• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24 
25 #include "core.h"
26 
27 /* Define max times to check status register before we give up. */
28 
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
34 
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40 
41 #define SPI_NOR_MAX_ADDR_WIDTH	4
42 
43 /**
44  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
45  *                           transfer
46  * @nor:        pointer to 'struct spi_nor'
47  * @op:         pointer to 'struct spi_mem_op' template for transfer
48  *
49  * If we have to use the bounce buffer, the data field in @op will be updated.
50  *
51  * Return: true if the bounce buffer is needed, false if not
52  */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)53 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
54 {
55 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
56 	if (object_is_on_stack(op->data.buf.in) ||
57 	    !virt_addr_valid(op->data.buf.in)) {
58 		if (op->data.nbytes > nor->bouncebuf_size)
59 			op->data.nbytes = nor->bouncebuf_size;
60 		op->data.buf.in = nor->bouncebuf;
61 		return true;
62 	}
63 
64 	return false;
65 }
66 
67 /**
68  * spi_nor_spimem_exec_op() - execute a memory operation
69  * @nor:        pointer to 'struct spi_nor'
70  * @op:         pointer to 'struct spi_mem_op' template for transfer
71  *
72  * Return: 0 on success, -error otherwise.
73  */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)74 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
75 {
76 	int error;
77 
78 	error = spi_mem_adjust_op_size(nor->spimem, op);
79 	if (error)
80 		return error;
81 
82 	return spi_mem_exec_op(nor->spimem, op);
83 }
84 
85 /**
86  * spi_nor_spimem_read_data() - read data from flash's memory region via
87  *                              spi-mem
88  * @nor:        pointer to 'struct spi_nor'
89  * @from:       offset to read from
90  * @len:        number of bytes to read
91  * @buf:        pointer to dst buffer
92  *
93  * Return: number of bytes read successfully, -errno otherwise
94  */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)95 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
96 					size_t len, u8 *buf)
97 {
98 	struct spi_mem_op op =
99 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
100 			   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
101 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
102 			   SPI_MEM_OP_DATA_IN(len, buf, 1));
103 	bool usebouncebuf;
104 	ssize_t nbytes;
105 	int error;
106 
107 	/* get transfer protocols. */
108 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
109 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
110 	op.dummy.buswidth = op.addr.buswidth;
111 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
112 
113 	/* convert the dummy cycles to the number of bytes */
114 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
115 
116 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
117 
118 	if (nor->dirmap.rdesc) {
119 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
120 					     op.data.nbytes, op.data.buf.in);
121 	} else {
122 		error = spi_nor_spimem_exec_op(nor, &op);
123 		if (error)
124 			return error;
125 		nbytes = op.data.nbytes;
126 	}
127 
128 	if (usebouncebuf && nbytes > 0)
129 		memcpy(buf, op.data.buf.in, nbytes);
130 
131 	return nbytes;
132 }
133 
134 /**
135  * spi_nor_read_data() - read data from flash memory
136  * @nor:        pointer to 'struct spi_nor'
137  * @from:       offset to read from
138  * @len:        number of bytes to read
139  * @buf:        pointer to dst buffer
140  *
141  * Return: number of bytes read successfully, -errno otherwise
142  */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)143 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
144 {
145 	if (nor->spimem)
146 		return spi_nor_spimem_read_data(nor, from, len, buf);
147 
148 	return nor->controller_ops->read(nor, from, len, buf);
149 }
150 
151 /**
152  * spi_nor_spimem_write_data() - write data to flash memory via
153  *                               spi-mem
154  * @nor:        pointer to 'struct spi_nor'
155  * @to:         offset to write to
156  * @len:        number of bytes to write
157  * @buf:        pointer to src buffer
158  *
159  * Return: number of bytes written successfully, -errno otherwise
160  */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)161 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
162 					 size_t len, const u8 *buf)
163 {
164 	struct spi_mem_op op =
165 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
166 			   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
167 			   SPI_MEM_OP_NO_DUMMY,
168 			   SPI_MEM_OP_DATA_OUT(len, buf, 1));
169 	ssize_t nbytes;
170 	int error;
171 
172 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
173 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
174 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
175 
176 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
177 		op.addr.nbytes = 0;
178 
179 	if (spi_nor_spimem_bounce(nor, &op))
180 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
181 
182 	if (nor->dirmap.wdesc) {
183 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
184 					      op.data.nbytes, op.data.buf.out);
185 	} else {
186 		error = spi_nor_spimem_exec_op(nor, &op);
187 		if (error)
188 			return error;
189 		nbytes = op.data.nbytes;
190 	}
191 
192 	return nbytes;
193 }
194 
195 /**
196  * spi_nor_write_data() - write data to flash memory
197  * @nor:        pointer to 'struct spi_nor'
198  * @to:         offset to write to
199  * @len:        number of bytes to write
200  * @buf:        pointer to src buffer
201  *
202  * Return: number of bytes written successfully, -errno otherwise
203  */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)204 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
205 			   const u8 *buf)
206 {
207 	if (nor->spimem)
208 		return spi_nor_spimem_write_data(nor, to, len, buf);
209 
210 	return nor->controller_ops->write(nor, to, len, buf);
211 }
212 
213 /**
214  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
215  * @nor:	pointer to 'struct spi_nor'.
216  *
217  * Return: 0 on success, -errno otherwise.
218  */
spi_nor_write_enable(struct spi_nor * nor)219 int spi_nor_write_enable(struct spi_nor *nor)
220 {
221 	int ret;
222 
223 	if (nor->spimem) {
224 		struct spi_mem_op op =
225 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
226 				   SPI_MEM_OP_NO_ADDR,
227 				   SPI_MEM_OP_NO_DUMMY,
228 				   SPI_MEM_OP_NO_DATA);
229 
230 		ret = spi_mem_exec_op(nor->spimem, &op);
231 	} else {
232 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
233 						     NULL, 0);
234 	}
235 
236 	if (ret)
237 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
238 
239 	return ret;
240 }
241 
242 /**
243  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
244  * @nor:	pointer to 'struct spi_nor'.
245  *
246  * Return: 0 on success, -errno otherwise.
247  */
spi_nor_write_disable(struct spi_nor * nor)248 int spi_nor_write_disable(struct spi_nor *nor)
249 {
250 	int ret;
251 
252 	if (nor->spimem) {
253 		struct spi_mem_op op =
254 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
255 				   SPI_MEM_OP_NO_ADDR,
256 				   SPI_MEM_OP_NO_DUMMY,
257 				   SPI_MEM_OP_NO_DATA);
258 
259 		ret = spi_mem_exec_op(nor->spimem, &op);
260 	} else {
261 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
262 						     NULL, 0);
263 	}
264 
265 	if (ret)
266 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
267 
268 	return ret;
269 }
270 
271 /**
272  * spi_nor_read_sr() - Read the Status Register.
273  * @nor:	pointer to 'struct spi_nor'.
274  * @sr:		pointer to a DMA-able buffer where the value of the
275  *              Status Register will be written.
276  *
277  * Return: 0 on success, -errno otherwise.
278  */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)279 static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
280 {
281 	int ret;
282 
283 	if (nor->spimem) {
284 		struct spi_mem_op op =
285 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
286 				   SPI_MEM_OP_NO_ADDR,
287 				   SPI_MEM_OP_NO_DUMMY,
288 				   SPI_MEM_OP_DATA_IN(1, sr, 1));
289 
290 		ret = spi_mem_exec_op(nor->spimem, &op);
291 	} else {
292 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
293 						    sr, 1);
294 	}
295 
296 	if (ret)
297 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
298 
299 	return ret;
300 }
301 
302 /**
303  * spi_nor_read_fsr() - Read the Flag Status Register.
304  * @nor:	pointer to 'struct spi_nor'
305  * @fsr:	pointer to a DMA-able buffer where the value of the
306  *              Flag Status Register will be written.
307  *
308  * Return: 0 on success, -errno otherwise.
309  */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)310 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
311 {
312 	int ret;
313 
314 	if (nor->spimem) {
315 		struct spi_mem_op op =
316 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
317 				   SPI_MEM_OP_NO_ADDR,
318 				   SPI_MEM_OP_NO_DUMMY,
319 				   SPI_MEM_OP_DATA_IN(1, fsr, 1));
320 
321 		ret = spi_mem_exec_op(nor->spimem, &op);
322 	} else {
323 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
324 						    fsr, 1);
325 	}
326 
327 	if (ret)
328 		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
329 
330 	return ret;
331 }
332 
333 /**
334  * spi_nor_read_cr() - Read the Configuration Register using the
335  * SPINOR_OP_RDCR (35h) command.
336  * @nor:	pointer to 'struct spi_nor'
337  * @cr:		pointer to a DMA-able buffer where the value of the
338  *              Configuration Register will be written.
339  *
340  * Return: 0 on success, -errno otherwise.
341  */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)342 static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
343 {
344 	int ret;
345 
346 	if (nor->spimem) {
347 		struct spi_mem_op op =
348 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
349 				   SPI_MEM_OP_NO_ADDR,
350 				   SPI_MEM_OP_NO_DUMMY,
351 				   SPI_MEM_OP_DATA_IN(1, cr, 1));
352 
353 		ret = spi_mem_exec_op(nor->spimem, &op);
354 	} else {
355 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
356 	}
357 
358 	if (ret)
359 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
360 
361 	return ret;
362 }
363 
364 /**
365  * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
366  * @nor:	pointer to 'struct spi_nor'.
367  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
368  *		address mode.
369  *
370  * Return: 0 on success, -errno otherwise.
371  */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)372 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
373 {
374 	int ret;
375 
376 	if (nor->spimem) {
377 		struct spi_mem_op op =
378 			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
379 						  SPINOR_OP_EN4B :
380 						  SPINOR_OP_EX4B,
381 						  1),
382 				  SPI_MEM_OP_NO_ADDR,
383 				  SPI_MEM_OP_NO_DUMMY,
384 				  SPI_MEM_OP_NO_DATA);
385 
386 		ret = spi_mem_exec_op(nor->spimem, &op);
387 	} else {
388 		ret = nor->controller_ops->write_reg(nor,
389 						     enable ? SPINOR_OP_EN4B :
390 							      SPINOR_OP_EX4B,
391 						     NULL, 0);
392 	}
393 
394 	if (ret)
395 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
396 
397 	return ret;
398 }
399 
400 /**
401  * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
402  * flashes.
403  * @nor:	pointer to 'struct spi_nor'.
404  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
405  *		address mode.
406  *
407  * Return: 0 on success, -errno otherwise.
408  */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)409 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
410 {
411 	int ret;
412 
413 	nor->bouncebuf[0] = enable << 7;
414 
415 	if (nor->spimem) {
416 		struct spi_mem_op op =
417 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
418 				   SPI_MEM_OP_NO_ADDR,
419 				   SPI_MEM_OP_NO_DUMMY,
420 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
421 
422 		ret = spi_mem_exec_op(nor->spimem, &op);
423 	} else {
424 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
425 						     nor->bouncebuf, 1);
426 	}
427 
428 	if (ret)
429 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
430 
431 	return ret;
432 }
433 
434 /**
435  * spi_nor_write_ear() - Write Extended Address Register.
436  * @nor:	pointer to 'struct spi_nor'.
437  * @ear:	value to write to the Extended Address Register.
438  *
439  * Return: 0 on success, -errno otherwise.
440  */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)441 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
442 {
443 	int ret;
444 
445 	nor->bouncebuf[0] = ear;
446 
447 	if (nor->spimem) {
448 		struct spi_mem_op op =
449 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
450 				   SPI_MEM_OP_NO_ADDR,
451 				   SPI_MEM_OP_NO_DUMMY,
452 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
453 
454 		ret = spi_mem_exec_op(nor->spimem, &op);
455 	} else {
456 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
457 						     nor->bouncebuf, 1);
458 	}
459 
460 	if (ret)
461 		dev_dbg(nor->dev, "error %d writing EAR\n", ret);
462 
463 	return ret;
464 }
465 
466 /**
467  * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
468  * @nor:	pointer to 'struct spi_nor'.
469  * @sr:		pointer to a DMA-able buffer where the value of the
470  *              Status Register will be written.
471  *
472  * Return: 0 on success, -errno otherwise.
473  */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)474 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
475 {
476 	int ret;
477 
478 	if (nor->spimem) {
479 		struct spi_mem_op op =
480 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
481 				   SPI_MEM_OP_NO_ADDR,
482 				   SPI_MEM_OP_NO_DUMMY,
483 				   SPI_MEM_OP_DATA_IN(1, sr, 1));
484 
485 		ret = spi_mem_exec_op(nor->spimem, &op);
486 	} else {
487 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
488 						    sr, 1);
489 	}
490 
491 	if (ret)
492 		dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
493 
494 	return ret;
495 }
496 
497 /**
498  * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
499  * the flash is ready for new commands.
500  * @nor:	pointer to 'struct spi_nor'.
501  *
502  * Return: 1 if ready, 0 if not ready, -errno on errors.
