1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24
25 #include "core.h"
26
27 /* Define max times to check status register before we give up. */
28
29 /*
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
32 */
33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
34
35 /*
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37 * for larger flash
38 */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
42
43 /**
44 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
45 * transfer
46 * @nor: pointer to 'struct spi_nor'
47 * @op: pointer to 'struct spi_mem_op' template for transfer
48 *
49 * If we have to use the bounce buffer, the data field in @op will be updated.
50 *
51 * Return: true if the bounce buffer is needed, false if not
52 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)53 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
54 {
55 /* op->data.buf.in occupies the same memory as op->data.buf.out */
56 if (object_is_on_stack(op->data.buf.in) ||
57 !virt_addr_valid(op->data.buf.in)) {
58 if (op->data.nbytes > nor->bouncebuf_size)
59 op->data.nbytes = nor->bouncebuf_size;
60 op->data.buf.in = nor->bouncebuf;
61 return true;
62 }
63
64 return false;
65 }
66
67 /**
68 * spi_nor_spimem_exec_op() - execute a memory operation
69 * @nor: pointer to 'struct spi_nor'
70 * @op: pointer to 'struct spi_mem_op' template for transfer
71 *
72 * Return: 0 on success, -error otherwise.
73 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)74 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
75 {
76 int error;
77
78 error = spi_mem_adjust_op_size(nor->spimem, op);
79 if (error)
80 return error;
81
82 return spi_mem_exec_op(nor->spimem, op);
83 }
84
85 /**
86 * spi_nor_spimem_read_data() - read data from flash's memory region via
87 * spi-mem
88 * @nor: pointer to 'struct spi_nor'
89 * @from: offset to read from
90 * @len: number of bytes to read
91 * @buf: pointer to dst buffer
92 *
93 * Return: number of bytes read successfully, -errno otherwise
94 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)95 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
96 size_t len, u8 *buf)
97 {
98 struct spi_mem_op op =
99 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
100 SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
101 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
102 SPI_MEM_OP_DATA_IN(len, buf, 1));
103 bool usebouncebuf;
104 ssize_t nbytes;
105 int error;
106
107 /* get transfer protocols. */
108 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
109 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
110 op.dummy.buswidth = op.addr.buswidth;
111 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
112
113 /* convert the dummy cycles to the number of bytes */
114 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
115
116 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
117
118 if (nor->dirmap.rdesc) {
119 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
120 op.data.nbytes, op.data.buf.in);
121 } else {
122 error = spi_nor_spimem_exec_op(nor, &op);
123 if (error)
124 return error;
125 nbytes = op.data.nbytes;
126 }
127
128 if (usebouncebuf && nbytes > 0)
129 memcpy(buf, op.data.buf.in, nbytes);
130
131 return nbytes;
132 }
133
134 /**
135 * spi_nor_read_data() - read data from flash memory
136 * @nor: pointer to 'struct spi_nor'
137 * @from: offset to read from
138 * @len: number of bytes to read
139 * @buf: pointer to dst buffer
140 *
141 * Return: number of bytes read successfully, -errno otherwise
142 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)143 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
144 {
145 if (nor->spimem)
146 return spi_nor_spimem_read_data(nor, from, len, buf);
147
148 return nor->controller_ops->read(nor, from, len, buf);
149 }
150
151 /**
152 * spi_nor_spimem_write_data() - write data to flash memory via
153 * spi-mem
154 * @nor: pointer to 'struct spi_nor'
155 * @to: offset to write to
156 * @len: number of bytes to write
157 * @buf: pointer to src buffer
158 *
159 * Return: number of bytes written successfully, -errno otherwise
160 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)161 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
162 size_t len, const u8 *buf)
163 {
164 struct spi_mem_op op =
165 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
166 SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
167 SPI_MEM_OP_NO_DUMMY,
168 SPI_MEM_OP_DATA_OUT(len, buf, 1));
169 ssize_t nbytes;
170 int error;
171
172 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
173 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
174 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
175
176 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
177 op.addr.nbytes = 0;
178
179 if (spi_nor_spimem_bounce(nor, &op))
180 memcpy(nor->bouncebuf, buf, op.data.nbytes);
181
182 if (nor->dirmap.wdesc) {
183 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
184 op.data.nbytes, op.data.buf.out);
185 } else {
186 error = spi_nor_spimem_exec_op(nor, &op);
187 if (error)
188 return error;
189 nbytes = op.data.nbytes;
190 }
191
192 return nbytes;
193 }
194
195 /**
196 * spi_nor_write_data() - write data to flash memory
197 * @nor: pointer to 'struct spi_nor'
198 * @to: offset to write to
199 * @len: number of bytes to write
200 * @buf: pointer to src buffer
201 *
202 * Return: number of bytes written successfully, -errno otherwise
203 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)204 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
205 const u8 *buf)
206 {
207 if (nor->spimem)
208 return spi_nor_spimem_write_data(nor, to, len, buf);
209
210 return nor->controller_ops->write(nor, to, len, buf);
211 }
212
213 /**
214 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
215 * @nor: pointer to 'struct spi_nor'.
216 *
217 * Return: 0 on success, -errno otherwise.
218 */
spi_nor_write_enable(struct spi_nor * nor)219 int spi_nor_write_enable(struct spi_nor *nor)
220 {
221 int ret;
222
223 if (nor->spimem) {
224 struct spi_mem_op op =
225 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
226 SPI_MEM_OP_NO_ADDR,
227 SPI_MEM_OP_NO_DUMMY,
228 SPI_MEM_OP_NO_DATA);
229
230 ret = spi_mem_exec_op(nor->spimem, &op);
231 } else {
232 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
233 NULL, 0);
234 }
235
236 if (ret)
237 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
238
239 return ret;
240 }
241
242 /**
243 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
244 * @nor: pointer to 'struct spi_nor'.
245 *
246 * Return: 0 on success, -errno otherwise.
247 */
spi_nor_write_disable(struct spi_nor * nor)248 int spi_nor_write_disable(struct spi_nor *nor)
249 {
250 int ret;
251
252 if (nor->spimem) {
253 struct spi_mem_op op =
254 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
255 SPI_MEM_OP_NO_ADDR,
256 SPI_MEM_OP_NO_DUMMY,
257 SPI_MEM_OP_NO_DATA);
258
259 ret = spi_mem_exec_op(nor->spimem, &op);
260 } else {
261 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
262 NULL, 0);
263 }
264
265 if (ret)
266 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
267
268 return ret;
269 }
270
271 /**
272 * spi_nor_read_sr() - Read the Status Register.
273 * @nor: pointer to 'struct spi_nor'.
274 * @sr: pointer to a DMA-able buffer where the value of the
275 * Status Register will be written.
276 *
277 * Return: 0 on success, -errno otherwise.
278 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)279 static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
280 {
281 int ret;
282
283 if (nor->spimem) {
284 struct spi_mem_op op =
285 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
286 SPI_MEM_OP_NO_ADDR,
287 SPI_MEM_OP_NO_DUMMY,
288 SPI_MEM_OP_DATA_IN(1, sr, 1));
289
290 ret = spi_mem_exec_op(nor->spimem, &op);
291 } else {
292 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
293 sr, 1);
294 }
295
296 if (ret)
297 dev_dbg(nor->dev, "error %d reading SR\n", ret);
298
299 return ret;
300 }
301
302 /**
303 * spi_nor_read_fsr() - Read the Flag Status Register.
304 * @nor: pointer to 'struct spi_nor'
305 * @fsr: pointer to a DMA-able buffer where the value of the
306 * Flag Status Register will be written.
