLD_MASK;
320 
321 	tset = max(sdrt->tCS_min - sdrt->tWP_min,
322 		   sdrt->tCEA_max - sdrt->tREA_max);
323 	tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
324 	if (tims->tset == 0)
325 		tims->tset = 1;
326 	else if (tims->tset > FSMC_TSET_MASK)
327 		tims->tset = FSMC_TSET_MASK;
328 
329 	/*
330 	 * According to SPEAr300 Reference Manual (RM0082) which gives more
331 	 * information related to FSMSC timings than the SPEAr600 one (RM0305),
332 	 *   twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL
333 	 */
334 	twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000)
335 		    + TOUTDEL + TINDEL;
336 	twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min);
337 
338 	tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
339 	if (tims->twait == 0)
340 		tims->twait = 1;
341 	else if (tims->twait > FSMC_TWAIT_MASK)
342 		tims->twait = FSMC_TWAIT_MASK;
343 
344 	return 0;
345 }
346 
fsmc_setup_interface(struct nand_chip * nand,int csline,const struct nand_interface_config * conf)347 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
348 				const struct nand_interface_config *conf)
349 {
350 	struct fsmc_nand_data *host = nand_to_fsmc(nand);
351 	struct fsmc_nand_timings tims;
352 	const struct nand_sdr_timings *sdrt;
353 	int ret;
354 
355 	sdrt = nand_get_sdr_timings(conf);
356 	if (IS_ERR(sdrt))
357 		return PTR_ERR(sdrt);
358 
359 	ret = fsmc_calc_timings(host, sdrt, &tims);
360 	if (ret)
361 		return ret;
362 
363 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
364 		return 0;
365 
366 	fsmc_nand_setup(host, &tims);
367 
368 	return 0;
369 }
370 
371 /*
372  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
373  */
fsmc_enable_hwecc(struct nand_chip * chip,int mode)374 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
375 {
376 	struct fsmc_nand_data *host = nand_to_fsmc(chip);
377 
378 	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
379 		       host->regs_va + FSMC_PC);
380 	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
381 		       host->regs_va + FSMC_PC);
382 	writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
383 		       host->regs_va + FSMC_PC);
384 }
385 
386 /*
387  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
388  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
389  * max of 8-bits)
390  */
fsmc_read_hwecc_ecc4(struct nand_chip * chip,const u8 * data,u8 * ecc)391 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
392 				u8 *ecc)
393 {
394 	struct fsmc_nand_data *host = nand_to_fsmc(chip);
395 	u32 ecc_tmp;
396 	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
397 
398 	do {
399 		if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
400 			break;
401 
402 		cond_resched();
403 	} while (!time_after_eq(jiffies, deadline));
404 
405 	if (time_after_eq(jiffies, deadline)) {
406 		dev_err(host->dev, "calculate ecc timed out\n");
407 		return -ETIMEDOUT;
408 	}
409 
410 	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
411 	ecc[0] = ecc_tmp;
412 	ecc[1] = ecc_tmp >> 8;
413 	ecc[2] = ecc_tmp >> 16;
414 	ecc[3] = ecc_tmp >> 24;
415 
416 	ecc_tmp = readl_relaxed(host->regs_va + ECC2);
417 	ecc[4] = ecc_tmp;
418 	ecc[5] = ecc_tmp >> 8;
419 	ecc[6] = ecc_tmp >> 16;
420 	ecc[7] = ecc_tmp >> 24;
421 
422 	ecc_tmp = readl_relaxed(host->regs_va + ECC3);
423 	ecc[8] = ecc_tmp;
424 	ecc[9] = ecc_tmp >> 8;
425 	ecc[10] = ecc_tmp >> 16;
426 	ecc[11] = ecc_tmp >> 24;
427 
428 	ecc_tmp = readl_relaxed(host->regs_va + STS);
429 	ecc[12] = ecc_tmp >> 16;
430 
431 	return 0;
432 }
433 
434 /*
435  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
436  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
437  * max of 1-bit)
438  */
fsmc_read_hwecc_ecc1(struct nand_chip * chip,const u8 * data,u8 * ecc)439 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
440 				u8 *ecc)
441 {
442 	struct fsmc_nand_data *host = nand_to_fsmc(chip);
443 	u32 ecc_tmp;
444 
445 	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
446 	ecc[0] = ecc_tmp;
447 	ecc[1] = ecc_tmp >> 8;
448 	ecc[2] = ecc_tmp >> 16;
449 
450 	return 0;
451 }
452 
453 /* Count the number of 0's in buff upto a max of max_bits */
count_written_bits(u8 * buff,int size,int max_bits)454 static int count_written_bits(u8 *buff, int size, int max_bits)
455 {
456 	int k, written_bits = 0;
457 
458 	for (k = 0; k < size; k++) {
459 		written_bits += hweight8(~buff[k]);
460 		if (written_bits > max_bits)
461 			break;