503  */
spi_nor_xsr_ready(struct spi_nor * nor)504 static int spi_nor_xsr_ready(struct spi_nor *nor)
505 {
506 	int ret;
507 
508 	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
509 	if (ret)
510 		return ret;
511 
512 	return !!(nor->bouncebuf[0] & XSR_RDY);
513 }
514 
515 /**
516  * spi_nor_clear_sr() - Clear the Status Register.
517  * @nor:	pointer to 'struct spi_nor'.
518  */
spi_nor_clear_sr(struct spi_nor * nor)519 static void spi_nor_clear_sr(struct spi_nor *nor)
520 {
521 	int ret;
522 
523 	if (nor->spimem) {
524 		struct spi_mem_op op =
525 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
526 				   SPI_MEM_OP_NO_ADDR,
527 				   SPI_MEM_OP_NO_DUMMY,
528 				   SPI_MEM_OP_NO_DATA);
529 
530 		ret = spi_mem_exec_op(nor->spimem, &op);
531 	} else {
532 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
533 						     NULL, 0);
534 	}
535 
536 	if (ret)
537 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
538 }
539 
540 /**
541  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
542  * for new commands.
543  * @nor:	pointer to 'struct spi_nor'.
544  *
545  * Return: 1 if ready, 0 if not ready, -errno on errors.
546  */
spi_nor_sr_ready(struct spi_nor * nor)547 static int spi_nor_sr_ready(struct spi_nor *nor)
548 {
549 	int ret = spi_nor_read_sr(nor, nor->bouncebuf);
550 
551 	if (ret)
552 		return ret;
553 
554 	if (nor->flags & SNOR_F_USE_CLSR &&
555 	    nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
556 		if (nor->bouncebuf[0] & SR_E_ERR)
557 			dev_err(nor->dev, "Erase Error occurred\n");
558 		else
559 			dev_err(nor->dev, "Programming Error occurred\n");
560 
561 		spi_nor_clear_sr(nor);
562 
563 		/*
564 		 * WEL bit remains set to one when an erase or page program
565 		 * error occurs. Issue a Write Disable command to protect
566 		 * against inadvertent writes that can possibly corrupt the
567 		 * contents of the memory.
568 		 */
569 		ret = spi_nor_write_disable(nor);
570 		if (ret)
571 			return ret;
572 
573 		return -EIO;
574 	}
575 
576 	return !(nor->bouncebuf[0] & SR_WIP);
577 }
578 
579 /**
580  * spi_nor_clear_fsr() - Clear the Flag Status Register.
581  * @nor:	pointer to 'struct spi_nor'.
582  */
spi_nor_clear_fsr(struct spi_nor * nor)583 static void spi_nor_clear_fsr(struct spi_nor *nor)
584 {
585 	int ret;
586 
587 	if (nor->spimem) {
588 		struct spi_mem_op op =
589 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
590 				   SPI_MEM_OP_NO_ADDR,
591 				   SPI_MEM_OP_NO_DUMMY,
592 				   SPI_MEM_OP_NO_DATA);
593 
594 		ret = spi_mem_exec_op(nor->spimem, &op);
595 	} else {
596 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
597 						     NULL, 0);
598 	}
599 
600 	if (ret)
601 		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
602 }
603 
604 /**
605  * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
606  * ready for new commands.
607  * @nor:	pointer to 'struct spi_nor'.
608  *
609  * Return: 1 if ready, 0 if not ready, -errno on errors.
610  */
spi_nor_fsr_ready(struct spi_nor * nor)611 static int spi_nor_fsr_ready(struct spi_nor *nor)
612 {
613 	int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
614 
615 	if (ret)
616 		return ret;
617 
618 	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
619 		if (nor->bouncebuf[0] & FSR_E_ERR)
620 			dev_err(nor->dev, "Erase operation failed.\n");
621 		else
622 			dev_err(nor->dev, "Program operation failed.\n");
623 
624 		if (nor->bouncebuf[0] & FSR_PT_ERR)
625 			dev_err(nor->dev,
626 			"Attempted to modify a protected sector.\n");
627 
628 		spi_nor_clear_fsr(nor);
629 
630 		/*
631 		 * WEL bit remains set to one when an erase or page program
632 		 * error occurs. Issue a Write Disable command to protect
633 		 * against inadvertent writes that can possibly corrupt the
634 		 * contents of the memory.
635 		 */
636 		ret = spi_nor_write_disable(nor);
637 		if (ret)
638 			return ret;
639 
640 		return -EIO;
641 	}
642 
643 	return !!(nor->bouncebuf[0] & FSR_READY);
644 }
645 
646 /**
647  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
648  * @nor:	pointer to 'struct spi_nor'.
649  *
650  * Return: 1 if ready, 0 if not ready, -errno on errors.
651  */
spi_nor_ready(struct spi_nor * nor)652 static int spi_nor_ready(struct spi_nor *nor)
653 {
654 	int sr, fsr;
655 
656 	if (nor->flags & SNOR_F_READY_XSR_RDY)
657 		sr = spi_nor_xsr_ready(nor);
658 	else
659 		sr = spi_nor_sr_ready(nor);
660 	if (sr < 0)
661 		return sr;
662 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
663 	if (fsr < 0)
664 		return fsr;
665 	return sr && fsr;
666 }
667 
668 /**
669  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
670  * Status Register until ready, or timeout occurs.
671  * @nor:		pointer to "struct spi_nor".
672  * @timeout_jiffies:	jiffies to wait until timeout.
673  *
674  * Return: 0 on success, -errno otherwise.
675  */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)676 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
677 						unsigned long timeout_jiffies)
678 {
679 	unsigned long deadline;
680 	int timeout = 0, ret;
681 
682 	deadline = jiffies + timeout_jiffies;
683 
684 	while (!timeout) {
685 		if (time_after_eq(jiffies, deadline))
686 			timeout = 1;
687 
688 		ret = spi_nor_ready(nor);
689 		if (ret < 0)
690 			return ret;
691 		if (ret)
692 			return 0;
693 
694 		cond_resched();
695 	}
696 
697 	dev_dbg(nor->dev, "flash operation timed out\n");
698 
699 	return -ETIMEDOUT;
700 }
701 
702 /**
703  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
704  * flash to be ready, or timeout occurs.
705  * @nor:	pointer to "struct spi_nor".
706  *
707  * Return: 0 on success, -errno otherwise.
708  */
spi_nor_wait_till_ready(struct spi_nor * nor)709 int spi_nor_wait_till_ready(struct spi_nor *nor)
710 {
711 	return spi_nor_wait_till_ready_with_timeout(nor,
712 						    DEFAULT_READY_WAIT_JIFFIES);
713 }
714 
715 /**
716  * spi_nor_write_sr() - Write the Status Register.
717  * @nor:	pointer to 'struct spi_nor'.
718  * @sr:		pointer to DMA-able buffer to write to the Status Register.
719  * @len:	number of bytes to write to the Status Register.
720  *
721  * Return: 0 on success, -errno otherwise.
722  */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)723 static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
724 {
725 	int ret;
726 
727 	ret = spi_nor_write_enable(nor);
728 	if (ret)
729 		return ret;
730 
731 	if (nor->spimem) {
732 		struct spi_mem_op op =
733 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
734 				   SPI_MEM_OP_NO_ADDR,
735 				   SPI_MEM_OP_NO_DUMMY,
736 				   SPI_MEM_OP_DATA_OUT(len, sr, 1));
737 
738 		ret = spi_mem_exec_op(nor->spimem, &op);
739 	} else {
740 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
741 						     sr, len);
742 	}
743 
744 	if (ret) {
745 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
746 		return ret;
747 	}
748 
749 	return spi_nor_wait_till_ready(nor);
750 }
751 
752 /**
753  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
754  * ensure that the byte written match the received value.
755  * @nor:	pointer to a 'struct spi_nor'.
756  * @sr1:	byte value to be written to the Status Register.
757  *
758  * Return: 0 on success, -errno otherwise.
759  */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)760 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
761 {
762 	int ret;
763 
764 	nor->bouncebuf[0] = sr1;
765 
766 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
767 	if (ret)
768 		return ret;
769 
770 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
771 	if (ret)
772 		return ret;
773 
774 	if (nor->bouncebuf[0] != sr1) {
775 		dev_dbg(nor->dev, "SR1: read back test failed\n");
776 		return -EIO;
777 	}
778 
779 	return 0;
780 }
781 
782 /**
783  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
784  * Status Register 2 in one shot. Ensure that the byte written in the Status
785  * Register 1 match the received value, and that the 16-bit Write did not
786  * affect what was already in the Status Register 2.
787  * @nor:	pointer to a 'struct spi_nor'.
788  * @sr1:	byte value to be written to the Status Register 1.
789  *
790  * Return: 0 on success, -errno otherwise.
791  */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)792 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
793 {
794 	int ret;
795 	u8 *sr_cr = nor->bouncebuf;
796 	u8 cr_written;
797 
798 	/* Make sure we don't overwrite the contents of Status Register 2. */
799 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
800 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
801 		if (ret)
802 			return ret;
803 	} else if (nor->params->quad_enable) {
804 		/*
805 		 * If the Status Register 2 Read command (35h) is not
806 		 * supported, we should at least be sure we don't
807 		 * change the value of the SR2 Quad Enable bit.
808 		 *
809 		 * We can safely assume that when the Quad Enable method is
810 		 * set, the value of the QE bit is one, as a consequence of the
811 		 * nor->params->quad_enable() call.
812 		 *
813 		 * We can safely assume that the Quad Enable bit is present in
814 		 * the Status Register 2 at BIT(1). According to the JESD216
815 		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
816 		 * Write Status (01h) command is available just for the cases
817 		 * in which the QE bit is described in SR2 at BIT(1).
818 		 */
819 		sr_cr[1] = SR2_QUAD_EN_BIT1;
820 	} else {
821 		sr_cr[1] = 0;
822 	}
823 
824 	sr_cr[0] = sr1;
825 
826 	ret = spi_nor_write_sr(nor, sr_cr, 2);
827 	if (ret)
828 		return ret;
829 
830 	if (nor->flags & SNOR_F_NO_READ_CR)
831 		return 0;
832 
833 	cr_written = sr_cr[1];
834 
835 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
836 	if (ret)
837 		return ret;
838 
839 	if (cr_written != sr_cr[1]) {
840 		dev_dbg(nor->dev, "CR: read back test failed\n");
841 		return -EIO;
842 	}
843 
844 	return 0;
845 }
846 
847 /**
848  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
849  * Configuration Register in one shot. Ensure that the byte written in the
850  * Configuration Register match the received value, and that the 16-bit Write
851  * did not affect what was already in the Status Register 1.
852  * @nor:	pointer to a 'struct spi_nor'.
853  * @cr:		byte value to be written to the Configuration Register.
854  *
855  * Return: 0 on success, -errno otherwise.
856  */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)857 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
858 {
859 	int ret;
860 	u8 *sr_cr = nor->bouncebuf;
861 	u8 sr_written;
862 
863 	/* Keep the current value of the Status Register 1. */
864 	ret = spi_nor_read_sr(nor, sr_cr);
865 	if (ret)
866 		return ret;
867 
868 	sr_cr[1] = cr;
869 
870 	ret = spi_nor_write_sr(nor, sr_cr, 2);
871 	if (ret)
872 		return ret;
873 
874 	sr_written = sr_cr[0];
875 
876 	ret = spi_nor_read_sr(nor, sr_cr);
877 	if (ret)
878 		return ret;
879 
880 	if (sr_written != sr_cr[0]) {
881 		dev_dbg(nor->dev, "SR: Read back test failed\n");
882 		return -EIO;
883 	}
884 
885 	if (nor->flags & SNOR_F_NO_READ_CR)
886 		return 0;
887 
888 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
889 	if (ret)
890 		return ret;
891 
892 	if (cr != sr_cr[1]) {
893 		dev_dbg(nor->dev, "CR: read back test failed\n");
894 		return -EIO;
895 	}
896 
897 	return 0;
898 }
899 
900 /**
901  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
902  * the byte written match the received value without affecting other bits in the
903  * Status Register 1 and 2.
904  * @nor:	pointer to a 'struct spi_nor'.
905  * @sr1:	byte value to be written to the Status Register.
906  *
907  * Return: 0 on success, -errno otherwise.
908  */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)909 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
910 {
911 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
912 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
913 
914 	return spi_nor_write_sr1_and_check(nor, sr1);
915 }
916 
917 /**
918  * spi_nor_write_sr2() - Write the Status Register 2 using the
919  * SPINOR_OP_WRSR2 (3eh) command.
920  * @nor:	pointer to 'struct spi_nor'.
921  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
922  *
923  * Return: 0 on success, -errno otherwise.
924  */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)925 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
926 {
927 	int ret;
928 
929 	ret = spi_nor_write_enable(nor);
930 	if (ret)
931 		return ret;
932 
933 	if (nor->spimem) {
934 		struct spi_mem_op op =
935 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
936 				   SPI_MEM_OP_NO_ADDR,
937 				   SPI_MEM_OP_NO_DUMMY,
938 				   SPI_MEM_OP_DATA_OUT(1, sr2, 1));
939 
940 		ret = spi_mem_exec_op(nor->spimem, &op);
941 	} else {
942 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
943 						     sr2, 1);
944 	}
945 
946 	if (ret) {
947 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
948 		return ret;
949 	}
950 
951 	return spi_nor_wait_till_ready(nor);
952 }
953 
954 /**
955  * spi_nor_read_sr2() - Read the Status Register 2 using the
956  * SPINOR_OP_RDSR2 (3fh) command.