307 *
308 * Return: 0 on success, -errno otherwise.
309 */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)310 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
311 {
312 int ret;
313
314 if (nor->spimem) {
315 struct spi_mem_op op =
316 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
317 SPI_MEM_OP_NO_ADDR,
318 SPI_MEM_OP_NO_DUMMY,
319 SPI_MEM_OP_DATA_IN(1, fsr, 1));
320
321 ret = spi_mem_exec_op(nor->spimem, &op);
322 } else {
323 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
324 fsr, 1);
325 }
326
327 if (ret)
328 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
329
330 return ret;
331 }
332
333 /**
334 * spi_nor_read_cr() - Read the Configuration Register using the
335 * SPINOR_OP_RDCR (35h) command.
336 * @nor: pointer to 'struct spi_nor'
337 * @cr: pointer to a DMA-able buffer where the value of the
338 * Configuration Register will be written.
339 *
340 * Return: 0 on success, -errno otherwise.
341 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)342 static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
343 {
344 int ret;
345
346 if (nor->spimem) {
347 struct spi_mem_op op =
348 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
349 SPI_MEM_OP_NO_ADDR,
350 SPI_MEM_OP_NO_DUMMY,
351 SPI_MEM_OP_DATA_IN(1, cr, 1));
352
353 ret = spi_mem_exec_op(nor->spimem, &op);
354 } else {
355 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
356 }
357
358 if (ret)
359 dev_dbg(nor->dev, "error %d reading CR\n", ret);
360
361 return ret;
362 }
363
364 /**
365 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
366 * @nor: pointer to 'struct spi_nor'.
367 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
368 * address mode.
369 *
370 * Return: 0 on success, -errno otherwise.
371 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)372 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
373 {
374 int ret;
375
376 if (nor->spimem) {
377 struct spi_mem_op op =
378 SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
379 SPINOR_OP_EN4B :
380 SPINOR_OP_EX4B,
381 1),
382 SPI_MEM_OP_NO_ADDR,
383 SPI_MEM_OP_NO_DUMMY,
384 SPI_MEM_OP_NO_DATA);
385
386 ret = spi_mem_exec_op(nor->spimem, &op);
387 } else {
388 ret = nor->controller_ops->write_reg(nor,
389 enable ? SPINOR_OP_EN4B :
390 SPINOR_OP_EX4B,
391 NULL, 0);
392 }
393
394 if (ret)
395 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
396
397 return ret;
398 }
399
400 /**
401 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
402 * flashes.
403 * @nor: pointer to 'struct spi_nor'.
404 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
405 * address mode.
406 *
407 * Return: 0 on success, -errno otherwise.
408 */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)409 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
410 {
411 int ret;
412
413 nor->bouncebuf[0] = enable << 7;
414
415 if (nor->spimem) {
416 struct spi_mem_op op =
417 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
418 SPI_MEM_OP_NO_ADDR,
419 SPI_MEM_OP_NO_DUMMY,
420 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
421
422 ret = spi_mem_exec_op(nor->spimem, &op);
423 } else {
424 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
425 nor->bouncebuf, 1);
426 }
427
428 if (ret)
429 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
430
431 return ret;
432 }
433
434 /**
435 * spi_nor_write_ear() - Write Extended Address Register.
436 * @nor: pointer to 'struct spi_nor'.
437 * @ear: value to write to the Extended Address Register.
438 *
439 * Return: 0 on success, -errno otherwise.
440 */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)441 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
442 {
443 int ret;
444
445 nor->bouncebuf[0] = ear;
446
447 if (nor->spimem) {
448 struct spi_mem_op op =
449 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
450 SPI_MEM_OP_NO_ADDR,
451 SPI_MEM_OP_NO_DUMMY,
452 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
453
454 ret = spi_mem_exec_op(nor->spimem, &op);
455 } else {
456 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
457 nor->bouncebuf, 1);
458 }
459
460 if (ret)
461 dev_dbg(nor->dev, "error %d writing EAR\n", ret);
462
463 return ret;
464 }
465
466 /**
467 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
468 * @nor: pointer to 'struct spi_nor'.
469 * @sr: pointer to a DMA-able buffer where the value of the
470 * Status Register will be written.
471 *
472 * Return: 0 on success, -errno otherwise.
473 */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)474 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
475 {
476 int ret;
477
478 if (nor->spimem) {
479 struct spi_mem_op op =
480 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
481 SPI_MEM_OP_NO_ADDR,
482 SPI_MEM_OP_NO_DUMMY,
483 SPI_MEM_OP_DATA_IN(1, sr, 1));
484
485 ret = spi_mem_exec_op(nor->spimem, &op);
486 } else {
487 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
488 sr, 1);
489 }
490
491 if (ret)
492 dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
493
494 return ret;
495 }
496
497 /**
498 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
499 * the flash is ready for new commands.
500 * @nor: pointer to 'struct spi_nor'.
501 *
502 * Return: 1 if ready, 0 if not ready, -errno on errors.
503 */
spi_nor_xsr_ready(struct spi_nor * nor)504 static int spi_nor_xsr_ready(struct spi_nor *nor)
505 {
506 int ret;
507
508 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
509 if (ret)
510 return ret;
511
512 return !!(nor->bouncebuf[0] & XSR_RDY);
513 }
514
515 /**
516 * spi_nor_clear_sr() - Clear the Status Register.
517 * @nor: pointer to 'struct spi_nor'.
518 */
spi_nor_clear_sr(struct spi_nor * nor)519 static void spi_nor_clear_sr(struct spi_nor *nor)
520 {
521 int ret;
522
523 if (nor->spimem) {
524 struct spi_mem_op op =
525 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
526 SPI_MEM_OP_NO_ADDR,
527 SPI_MEM_OP_NO_DUMMY,
528 SPI_MEM_OP_NO_DATA);
529
530 ret = spi_mem_exec_op(nor->spimem, &op);
531 } else {
532 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
533 NULL, 0);
534 }
535
536 if (ret)
537 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
538 }
539
540 /**
541 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
542 * for new commands.
543 * @nor: pointer to 'struct spi_nor'.
544 *
545 * Return: 1 if ready, 0 if not ready, -errno on errors.
546 */
spi_nor_sr_ready(struct spi_nor * nor)547 static int spi_nor_sr_ready(struct spi_nor *nor)
548 {
549 int ret = spi_nor_read_sr(nor, nor->bouncebuf);
550
551 if (ret)
552 return ret;
553
554 if (nor->flags & SNOR_F_USE_CLSR &&
555 nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
556 if (nor->bouncebuf[0] & SR_E_ERR)
557 dev_err(nor->dev, "Erase Error occurred\n");
558 else
559 dev_err(nor->dev, "Programming Error occurred\n");
560
561 spi_nor_clear_sr(nor);
562
563 /*
564 * WEL bit remains set to one when an erase or page program
565 * error occurs. Issue a Write Disable command to protect
566 * against inadvertent writes that can possibly corrupt the
567 * contents of the memory.
568 */
569 ret = spi_nor_write_disable(nor);
570 if (ret)
571 return ret;
572
573 return -EIO;
574 }
575
576 return !(nor->bouncebuf[0] & SR_WIP);
577 }
578
579 /**
580 * spi_nor_clear_fsr() - Clear the Flag Status Register.
581 * @nor: pointer to 'struct spi_nor'.