462 	}
463 
464 	return written_bits;
465 }
466 
dma_complete(void * param)467 static void dma_complete(void *param)
468 {
469 	struct fsmc_nand_data *host = param;
470 
471 	complete(&host->dma_access_complete);
472 }
473 
dma_xfer(struct fsmc_nand_data * host,void * buffer,int len,enum dma_data_direction direction)474 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
475 		    enum dma_data_direction direction)
476 {
477 	struct dma_chan *chan;
478 	struct dma_device *dma_dev;
479 	struct dma_async_tx_descriptor *tx;
480 	dma_addr_t dma_dst, dma_src, dma_addr;
481 	dma_cookie_t cookie;
482 	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
483 	int ret;
484 	unsigned long time_left;
485 
486 	if (direction == DMA_TO_DEVICE)
487 		chan = host->write_dma_chan;
488 	else if (direction == DMA_FROM_DEVICE)
489 		chan = host->read_dma_chan;
490 	else
491 		return -EINVAL;
492 
493 	dma_dev = chan->device;
494 	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
495 
496 	if (direction == DMA_TO_DEVICE) {
497 		dma_src = dma_addr;
498 		dma_dst = host->data_pa;
499 	} else {
500 		dma_src = host->data_pa;
501 		dma_dst = dma_addr;
502 	}
503 
504 	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
505 			len, flags);
506 	if (!tx) {
507 		dev_err(host->dev, "device_prep_dma_memcpy error\n");
508 		ret = -EIO;
509 		goto unmap_dma;
510 	}
511 
512 	tx->callback = dma_complete;
513 	tx->callback_param = host;
514 	cookie = tx->tx_submit(tx);
515 
516 	ret = dma_submit_error(cookie);
517 	if (ret) {
518 		dev_err(host->dev, "dma_submit_error %d\n", cookie);
519 		goto unmap_dma;
520 	}
521 
522 	dma_async_issue_pending(chan);
523 
524 	time_left =
525 	wait_for_completion_timeout(&host->dma_access_complete,
526 				    msecs_to_jiffies(3000));
527 	if (time_left == 0) {
528 		dmaengine_terminate_all(chan);
529 		dev_err(host->dev, "wait_for_completion_timeout\n");
530 		ret = -ETIMEDOUT;
531 		goto unmap_dma;
532 	}
533 
534 	ret = 0;
535 
536 unmap_dma:
537 	dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
538 
539 	return ret;
540 }
541 
542 /*
543  * fsmc_write_buf - write buffer to chip
544  * @host:	FSMC NAND controller
545  * @buf:	data buffer
546  * @len:	number of bytes to write
547  */
fsmc_write_buf(struct fsmc_nand_data * host,const u8 * buf,int len)548 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
549 			   int len)
550 {
551 	int i;
552 
553 	if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
554 	    IS_ALIGNED(len, sizeof(u32))) {
555 		u32 *p = (u32 *)buf;
556 
557 		len = len >> 2;
558 		for (i = 0; i < len; i++)
559 			writel_relaxed(p[i], host->data_va);
560 	} else {
561 		for (i = 0; i < len; i++)
562 			writeb_relaxed(buf[i], host->data_va);
563 	}
564 }
565 
566 /*
567  * fsmc_read_buf - read chip data into buffer
568  * @host:	FSMC NAND controller
569  * @buf:	buffer to store date
570  * @len:	number of bytes to read
571  */
fsmc_read_buf(struct fsmc_nand_data * host,u8 * buf,int len)572 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
573 {
574 	int i;
575 
576 	if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
577 	    IS_ALIGNED(len, sizeof(u32))) {
578 		u32 *p = (u32 *)buf;
579 
580 		len = len >> 2;
581 		for (i = 0; i < len; i++)
582 			p[i] = readl_relaxed(host->data_va);
583 	} else {
584 		for (i = 0; i < len; i++)
585 			buf[i] = readb_relaxed(host->data_va);
586 	}
587 }
588 
589 /*
590  * fsmc_read_buf_dma - read chip data into buffer
591  * @host:	FSMC NAND controller
592  * @buf:	buffer to store date
593  * @len:	number of bytes to read
594  */
fsmc_read_buf_dma(struct fsmc_nand_data * host,u8 * buf,int len)595 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
596 			      int len)
597 {
598 	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
599 }
600 
601 /*
602  * fsmc_write_buf_dma - write buffer to chip
603  * @host:	FSMC NAND controller
604  * @buf:	data buffer
605  * @len:	number of bytes to write
606  */
fsmc_write_buf_dma(struct fsmc_nand_data * host,const u8 * buf,int len)607 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
608 			       int len)
609 {
610 	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
611 }
612 
613 /*
614  * fsmc_exec_op - hook called by the core to execute NAND operations
615  *
616  * This controller is simple enough and thus does not need to use the parser
617  * provided by the core, instead, handle every situation here.