957  * @nor:	pointer to 'struct spi_nor'.
958  * @sr2:	pointer to DMA-able buffer where the value of the
959  *		Status Register 2 will be written.
960  *
961  * Return: 0 on success, -errno otherwise.
962  */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)963 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
964 {
965 	int ret;
966 
967 	if (nor->spimem) {
968 		struct spi_mem_op op =
969 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
970 				   SPI_MEM_OP_NO_ADDR,
971 				   SPI_MEM_OP_NO_DUMMY,
972 				   SPI_MEM_OP_DATA_IN(1, sr2, 1));
973 
974 		ret = spi_mem_exec_op(nor->spimem, &op);
975 	} else {
976 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
977 						    sr2, 1);
978 	}
979 
980 	if (ret)
981 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
982 
983 	return ret;
984 }
985 
986 /**
987  * spi_nor_erase_chip() - Erase the entire flash memory.
988  * @nor:	pointer to 'struct spi_nor'.
989  *
990  * Return: 0 on success, -errno otherwise.
991  */
spi_nor_erase_chip(struct spi_nor * nor)992 static int spi_nor_erase_chip(struct spi_nor *nor)
993 {
994 	int ret;
995 
996 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
997 
998 	if (nor->spimem) {
999 		struct spi_mem_op op =
1000 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
1001 				   SPI_MEM_OP_NO_ADDR,
1002 				   SPI_MEM_OP_NO_DUMMY,
1003 				   SPI_MEM_OP_NO_DATA);
1004 
1005 		ret = spi_mem_exec_op(nor->spimem, &op);
1006 	} else {
1007 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
1008 						     NULL, 0);
1009 	}
1010 
1011 	if (ret)
1012 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1013 
1014 	return ret;
1015 }
1016 
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1017 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1018 {
1019 	size_t i;
1020 
1021 	for (i = 0; i < size; i++)
1022 		if (table[i][0] == opcode)
1023 			return table[i][1];
1024 
1025 	/* No conversion found, keep input op code. */
1026 	return opcode;
1027 }
1028 
spi_nor_convert_3to4_read(u8 opcode)1029 u8 spi_nor_convert_3to4_read(u8 opcode)
1030 {
1031 	static const u8 spi_nor_3to4_read[][2] = {
1032 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1033 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1034 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1035 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1036 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1037 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1038 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1039 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1040 
1041 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1042 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1043 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1044 	};
1045 
1046 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1047 				      ARRAY_SIZE(spi_nor_3to4_read));
1048 }
1049 
spi_nor_convert_3to4_program(u8 opcode)1050 static u8 spi_nor_convert_3to4_program(u8 opcode)
1051 {
1052 	static const u8 spi_nor_3to4_program[][2] = {
1053 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1054 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1055 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1056 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1057 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1058 	};
1059 
1060 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1061 				      ARRAY_SIZE(spi_nor_3to4_program));
1062 }
1063 
spi_nor_convert_3to4_erase(u8 opcode)1064 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1065 {
1066 	static const u8 spi_nor_3to4_erase[][2] = {
1067 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1068 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1069 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1070 	};
1071 
1072 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1073 				      ARRAY_SIZE(spi_nor_3to4_erase));
1074 }
1075 
spi_nor_has_uniform_erase(const struct spi_nor * nor)1076 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1077 {
1078 	return !!nor->params->erase_map.uniform_erase_type;
1079 }
1080 
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1081 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1082 {
1083 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1084 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1085 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1086 
1087 	if (!spi_nor_has_uniform_erase(nor)) {
1088 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1089 		struct spi_nor_erase_type *erase;
1090 		int i;
1091 
1092 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1093 			erase = &map->erase_type[i];
1094 			erase->opcode =
1095 				spi_nor_convert_3to4_erase(erase->opcode);
1096 		}
1097 	}
1098 }
1099 
spi_nor_lock_and_prep(struct spi_nor * nor)1100 int spi_nor_lock_and_prep(struct spi_nor *nor)
1101 {
1102 	int ret = 0;
1103 
1104 	mutex_lock(&nor->lock);
1105 
1106 	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1107 		ret = nor->controller_ops->prepare(nor);
1108 		if (ret) {
1109 			mutex_unlock(&nor->lock);
1110 			return ret;
1111 		}
1112 	}
1113 	return ret;
1114 }
1115 
spi_nor_unlock_and_unprep(struct spi_nor * nor)1116 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1117 {
1118 	if (nor->controller_ops && nor->controller_ops->unprepare)
1119 		nor->controller_ops->unprepare(nor);
1120 	mutex_unlock(&nor->lock);
1121 }
1122 
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1123 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1124 {
1125 	if (!nor->params->convert_addr)
1126 		return addr;
1127 
1128 	return nor->params->convert_addr(nor, addr);
1129 }
1130 
1131 /*
1132  * Initiate the erasure of a single sector
1133  */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1134 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1135 {
1136 	int i;
1137 
1138 	addr = spi_nor_convert_addr(nor, addr);
1139 
1140 	if (nor->spimem) {
1141 		struct spi_mem_op op =
1142 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
1143 				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
1144 				   SPI_MEM_OP_NO_DUMMY,
1145 				   SPI_MEM_OP_NO_DATA);
1146 
1147 		return spi_mem_exec_op(nor->spimem, &op);
1148 	} else if (nor->controller_ops->erase) {
1149 		return nor->controller_ops->erase(nor, addr);
1150 	}
1151 
1152 	/*
1153 	 * Default implementation, if driver doesn't have a specialized HW
1154 	 * control
1155 	 */
1156 	for (i = nor->addr_width - 1; i >= 0; i--) {
1157 		nor->bouncebuf[i] = addr & 0xff;
1158 		addr >>= 8;
1159 	}
1160 
1161 	return nor->controller_ops->write_reg(nor, nor->erase_opcode,
1162 					      nor->bouncebuf, nor->addr_width);
1163 }
1164 
1165 /**
1166  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1167  * @erase:	pointer to a structure that describes a SPI NOR erase type
1168  * @dividend:	dividend value
1169  * @remainder:	pointer to u32 remainder (will be updated)
1170  *
1171  * Return: the result of the division
1172  */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1173 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1174 				     u64 dividend, u32 *remainder)
1175 {
1176 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1177 	*remainder = (u32)dividend & erase->size_mask;
1178 	return dividend >> erase->size_shift;
1179 }
1180 
1181 /**
1182  * spi_nor_find_best_erase_type() - find the best erase type for the given
1183  *				    offset in the serial flash memory and the
1184  *				    number of bytes to erase. The region in
1185  *				    which the address fits is expected to be
1186  *				    provided.
1187  * @map:	the erase map of the SPI NOR
1188  * @region:	pointer to a structure that describes a SPI NOR erase region
1189  * @addr:	offset in the serial flash memory
1190  * @len:	number of bytes to erase
1191  *
1192  * Return: a pointer to the best fitted erase type, NULL otherwise.
1193  */
1194 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1195 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1196 			     const struct spi_nor_erase_region *region,
1197 			     u64 addr, u32 len)
1198 {
1199 	const struct spi_nor_erase_type *erase;
1200 	u32 rem;
1201 	int i;
1202 	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1203 
1204 	/*
1205 	 * Erase types are ordered by size, with the smallest erase type at
1206 	 * index 0.
1207 	 */
1208 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1209 		/* Does the erase region support the tested erase type? */
1210 		if (!(erase_mask & BIT(i)))
1211 			continue;
1212 
1213 		erase = &map->erase_type[i];
1214 
1215 		/* Alignment is not mandatory for overlaid regions */
1216 		if (region->offset & SNOR_OVERLAID_REGION &&
1217 		    region->size <= len)
1218 			return erase;
1219 
1220 		/* Don't erase more than what the user has asked for. */
1221 		if (erase->size > len)
1222 			continue;
1223 
1224 		spi_nor_div_by_erase_size(erase, addr, &rem);
1225 		if (rem)
1226 			continue;
1227 		else
1228 			return erase;
1229 	}
1230 
1231 	return NULL;
1232 }
1233 
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1234 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1235 {
1236 	return region->offset & SNOR_LAST_REGION;
1237 }
1238 
spi_nor_region_end(const struct spi_nor_erase_region * region)1239 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1240 {
1241 	return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1242 }
1243 
1244 /**
1245  * spi_nor_region_next() - get the next spi nor region
1246  * @region:	pointer to a structure that describes a SPI NOR erase region
1247  *
1248  * Return: the next spi nor region or NULL if last region.
1249  */
1250 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1251 spi_nor_region_next(struct spi_nor_erase_region *region)
1252 {
1253 	if (spi_nor_region_is_last(region))
1254 		return NULL;
1255 	region++;
1256 	return region;
1257 }
1258 
1259 /**
1260  * spi_nor_find_erase_region() - find the region of the serial flash memory in
1261  *				 which the offset fits
1262  * @map:	the erase map of the SPI NOR
1263  * @addr:	offset in the serial flash memory
1264  *
1265  * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1266  *	   otherwise.
1267  */
1268 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1269 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1270 {
1271 	struct spi_nor_erase_region *region = map->regions;
1272 	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1273 	u64 region_end = region_start + region->size;
1274 
1275 	while (addr < region_start || addr >= region_end) {
1276 		region = spi_nor_region_next(region);
1277 		if (!region)
1278 			return ERR_PTR(-EINVAL);
1279 
1280 		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1281 		region_end = region_start + region->size;
1282 	}
1283 
1284 	return region;
1285 }
1286 
1287 /**
1288  * spi_nor_init_erase_cmd() - initialize an erase command
1289  * @region:	pointer to a structure that describes a SPI NOR erase region
1290  * @erase:	pointer to a structure that describes a SPI NOR erase type
1291  *
1292  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1293  *	   otherwise.
1294  */
1295 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1296 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1297 		       const struct spi_nor_erase_type *erase)
1298 {
1299 	struct spi_nor_erase_command *cmd;
1300 
1301 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1302 	if (!cmd)
1303 		return ERR_PTR(-ENOMEM);
1304 
1305 	INIT_LIST_HEAD(&cmd->list);
1306 	cmd->opcode = erase->opcode;
1307 	cmd->count = 1;
1308 
1309 	if (region->offset & SNOR_OVERLAID_REGION)
1310 		cmd->size = region->size;
1311 	else
1312 		cmd->size = erase->size;
1313 
1314 	return cmd;
1315 }
1316 
1317 /**
1318  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1319  * @erase_list:	list of erase commands
1320  */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1321 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1322 {
1323 	struct spi_nor_erase_command *cmd, *next;
1324 
1325 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1326 		list_del(&cmd->list);
1327 		kfree(cmd);
1328 	}
1329 }
1330 
1331 /**
1332  * spi_nor_init_erase_cmd_list() - initialize erase command list
1333  * @nor:	pointer to a 'struct spi_nor'
1334  * @erase_list:	list of erase commands to be executed once we validate that the
1335  *		erase can be performed
1336  * @addr:	offset in the serial flash memory
1337  * @len:	number of bytes to erase
1338  *
1339  * Builds the list of best fitted erase commands and verifies if the erase can
1340  * be performed.
1341  *
1342  * Return: 0 on success, -errno otherwise.
1343  */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1344 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1345 				       struct list_head *erase_list,
1346 				       u64 addr, u32 len)
1347 {
1348 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1349 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1350 	struct spi_nor_erase_region *region;
1351 	struct spi_nor_erase_command *cmd = NULL;
1352 	u64 region_end;
1353 	int ret = -EINVAL;
1354 
1355 	region = spi_nor_find_erase_region(map, addr);
1356 	if (IS_ERR(region))
1357 		return PTR_ERR(region);
1358 
1359 	region_end = spi_nor_region_end(region);
1360 
1361 	while (len) {
1362 		erase = spi_nor_find_best_erase_type(map, region, addr, len);
1363 		if (!erase)
1364 			goto destroy_erase_cmd_list;
1365 
1366 		if (prev_erase != erase ||
1367 		    erase->size != cmd->size ||
1368 		    region->offset & SNOR_OVERLAID_REGION) {
1369 			cmd = spi_nor_init_erase_cmd(region, erase);
1370 			if (IS_ERR(cmd)) {
1371 				ret = PTR_ERR(cmd);
1372 				goto destroy_erase_cmd_list;
1373 			}
1374 
1375 			list_add_tail(&cmd->list, erase_list);
1376 		} else {
1377 			cmd->count++;
1378 		}
1379 
1380 		addr += cmd->size;
1381 		len -= cmd->size;
1382 
1383 		if (len && addr >= region_end) {
1384 			region = spi_nor_region_next(region);
1385 			if (!region)
1386 				goto destroy_erase_cmd_list;
1387 			region_end = spi_nor_region_end(region);
1388 		}
1389 
1390 		prev_erase = erase;
1391 	}
1392 
1393 	return 0;
1394 
1395 destroy_erase_cmd_list:
1396 	spi_nor_destroy_erase_cmd_list(erase_list);
1397 	return ret;
1398 }
1399 
1400 /**
1401  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1402  * @nor:	pointer to a 'struct spi_nor'
1403  * @addr:	offset in the serial flash memory
1404  * @len:	number of bytes to erase
1405  *
1406  * Build a list of best fitted erase commands and execute it once we validate
1407  * that the erase can be performed.