582 */
spi_nor_clear_fsr(struct spi_nor * nor)583 static void spi_nor_clear_fsr(struct spi_nor *nor)
584 {
585 int ret;
586
587 if (nor->spimem) {
588 struct spi_mem_op op =
589 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
590 SPI_MEM_OP_NO_ADDR,
591 SPI_MEM_OP_NO_DUMMY,
592 SPI_MEM_OP_NO_DATA);
593
594 ret = spi_mem_exec_op(nor->spimem, &op);
595 } else {
596 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
597 NULL, 0);
598 }
599
600 if (ret)
601 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
602 }
603
604 /**
605 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
606 * ready for new commands.
607 * @nor: pointer to 'struct spi_nor'.
608 *
609 * Return: 1 if ready, 0 if not ready, -errno on errors.
610 */
spi_nor_fsr_ready(struct spi_nor * nor)611 static int spi_nor_fsr_ready(struct spi_nor *nor)
612 {
613 int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
614
615 if (ret)
616 return ret;
617
618 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
619 if (nor->bouncebuf[0] & FSR_E_ERR)
620 dev_err(nor->dev, "Erase operation failed.\n");
621 else
622 dev_err(nor->dev, "Program operation failed.\n");
623
624 if (nor->bouncebuf[0] & FSR_PT_ERR)
625 dev_err(nor->dev,
626 "Attempted to modify a protected sector.\n");
627
628 spi_nor_clear_fsr(nor);
629
630 /*
631 * WEL bit remains set to one when an erase or page program
632 * error occurs. Issue a Write Disable command to protect
633 * against inadvertent writes that can possibly corrupt the
634 * contents of the memory.
635 */
636 ret = spi_nor_write_disable(nor);
637 if (ret)
638 return ret;
639
640 return -EIO;
641 }
642
643 return !!(nor->bouncebuf[0] & FSR_READY);
644 }
645
646 /**
647 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
648 * @nor: pointer to 'struct spi_nor'.
649 *
650 * Return: 1 if ready, 0 if not ready, -errno on errors.
651 */
spi_nor_ready(struct spi_nor * nor)652 static int spi_nor_ready(struct spi_nor *nor)
653 {
654 int sr, fsr;
655
656 if (nor->flags & SNOR_F_READY_XSR_RDY)
657 sr = spi_nor_xsr_ready(nor);
658 else
659 sr = spi_nor_sr_ready(nor);
660 if (sr < 0)
661 return sr;
662 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
663 if (fsr < 0)
664 return fsr;
665 return sr && fsr;
666 }
667
668 /**
669 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
670 * Status Register until ready, or timeout occurs.
671 * @nor: pointer to "struct spi_nor".
672 * @timeout_jiffies: jiffies to wait until timeout.
673 *
674 * Return: 0 on success, -errno otherwise.
675 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)676 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
677 unsigned long timeout_jiffies)
678 {
679 unsigned long deadline;
680 int timeout = 0, ret;
681
682 deadline = jiffies + timeout_jiffies;
683
684 while (!timeout) {
685 if (time_after_eq(jiffies, deadline))
686 timeout = 1;
687
688 ret = spi_nor_ready(nor);
689 if (ret < 0)
690 return ret;
691 if (ret)
692 return 0;
693
694 cond_resched();
695 }
696
697 dev_dbg(nor->dev, "flash operation timed out\n");
698
699 return -ETIMEDOUT;
700 }
701
702 /**
703 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
704 * flash to be ready, or timeout occurs.
705 * @nor: pointer to "struct spi_nor".
706 *
707 * Return: 0 on success, -errno otherwise.
708 */
spi_nor_wait_till_ready(struct spi_nor * nor)709 int spi_nor_wait_till_ready(struct spi_nor *nor)
710 {
711 return spi_nor_wait_till_ready_with_timeout(nor,
712 DEFAULT_READY_WAIT_JIFFIES);
713 }
714
715 /**
716 * spi_nor_write_sr() - Write the Status Register.
717 * @nor: pointer to 'struct spi_nor'.
718 * @sr: pointer to DMA-able buffer to write to the Status Register.
719 * @len: number of bytes to write to the Status Register.
720 *
721 * Return: 0 on success, -errno otherwise.
722 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)723 static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
724 {
725 int ret;
726
727 ret = spi_nor_write_enable(nor);
728 if (ret)
729 return ret;
730
731 if (nor->spimem) {
732 struct spi_mem_op op =
733 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
734 SPI_MEM_OP_NO_ADDR,
735 SPI_MEM_OP_NO_DUMMY,
736 SPI_MEM_OP_DATA_OUT(len, sr, 1));
737
738 ret = spi_mem_exec_op(nor->spimem, &op);
739 } else {
740 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
741 sr, len);
742 }
743
744 if (ret) {
745 dev_dbg(nor->dev, "error %d writing SR\n", ret);
746 return ret;
747 }
748
749 return spi_nor_wait_till_ready(nor);
750 }
751
752 /**
753 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
754 * ensure that the byte written match the received value.
755 * @nor: pointer to a 'struct spi_nor'.
756 * @sr1: byte value to be written to the Status Register.
757 *
758 * Return: 0 on success, -errno otherwise.
759 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)760 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
761 {
762 int ret;
763
764 nor->bouncebuf[0] = sr1;
765
766 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
767 if (ret)
768 return ret;
769
770 ret = spi_nor_read_sr(nor, nor->bouncebuf);
771 if (ret)
772 return ret;
773
774 if (nor->bouncebuf[0] != sr1) {
775 dev_dbg(nor->dev, "SR1: read back test failed\n");
776 return -EIO;
777 }
778
779 return 0;
780 }
781
782 /**
783 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
784 * Status Register 2 in one shot. Ensure that the byte written in the Status
785 * Register 1 match the received value, and that the 16-bit Write did not
786 * affect what was already in the Status Register 2.
787 * @nor: pointer to a 'struct spi_nor'.
788 * @sr1: byte value to be written to the Status Register 1.
789 *
790 * Return: 0 on success, -errno otherwise.
791 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)792 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
793 {
794 int ret;
795 u8 *sr_cr = nor->bouncebuf;
796 u8 cr_written;
797
798 /* Make sure we don't overwrite the contents of Status Register 2. */
799 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
800 ret = spi_nor_read_cr(nor, &sr_cr[1]);
801 if (ret)
802 return ret;
803 } else if (nor->params->quad_enable) {
804 /*
805 * If the Status Register 2 Read command (35h) is not
806 * supported, we should at least be sure we don't
807 * change the value of the SR2 Quad Enable bit.
808 *
809 * We can safely assume that when the Quad Enable method is
810 * set, the value of the QE bit is one, as a consequence of the
811 * nor->params->quad_enable() call.
812 *
813 * We can safely assume that the Quad Enable bit is present in
814 * the Status Register 2 at BIT(1). According to the JESD216
815 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
816 * Write Status (01h) command is available just for the cases
817 * in which the QE bit is described in SR2 at BIT(1).
818 */
819 sr_cr[1] = SR2_QUAD_EN_BIT1;
820 } else {
821 sr_cr[1] = 0;
822 }
823
824 sr_cr[0] = sr1;
825
826 ret = spi_nor_write_sr(nor, sr_cr, 2);
827 if (ret)
828 return ret;
829
830 if (nor->flags & SNOR_F_NO_READ_CR)
831 return 0;
832
833 cr_written = sr_cr[1];
834
835 ret = spi_nor_read_cr(nor, &sr_cr[1]);
836 if (ret)
837 return ret;
838
839 if (cr_written != sr_cr[1]) {
840 dev_dbg(nor->dev, "CR: read back test failed\n");
841 return -EIO;
842 }
843
844 return 0;
845 }
846
847 /**
848 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
849 * Configuration Register in one shot. Ensure that the byte written in the
850 * Configuration Register match the received value, and that the 16-bit Write
851 * did not affect what was already in the Status Register 1.