618  */
fsmc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)619 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
620 			bool check_only)
621 {
622 	struct fsmc_nand_data *host = nand_to_fsmc(chip);
623 	const struct nand_op_instr *instr = NULL;
624 	int ret = 0;
625 	unsigned int op_id;
626 	int i;
627 
628 	if (check_only)
629 		return 0;
630 
631 	pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
632 
633 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
634 		instr = &op->instrs[op_id];
635 
636 		nand_op_trace("  ", instr);
637 
638 		switch (instr->type) {
639 		case NAND_OP_CMD_INSTR:
640 			writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
641 			break;
642 
643 		case NAND_OP_ADDR_INSTR:
644 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
645 				writeb_relaxed(instr->ctx.addr.addrs[i],
646 					       host->addr_va);
647 			break;
648 
649 		case NAND_OP_DATA_IN_INSTR:
650 			if (host->mode == USE_DMA_ACCESS)
651 				fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
652 						  instr->ctx.data.len);
653 			else
654 				fsmc_read_buf(host, instr->ctx.data.buf.in,
655 					      instr->ctx.data.len);
656 			break;
657 
658 		case NAND_OP_DATA_OUT_INSTR:
659 			if (host->mode == USE_DMA_ACCESS)
660 				fsmc_write_buf_dma(host,
661 						   instr->ctx.data.buf.out,
662 						   instr->ctx.data.len);
663 			else
664 				fsmc_write_buf(host, instr->ctx.data.buf.out,
665 					       instr->ctx.data.len);
666 			break;
667 
668 		case NAND_OP_WAITRDY_INSTR:
669 			ret = nand_soft_waitrdy(chip,
670 						instr->ctx.waitrdy.timeout_ms);
671 			break;
672 		}
673 
674 		if (instr->delay_ns)
675 			ndelay(instr->delay_ns);
676 	}
677 
678 	return ret;
679 }
680 
681 /*
682  * fsmc_read_page_hwecc
683  * @chip:	nand chip info structure
684  * @buf:	buffer to store read data
685  * @oob_required:	caller expects OOB data read to chip->oob_poi
686  * @page:	page number to read
687  *
688  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
689  * performed in a strict sequence as follows:
690  * data(512 byte) -> ecc(13 byte)
691  * After this read, fsmc hardware generates and reports error data bits(up to a
692  * max of 8 bits)
693  */
fsmc_read_page_hwecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)694 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
695 				int oob_required, int page)
696 {
697 	struct mtd_info *mtd = nand_to_mtd(chip);
698 	int i, j, s, stat, eccsize = chip->ecc.size;
699 	int eccbytes = chip->ecc.bytes;
700 	int eccsteps = chip->ecc.steps;
701 	u8 *p = buf;
702 	u8 *ecc_calc = chip->ecc.calc_buf;
703 	u8 *ecc_code = chip->ecc.code_buf;
704 	int off, len, ret, group = 0;
705 	/*
706 	 * ecc_oob is intentionally taken as u16. In 16bit devices, we
707 	 * end up reading 14 bytes (7 words) from oob. The local array is
708 	 * to maintain word alignment
709 	 */
710 	u16 ecc_oob[7];
711 	u8 *oob = (u8 *)&ecc_oob[0];
712 	unsigned int max_bitflips = 0;
713 
714 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
715 		nand_read_page_op(chip, page, s * eccsize, NULL, 0);
716 		chip->ecc.hwctl(chip, NAND_ECC_READ);
717 		ret = nand_read_data_op(chip, p, eccsize, false, false);
718 		if (ret)
719 			return ret;
720 
721 		for (j = 0; j < eccbytes;) {
722 			struct mtd_oob_region oobregion;
723 
724 			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
725 			if (ret)
726 				return ret;
727 
728 			off = oobregion.offset;
729 			len = oobregion.length;
730 
731 			/*
732 			 * length is intentionally kept a higher multiple of 2