1408  *
1409  * Return: 0 on success, -errno otherwise.
1410  */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1411 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1412 {
1413 	LIST_HEAD(erase_list);
1414 	struct spi_nor_erase_command *cmd, *next;
1415 	int ret;
1416 
1417 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1418 	if (ret)
1419 		return ret;
1420 
1421 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1422 		nor->erase_opcode = cmd->opcode;
1423 		while (cmd->count) {
1424 			ret = spi_nor_write_enable(nor);
1425 			if (ret)
1426 				goto destroy_erase_cmd_list;
1427 
1428 			ret = spi_nor_erase_sector(nor, addr);
1429 			if (ret)
1430 				goto destroy_erase_cmd_list;
1431 
1432 			addr += cmd->size;
1433 			cmd->count--;
1434 
1435 			ret = spi_nor_wait_till_ready(nor);
1436 			if (ret)
1437 				goto destroy_erase_cmd_list;
1438 		}
1439 		list_del(&cmd->list);
1440 		kfree(cmd);
1441 	}
1442 
1443 	return 0;
1444 
1445 destroy_erase_cmd_list:
1446 	spi_nor_destroy_erase_cmd_list(&erase_list);
1447 	return ret;
1448 }
1449 
1450 /*
1451  * Erase an address range on the nor chip.  The address range may extend
1452  * one or more erase sectors.  Return an error is there is a problem erasing.
1453  */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1454 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1455 {
1456 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1457 	u32 addr, len;
1458 	uint32_t rem;
1459 	int ret;
1460 
1461 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1462 			(long long)instr->len);
1463 
1464 	if (spi_nor_has_uniform_erase(nor)) {
1465 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1466 		if (rem)
1467 			return -EINVAL;
1468 	}
1469 
1470 	addr = instr->addr;
1471 	len = instr->len;
1472 
1473 	ret = spi_nor_lock_and_prep(nor);
1474 	if (ret)
1475 		return ret;
1476 
1477 	/* whole-chip erase? */
1478 	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1479 		unsigned long timeout;
1480 
1481 		ret = spi_nor_write_enable(nor);
1482 		if (ret)
1483 			goto erase_err;
1484 
1485 		ret = spi_nor_erase_chip(nor);
1486 		if (ret)
1487 			goto erase_err;
1488 
1489 		/*
1490 		 * Scale the timeout linearly with the size of the flash, with
1491 		 * a minimum calibrated to an old 2MB flash. We could try to
1492 		 * pull these from CFI/SFDP, but these values should be good
1493 		 * enough for now.
1494 		 */
1495 		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1496 			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1497 			      (unsigned long)(mtd->size / SZ_2M));
1498 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1499 		if (ret)
1500 			goto erase_err;
1501 
1502 	/* REVISIT in some cases we could speed up erasing large regions
1503 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1504 	 * to use "small sector erase", but that's not always optimal.
1505 	 */
1506 
1507 	/* "sector"-at-a-time erase */
1508 	} else if (spi_nor_has_uniform_erase(nor)) {
1509 		while (len) {
1510 			ret = spi_nor_write_enable(nor);
1511 			if (ret)
1512 				goto erase_err;
1513 
1514 			ret = spi_nor_erase_sector(nor, addr);
1515 			if (ret)
1516 				goto erase_err;
1517 
1518 			addr += mtd->erasesize;
1519 			len -= mtd->erasesize;
1520 
1521 			ret = spi_nor_wait_till_ready(nor);
1522 			if (ret)
1523 				goto erase_err;
1524 		}
1525 
1526 	/* erase multiple sectors */
1527 	} else {
1528 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1529 		if (ret)
1530 			goto erase_err;
1531 	}
1532 
1533 	ret = spi_nor_write_disable(nor);
1534 
1535 erase_err:
1536 	spi_nor_unlock_and_unprep(nor);
1537 
1538 	return ret;
1539 }
1540 
spi_nor_get_sr_bp_mask(struct spi_nor * nor)1541 static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
1542 {
1543 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1544 
1545 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
1546 		return mask | SR_BP3_BIT6;
1547 
1548 	if (nor->flags & SNOR_F_HAS_4BIT_BP)
1549 		return mask | SR_BP3;
1550 
1551 	return mask;
1552 }
1553 
spi_nor_get_sr_tb_mask(struct spi_nor * nor)1554 static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
1555 {
1556 	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1557 		return SR_TB_BIT6;
1558 	else
1559 		return SR_TB_BIT5;
1560 }
1561 
spi_nor_get_min_prot_length_sr(struct spi_nor * nor)1562 static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
1563 {
1564 	unsigned int bp_slots, bp_slots_needed;
1565 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1566 
1567 	/* Reserved one for "protect none" and one for "protect all". */
1568 	bp_slots = (1 << hweight8(mask)) - 2;
1569 	bp_slots_needed = ilog2(nor->info->n_sectors);
1570 
1571 	if (bp_slots_needed > bp_slots)
1572 		return nor->info->sector_size <<
1573 			(bp_slots_needed - bp_slots);
1574 	else
1575 		return nor->info->sector_size;
1576 }
1577 
spi_nor_get_locked_range_sr(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)1578 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1579 					uint64_t *len)
1580 {
1581 	struct mtd_info *mtd = &nor->mtd;
1582 	u64 min_prot_len;
1583 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1584 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1585 	u8 bp, val = sr & mask;
1586 
1587 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
1588 		val = (val & ~SR_BP3_BIT6) | SR_BP3;
1589 
1590 	bp = val >> SR_BP_SHIFT;
1591 
1592 	if (!bp) {
1593 		/* No protection */
1594 		*ofs = 0;
1595 		*len = 0;
1596 		return;
1597 	}
1598 
1599 	min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1600 	*len = min_prot_len << (bp - 1);
1601 
1602 	if (*len > mtd->size)
1603 		*len = mtd->size;
1604 
1605 	if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1606 		*ofs = 0;
1607 	else
1608 		*ofs = mtd->size - *len;
1609 }
1610 
1611 /*
1612  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1613  * @locked is false); 0 otherwise
1614  */
spi_nor_check_lock_status_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr,bool locked)1615 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1616 					uint64_t len, u8 sr, bool locked)
1617 {
1618 	loff_t lock_offs;
1619 	uint64_t lock_len;
1620 
1621 	if (!len)
1622 		return 1;
1623 
1624 	spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1625 
1626 	if (locked)
1627 		/* Requested range is a sub-range of locked range */
1628 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1629 	else
1630 		/* Requested range does not overlap with locked range */
1631 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1632 }
1633 
spi_nor_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1634 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1635 				u8 sr)
1636 {
1637 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1638 }
1639 
spi_nor_is_unlocked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1640 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1641 				  u8 sr)
1642 {
1643 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1644 }
1645 
1646 /*
1647  * Lock a region of the flash. Compatible with ST Micro and similar flash.
1648  * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
1649  * register
1650  * (SR). Does not support these features found in newer SR bitfields:
1651  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
1652  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
1653  *
1654  * Support for the following is provided conditionally for some flash:
1655  *   - TB: top/bottom protect
1656  *
1657  * Sample table portion for 8MB flash (Winbond w25q64fw):
1658  *
1659  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
1660  *  --------------------------------------------------------------------------
1661  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
1662  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
1663  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
1664  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
1665  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
1666  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
1667  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
1668  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1669  *  ------|-------|-------|-------|-------|---------------|-------------------
1670  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
1671  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
1672  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
1673  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
1674  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
1675  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1676  *
1677  * Returns negative on errors, 0 on success.
1678  */
spi_nor_sr_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)1679 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1680 {
1681 	struct mtd_info *mtd = &nor->mtd;
1682 	u64 min_prot_len;
1683 	int ret, status_old, status_new;
1684 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1685 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1686 	u8 pow, val;
1687 	loff_t lock_len;
1688 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1689 	bool use_top;
1690 
1691 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1692 	if (ret)
1693 		return ret;
1694 
1695 	status_old = nor->bouncebuf[0];
1696 
1697 	/* If nothing in our range is unlocked, we don't need to do anything */
1698 	if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1699 		return 0;
1700 
1701 	/* If anything below us is unlocked, we can't use 'bottom' protection */
1702 	if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1703 		can_be_bottom = false;
1704 
1705 	/* If anything above us is unlocked, we can't use 'top' protection */
1706 	if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1707 				  status_old))
1708 		can_be_top = false;
1709 
1710 	if (!can_be_bottom && !can_be_top)
1711 		return -EINVAL;
1712 
1713 	/* Prefer top, if both are valid */
1714 	use_top = can_be_top;
1715 
1716 	/* lock_len: length of region that should end up locked */
1717 	if (use_top)
1718 		lock_len = mtd->size - ofs;
1719 	else
1720 		lock_len = ofs + len;
1721 
1722 	if (lock_len == mtd->size) {
1723 		val = mask;
1724 	} else {
1725 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1726 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1727 		val = pow << SR_BP_SHIFT;
1728 
1729 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1730 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
1731 
1732 		if (val & ~mask)
1733 			return -EINVAL;
1734 
1735 		/* Don't "lock" with no region! */
1736 		if (!(val & mask))
1737 			return -EINVAL;
1738 	}
1739 
1740 	status_new = (status_old & ~mask & ~tb_mask) | val;
1741 
1742 	/* Disallow further writes if WP pin is asserted */
1743 	status_new |= SR_SRWD;
1744 
1745 	if (!use_top)
1746 		status_new |= tb_mask;
1747 
1748 	/* Don't bother if they're the same */
1749 	if (status_new == status_old)
1750 		return 0;
1751 
1752 	/* Only modify protection if it will not unlock other areas */
1753 	if ((status_new & mask) < (status_old & mask))
1754 		return -EINVAL;
1755 
1756 	return spi_nor_write_sr_and_check(nor, status_new);
1757 }
1758 
1759 /*
1760  * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1761  *
1762  * Returns negative on errors, 0 on success.
1763  */
spi_nor_sr_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)1764 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1765 {
1766 	struct mtd_info *mtd = &nor->mtd;
1767 	u64 min_prot_len;
1768 	int ret, status_old, status_new;
1769 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1770 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1771 	u8 pow, val;
1772 	loff_t lock_len;
1773 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1774 	bool use_top;
1775 
1776 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1777 	if (ret)
1778 		return ret;
1779 
1780 	status_old = nor->bouncebuf[0];
1781 
1782 	/* If nothing in our range is locked, we don't need to do anything */
1783 	if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1784 		return 0;
1785 
1786 	/* If anything below us is locked, we can't use 'top' protection */
1787 	if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1788 		can_be_top = false;
1789 
1790 	/* If anything above us is locked, we can't use 'bottom' protection */
1791 	if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1792 				    status_old))
1793 		can_be_bottom = false;
1794 
1795 	if (!can_be_bottom && !can_be_top)
1796 		return -EINVAL;
1797 
1798 	/* Prefer top, if both are valid */
1799 	use_top = can_be_top;
1800 
1801 	/* lock_len: length of region that should remain locked */
1802 	if (use_top)
1803 		lock_len = mtd->size - (ofs + len);
1804 	else
1805 		lock_len = ofs;
1806 
1807 	if (lock_len == 0) {
1808 		val = 0; /* fully unlocked */
1809 	} else {
1810 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1811 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1812 		val = pow << SR_BP_SHIFT;
1813 
1814 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1815 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
1816 
1817 		/* Some power-of-two sizes are not supported */
1818 		if (val & ~mask)
1819 			return -EINVAL;
1820 	}
1821 
1822 	status_new = (status_old & ~mask & ~tb_mask) | val;
1823 
1824 	/* Don't protect status register if we're fully unlocked */
1825 	if (lock_len == 0)
1826 		status_new &= ~SR_SRWD;
1827 
1828 	if (!use_top)
1829 		status_new |= tb_mask;
1830 
1831 	/* Don't bother if they're the same */
1832 	if (status_new == status_old)
1833 		return 0;
1834 
1835 	/* Only modify protection if it will not lock other areas */
1836 	if ((status_new & mask) > (status_old & mask))
1837 		return -EINVAL;
1838 
1839 	return spi_nor_write_sr_and_check(nor, status_new);
1840 }
1841 
1842 /*
1843  * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
1844  * for more info.
1845  *
1846  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1847  * negative on errors.