852 * @nor: pointer to a 'struct spi_nor'.
853 * @cr: byte value to be written to the Configuration Register.
854 *
855 * Return: 0 on success, -errno otherwise.
856 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)857 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
858 {
859 int ret;
860 u8 *sr_cr = nor->bouncebuf;
861 u8 sr_written;
862
863 /* Keep the current value of the Status Register 1. */
864 ret = spi_nor_read_sr(nor, sr_cr);
865 if (ret)
866 return ret;
867
868 sr_cr[1] = cr;
869
870 ret = spi_nor_write_sr(nor, sr_cr, 2);
871 if (ret)
872 return ret;
873
874 sr_written = sr_cr[0];
875
876 ret = spi_nor_read_sr(nor, sr_cr);
877 if (ret)
878 return ret;
879
880 if (sr_written != sr_cr[0]) {
881 dev_dbg(nor->dev, "SR: Read back test failed\n");
882 return -EIO;
883 }
884
885 if (nor->flags & SNOR_F_NO_READ_CR)
886 return 0;
887
888 ret = spi_nor_read_cr(nor, &sr_cr[1]);
889 if (ret)
890 return ret;
891
892 if (cr != sr_cr[1]) {
893 dev_dbg(nor->dev, "CR: read back test failed\n");
894 return -EIO;
895 }
896
897 return 0;
898 }
899
900 /**
901 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
902 * the byte written match the received value without affecting other bits in the
903 * Status Register 1 and 2.
904 * @nor: pointer to a 'struct spi_nor'.
905 * @sr1: byte value to be written to the Status Register.
906 *
907 * Return: 0 on success, -errno otherwise.
908 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)909 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
910 {
911 if (nor->flags & SNOR_F_HAS_16BIT_SR)
912 return spi_nor_write_16bit_sr_and_check(nor, sr1);
913
914 return spi_nor_write_sr1_and_check(nor, sr1);
915 }
916
917 /**
918 * spi_nor_write_sr2() - Write the Status Register 2 using the
919 * SPINOR_OP_WRSR2 (3eh) command.
920 * @nor: pointer to 'struct spi_nor'.
921 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
922 *
923 * Return: 0 on success, -errno otherwise.
924 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)925 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
926 {
927 int ret;
928
929 ret = spi_nor_write_enable(nor);
930 if (ret)
931 return ret;
932
933 if (nor->spimem) {
934 struct spi_mem_op op =
935 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
936 SPI_MEM_OP_NO_ADDR,
937 SPI_MEM_OP_NO_DUMMY,
938 SPI_MEM_OP_DATA_OUT(1, sr2, 1));
939
940 ret = spi_mem_exec_op(nor->spimem, &op);
941 } else {
942 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
943 sr2, 1);
944 }
945
946 if (ret) {
947 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
948 return ret;
949 }
950
951 return spi_nor_wait_till_ready(nor);
952 }
953
954 /**
955 * spi_nor_read_sr2() - Read the Status Register 2 using the
956 * SPINOR_OP_RDSR2 (3fh) command.
957 * @nor: pointer to 'struct spi_nor'.
958 * @sr2: pointer to DMA-able buffer where the value of the
959 * Status Register 2 will be written.
960 *
961 * Return: 0 on success, -errno otherwise.
962 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)963 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
964 {
965 int ret;
966
967 if (nor->spimem) {
968 struct spi_mem_op op =
969 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
970 SPI_MEM_OP_NO_ADDR,
971 SPI_MEM_OP_NO_DUMMY,
972 SPI_MEM_OP_DATA_IN(1, sr2, 1));
973
974 ret = spi_mem_exec_op(nor->spimem, &op);
975 } else {
976 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
977 sr2, 1);
978 }
979
980 if (ret)
981 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
982
983 return ret;
984 }
985
986 /**
987 * spi_nor_erase_chip() - Erase the entire flash memory.
988 * @nor: pointer to 'struct spi_nor'.
989 *
990 * Return: 0 on success, -errno otherwise.
991 */
spi_nor_erase_chip(struct spi_nor * nor)992 static int spi_nor_erase_chip(struct spi_nor *nor)
993 {
994 int ret;
995
996 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
997
998 if (nor->spimem) {
999 struct spi_mem_op op =
1000 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
1001 SPI_MEM_OP_NO_ADDR,
1002 SPI_MEM_OP_NO_DUMMY,
1003 SPI_MEM_OP_NO_DATA);
1004
1005 ret = spi_mem_exec_op(nor->spimem, &op);
1006 } else {
1007 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
1008 NULL, 0);
1009 }
1010
1011 if (ret)
1012 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1013
1014 return ret;
1015 }
1016
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1017 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1018 {
1019 size_t i;
1020
1021 for (i = 0; i < size; i++)
1022 if (table[i][0] == opcode)
1023 return table[i][1];
1024
1025 /* No conversion found, keep input op code. */
1026 return opcode;
1027 }
1028
spi_nor_convert_3to4_read(u8 opcode)1029 u8 spi_nor_convert_3to4_read(u8 opcode)
1030 {
1031 static const u8 spi_nor_3to4_read[][2] = {
1032 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1033 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1034 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1035 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1036 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1037 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1038 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1039 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1040
1041 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1042 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1043 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1044 };
1045
1046 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1047 ARRAY_SIZE(spi_nor_3to4_read));
1048 }
1049
spi_nor_convert_3to4_program(u8 opcode)1050 static u8 spi_nor_convert_3to4_program(u8 opcode)
1051 {
1052 static const u8 spi_nor_3to4_program[][2] = {
1053 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1054 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1055 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1056 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1057 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1058 };
1059
1060 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1061 ARRAY_SIZE(spi_nor_3to4_program));
1062 }
1063
spi_nor_convert_3to4_erase(u8 opcode)1064 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1065 {
1066 static const u8 spi_nor_3to4_erase[][2] = {
1067 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1068 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1069 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1070 };
1071
1072 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1073 ARRAY_SIZE(spi_nor_3to4_erase));
1074 }
1075
spi_nor_has_uniform_erase(const struct spi_nor * nor)1076 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1077 {
1078 return !!nor->params->erase_map.uniform_erase_type;
1079 }
1080
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1081 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1082 {
1083 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1084 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1085 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1086
1087 if (!spi_nor_has_uniform_erase(nor)) {
1088 struct spi_nor_erase_map *map = &nor->params->erase_map;
1089 struct spi_nor_erase_type *erase;
1090 int i;
1091
1092 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1093 erase = &map->erase_type[i];
1094 erase->opcode =
1095 spi_nor_convert_3to4_erase(erase->opcode);
1096 }
1097 }
1098 }
1099
spi_nor_lock_and_prep(struct spi_nor * nor)1100 int spi_nor_lock_and_prep(struct spi_nor *nor)
1101 {
1102 int ret = 0;
1103
1104 mutex_lock(&nor->lock);
1105
1106 if (nor->controller_ops && nor->controller_ops->prepare) {
1107 ret = nor->controller_ops->prepare(nor);
1108 if (ret) {
1109 mutex_unlock(&nor->lock);
1110 return ret;
1111 }
1112 }
1113 return ret;
1114 }
1115
spi_nor_unlock_and_unprep(struct spi_nor * nor)1116 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1117 {
1118 if (nor->controller_ops && nor->controller_ops->unprepare)
1119 nor->controller_ops->unprepare(nor);
1120 mutex_unlock(&nor->lock);
1121 }
1122
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1123 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1124 {
1125 if (!nor->params->convert_addr)
1126 return addr;
1127
1128 return nor->params->convert_addr(nor, addr);
1129 }
1130
1131 /*
1132 * Initiate the erasure of a single sector
1133 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1134 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1135 {
1136 int i;
1137
1138 addr = spi_nor_convert_addr(nor, addr);
1139
1140 if (nor->spimem) {
1141 struct spi_mem_op op =
1142 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
1143 SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
1144 SPI_MEM_OP_NO_DUMMY,
1145 SPI_MEM_OP_NO_DATA);
1146
1147 return spi_mem_exec_op(nor->spimem, &op);
1148 } else if (nor->controller_ops->erase) {
1149 return nor->controller_ops->erase(nor, addr);
1150 }
1151
1152 /*
1153 * Default implementation, if driver doesn't have a specialized HW
1154 * control
1155 */
1156 for (i = nor->addr_width - 1; i >= 0; i--) {
1157 nor->bouncebuf[i] = addr & 0xff;
1158 addr >>= 8;
1159 }
1160
1161 return nor->controller_ops->write_reg(nor, nor->erase_opcode,
1162 nor->bouncebuf, nor->addr_width);
1163 }
1164
1165 /**
1166 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1167 * @erase: pointer to a structure that describes a SPI NOR erase type
1168 * @dividend: dividend value
1169 * @remainder: pointer to u32 remainder (will be updated)
1170 *
1171 * Return: the result of the division
1172 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1173 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1174 u64 dividend, u32 *remainder)
1175 {
1176 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1177 *remainder = (u32)dividend & erase->size_mask;
1178 return dividend >> erase->size_shift;
1179 }
1180
1181 /**
1182 * spi_nor_find_best_erase_type() - find the best erase type for the given
1183 * offset in the serial flash memory and the
1184 * number of bytes to erase. The region in
1185 * which the address fits is expected to be
1186 * provided.