733 			 * to read at least 13 bytes even in case of 16 bit NAND
734 			 * devices
735 			 */
736 			if (chip->options & NAND_BUSWIDTH_16)
737 				len = roundup(len, 2);
738 
739 			nand_read_oob_op(chip, page, off, oob + j, len);
740 			j += len;
741 		}
742 
743 		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
744 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
745 
746 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
747 		if (stat < 0) {
748 			mtd->ecc_stats.failed++;
749 		} else {
750 			mtd->ecc_stats.corrected += stat;
751 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
752 		}
753 	}
754 
755 	return max_bitflips;
756 }
757 
758 /*
759  * fsmc_bch8_correct_data
760  * @mtd:	mtd info structure
761  * @dat:	buffer of read data
762  * @read_ecc:	ecc read from device spare area
763  * @calc_ecc:	ecc calculated from read data
764  *
765  * calc_ecc is a 104 bit information containing maximum of 8 error
766  * offset information of 13 bits each in 512 bytes of read data.
767  */
fsmc_bch8_correct_data(struct nand_chip * chip,u8 * dat,u8 * read_ecc,u8 * calc_ecc)768 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
769 				  u8 *read_ecc, u8 *calc_ecc)
770 {
771 	struct fsmc_nand_data *host = nand_to_fsmc(chip);
772 	u32 err_idx[8];
773 	u32 num_err, i;
774 	u32 ecc1, ecc2, ecc3, ecc4;
775 
776 	num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
777 
778 	/* no bit flipping */
779 	if (likely(num_err == 0))
780 		return 0;
781 
782 	/* too many errors */
783 	if (unlikely(num_err > 8)) {
784 		/*
785 		 * This is a temporary erase check. A newly erased page read
786 		 * would result in an ecc error because the oob data is also
787 		 * erased to FF and the calculated ecc for an FF data is not
788 		 * FF..FF.
789 		 * This is a workaround to skip performing correction in case
790 		 * data is FF..FF
791 		 *
792 		 * Logic:
793 		 * For every page, each bit written as 0 is counted until these
794 		 * number of bits are greater than 8 (the maximum correction
795 		 * capability of FSMC for each 512 + 13 bytes)
796 		 */
797 
798 		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
799 		int bits_data = count_written_bits(dat, chip->ecc.size, 8);
800 
801 		if ((bits_ecc + bits_data) <= 8) {
802 			if (bits_data)
803 				memset(dat, 0xff, chip->ecc.size);
804 			return bits_data;
805 		}
806 
807 		return -EBADMSG;
808 	}
809 
810 	/*
811 	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
812 	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
813 	 *
814 	 * calc_ecc is a 104 bit information containing maximum of 8 error
815 	 * offset information of 13 bits each. calc_ecc is copied into a
816 	 * u64 array and error offset indexes are populated in err_idx
817 	 * array
818 	 */
819 	ecc1 = readl_relaxed(host->regs_va + ECC1);
820 	ecc2 = readl_relaxed(host->regs_va + ECC2);
821 	ecc3 = readl_relaxed(host->regs_va + ECC3);
822 	ecc4 = readl_relaxed(host->regs_va + STS);
823 
824 	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
825 	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
826 	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
827 	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
828 	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
829 	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
830 	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
831 	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
832 
833 	i = 0;
834 	while (num_err--) {
835 		err_idx[i] ^= 3;
836 
837 		if (err_idx[i] < chip->ecc.size * 8) {
838 			int err = err_idx[i];
839 