1848  */
spi_nor_sr_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)1849 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1850 {
1851 	int ret;
1852 
1853 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1854 	if (ret)
1855 		return ret;
1856 
1857 	return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1858 }
1859 
1860 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
1861 	.lock = spi_nor_sr_lock,
1862 	.unlock = spi_nor_sr_unlock,
1863 	.is_locked = spi_nor_sr_is_locked,
1864 };
1865 
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1866 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1867 {
1868 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1869 	int ret;
1870 
1871 	ret = spi_nor_lock_and_prep(nor);
1872 	if (ret)
1873 		return ret;
1874 
1875 	ret = nor->params->locking_ops->lock(nor, ofs, len);
1876 
1877 	spi_nor_unlock_and_unprep(nor);
1878 	return ret;
1879 }
1880 
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1881 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1882 {
1883 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1884 	int ret;
1885 
1886 	ret = spi_nor_lock_and_prep(nor);
1887 	if (ret)
1888 		return ret;
1889 
1890 	ret = nor->params->locking_ops->unlock(nor, ofs, len);
1891 
1892 	spi_nor_unlock_and_unprep(nor);
1893 	return ret;
1894 }
1895 
spi_nor_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1896 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1897 {
1898 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1899 	int ret;
1900 
1901 	ret = spi_nor_lock_and_prep(nor);
1902 	if (ret)
1903 		return ret;
1904 
1905 	ret = nor->params->locking_ops->is_locked(nor, ofs, len);
1906 
1907 	spi_nor_unlock_and_unprep(nor);
1908 	return ret;
1909 }
1910 
1911 /**
1912  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1913  * Register 1.
1914  * @nor:	pointer to a 'struct spi_nor'
1915  *
1916  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1917  *
1918  * Return: 0 on success, -errno otherwise.
1919  */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1920 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1921 {
1922 	int ret;
1923 
1924 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1925 	if (ret)
1926 		return ret;
1927 
1928 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1929 		return 0;
1930 
1931 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1932 
1933 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1934 }
1935 
1936 /**
1937  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1938  * Register 2.
1939  * @nor:       pointer to a 'struct spi_nor'.
1940  *
1941  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1942  *
1943  * Return: 0 on success, -errno otherwise.
1944  */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1945 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1946 {
1947 	int ret;
1948 
1949 	if (nor->flags & SNOR_F_NO_READ_CR)
1950 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1951 
1952 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1953 	if (ret)
1954 		return ret;
1955 
1956 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1957 		return 0;
1958 
1959 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1960 
1961 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1962 }
1963 
1964 /**
1965  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1966  * @nor:	pointer to a 'struct spi_nor'
1967  *
1968  * Set the Quad Enable (QE) bit in the Status Register 2.
1969  *
1970  * This is one of the procedures to set the QE bit described in the SFDP
1971  * (JESD216 rev B) specification but no manufacturer using this procedure has
1972  * been identified yet, hence the name of the function.
1973  *
1974  * Return: 0 on success, -errno otherwise.
1975  */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1976 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1977 {
1978 	u8 *sr2 = nor->bouncebuf;
1979 	int ret;
1980 	u8 sr2_written;
1981 
1982 	/* Check current Quad Enable bit value. */
1983 	ret = spi_nor_read_sr2(nor, sr2);
1984 	if (ret)
1985 		return ret;
1986 	if (*sr2 & SR2_QUAD_EN_BIT7)
1987 		return 0;
1988 
1989 	/* Update the Quad Enable bit. */
1990 	*sr2 |= SR2_QUAD_EN_BIT7;
1991 
1992 	ret = spi_nor_write_sr2(nor, sr2);
1993 	if (ret)
1994 		return ret;
1995 
1996 	sr2_written = *sr2;
1997 
1998 	/* Read back and check it. */
1999 	ret = spi_nor_read_sr2(nor, sr2);
2000 	if (ret)
2001 		return ret;
2002 
2003 	if (*sr2 != sr2_written) {
2004 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
2005 		return -EIO;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static const struct spi_nor_manufacturer *manufacturers[] = {
2012 	&spi_nor_atmel,
2013 	&spi_nor_catalyst,
2014 	&spi_nor_eon,
2015 	&spi_nor_esmt,
2016 	&spi_nor_everspin,
2017 	&spi_nor_fujitsu,
2018 	&spi_nor_gigadevice,
2019 	&spi_nor_intel,
2020 	&spi_nor_issi,
2021 	&spi_nor_macronix,
2022 	&spi_nor_micron,
2023 	&spi_nor_st,
2024 	&spi_nor_spansion,
2025 	&spi_nor_sst,
2026 	&spi_nor_winbond,
2027 	&spi_nor_xilinx,
2028 	&spi_nor_xmc,
2029 };
2030 
2031 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)2032 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2033 			  const u8 *id)
2034 {
2035 	unsigned int i;
2036 
2037 	for (i = 0; i < nparts; i++) {
2038 		if (parts[i].id_len &&
2039 		    !memcmp(parts[i].id, id, parts[i].id_len))
2040 			return &parts[i];
2041 	}
2042 
2043 	return NULL;
2044 }
2045 
spi_nor_read_id(struct spi_nor * nor)2046 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2047 {
2048 	const struct flash_info *info;
2049 	u8 *id = nor->bouncebuf;
2050 	unsigned int i;
2051 	int ret;
2052 
2053 	if (nor->spimem) {
2054 		struct spi_mem_op op =
2055 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2056 				   SPI_MEM_OP_NO_ADDR,
2057 				   SPI_MEM_OP_NO_DUMMY,
2058 				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2059 
2060 		ret = spi_mem_exec_op(nor->spimem, &op);
2061 	} else {
2062 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2063 						    SPI_NOR_MAX_ID_LEN);
2064 	}
2065 	if (ret) {
2066 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2067 		return ERR_PTR(ret);
2068 	}
2069 
2070 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2071 		info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2072 						 manufacturers[i]->nparts,
2073 						 id);
2074 		if (info) {
2075 			nor->manufacturer = manufacturers[i];
2076 			return info;
2077 		}
2078 	}
2079 
2080 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2081 		SPI_NOR_MAX_ID_LEN, id);
2082 	return ERR_PTR(-ENODEV);
2083 }
2084 
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2085 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2086 			size_t *retlen, u_char *buf)
2087 {
2088 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2089 	ssize_t ret;
2090 
2091 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2092 
2093 	ret = spi_nor_lock_and_prep(nor);
2094 	if (ret)
2095 		return ret;
2096 
2097 	while (len) {
2098 		loff_t addr = from;
2099 
2100 		addr = spi_nor_convert_addr(nor, addr);
2101 
2102 		ret = spi_nor_read_data(nor, addr, len, buf);
2103 		if (ret == 0) {
2104 			/* We shouldn't see 0-length reads */
2105 			ret = -EIO;
2106 			goto read_err;
2107 		}
2108 		if (ret < 0)
2109 			goto read_err;
2110 
2111 		WARN_ON(ret > len);
2112 		*retlen += ret;
2113 		buf += ret;
2114 		from += ret;
2115 		len -= ret;
2116 	}
2117 	ret = 0;
2118 
2119 read_err:
2120 	spi_nor_unlock_and_unprep(nor);
2121 	return ret;
2122 }
2123 
2124 /*
2125  * Write an address range to the nor chip.  Data must be written in
2126  * FLASH_PAGESIZE chunks.  The address range may be any size provided
2127  * it is within the physical boundaries.
2128  */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2129 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2130 	size_t *retlen, const u_char *buf)
2131 {
2132 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2133 	size_t page_offset, page_remain, i;
2134 	ssize_t ret;
2135 
2136 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2137 
2138 	ret = spi_nor_lock_and_prep(nor);
2139 	if (ret)
2140 		return ret;
2141 
2142 	for (i = 0; i < len; ) {
2143 		ssize_t written;
2144 		loff_t addr = to + i;
2145 
2146 		/*
2147 		 * If page_size is a power of two, the offset can be quickly
2148 		 * calculated with an AND operation. On the other cases we
2149 		 * need to do a modulus operation (more expensive).
2150 		 * Power of two numbers have only one bit set and we can use
2151 		 * the instruction hweight32 to detect if we need to do a
2152 		 * modulus (do_div()) or not.
2153 		 */
2154 		if (hweight32(nor->page_size) == 1) {
2155 			page_offset = addr & (nor->page_size - 1);
2156 		} else {
2157 			uint64_t aux = addr;
2158 
2159 			page_offset = do_div(aux, nor->page_size);
2160 		}
2161 		/* the size of data remaining on the first page */
2162 		page_remain = min_t(size_t,
2163 				    nor->page_size - page_offset, len - i);
2164 
2165 		addr = spi_nor_convert_addr(nor, addr);
2166 
2167 		ret = spi_nor_write_enable(nor);
2168 		if (ret)
2169 			goto write_err;
2170 
2171 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2172 		if (ret < 0)
2173 			goto write_err;
2174 		written = ret;
2175 
2176 		ret = spi_nor_wait_till_ready(nor);
2177 		if (ret)
2178 			goto write_err;
2179 		*retlen += written;
2180 		i += written;
2181 	}
2182 
2183 write_err:
2184 	spi_nor_unlock_and_unprep(nor);
2185 	return ret;
2186 }
2187 
spi_nor_check(struct spi_nor * nor)2188 static int spi_nor_check(struct spi_nor *nor)
2189 {
2190 	if (!nor->dev ||
2191 	    (!nor->spimem && !nor->controller_ops) ||
2192 	    (!nor->spimem && nor->controller_ops &&
2193 	    (!nor->controller_ops->read ||
2194 	     !nor->controller_ops->write ||
2195 	     !nor->controller_ops->read_reg ||
2196 	     !nor->controller_ops->write_reg))) {
2197 		pr_err("spi-nor: please fill all the necessary fields!\n");
2198 		return -EINVAL;
2199 	}
2200 
2201 	if (nor->spimem && nor->controller_ops) {
2202 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2203 		return -EINVAL;
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 static void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2210 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2211 			  u8 num_mode_clocks,
2212 			  u8 num_wait_states,
2213 			  u8 opcode,
2214 			  enum spi_nor_protocol proto)
2215 {
2216 	read->num_mode_clocks = num_mode_clocks;
2217 	read->num_wait_states = num_wait_states;
2218 	read->opcode = opcode;
2219 	read->proto = proto;
2220 }
2221 
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2222 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2223 			     enum spi_nor_protocol proto)
2224 {
2225 	pp->opcode = opcode;
2226 	pp->proto = proto;
2227 }
2228 
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2229 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2230 {
2231 	size_t i;
2232 
2233 	for (i = 0; i < size; i++)
2234 		if (table[i][0] == (int)hwcaps)
2235 			return table[i][1];
2236 
2237 	return -EINVAL;
2238 }
2239 
spi_nor_hwcaps_read2cmd(u32 hwcaps)2240 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2241 {
2242 	static const int hwcaps_read2cmd[][2] = {
2243 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2244 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2245 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2246 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2247 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2248 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2249 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2250 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2251 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2252 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2253 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2254 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2255 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2256 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2257 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2258 	};
2259 
2260 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2261 				  ARRAY_SIZE(hwcaps_read2cmd));
2262 }
2263 
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2264 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2265 {
2266 	static const int hwcaps_pp2cmd[][2] = {
2267 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2268 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2269 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2270 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2271 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2272 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2273 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2274 	};
2275 
2276 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2277 				  ARRAY_SIZE(hwcaps_pp2cmd));
2278 }
2279 
2280 /**
2281  * spi_nor_spimem_check_op - check if the operation is supported
2282  *                           by controller
2283  *@nor:        pointer to a 'struct spi_nor'
2284  *@op:         pointer to op template to be checked
2285  *
2286  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2287  */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2288 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2289 				   struct spi_mem_op *op)
2290 {
2291 	/*
2292 	 * First test with 4 address bytes. The opcode itself might
2293 	 * be a 3B addressing opcode but we don't care, because
2294 	 * SPI controller implementation should not check the opcode,
2295 	 * but just the sequence.