1187 * @map: the erase map of the SPI NOR
1188 * @region: pointer to a structure that describes a SPI NOR erase region
1189 * @addr: offset in the serial flash memory
1190 * @len: number of bytes to erase
1191 *
1192 * Return: a pointer to the best fitted erase type, NULL otherwise.
1193 */
1194 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1195 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1196 const struct spi_nor_erase_region *region,
1197 u64 addr, u32 len)
1198 {
1199 const struct spi_nor_erase_type *erase;
1200 u32 rem;
1201 int i;
1202 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1203
1204 /*
1205 * Erase types are ordered by size, with the smallest erase type at
1206 * index 0.
1207 */
1208 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1209 /* Does the erase region support the tested erase type? */
1210 if (!(erase_mask & BIT(i)))
1211 continue;
1212
1213 erase = &map->erase_type[i];
1214
1215 /* Alignment is not mandatory for overlaid regions */
1216 if (region->offset & SNOR_OVERLAID_REGION &&
1217 region->size <= len)
1218 return erase;
1219
1220 /* Don't erase more than what the user has asked for. */
1221 if (erase->size > len)
1222 continue;
1223
1224 spi_nor_div_by_erase_size(erase, addr, &rem);
1225 if (rem)
1226 continue;
1227 else
1228 return erase;
1229 }
1230
1231 return NULL;
1232 }
1233
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1234 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1235 {
1236 return region->offset & SNOR_LAST_REGION;
1237 }
1238
spi_nor_region_end(const struct spi_nor_erase_region * region)1239 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1240 {
1241 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1242 }
1243
1244 /**
1245 * spi_nor_region_next() - get the next spi nor region
1246 * @region: pointer to a structure that describes a SPI NOR erase region
1247 *
1248 * Return: the next spi nor region or NULL if last region.
1249 */
1250 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1251 spi_nor_region_next(struct spi_nor_erase_region *region)
1252 {
1253 if (spi_nor_region_is_last(region))
1254 return NULL;
1255 region++;
1256 return region;
1257 }
1258
1259 /**
1260 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1261 * which the offset fits
1262 * @map: the erase map of the SPI NOR
1263 * @addr: offset in the serial flash memory
1264 *
1265 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1266 * otherwise.
1267 */
1268 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1269 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1270 {
1271 struct spi_nor_erase_region *region = map->regions;
1272 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1273 u64 region_end = region_start + region->size;
1274
1275 while (addr < region_start || addr >= region_end) {
1276 region = spi_nor_region_next(region);
1277 if (!region)
1278 return ERR_PTR(-EINVAL);
1279
1280 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1281 region_end = region_start + region->size;
1282 }
1283
1284 return region;
1285 }
1286
1287 /**
1288 * spi_nor_init_erase_cmd() - initialize an erase command
1289 * @region: pointer to a structure that describes a SPI NOR erase region
1290 * @erase: pointer to a structure that describes a SPI NOR erase type
1291 *
1292 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1293 * otherwise.
1294 */
1295 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1296 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1297 const struct spi_nor_erase_type *erase)
1298 {
1299 struct spi_nor_erase_command *cmd;
1300
1301 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1302 if (!cmd)
1303 return ERR_PTR(-ENOMEM);
1304
1305 INIT_LIST_HEAD(&cmd->list);
1306 cmd->opcode = erase->opcode;
1307 cmd->count = 1;
1308
1309 if (region->offset & SNOR_OVERLAID_REGION)
1310 cmd->size = region->size;
1311 else
1312 cmd->size = erase->size;
1313
1314 return cmd;
1315 }
1316
1317 /**
1318 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1319 * @erase_list: list of erase commands
1320 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1321 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1322 {
1323 struct spi_nor_erase_command *cmd, *next;
1324
1325 list_for_each_entry_safe(cmd, next, erase_list, list) {
1326 list_del(&cmd->list);
1327 kfree(cmd);
1328 }
1329 }
1330
1331 /**
1332 * spi_nor_init_erase_cmd_list() - initialize erase command list
1333 * @nor: pointer to a 'struct spi_nor'
1334 * @erase_list: list of erase commands to be executed once we validate that the
1335 * erase can be performed
1336 * @addr: offset in the serial flash memory
1337 * @len: number of bytes to erase
1338 *
1339 * Builds the list of best fitted erase commands and verifies if the erase can
1340 * be performed.
1341 *
1342 * Return: 0 on success, -errno otherwise.
1343 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1344 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1345 struct list_head *erase_list,
1346 u64 addr, u32 len)
1347 {
1348 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1349 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1350 struct spi_nor_erase_region *region;
1351 struct spi_nor_erase_command *cmd = NULL;
1352 u64 region_end;
1353 int ret = -EINVAL;
1354
1355 region = spi_nor_find_erase_region(map, addr);
1356 if (IS_ERR(region))
1357 return PTR_ERR(region);
1358
1359 region_end = spi_nor_region_end(region);
1360
1361 while (len) {
1362 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1363 if (!erase)
1364 goto destroy_erase_cmd_list;
1365
1366 if (prev_erase != erase ||
1367 erase->size != cmd->size ||
1368 region->offset & SNOR_OVERLAID_REGION) {
1369 cmd = spi_nor_init_erase_cmd(region, erase);
1370 if (IS_ERR(cmd)) {
1371 ret = PTR_ERR(cmd);
1372 goto destroy_erase_cmd_list;
1373 }
1374
1375 list_add_tail(&cmd->list, erase_list);
1376 } else {
1377 cmd->count++;
1378 }
1379
1380 addr += cmd->size;
1381 len -= cmd->size;
1382
1383 if (len && addr >= region_end) {
1384 region = spi_nor_region_next(region);
1385 if (!region)
1386 goto destroy_erase_cmd_list;
1387 region_end = spi_nor_region_end(region);
1388 }
1389
1390 prev_erase = erase;
1391 }
1392
1393 return 0;
1394
1395 destroy_erase_cmd_list:
1396 spi_nor_destroy_erase_cmd_list(erase_list);
1397 return ret;
1398 }
1399
1400 /**
1401 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1402 * @nor: pointer to a 'struct spi_nor'
1403 * @addr: offset in the serial flash memory
1404 * @len: number of bytes to erase
1405 *
1406 * Build a list of best fitted erase commands and execute it once we validate
1407 * that the erase can be performed.