840 			dat[err >> 3] ^= BIT(err & 7);
841 			i++;
842 		}
843 	}
844 	return i;
845 }
846 
filter(struct dma_chan * chan,void * slave)847 static bool filter(struct dma_chan *chan, void *slave)
848 {
849 	chan->private = slave;
850 	return true;
851 }
852 
fsmc_nand_probe_config_dt(struct platform_device * pdev,struct fsmc_nand_data * host,struct nand_chip * nand)853 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
854 				     struct fsmc_nand_data *host,
855 				     struct nand_chip *nand)
856 {
857 	struct device_node *np = pdev->dev.of_node;
858 	u32 val;
859 	int ret;
860 
861 	nand->options = 0;
862 
863 	if (!of_property_read_u32(np, "bank-width", &val)) {
864 		if (val == 2) {
865 			nand->options |= NAND_BUSWIDTH_16;
866 		} else if (val != 1) {
867 			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
868 			return -EINVAL;
869 		}
870 	}
871 
872 	if (of_get_property(np, "nand-skip-bbtscan", NULL))
873 		nand->options |= NAND_SKIP_BBTSCAN;
874 
875 	host->dev_timings = devm_kzalloc(&pdev->dev,
876 					 sizeof(*host->dev_timings),
877 					 GFP_KERNEL);
878 	if (!host->dev_timings)
879 		return -ENOMEM;
880 
881 	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
882 					sizeof(*host->dev_timings));
883 	if (ret)
884 		host->dev_timings = NULL;
885 
886 	/* Set default NAND bank to 0 */
887 	host->bank = 0;
888 	if (!of_property_read_u32(np, "bank", &val)) {
889 		if (val > 3) {
890 			dev_err(&pdev->dev, "invalid bank %u\n", val);
891 			return -EINVAL;
892 		}
893 		host->bank = val;
894 	}
895 	return 0;
896 }
897 
fsmc_nand_attach_chip(struct nand_chip * nand)898 static int fsmc_nand_attach_chip(struct nand_chip *nand)
899 {
900 	struct mtd_info *mtd = nand_to_mtd(nand);
901 	struct fsmc_nand_data *host = nand_to_fsmc(nand);
902 
903 	if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
904 		nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
905 
906 	if (!nand->ecc.size)
907 		nand->ecc.size = 512;
908 
909 	if (AMBA_REV_BITS(host->pid) >= 8) {
910 		nand->ecc.read_page = fsmc_read_page_hwecc;
911 		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
912 		nand->ecc.correct = fsmc_bch8_correct_data;
913 		nand->ecc.bytes = 13;
914 		nand->ecc.strength = 8;
915 	}
916 
917 	if (AMBA_REV_BITS(host->pid) >= 8) {
918 		switch (mtd->oobsize) {
919 		case 16:
920 		case 64:
921 		case 128:
922 		case 224:
923 		case 256:
924 			break;
925 		default:
926 			dev_warn(host->dev,
927 				 "No oob scheme defined for oobsize %d\n",
928 				 mtd->oobsize);
929 			return -EINVAL;
930 		}
931 
932 		mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
933 
934 		return 0;
935 	}
936 
937 	switch (nand->ecc.engine_type) {
938 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
939 		dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
940 		nand->ecc.calculate = fsmc_read_hwecc_ecc1;
941 		nand->ecc.correct = nand_correct_data;
942 		nand->ecc.hwctl = fsmc_enable_hwecc;
943 		nand->ecc.bytes = 3;
944 		nand->ecc.strength = 1;
945 		nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
946 		break;
947 
948 	case NAND_ECC_ENGINE_TYPE_SOFT:
949 		if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
950 			dev_info(host->dev,
951 				 "Using 4-bit SW BCH ECC scheme\n");
952 			break;
953 		}
954 
955 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
956 		break;
957 
958 	default:
959 		dev_err(host->dev, "Unsupported ECC mode!\n");
960 		return -ENOTSUPP;
961 	}
962 
963 	/*
964 	 * Don't set layout for BCH4 SW ECC. This will be
965 	 * generated later in nand_bch_init() later.