2296 	 */
2297 	op->addr.nbytes = 4;
2298 	if (!spi_mem_supports_op(nor->spimem, op)) {
2299 		if (nor->mtd.size > SZ_16M)
2300 			return -ENOTSUPP;
2301 
2302 		/* If flash size <= 16MB, 3 address bytes are sufficient */
2303 		op->addr.nbytes = 3;
2304 		if (!spi_mem_supports_op(nor->spimem, op))
2305 			return -ENOTSUPP;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  * spi_nor_spimem_check_readop - check if the read op is supported
2313  *                               by controller
2314  *@nor:         pointer to a 'struct spi_nor'
2315  *@read:        pointer to op template to be checked
2316  *
2317  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2318  */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2319 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2320 				       const struct spi_nor_read_command *read)
2321 {
2322 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2323 					  SPI_MEM_OP_ADDR(3, 0, 1),
2324 					  SPI_MEM_OP_DUMMY(0, 1),
2325 					  SPI_MEM_OP_DATA_IN(0, NULL, 1));
2326 
2327 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2328 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2329 	op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2330 	op.dummy.buswidth = op.addr.buswidth;
2331 	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2332 			  op.dummy.buswidth / 8;
2333 
2334 	return spi_nor_spimem_check_op(nor, &op);
2335 }
2336 
2337 /**
2338  * spi_nor_spimem_check_pp - check if the page program op is supported
2339  *                           by controller
2340  *@nor:         pointer to a 'struct spi_nor'
2341  *@pp:          pointer to op template to be checked
2342  *
2343  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2344  */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2345 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2346 				   const struct spi_nor_pp_command *pp)
2347 {
2348 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2349 					  SPI_MEM_OP_ADDR(3, 0, 1),
2350 					  SPI_MEM_OP_NO_DUMMY,
2351 					  SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2352 
2353 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2354 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2355 	op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2356 
2357 	return spi_nor_spimem_check_op(nor, &op);
2358 }
2359 
2360 /**
2361  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2362  *                                based on SPI controller capabilities
2363  * @nor:        pointer to a 'struct spi_nor'
2364  * @hwcaps:     pointer to resulting capabilities after adjusting
2365  *              according to controller and flash's capability
2366  */
2367 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2368 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2369 {
2370 	struct spi_nor_flash_parameter *params = nor->params;
2371 	unsigned int cap;
2372 
2373 	/* DTR modes are not supported yet, mask them all. */
2374 	*hwcaps &= ~SNOR_HWCAPS_DTR;
2375 
2376 	/* X-X-X modes are not supported yet, mask them all. */
2377 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2378 
2379 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2380 		int rdidx, ppidx;
2381 
2382 		if (!(*hwcaps & BIT(cap)))
2383 			continue;
2384 
2385 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2386 		if (rdidx >= 0 &&
2387 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2388 			*hwcaps &= ~BIT(cap);
2389 
2390 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2391 		if (ppidx < 0)
2392 			continue;
2393 
2394 		if (spi_nor_spimem_check_pp(nor,
2395 					    &params->page_programs[ppidx]))
2396 			*hwcaps &= ~BIT(cap);
2397 	}
2398 }
2399 
2400 /**
2401  * spi_nor_set_erase_type() - set a SPI NOR erase type
2402  * @erase:	pointer to a structure that describes a SPI NOR erase type
2403  * @size:	the size of the sector/block erased by the erase type
2404  * @opcode:	the SPI command op code to erase the sector/block
2405  */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2406 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2407 			    u8 opcode)
2408 {
2409 	erase->size = size;
2410 	erase->opcode = opcode;
2411 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2412 	erase->size_shift = ffs(erase->size) - 1;
2413 	erase->size_mask = (1 << erase->size_shift) - 1;
2414 }
2415 
2416 /**
2417  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2418  * @map:		the erase map of the SPI NOR
2419  * @erase_mask:		bitmask encoding erase types that can erase the entire
2420  *			flash memory
2421  * @flash_size:		the spi nor flash memory size
2422  */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2423 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2424 				    u8 erase_mask, u64 flash_size)
2425 {
2426 	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2427 	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2428 				     SNOR_LAST_REGION;
2429 	map->uniform_region.size = flash_size;
2430 	map->regions = &map->uniform_region;
2431 	map->uniform_erase_type = erase_mask;
2432 }
2433 
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt,struct spi_nor_flash_parameter * params)2434 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2435 			     const struct sfdp_parameter_header *bfpt_header,
2436 			     const struct sfdp_bfpt *bfpt,
2437 			     struct spi_nor_flash_parameter *params)
2438 {
2439 	int ret;
2440 
2441 	if (nor->manufacturer && nor->manufacturer->fixups &&
2442 	    nor->manufacturer->fixups->post_bfpt) {
2443 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2444 							   bfpt, params);
2445 		if (ret)
2446 			return ret;
2447 	}
2448 
2449 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2450 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2451 						    params);
2452 
2453 	return 0;
2454 }
2455 
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2456 static int spi_nor_select_read(struct spi_nor *nor,
2457 			       u32 shared_hwcaps)
2458 {
2459 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2460 	const struct spi_nor_read_command *read;
2461 
2462 	if (best_match < 0)
2463 		return -EINVAL;
2464 
2465 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2466 	if (cmd < 0)
2467 		return -EINVAL;
2468 
2469 	read = &nor->params->reads[cmd];
2470 	nor->read_opcode = read->opcode;
2471 	nor->read_proto = read->proto;
2472 
2473 	/*
2474 	 * In the SPI NOR framework, we don't need to make the difference
2475 	 * between mode clock cycles and wait state clock cycles.
2476 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2477 	 * flash memory to know whether it should enter or leave its 0-4-4
2478 	 * (Continuous Read / XIP) mode.
2479 	 * eXecution In Place is out of the scope of the mtd sub-system.
2480 	 * Hence we choose to merge both mode and wait state clock cycles
2481 	 * into the so called dummy clock cycles.
2482 	 */
2483 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2484 	return 0;
2485 }
2486 
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2487 static int spi_nor_select_pp(struct spi_nor *nor,
2488 			     u32 shared_hwcaps)
2489 {
2490 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2491 	const struct spi_nor_pp_command *pp;
2492 
2493 	if (best_match < 0)
2494 		return -EINVAL;
2495 
2496 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2497 	if (cmd < 0)
2498 		return -EINVAL;
2499 
2500 	pp = &nor->params->page_programs[cmd];
2501 	nor->program_opcode = pp->opcode;
2502 	nor->write_proto = pp->proto;
2503 	return 0;
2504 }
2505 
2506 /**
2507  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2508  * @map:		the erase map of the SPI NOR
2509  * @wanted_size:	the erase type size to search for. Contains the value of
2510  *			info->sector_size or of the "small sector" size in case
2511  *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2512  *
2513  * Once the optimum uniform sector erase command is found, disable all the
2514  * other.
2515  *
2516  * Return: pointer to erase type on success, NULL otherwise.
2517  */
2518 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2519 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2520 			     const u32 wanted_size)
2521 {
2522 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2523 	int i;
2524 	u8 uniform_erase_type = map->uniform_erase_type;
2525 
2526 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2527 		if (!(uniform_erase_type & BIT(i)))
2528 			continue;
2529 
2530 		tested_erase = &map->erase_type[i];
2531 
2532 		/*
2533 		 * If the current erase size is the one, stop here:
2534 		 * we have found the right uniform Sector Erase command.
2535 		 */
2536 		if (tested_erase->size == wanted_size) {
2537 			erase = tested_erase;
2538 			break;
2539 		}
2540 
2541 		/*
2542 		 * Otherwise, the current erase size is still a valid canditate.
2543 		 * Select the biggest valid candidate.
2544 		 */
2545 		if (!erase && tested_erase->size)
2546 			erase = tested_erase;
2547 			/* keep iterating to find the wanted_size */
2548 	}
2549 
2550 	if (!erase)
2551 		return NULL;
2552 
2553 	/* Disable all other Sector Erase commands. */
2554 	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2555 	map->uniform_erase_type |= BIT(erase - map->erase_type);
2556 	return erase;
2557 }
2558 
spi_nor_select_erase(struct spi_nor * nor)2559 static int spi_nor_select_erase(struct spi_nor *nor)
2560 {
2561 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2562 	const struct spi_nor_erase_type *erase = NULL;
2563 	struct mtd_info *mtd = &nor->mtd;
2564 	u32 wanted_size = nor->info->sector_size;
2565 	int i;
2566 
2567 	/*
2568 	 * The previous implementation handling Sector Erase commands assumed
2569 	 * that the SPI flash memory has an uniform layout then used only one
2570 	 * of the supported erase sizes for all Sector Erase commands.
2571 	 * So to be backward compatible, the new implementation also tries to
2572 	 * manage the SPI flash memory as uniform with a single erase sector
2573 	 * size, when possible.
2574 	 */
2575 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2576 	/* prefer "small sector" erase if possible */
2577 	wanted_size = 4096u;
2578 #endif
2579 
2580 	if (spi_nor_has_uniform_erase(nor)) {
2581 		erase = spi_nor_select_uniform_erase(map, wanted_size);
2582 		if (!erase)
2583 			return -EINVAL;
2584 		nor->erase_opcode = erase->opcode;
2585 		mtd->erasesize = erase->size;
2586 		return 0;
2587 	}
2588 
2589 	/*
2590 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2591 	 * maximum erase sector size. No need to set nor->erase_opcode.
2592 	 */
2593 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2594 		if (map->erase_type[i].size) {
2595 			erase = &map->erase_type[i];
2596 			break;
2597 		}
2598 	}
2599 
2600 	if (!erase)
2601 		return -EINVAL;
2602 
2603 	mtd->erasesize = erase->size;
2604 	return 0;
2605 }
2606 
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2607 static int spi_nor_default_setup(struct spi_nor *nor,
2608 				 const struct spi_nor_hwcaps *hwcaps)
2609 {
2610 	struct spi_nor_flash_parameter *params = nor->params;
2611 	u32 ignored_mask, shared_mask;
2612 	int err;
2613 
2614 	/*
2615 	 * Keep only the hardware capabilities supported by both the SPI
2616 	 * controller and the SPI flash memory.
2617 	 */
2618 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2619 
2620 	if (nor->spimem) {
2621 		/*
2622 		 * When called from spi_nor_probe(), all caps are set and we
2623 		 * need to discard some of them based on what the SPI
2624 		 * controller actually supports (using spi_mem_supports_op()).
2625 		 */
2626 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2627 	} else {
2628 		/*
2629 		 * SPI n-n-n protocols are not supported when the SPI
2630 		 * controller directly implements the spi_nor interface.
2631 		 * Yet another reason to switch to spi-mem.
2632 		 */
2633 		ignored_mask = SNOR_HWCAPS_X_X_X;
2634 		if (shared_mask & ignored_mask) {
2635 			dev_dbg(nor->dev,
2636 				"SPI n-n-n protocols are not supported.\n");
2637 			shared_mask &= ~ignored_mask;
2638 		}
2639 	}
2640 
2641 	/* Select the (Fast) Read command. */
2642 	err = spi_nor_select_read(nor, shared_mask);
2643 	if (err) {
2644 		dev_dbg(nor->dev,
2645 			"can't select read settings supported by both the SPI controller and memory.\n");
2646 		return err;
2647 	}
2648 
2649 	/* Select the Page Program command. */
2650 	err = spi_nor_select_pp(nor, shared_mask);
2651 	if (err) {
2652 		dev_dbg(nor->dev,
2653 			"can't select write settings supported by both the SPI controller and memory.\n");
2654 		return err;
2655 	}
2656 
2657 	/* Select the Sector Erase command. */
2658 	err = spi_nor_select_erase(nor);
2659 	if (err) {
2660 		dev_dbg(nor->dev,
2661 			"can't select erase settings supported by both the SPI controller and memory.\n");
2662 		return err;
2663 	}
2664 
2665 	return 0;
2666 }
2667 
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2668 static int spi_nor_setup(struct spi_nor *nor,
2669 			 const struct spi_nor_hwcaps *hwcaps)
2670 {
2671 	if (!nor->params->setup)
2672 		return 0;
2673 
2674 	return nor->params->setup(nor, hwcaps);
2675 }
2676 
2677 /**
2678  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2679  * settings based on MFR register and ->default_init() hook.
2680  * @nor:	pointer to a 'struct spi_nor'.
2681  */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2682 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2683 {
2684 	if (nor->manufacturer && nor->manufacturer->fixups &&
2685 	    nor->manufacturer->fixups->default_init)
2686 		nor->manufacturer->fixups->default_init(nor);
2687 
2688 	if (nor->info->fixups && nor->info->fixups->default_init)
2689 		nor->info->fixups->default_init(nor);
2690 }
2691 
2692 /**
2693  * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2694  * based on JESD216 SFDP standard.
2695  * @nor:	pointer to a 'struct spi_nor'.
2696  *
2697  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2698  * legacy flash parameters and settings will be restored.
2699  */
spi_nor_sfdp_init_params(struct spi_nor * nor)2700 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2701 {
2702 	struct spi_nor_flash_parameter sfdp_params;
2703 
2704 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2705 
2706 	if (spi_nor_parse_sfdp(nor, nor->params)) {
2707 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2708 		nor->addr_width = 0;
2709 		nor->flags &= ~SNOR_F_4B_OPCODES;
2710 	}
2711 }
2712 
2713 /**
2714  * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2715  * based on nor->info data.
2716  * @nor:	pointer to a 'struct spi_nor'.
2717  */
spi_nor_info_init_params(struct spi_nor * nor)2718 static void spi_nor_info_init_params(struct spi_nor *nor)
2719 {
2720 	struct spi_nor_flash_parameter *params = nor->params;
2721 	struct spi_nor_erase_map *map = &params->erase_map;
2722 	const struct flash_info *info = nor->info;
2723 	struct device_node *np = spi_nor_get_flash_node(nor);
2724 	u8 i, erase_mask;
2725 
2726 	/* Initialize legacy flash parameters and settings. */
2727 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2728 	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2729 	params->setup = spi_nor_default_setup;
2730 	/* Default to 16-bit Write Status (01h) Command */
2731 	nor->flags |= SNOR_F_HAS_16BIT_SR;
2732 
2733 	/* Set SPI NOR sizes. */
2734 	params->size = (u64)info->sector_size * info->n_sectors;
2735 	params->page_size = info->page_size;
2736 
2737 	if (!(info->flags & SPI_NOR_NO_FR)) {
2738 		/* Default to Fast Read for DT and non-DT platform devices. */
2739 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2740 
2741 		/* Mask out Fast Read if not requested at DT instantiation. */
2742 		if (np && !of_property_read_bool(np, "m25p,fast-read"))
2743 			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2744 	}
2745 
2746 	/* (Fast) Read settings. */
2747 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2748 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2749 				  0, 0, SPINOR_OP_READ,
2750 				  SNOR_PROTO_1_1_1);
2751 
2752 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2753 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2754 					  0, 8, SPINOR_OP_READ_FAST,
2755 					  SNOR_PROTO_1_1_1);
2756 
2757 	if (info->flags & SPI_NOR_DUAL_READ) {
2758 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2759 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2760 					  0, 8, SPINOR_OP_READ_1_1_2,
2761 					  SNOR_PROTO_1_1_2);
2762 	}
2763 
2764 	if (info->flags & SPI_NOR_QUAD_READ) {
2765 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2766 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2767 					  0, 8, SPINOR_OP_READ_1_1_4,
2768 					  SNOR_PROTO_1_1_4);
2769 	}
2770 
2771 	if (info->flags & SPI_NOR_OCTAL_READ) {
2772 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2773 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2774 					  0, 8, SPINOR_OP_READ_1_1_8,
2775 					  SNOR_PROTO_1_1_8);
2776 	}
2777 
2778 	/* Page Program settings. */
2779 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2780 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2781 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2782 
2783 	/*
2784 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2785 	 * smallest erase size starting at BIT(0).