1408 *
1409 * Return: 0 on success, -errno otherwise.
1410 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1411 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1412 {
1413 LIST_HEAD(erase_list);
1414 struct spi_nor_erase_command *cmd, *next;
1415 int ret;
1416
1417 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1418 if (ret)
1419 return ret;
1420
1421 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1422 nor->erase_opcode = cmd->opcode;
1423 while (cmd->count) {
1424 ret = spi_nor_write_enable(nor);
1425 if (ret)
1426 goto destroy_erase_cmd_list;
1427
1428 ret = spi_nor_erase_sector(nor, addr);
1429 if (ret)
1430 goto destroy_erase_cmd_list;
1431
1432 addr += cmd->size;
1433 cmd->count--;
1434
1435 ret = spi_nor_wait_till_ready(nor);
1436 if (ret)
1437 goto destroy_erase_cmd_list;
1438 }
1439 list_del(&cmd->list);
1440 kfree(cmd);
1441 }
1442
1443 return 0;
1444
1445 destroy_erase_cmd_list:
1446 spi_nor_destroy_erase_cmd_list(&erase_list);
1447 return ret;
1448 }
1449
1450 /*
1451 * Erase an address range on the nor chip. The address range may extend
1452 * one or more erase sectors. Return an error is there is a problem erasing.
1453 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1454 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1455 {
1456 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1457 u32 addr, len;
1458 uint32_t rem;
1459 int ret;
1460
1461 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1462 (long long)instr->len);
1463
1464 if (spi_nor_has_uniform_erase(nor)) {
1465 div_u64_rem(instr->len, mtd->erasesize, &rem);
1466 if (rem)
1467 return -EINVAL;
1468 }
1469
1470 addr = instr->addr;
1471 len = instr->len;
1472
1473 ret = spi_nor_lock_and_prep(nor);
1474 if (ret)
1475 return ret;
1476
1477 /* whole-chip erase? */
1478 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1479 unsigned long timeout;
1480
1481 ret = spi_nor_write_enable(nor);
1482 if (ret)
1483 goto erase_err;
1484
1485 ret = spi_nor_erase_chip(nor);
1486 if (ret)
1487 goto erase_err;
1488
1489 /*
1490 * Scale the timeout linearly with the size of the flash, with
1491 * a minimum calibrated to an old 2MB flash. We could try to
1492 * pull these from CFI/SFDP, but these values should be good
1493 * enough for now.
1494 */
1495 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1496 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1497 (unsigned long)(mtd->size / SZ_2M));
1498 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1499 if (ret)
1500 goto erase_err;
1501
1502 /* REVISIT in some cases we could speed up erasing large regions
1503 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1504 * to use "small sector erase", but that's not always optimal.
1505 */
1506
1507 /* "sector"-at-a-time erase */
1508 } else if (spi_nor_has_uniform_erase(nor)) {
1509 while (len) {
1510 ret = spi_nor_write_enable(nor);
1511 if (ret)
1512 goto erase_err;
1513
1514 ret = spi_nor_erase_sector(nor, addr);
1515 if (ret)
1516 goto erase_err;
1517
1518 addr += mtd->erasesize;
1519 len -= mtd->erasesize;
1520
1521 ret = spi_nor_wait_till_ready(nor);
1522 if (ret)
1523 goto erase_err;
1524 }
1525
1526 /* erase multiple sectors */
1527 } else {
1528 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1529 if (ret)
1530 goto erase_err;
1531 }
1532
1533 ret = spi_nor_write_disable(nor);
1534
1535 erase_err:
1536 spi_nor_unlock_and_unprep(nor);
1537
1538 return ret;
1539 }
1540
spi_nor_get_sr_bp_mask(struct spi_nor * nor)1541 static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
1542 {
1543 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1544
1545 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
1546 return mask | SR_BP3_BIT6;
1547
1548 if (nor->flags & SNOR_F_HAS_4BIT_BP)
1549 return mask | SR_BP3;
1550
1551 return mask;
1552 }
1553
spi_nor_get_sr_tb_mask(struct spi_nor * nor)1554 static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
1555 {
1556 if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1557 return SR_TB_BIT6;
1558 else
1559 return SR_TB_BIT5;
1560 }
1561
spi_nor_get_min_prot_length_sr(struct spi_nor * nor)1562 static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
1563 {
1564 unsigned int bp_slots, bp_slots_needed;
1565 u8 mask = spi_nor_get_sr_bp_mask(nor);
1566
1567 /* Reserved one for "protect none" and one for "protect all". */
1568 bp_slots = (1 << hweight8(mask)) - 2;
1569 bp_slots_needed = ilog2(nor->info->n_sectors);
1570
1571 if (bp_slots_needed > bp_slots)
1572 return nor->info->sector_size <<
1573 (bp_slots_needed - bp_slots);
1574 else
1575 return nor->info->sector_size;
1576 }
1577
spi_nor_get_locked_range_sr(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)1578 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1579 uint64_t *len)
1580 {
1581 struct mtd_info *mtd = &nor->mtd;
1582 u64 min_prot_len;
1583 u8 mask = spi_nor_get_sr_bp_mask(nor);
1584 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1585 u8 bp, val = sr & mask;
1586
1587 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
1588 val = (val & ~SR_BP3_BIT6) | SR_BP3;
1589
1590 bp = val >> SR_BP_SHIFT;
1591
1592 if (!bp) {
1593 /* No protection */
1594 *ofs = 0;
1595 *len = 0;
1596 return;
1597 }
1598
1599 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1600 *len = min_prot_len << (bp - 1);
1601
1602 if (*len > mtd->size)
1603 *len = mtd->size;
1604
1605 if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1606 *ofs = 0;
1607 else
1608 *ofs = mtd->size - *len;
1609 }
1610
1611 /*
1612 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1613 * @locked is false); 0 otherwise
1614 */
spi_nor_check_lock_status_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr,bool locked)1615 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1616 uint64_t len, u8 sr, bool locked)
1617 {
1618 loff_t lock_offs;
1619 uint64_t lock_len;
1620
1621 if (!len)
1622 return 1;
1623
1624 spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1625
1626 if (locked)
1627 /* Requested range is a sub-range of locked range */
1628 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1629 else
1630 /* Requested range does not overlap with locked range */
1631 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1632 }
1633
spi_nor_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1634 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1635 u8 sr)
1636 {
1637 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1638 }
1639
spi_nor_is_unlocked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1640 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1641 u8 sr)
1642 {
1643 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1644 }
1645
1646 /*
1647 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1648 * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
1649 * register
1650 * (SR). Does not support these features found in newer SR bitfields:
1651 * - SEC: sector/block protect - only handle SEC=0 (block protect)
1652 * - CMP: complement protect - only support CMP=0 (range is not complemented)
1653 *
1654 * Support for the following is provided conditionally for some flash:
1655 * - TB: top/bottom protect
1656 *
1657 * Sample table portion for 8MB flash (Winbond w25q64fw):
1658 *
1659 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
1660 * --------------------------------------------------------------------------
1661 * X | X | 0 | 0 | 0 | NONE | NONE
1662 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
1663 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
1664 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
1665 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
1666 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
1667 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
1668 * X | X | 1 | 1 | 1 | 8 MB | ALL
1669 * ------|-------|-------|-------|-------|---------------|-------------------
1670 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
1671 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
1672 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
1673 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
1674 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
1675 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
1676 *
1677 * Returns negative on errors, 0 on success.