966 	 */
967 	if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
968 		switch (mtd->oobsize) {
969 		case 16:
970 		case 64:
971 		case 128:
972 			mtd_set_ooblayout(mtd,
973 					  &fsmc_ecc1_ooblayout_ops);
974 			break;
975 		default:
976 			dev_warn(host->dev,
977 				 "No oob scheme defined for oobsize %d\n",
978 				 mtd->oobsize);
979 			return -EINVAL;
980 		}
981 	}
982 
983 	return 0;
984 }
985 
986 static const struct nand_controller_ops fsmc_nand_controller_ops = {
987 	.attach_chip = fsmc_nand_attach_chip,
988 	.exec_op = fsmc_exec_op,
989 	.setup_interface = fsmc_setup_interface,
990 };
991 
992 /**
993  * fsmc_nand_disable() - Disables the NAND bank
994  * @host: The instance to disable
995  */
fsmc_nand_disable(struct fsmc_nand_data * host)996 static void fsmc_nand_disable(struct fsmc_nand_data *host)
997 {
998 	u32 val;
999 
1000 	val = readl(host->regs_va + FSMC_PC);
1001 	val &= ~FSMC_ENABLE;
1002 	writel(val, host->regs_va + FSMC_PC);
1003 }
1004 
1005 /*
1006  * fsmc_nand_probe - Probe function
1007  * @pdev:       platform device structure
1008  */
fsmc_nand_probe(struct platform_device * pdev)1009 static int __init fsmc_nand_probe(struct platform_device *pdev)
1010 {
1011 	struct fsmc_nand_data *host;
1012 	struct mtd_info *mtd;
1013 	struct nand_chip *nand;
1014 	struct resource *res;
1015 	void __iomem *base;
1016 	dma_cap_mask_t mask;
1017 	int ret = 0;
1018 	u32 pid;
1019 	int i;
1020 
1021 	/* Allocate memory for the device structure (and zero it) */
1022 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1023 	if (!host)
1024 		return -ENOMEM;
1025 
1026 	nand = &host->nand;
1027 
1028 	ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1029 	if (ret)
1030 		return ret;
1031 
1032 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1033 	host->data_va = devm_ioremap_resource(&pdev->dev, res);
1034 	if (IS_ERR(host->data_va))
1035 		return PTR_ERR(host->data_va);
1036 
1037 	host->data_pa = (dma_addr_t)res->start;
1038 
1039 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1040 	host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1041 	if (IS_ERR(host->addr_va))
1042 		return PTR_ERR(host->addr_va);
1043 
1044 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1045 	host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1046 	if (IS_ERR(host->cmd_va))
1047 		return PTR_ERR(host->cmd_va);
1048 
1049 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1050 	base = devm_ioremap_resource(&pdev->dev, res);
1051 	if (IS_ERR(base))
1052 		return PTR_ERR(base);
1053 
1054 	host->regs_va = base + FSMC_NOR_REG_SIZE +
1055 		(host->bank * FSMC_NAND_BANK_SZ);
1056 
1057 	host->clk = devm_clk_get(&pdev->dev, NULL);
1058 	if (IS_ERR(host->clk)) {
1059 		dev_err(&pdev->dev, "failed to fetch block clock\n");
1060 		return PTR_ERR(host->clk);
1061 	}
1062 
1063 	ret = clk_prepare_enable(host->clk);
1064 	if (ret)
1065 		return ret;
1066 
1067 	/*
1068 	 * This device ID is actually a common AMBA ID as used on the
1069 	 * AMBA PrimeCell bus. However it is not a PrimeCell.