2786 	 */
2787 	erase_mask = 0;
2788 	i = 0;
2789 	if (info->flags & SECT_4K_PMC) {
2790 		erase_mask |= BIT(i);
2791 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2792 				       SPINOR_OP_BE_4K_PMC);
2793 		i++;
2794 	} else if (info->flags & SECT_4K) {
2795 		erase_mask |= BIT(i);
2796 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2797 				       SPINOR_OP_BE_4K);
2798 		i++;
2799 	}
2800 	erase_mask |= BIT(i);
2801 	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2802 			       SPINOR_OP_SE);
2803 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2804 }
2805 
2806 /**
2807  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2808  * after SFDP has been parsed (is also called for SPI NORs that do not
2809  * support RDSFDP).
2810  * @nor:	pointer to a 'struct spi_nor'
2811  *
2812  * Typically used to tweak various parameters that could not be extracted by
2813  * other means (i.e. when information provided by the SFDP/flash_info tables
2814  * are incomplete or wrong).
2815  */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2816 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2817 {
2818 	if (nor->manufacturer && nor->manufacturer->fixups &&
2819 	    nor->manufacturer->fixups->post_sfdp)
2820 		nor->manufacturer->fixups->post_sfdp(nor);
2821 
2822 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
2823 		nor->info->fixups->post_sfdp(nor);
2824 }
2825 
2826 /**
2827  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2828  * @nor:	pointer to a 'struct spi_nor'
2829  *
2830  * Used to set default flash parameters and settings when the ->default_init()
2831  * hook or the SFDP parser let voids.
2832  */
spi_nor_late_init_params(struct spi_nor * nor)2833 static void spi_nor_late_init_params(struct spi_nor *nor)
2834 {
2835 	/*
2836 	 * NOR protection support. When locking_ops are not provided, we pick
2837 	 * the default ones.
2838 	 */
2839 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2840 		nor->params->locking_ops = &spi_nor_sr_locking_ops;
2841 }
2842 
2843 /**
2844  * spi_nor_init_params() - Initialize the flash's parameters and settings.
2845  * @nor:	pointer to a 'struct spi_nor'.
2846  *
2847  * The flash parameters and settings are initialized based on a sequence of
2848  * calls that are ordered by priority:
2849  *
2850  * 1/ Default flash parameters initialization. The initializations are done
2851  *    based on nor->info data:
2852  *		spi_nor_info_init_params()
2853  *
2854  * which can be overwritten by:
2855  * 2/ Manufacturer flash parameters initialization. The initializations are
2856  *    done based on MFR register, or when the decisions can not be done solely
2857  *    based on MFR, by using specific flash_info tweeks, ->default_init():
2858  *		spi_nor_manufacturer_init_params()
2859  *
2860  * which can be overwritten by:
2861  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2862  *    should be more accurate that the above.
2863  *		spi_nor_sfdp_init_params()
2864  *
2865  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
2866  *    the flash parameters and settings immediately after parsing the Basic
2867  *    Flash Parameter Table.
2868  *
2869  * which can be overwritten by:
2870  * 4/ Post SFDP flash parameters initialization. Used to tweak various
2871  *    parameters that could not be extracted by other means (i.e. when
2872  *    information provided by the SFDP/flash_info tables are incomplete or
2873  *    wrong).
2874  *		spi_nor_post_sfdp_fixups()
2875  *
2876  * 5/ Late default flash parameters initialization, used when the
2877  * ->default_init() hook or the SFDP parser do not set specific params.
2878  *		spi_nor_late_init_params()
2879  */
spi_nor_init_params(struct spi_nor * nor)2880 static int spi_nor_init_params(struct spi_nor *nor)
2881 {
2882 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2883 	if (!nor->params)
2884 		return -ENOMEM;
2885 
2886 	spi_nor_info_init_params(nor);
2887 
2888 	spi_nor_manufacturer_init_params(nor);
2889 
2890 	if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2891 	    !(nor->info->flags & SPI_NOR_SKIP_SFDP))
2892 		spi_nor_sfdp_init_params(nor);
2893 
2894 	spi_nor_post_sfdp_fixups(nor);
2895 
2896 	spi_nor_late_init_params(nor);
2897 
2898 	return 0;
2899 }
2900 
2901 /**
2902  * spi_nor_quad_enable() - enable Quad I/O if needed.
2903  * @nor:                pointer to a 'struct spi_nor'
2904  *
2905  * Return: 0 on success, -errno otherwise.
2906  */
spi_nor_quad_enable(struct spi_nor * nor)2907 static int spi_nor_quad_enable(struct spi_nor *nor)
2908 {
2909 	if (!nor->params->quad_enable)
2910 		return 0;
2911 
2912 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2913 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
2914 		return 0;
2915 
2916 	return nor->params->quad_enable(nor);
2917 }
2918 
2919 /**
2920  * spi_nor_try_unlock_all() - Tries to unlock the entire flash memory array.
2921  * @nor:	pointer to a 'struct spi_nor'.
2922  *
2923  * Some SPI NOR flashes are write protected by default after a power-on reset
2924  * cycle, in order to avoid inadvertent writes during power-up. Backward
2925  * compatibility imposes to unlock the entire flash memory array at power-up
2926  * by default.
2927  *
2928  * Unprotecting the entire flash array will fail for boards which are hardware
2929  * write-protected. Thus any errors are ignored.
2930  */
spi_nor_try_unlock_all(struct spi_nor * nor)2931 static void spi_nor_try_unlock_all(struct spi_nor *nor)
2932 {
2933 	int ret;
2934 
2935 	if (!(nor->flags & SNOR_F_HAS_LOCK))
2936 		return;
2937 
2938 	ret = spi_nor_unlock(&nor->mtd, 0, nor->params->size);
2939 	if (ret)
2940 		dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
2941 }
2942 
spi_nor_init(struct spi_nor * nor)2943 static int spi_nor_init(struct spi_nor *nor)
2944 {
2945 	int err;
2946 
2947 	err = spi_nor_quad_enable(nor);
2948 	if (err) {
2949 		dev_dbg(nor->dev, "quad mode not supported\n");
2950 		return err;
2951 	}
2952 
2953 	spi_nor_try_unlock_all(nor);
2954 
2955 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
2956 		/*
2957 		 * If the RESET# pin isn't hooked up properly, or the system
2958 		 * otherwise doesn't perform a reset command in the boot
2959 		 * sequence, it's impossible to 100% protect against unexpected
2960 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2961 		 * designer) that this is bad.
2962 		 */
2963 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2964 			  "enabling reset hack; may not recover from unexpected reboots\n");
2965 		nor->params->set_4byte_addr_mode(nor, true);
2966 	}
2967 
2968 	return 0;
2969 }
2970 
2971 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2972 static void spi_nor_resume(struct mtd_info *mtd)
2973 {
2974 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2975 	struct device *dev = nor->dev;
2976 	int ret;
2977 
2978 	/* re-initialize the nor chip */
2979 	ret = spi_nor_init(nor);
2980 	if (ret)
2981 		dev_err(dev, "resume() failed\n");
2982 }
2983 
spi_nor_get_device(struct mtd_info * mtd)2984 static int spi_nor_get_device(struct mtd_info *mtd)
2985 {
2986 	struct mtd_info *master = mtd_get_master(mtd);
2987 	struct spi_nor *nor = mtd_to_spi_nor(master);
2988 	struct device *dev;
2989 
2990 	if (nor->spimem)
2991 		dev = nor->spimem->spi->controller->dev.parent;
2992 	else
2993 		dev = nor->dev;
2994 
2995 	if (!try_module_get(dev->driver->owner))
2996 		return -ENODEV;
2997 
2998 	return 0;
2999 }
3000 
spi_nor_put_device(struct mtd_info * mtd)3001 static void spi_nor_put_device(struct mtd_info *mtd)
3002 {
3003 	struct mtd_info *master = mtd_get_master(mtd);
3004 	struct spi_nor *nor = mtd_to_spi_nor(master);
3005 	struct device *dev;
3006 
3007 	if (nor->spimem)
3008 		dev = nor->spimem->spi->controller->dev.parent;
3009 	else
3010 		dev = nor->dev;
3011 
3012 	module_put(dev->driver->owner);
3013 }
3014 
spi_nor_restore(struct spi_nor * nor)3015 void spi_nor_restore(struct spi_nor *nor)
3016 {
3017 	/* restore the addressing mode */
3018 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3019 	    nor->flags & SNOR_F_BROKEN_RESET)
3020 		nor->params->set_4byte_addr_mode(nor, false);
3021 }
3022 EXPORT_SYMBOL_GPL(spi_nor_restore);
3023 
spi_nor_match_id(struct spi_nor * nor,const char * name)3024 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3025 						 const char *name)
3026 {
3027 	unsigned int i, j;
3028 
3029 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3030 		for (j = 0; j < manufacturers[i]->nparts; j++) {
3031 			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3032 				nor->manufacturer = manufacturers[i];
3033 				return &manufacturers[i]->parts[j];
3034 			}
3035 		}
3036 	}
3037 
3038 	return NULL;
3039 }
3040 
spi_nor_set_addr_width(struct spi_nor * nor)3041 static int spi_nor_set_addr_width(struct spi_nor *nor)
3042 {
3043 	if (nor->addr_width) {
3044 		/* already configured from SFDP */
3045 	} else if (nor->info->addr_width) {
3046 		nor->addr_width = nor->info->addr_width;
3047 	} else {
3048 		nor->addr_width = 3;
3049 	}
3050 
3051 	if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3052 		/* enable 4-byte addressing if the device exceeds 16MiB */
3053 		nor->addr_width = 4;
3054 	}
3055 
3056 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3057 		dev_dbg(nor->dev, "address width is too large: %u\n",
3058 			nor->addr_width);
3059 		return -EINVAL;
3060 	}
3061 
3062 	/* Set 4byte opcodes when possible. */
3063 	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3064 	    !(nor->flags & SNOR_F_HAS_4BAIT))
3065 		spi_nor_set_4byte_opcodes(nor);
3066 
3067 	return 0;
3068 }
3069 
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3070 static void spi_nor_debugfs_init(struct spi_nor *nor,
3071 				 const struct flash_info *info)
3072 {
3073 	struct mtd_info *mtd = &nor->mtd;
3074 
3075 	mtd->dbg.partname = info->name;
3076 	mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3077 					 info->id_len, info->id);
3078 }
3079 
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3080 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3081 						       const char *name)
3082 {
3083 	const struct flash_info *info = NULL;
3084 
3085 	if (name)
3086 		info = spi_nor_match_id(nor, name);
3087 	/* Try to auto-detect if chip name wasn't specified or not found */
3088 	if (!info)
3089 		info = spi_nor_read_id(nor);
3090 	if (IS_ERR_OR_NULL(info))
3091 		return ERR_PTR(-ENOENT);
3092 
3093 	/*
3094 	 * If caller has specified name of flash model that can normally be
3095 	 * detected using JEDEC, let's verify it.
3096 	 */
3097 	if (name && info->id_len) {
3098 		const struct flash_info *jinfo;
3099 
3100 		jinfo = spi_nor_read_id(nor);
3101 		if (IS_ERR(jinfo)) {
3102 			return jinfo;
3103 		} else if (jinfo != info) {
3104 			/*
3105 			 * JEDEC knows better, so overwrite platform ID. We
3106 			 * can't trust partitions any longer, but we'll let
3107 			 * mtd apply them anyway, since some partitions may be
3108 			 * marked read-only, and we don't want to lose that
3109 			 * information, even if it's not 100% accurate.