1678 */
spi_nor_sr_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)1679 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1680 {
1681 struct mtd_info *mtd = &nor->mtd;
1682 u64 min_prot_len;
1683 int ret, status_old, status_new;
1684 u8 mask = spi_nor_get_sr_bp_mask(nor);
1685 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1686 u8 pow, val;
1687 loff_t lock_len;
1688 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1689 bool use_top;
1690
1691 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1692 if (ret)
1693 return ret;
1694
1695 status_old = nor->bouncebuf[0];
1696
1697 /* If nothing in our range is unlocked, we don't need to do anything */
1698 if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1699 return 0;
1700
1701 /* If anything below us is unlocked, we can't use 'bottom' protection */
1702 if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1703 can_be_bottom = false;
1704
1705 /* If anything above us is unlocked, we can't use 'top' protection */
1706 if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1707 status_old))
1708 can_be_top = false;
1709
1710 if (!can_be_bottom && !can_be_top)
1711 return -EINVAL;
1712
1713 /* Prefer top, if both are valid */
1714 use_top = can_be_top;
1715
1716 /* lock_len: length of region that should end up locked */
1717 if (use_top)
1718 lock_len = mtd->size - ofs;
1719 else
1720 lock_len = ofs + len;
1721
1722 if (lock_len == mtd->size) {
1723 val = mask;
1724 } else {
1725 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1726 pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1727 val = pow << SR_BP_SHIFT;
1728
1729 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1730 val = (val & ~SR_BP3) | SR_BP3_BIT6;
1731
1732 if (val & ~mask)
1733 return -EINVAL;
1734
1735 /* Don't "lock" with no region! */
1736 if (!(val & mask))
1737 return -EINVAL;
1738 }
1739
1740 status_new = (status_old & ~mask & ~tb_mask) | val;
1741
1742 /* Disallow further writes if WP pin is asserted */
1743 status_new |= SR_SRWD;
1744
1745 if (!use_top)
1746 status_new |= tb_mask;
1747
1748 /* Don't bother if they're the same */
1749 if (status_new == status_old)
1750 return 0;
1751
1752 /* Only modify protection if it will not unlock other areas */
1753 if ((status_new & mask) < (status_old & mask))
1754 return -EINVAL;
1755
1756 return spi_nor_write_sr_and_check(nor, status_new);
1757 }
1758
1759 /*
1760 * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1761 *
1762 * Returns negative on errors, 0 on success.
1763 */
spi_nor_sr_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)1764 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1765 {
1766 struct mtd_info *mtd = &nor->mtd;
1767 u64 min_prot_len;
1768 int ret, status_old, status_new;
1769 u8 mask = spi_nor_get_sr_bp_mask(nor);
1770 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1771 u8 pow, val;
1772 loff_t lock_len;
1773 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1774 bool use_top;
1775
1776 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1777 if (ret)
1778 return ret;
1779
1780 status_old = nor->bouncebuf[0];
1781
1782 /* If nothing in our range is locked, we don't need to do anything */
1783 if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1784 return 0;
1785
1786 /* If anything below us is locked, we can't use 'top' protection */
1787 if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1788 can_be_top = false;
1789
1790 /* If anything above us is locked, we can't use 'bottom' protection */
1791 if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1792 status_old))
1793 can_be_bottom = false;
1794
1795 if (!can_be_bottom && !can_be_top)
1796 return -EINVAL;
1797
1798 /* Prefer top, if both are valid */
1799 use_top = can_be_top;
1800
1801 /* lock_len: length of region that should remain locked */
1802 if (use_top)
1803 lock_len = mtd->size - (ofs + len);
1804 else
1805 lock_len = ofs;
1806
1807 if (lock_len == 0) {
1808 val = 0; /* fully unlocked */
1809 } else {
1810 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1811 pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1812 val = pow << SR_BP_SHIFT;
1813
1814 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1815 val = (val & ~SR_BP3) | SR_BP3_BIT6;
1816
1817 /* Some power-of-two sizes are not supported */
1818 if (val & ~mask)
1819 return -EINVAL;
1820 }
1821
1822 status_new = (status_old & ~mask & ~tb_mask) | val;
1823
1824 /* Don't protect status register if we're fully unlocked */
1825 if (lock_len == 0)
1826 status_new &= ~SR_SRWD;
1827
1828 if (!use_top)
1829 status_new |= tb_mask;
1830
1831 /* Don't bother if they're the same */
1832 if (status_new == status_old)
1833 return 0;
1834
1835 /* Only modify protection if it will not lock other areas */
1836 if ((status_new & mask) > (status_old & mask))
1837 return -EINVAL;
1838
1839 return spi_nor_write_sr_and_check(nor, status_new);
1840 }
1841
1842 /*
1843 * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
1844 * for more info.
1845 *
1846 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1847 * negative on errors.
1848 */
spi_nor_sr_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)1849 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1850 {
1851 int ret;
1852
1853 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1854 if (ret)
1855 return ret;
1856
1857 return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1858 }
1859
1860 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
1861 .lock = spi_nor_sr_lock,
1862 .unlock = spi_nor_sr_unlock,
1863 .is_locked = spi_nor_sr_is_locked,
1864 };
1865
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1866 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1867 {
1868 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1869 int ret;
1870
1871 ret = spi_nor_lock_and_prep(nor);
1872 if (ret)
1873 return ret;
1874
1875 ret = nor->params->locking_ops->lock(nor, ofs, len);
1876
1877 spi_nor_unlock_and_unprep(nor);
1878 return ret;
1879 }
1880
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1881 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1882 {
1883 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1884 int ret;
1885
1886 ret = spi_nor_lock_and_prep(nor);
1887 if (ret)
1888 return ret;
1889
1890 ret = nor->params->locking_ops->unlock(nor, ofs, len);
1891
1892 spi_nor_unlock_and_unprep(nor);
1893 return ret;
1894 }
1895
spi_nor_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1896 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1897 {
1898 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1899 int ret;
1900
1901 ret = spi_nor_lock_and_prep(nor);
1902 if (ret)
1903 return ret;
1904
1905 ret = nor->params->locking_ops->is_locked(nor, ofs, len);
1906
1907 spi_nor_unlock_and_unprep(nor);
1908 return ret;
1909 }
1910
1911 /**
1912 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1913 * Register 1.
1914 * @nor: pointer to a 'struct spi_nor'
1915 *
1916 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1917 *
1918 * Return: 0 on success, -errno otherwise.
1919 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1920 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1921 {
1922 int ret;
1923
1924 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1925 if (ret)
1926 return ret;
1927
1928 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1929 return 0;
1930
1931 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1932
1933 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1934 }
1935
1936 /**
1937 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1938 * Register 2.
1939 * @nor: pointer to a 'struct spi_nor'.
1940 *
1941 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1942 *
1943 * Return: 0 on success, -errno otherwise.
1944 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1945 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1946 {
1947 int ret;
1948
1949 if (nor->flags & SNOR_F_NO_READ_CR)
1950 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1951
1952 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1953 if (ret)
1954 return ret;
1955
1956 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1957 return 0;
1958
1959 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1960
1961 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1962 }
1963
1964 /**
1965 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1966 * @nor: pointer to a 'struct spi_nor'
1967 *
1968 * Set the Quad Enable (QE) bit in the Status Register 2.