1070 	 */
1071 	for (pid = 0, i = 0; i < 4; i++)
1072 		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1073 			255) << (i * 8);
1074 
1075 	host->pid = pid;
1076 
1077 	dev_info(&pdev->dev,
1078 		 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1079 		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1080 		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1081 
1082 	host->dev = &pdev->dev;
1083 
1084 	if (host->mode == USE_DMA_ACCESS)
1085 		init_completion(&host->dma_access_complete);
1086 
1087 	/* Link all private pointers */
1088 	mtd = nand_to_mtd(&host->nand);
1089 	nand_set_flash_node(nand, pdev->dev.of_node);
1090 
1091 	mtd->dev.parent = &pdev->dev;
1092 
1093 	nand->badblockbits = 7;
1094 
1095 	if (host->mode == USE_DMA_ACCESS) {
1096 		dma_cap_zero(mask);
1097 		dma_cap_set(DMA_MEMCPY, mask);
1098 		host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1099 		if (!host->read_dma_chan) {
1100 			dev_err(&pdev->dev, "Unable to get read dma channel\n");
1101 			ret = -ENODEV;
1102 			goto disable_clk;
1103 		}
1104 		host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1105 		if (!host->write_dma_chan) {
1106 			dev_err(&pdev->dev, "Unable to get write dma channel\n");
1107 			ret = -ENODEV;
1108 			goto release_dma_read_chan;
1109 		}
1110 	}
1111 
1112 	if (host->dev_timings) {
1113 		fsmc_nand_setup(host, host->dev_timings);
1114 		nand->options |= NAND_KEEP_TIMINGS;
1115 	}
1116 
1117 	nand_controller_init(&host->base);
1118 	host->base.ops = &fsmc_nand_controller_ops;
1119 	nand->controller = &host->base;
1120 
1121 	/*
1122 	 * Scan to find existence of the device
1123 	 */
1124 	ret = nand_scan(nand, 1);
1125 	if (ret)
1126 		goto release_dma_write_chan;
1127 
1128 	mtd->name = "nand";
1129 	ret = mtd_device_register(mtd, NULL, 0);
1130 	if (ret)
1131 		goto cleanup_nand;
1132 
1133 	platform_set_drvdata(pdev, host);
1134 	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1135 
1136 	return 0;
1137 
1138 cleanup_nand:
1139 	nand_cleanup(nand);
1140 release_dma_write_chan:
1141 	if (host->mode == USE_DMA_ACCESS)
1142 		dma_release_channel(host->write_dma_chan);
1143 release_dma_read_chan:
1144 	if (host->mode == USE_DMA_ACCESS)
1145 		dma_release_channel(host->read_dma_chan);
1146 disable_clk:
1147 	fsmc_nand_disable(host);
1148 	clk_disable_unprepare(host->clk);
1149 
1150 	return ret;
1151 }
1152 
1153 /*
1154  * Clean up routine
1155  */
fsmc_nand_remove(struct platform_device * pdev)1156 static int fsmc_nand_remove(struct platform_device *pdev)
1157 {
1158 	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1159 
1160 	if (host) {
1161 		struct nand_chip *chip = &host->nand;
1162 		int ret;
1163 
1164 		ret = mtd_device_unregister(nand_to_mtd(chip));
1165 		WARN_ON(ret);
1166 		nand_cleanup(chip);
1167 		fsmc_nand_disable(host);
1168 
1169 		if (host->mode == USE_DMA_ACCESS) {
1170 			dma_release_channel(host->write_dma_chan);
1171 			dma_release_channel(host->read_dma_chan);
1172 		}
1173 		clk_disable_unprepare(host->clk);
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 #ifdef CONFIG_PM_SLEEP
fsmc_nand_suspend(struct device * dev)1180 static int fsmc_nand_suspend(struct device *dev)
1181 {
1182 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1183 
1184 	if (host)
1185 		clk_disable_unprepare(host->clk);
1186 
1187 	return 0;
1188 }
1189 
fsmc_nand_resume(struct device * dev)1190 static int fsmc_nand_resume(struct device *dev)
1191 {
1192 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1193 
1194 	if (host) {
1195 		clk_prepare_enable(host->clk);
1196 		if (host->dev_timings)
1197 			fsmc_nand_setup(host, host->dev_timings);
1198 		nand_reset(&host->nand, 0);
1199 	}
1200 
1201 	return 0;
1202 }
1203 #endif
1204 
1205 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1206 
1207 static const struct of_device_id fsmc_nand_id_table[] = {
1208 	{ .compatible = "st,spear600-fsmc-nand" },
1209 	{ .compatible = "stericsson,fsmc-nand" },
1210 	{}
1211 };
1212 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1213 
1214 static struct platform_driver fsmc_nand_driver = {
1215 	.remove = fsmc_nand_remove,
1216 	.driver = {
1217 		.name = "fsmc-nand",
1218 		.of_match_table = fsmc_nand_id_table,
1219 		.pm = &fsmc_nand_pm_ops,
1220 	},
1221 };
1222 
1223 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1224 
1225 MODULE_LICENSE("GPL v2");
1226 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1227 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1228