3110 			 */
3111 			dev_warn(nor->dev, "found %s, expected %s\n",
3112 				 jinfo->name, info->name);
3113 			info = jinfo;
3114 		}
3115 	}
3116 
3117 	return info;
3118 }
3119 
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3120 int spi_nor_scan(struct spi_nor *nor, const char *name,
3121 		 const struct spi_nor_hwcaps *hwcaps)
3122 {
3123 	const struct flash_info *info;
3124 	struct device *dev = nor->dev;
3125 	struct mtd_info *mtd = &nor->mtd;
3126 	struct device_node *np = spi_nor_get_flash_node(nor);
3127 	int ret;
3128 	int i;
3129 
3130 	ret = spi_nor_check(nor);
3131 	if (ret)
3132 		return ret;
3133 
3134 	/* Reset SPI protocol for all commands. */
3135 	nor->reg_proto = SNOR_PROTO_1_1_1;
3136 	nor->read_proto = SNOR_PROTO_1_1_1;
3137 	nor->write_proto = SNOR_PROTO_1_1_1;
3138 
3139 	/*
3140 	 * We need the bounce buffer early to read/write registers when going
3141 	 * through the spi-mem layer (buffers have to be DMA-able).
3142 	 * For spi-mem drivers, we'll reallocate a new buffer if
3143 	 * nor->page_size turns out to be greater than PAGE_SIZE (which
3144 	 * shouldn't happen before long since NOR pages are usually less
3145 	 * than 1KB) after spi_nor_scan() returns.
3146 	 */
3147 	nor->bouncebuf_size = PAGE_SIZE;
3148 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3149 				      GFP_KERNEL);
3150 	if (!nor->bouncebuf)
3151 		return -ENOMEM;
3152 
3153 	info = spi_nor_get_flash_info(nor, name);
3154 	if (IS_ERR(info))
3155 		return PTR_ERR(info);
3156 
3157 	nor->info = info;
3158 
3159 	spi_nor_debugfs_init(nor, info);
3160 
3161 	mutex_init(&nor->lock);
3162 
3163 	/*
3164 	 * Make sure the XSR_RDY flag is set before calling
3165 	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3166 	 * with Atmel SPI NOR.
3167 	 */
3168 	if (info->flags & SPI_NOR_XSR_RDY)
3169 		nor->flags |=  SNOR_F_READY_XSR_RDY;
3170 
3171 	if (info->flags & SPI_NOR_HAS_LOCK)
3172 		nor->flags |= SNOR_F_HAS_LOCK;
3173 
3174 	mtd->_write = spi_nor_write;
3175 
3176 	/* Init flash parameters based on flash_info struct and SFDP */
3177 	ret = spi_nor_init_params(nor);
3178 	if (ret)
3179 		return ret;
3180 
3181 	if (!mtd->name)
3182 		mtd->name = dev_name(dev);
3183 	mtd->priv = nor;
3184 	mtd->type = MTD_NORFLASH;
3185 	mtd->writesize = 1;
3186 	mtd->flags = MTD_CAP_NORFLASH;
3187 	mtd->size = nor->params->size;
3188 	mtd->_erase = spi_nor_erase;
3189 	mtd->_read = spi_nor_read;
3190 	mtd->_resume = spi_nor_resume;
3191 	mtd->_get_device = spi_nor_get_device;
3192 	mtd->_put_device = spi_nor_put_device;
3193 
3194 	if (nor->params->locking_ops) {
3195 		mtd->_lock = spi_nor_lock;
3196 		mtd->_unlock = spi_nor_unlock;
3197 		mtd->_is_locked = spi_nor_is_locked;
3198 	}
3199 
3200 	if (info->flags & USE_FSR)
3201 		nor->flags |= SNOR_F_USE_FSR;
3202 	if (info->flags & SPI_NOR_HAS_TB) {
3203 		nor->flags |= SNOR_F_HAS_SR_TB;
3204 		if (info->flags & SPI_NOR_TB_SR_BIT6)
3205 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3206 	}
3207 
3208 	if (info->flags & NO_CHIP_ERASE)
3209 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3210 	if (info->flags & USE_CLSR)
3211 		nor->flags |= SNOR_F_USE_CLSR;
3212 
3213 	if (info->flags & SPI_NOR_4BIT_BP) {
3214 		nor->flags |= SNOR_F_HAS_4BIT_BP;
3215 		if (info->flags & SPI_NOR_BP3_SR_BIT6)
3216 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3217 	}
3218 
3219 	if (info->flags & SPI_NOR_NO_ERASE)
3220 		mtd->flags |= MTD_NO_ERASE;
3221 
3222 	mtd->dev.parent = dev;
3223 	nor->page_size = nor->params->page_size;
3224 	mtd->writebufsize = nor->page_size;
3225 
3226 	if (of_property_read_bool(np, "broken-flash-reset"))
3227 		nor->flags |= SNOR_F_BROKEN_RESET;
3228 
3229 	/*
3230 	 * Configure the SPI memory:
3231 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3232 	 * - set the number of dummy cycles (mode cycles + wait states).
3233 	 * - set the SPI protocols for register and memory accesses.
3234 	 */
3235 	ret = spi_nor_setup(nor, hwcaps);
3236 	if (ret)
3237 		return ret;
3238 
3239 	if (info->flags & SPI_NOR_4B_OPCODES)
3240 		nor->flags |= SNOR_F_4B_OPCODES;
3241 
3242 	ret = spi_nor_set_addr_width(nor);
3243 	if (ret)
3244 		return ret;
3245 
3246 	/* Send all the required SPI flash commands to initialize device */
3247 	ret = spi_nor_init(nor);
3248 	if (ret)
3249 		return ret;
3250 
3251 	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3252 			(long long)mtd->size >> 10);
3253 
3254 	dev_dbg(dev,
3255 		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
3256 		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3257 		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3258 		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3259 
3260 	if (mtd->numeraseregions)
3261 		for (i = 0; i < mtd->numeraseregions; i++)
3262 			dev_dbg(dev,
3263 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
3264 				".erasesize = 0x%.8x (%uKiB), "
3265 				".numblocks = %d }\n",
3266 				i, (long long)mtd->eraseregions[i].offset,
3267 				mtd->eraseregions[i].erasesize,
3268 				mtd->eraseregions[i].erasesize / 1024,
3269 				mtd->eraseregions[i].numblocks);
3270 	return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(spi_nor_scan);
3273 
spi_nor_create_read_dirmap(struct spi_nor * nor)3274 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3275 {
3276 	struct spi_mem_dirmap_info info = {
3277 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
3278 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3279 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
3280 				      SPI_MEM_OP_DATA_IN(0, NULL, 1)),
3281 		.offset = 0,
3282 		.length = nor->mtd.size,
3283 	};
3284 	struct spi_mem_op *op = &info.op_tmpl;
3285 
3286 	/* get transfer protocols. */
3287 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
3288 	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
3289 	op->dummy.buswidth = op->addr.buswidth;
3290 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3291 
3292 	/* convert the dummy cycles to the number of bytes */
3293 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3294 
3295 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3296 						       &info);
3297 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3298 }
3299 
spi_nor_create_write_dirmap(struct spi_nor * nor)3300 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3301 {
3302 	struct spi_mem_dirmap_info info = {
3303 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
3304 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3305 				      SPI_MEM_OP_NO_DUMMY,
3306 				      SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
3307 		.offset = 0,
3308 		.length = nor->mtd.size,
3309 	};
3310 	struct spi_mem_op *op = &info.op_tmpl;
3311 
3312 	/* get transfer protocols. */
3313 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
3314 	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
3315 	op->dummy.buswidth = op->addr.buswidth;
3316 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3317 
3318 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3319 		op->addr.nbytes = 0;
3320 
3321 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3322 						       &info);
3323 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3324 }
3325 
spi_nor_probe(struct spi_mem * spimem)3326 static int spi_nor_probe(struct spi_mem *spimem)
3327 {
3328 	struct spi_device *spi = spimem->spi;
3329 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3330 	struct spi_nor *nor;
3331 	/*
3332 	 * Enable all caps by default. The core will mask them after
3333 	 * checking what's really supported using spi_mem_supports_op().
3334 	 */
3335 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3336 	char *flash_name;
3337 	int ret;
3338 
3339 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3340 	if (!nor)
3341 		return -ENOMEM;
3342 
3343 	nor->spimem = spimem;
3344 	nor->dev = &spi->dev;
3345 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3346 
3347 	spi_mem_set_drvdata(spimem, nor);
3348 
3349 	if (data && data->name)
3350 		nor->mtd.name = data->name;
3351 
3352 	if (!nor->mtd.name)
3353 		nor->mtd.name = spi_mem_get_name(spimem);
3354 
3355 	/*
3356 	 * For some (historical?) reason many platforms provide two different
3357 	 * names in flash_platform_data: "name" and "type". Quite often name is
3358 	 * set to "m25p80" and then "type" provides a real chip name.
3359 	 * If that's the case, respect "type" and ignore a "name".
3360 	 */
3361 	if (data && data->type)
3362 		flash_name = data->type;
3363 	else if (!strcmp(spi->modalias, "spi-nor"))
3364 		flash_name = NULL; /* auto-detect */
3365 	else
3366 		flash_name = spi->modalias;
3367 
3368 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3369 	if (ret)
3370 		return ret;
3371 
3372 	/*
3373 	 * None of the existing parts have > 512B pages, but let's play safe
3374 	 * and add this logic so that if anyone ever adds support for such
3375 	 * a NOR we don't end up with buffer overflows.
3376 	 */
3377 	if (nor->page_size > PAGE_SIZE) {
3378 		nor->bouncebuf_size = nor->page_size;
3379 		devm_kfree(nor->dev, nor->bouncebuf);
3380 		nor->bouncebuf = devm_kmalloc(nor->dev,
3381 					      nor->bouncebuf_size,
3382 					      GFP_KERNEL);
3383 		if (!nor->bouncebuf)
3384 			return -ENOMEM;
3385 	}
3386 
3387 	ret = spi_nor_create_read_dirmap(nor);
3388 	if (ret)
3389 		return ret;
3390 
3391 	ret = spi_nor_create_write_dirmap(nor);
3392 	if (ret)
3393 		return ret;
3394 
3395 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3396 				   data ? data->nr_parts : 0);
3397 }
3398 
spi_nor_remove(struct spi_mem * spimem)3399 static int spi_nor_remove(struct spi_mem *spimem)
3400 {
3401 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3402 
3403 	spi_nor_restore(nor);
3404 
3405 	/* Clean up MTD stuff. */
3406 	return mtd_device_unregister(&nor->mtd);
3407 }
3408 
spi_nor_shutdown(struct spi_mem * spimem)3409 static void spi_nor_shutdown(struct spi_mem *spimem)
3410 {
3411 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3412 
3413 	spi_nor_restore(nor);
3414 }
3415 
3416 /*
3417  * Do NOT add to this array without reading the following:
3418  *
3419  * Historically, many flash devices are bound to this driver by their name. But
3420  * since most of these flash are compatible to some extent, and their
3421  * differences can often be differentiated by the JEDEC read-ID command, we
3422  * encourage new users to add support to the spi-nor library, and simply bind
3423  * against a generic string here (e.g., "jedec,spi-nor").
3424  *
3425  * Many flash names are kept here in this list (as well as in spi-nor.c) to
3426  * keep them available as module aliases for existing platforms.
3427  */
3428 static const struct spi_device_id spi_nor_dev_ids[] = {
3429 	/*
3430 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3431 	 * hack around the fact that the SPI core does not provide uevent
3432 	 * matching for .of_match_table
3433 	 */
3434 	{"spi-nor"},
3435 
3436 	/*
3437 	 * Entries not used in DTs that should be safe to drop after replacing
3438 	 * them with "spi-nor" in platform data.
3439 	 */
3440 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3441 
3442 	/*
3443 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3444 	 * should be kept for backward compatibility.
3445 	 */
3446 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3447 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3448 	{"mx25l25635e"},{"mx66l51235l"},
3449 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3450 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3451 	{"s25fl064k"},
3452 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3453 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3454 	{"m25p64"},	{"m25p128"},
3455 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3456 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3457 
3458 	/* Flashes that can't be detected using JEDEC */
3459 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3460 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3461 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3462 
3463 	/* Everspin MRAMs (non-JEDEC) */
3464 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3465 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3466 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3467 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3468 
3469 	{ },
3470 };
3471 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3472 
3473 static const struct of_device_id spi_nor_of_table[] = {
3474 	/*
3475 	 * Generic compatibility for SPI NOR that can be identified by the
3476 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3477 	 */
3478 	{ .compatible = "jedec,spi-nor" },
3479 	{ /* sentinel */ },
3480 };
3481 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3482 
3483 /*
3484  * REVISIT: many of these chips have deep power-down modes, which
3485  * should clearly be entered on suspend() to minimize power use.
3486  * And also when they're otherwise idle...
3487  */
3488 static struct spi_mem_driver spi_nor_driver = {
3489 	.spidrv = {
3490 		.driver = {
3491 			.name = "spi-nor",
3492 			.of_match_table = spi_nor_of_table,
3493 		},
3494 		.id_table = spi_nor_dev_ids,
3495 	},
3496 	.probe = spi_nor_probe,
3497 	.remove = spi_nor_remove,
3498 	.shutdown = spi_nor_shutdown,
3499 };
3500 module_spi_mem_driver(spi_nor_driver);
3501 
3502 MODULE_LICENSE("GPL v2");
3503 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3504 MODULE_AUTHOR("Mike Lavender");
3505 MODULE_DESCRIPTION("framework for SPI NOR");
3506