1969 *
1970 * This is one of the procedures to set the QE bit described in the SFDP
1971 * (JESD216 rev B) specification but no manufacturer using this procedure has
1972 * been identified yet, hence the name of the function.
1973 *
1974 * Return: 0 on success, -errno otherwise.
1975 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1976 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1977 {
1978 u8 *sr2 = nor->bouncebuf;
1979 int ret;
1980 u8 sr2_written;
1981
1982 /* Check current Quad Enable bit value. */
1983 ret = spi_nor_read_sr2(nor, sr2);
1984 if (ret)
1985 return ret;
1986 if (*sr2 & SR2_QUAD_EN_BIT7)
1987 return 0;
1988
1989 /* Update the Quad Enable bit. */
1990 *sr2 |= SR2_QUAD_EN_BIT7;
1991
1992 ret = spi_nor_write_sr2(nor, sr2);
1993 if (ret)
1994 return ret;
1995
1996 sr2_written = *sr2;
1997
1998 /* Read back and check it. */
1999 ret = spi_nor_read_sr2(nor, sr2);
2000 if (ret)
2001 return ret;
2002
2003 if (*sr2 != sr2_written) {
2004 dev_dbg(nor->dev, "SR2: Read back test failed\n");
2005 return -EIO;
2006 }
2007
2008 return 0;
2009 }
2010
2011 static const struct spi_nor_manufacturer *manufacturers[] = {
2012 &spi_nor_atmel,
2013 &spi_nor_catalyst,
2014 &spi_nor_eon,
2015 &spi_nor_esmt,
2016 &spi_nor_everspin,
2017 &spi_nor_fujitsu,
2018 &spi_nor_gigadevice,
2019 &spi_nor_intel,
2020 &spi_nor_issi,
2021 &spi_nor_macronix,
2022 &spi_nor_micron,
2023 &spi_nor_st,
2024 &spi_nor_spansion,
2025 &spi_nor_sst,
2026 &spi_nor_winbond,
2027 &spi_nor_xilinx,
2028 &spi_nor_xmc,
2029 };
2030
2031 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)2032 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2033 const u8 *id)
2034 {
2035 unsigned int i;
2036
2037 for (i = 0; i < nparts; i++) {
2038 if (parts[i].id_len &&
2039 !memcmp(parts[i].id, id, parts[i].id_len))
2040 return &parts[i];
2041 }
2042
2043 return NULL;
2044 }
2045
spi_nor_read_id(struct spi_nor * nor)2046 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2047 {
2048 const struct flash_info *info;
2049 u8 *id = nor->bouncebuf;
2050 unsigned int i;
2051 int ret;
2052
2053 if (nor->spimem) {
2054 struct spi_mem_op op =
2055 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2056 SPI_MEM_OP_NO_ADDR,
2057 SPI_MEM_OP_NO_DUMMY,
2058 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2059
2060 ret = spi_mem_exec_op(nor->spimem, &op);
2061 } else {
2062 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2063 SPI_NOR_MAX_ID_LEN);
2064 }
2065 if (ret) {
2066 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2067 return ERR_PTR(ret);
2068 }
2069
2070 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2071 info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2072 manufacturers[i]->nparts,
2073 id);
2074 if (info) {
2075 nor->manufacturer = manufacturers[i];
2076 return info;
2077 }
2078 }
2079
2080 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2081 SPI_NOR_MAX_ID_LEN, id);
2082 return ERR_PTR(-ENODEV);
2083 }
2084
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2085 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2086 size_t *retlen, u_char *buf)
2087 {
2088 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2089 ssize_t ret;
2090
2091 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2092
2093 ret = spi_nor_lock_and_prep(nor);
2094 if (ret)
2095 return ret;
2096
2097 while (len) {
2098 loff_t addr = from;
2099
2100 addr = spi_nor_convert_addr(nor, addr);
2101
2102 ret = spi_nor_read_data(nor, addr, len, buf);
2103 if (ret == 0) {
2104 /* We shouldn't see 0-length reads */
2105 ret = -EIO;
2106 goto read_err;
2107 }
2108 if (ret < 0)
2109 goto read_err;
2110
2111 WARN_ON(ret > len);
2112 *retlen += ret;
2113 buf += ret;
2114 from += ret;
2115 len -= ret;
2116 }
2117 ret = 0;
2118
2119 read_err:
2120 spi_nor_unlock_and_unprep(nor);
2121 return ret;
2122 }
2123
2124 /*
2125 * Write an address range to the nor chip. Data must be written in
2126 * FLASH_PAGESIZE chunks. The address range may be any size provided
2127 * it is within the physical boundaries.
2128 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2129 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2130 size_t *retlen, const u_char *buf)
2131 {
2132 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2133 size_t page_offset, page_remain, i;
2134 ssize_t ret;
2135
2136 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2137
2138 ret = spi_nor_lock_and_prep(nor);
2139 if (ret)
2140 return ret;
2141
2142 for (i = 0; i < len; ) {
2143 ssize_t written;
2144 loff_t addr = to + i;
2145
2146 /*
2147 * If page_size is a power of two, the offset can be quickly
2148 * calculated with an AND operation. On the other cases we
2149 * need to do a modulus operation (more expensive).
2150 * Power of two numbers have only one bit set and we can use
2151 * the instruction hweight32 to detect if we need to do a
2152 * modulus (do_div()) or not.
2153 */
2154 if (hweight32(nor->page_size) == 1) {
2155 page_offset = addr & (nor->page_size - 1);
2156 } else {
2157 uint64_t aux = addr;
2158
2159 page_offset = do_div(aux, nor->page_size);
2160 }
2161 /* the size of data remaining on the first page */
2162 page_remain = min_t(size_t,
2163 nor->page_size - page_offset, len - i);
2164
2165 addr = spi_nor_convert_addr(nor, addr);
2166
2167 ret = spi_nor_write_enable(nor);
2168 if (ret)
2169 goto write_err;
2170
2171 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2172 if (ret < 0)
2173 goto write_err;
2174 written = ret;
2175
2176 ret = spi_nor_wait_till_ready(nor);
2177 if (ret)
2178 goto write_err;
2179 *retlen += written;
2180 i += written;
2181 }
2182
2183 write_err:
2184 spi_nor_unlock_and_unprep(nor);
2185 return ret;
2186 }
2187
spi_nor_check(struct spi_nor * nor)2188 static int spi_nor_check(struct spi_nor *nor)
2189 {
2190 if (!nor->dev ||
2191 (!nor->spimem && !nor->controller_ops) ||
2192 (!nor->spimem && nor->controller_ops &&
2193 (!nor->controller_ops->read ||
2194 !nor->controller_ops->write ||
2195 !nor->controller_ops->read_reg ||
2196 !nor->controller_ops->write_reg))) {
2197 pr_err("spi-nor: please fill all the necessary fields!\n");
2198 return -EINVAL;
2199 }
2200
2201 if (nor->spimem && nor->controller_ops) {
2202 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2203 return -EINVAL;
2204 }
2205
2206 return 0;
2207 }
2208
2209 static void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2210 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2211 u8 num_mode_clocks,
2212 u8 num_wait_states,
2213 u8 opcode,
2214 enum spi_nor_protocol proto)
2215 {
2216 read->num_mode_clocks = num_mode_clocks;
2217 read->num_wait_states = num_wait_states;
2218 read->opcode = opcode;
2219 read->proto = proto;
2220 }
2221
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2222 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2223 enum spi_nor_protocol proto)
2224 {
2225 pp->opcode = opcode;
2226 pp->proto = proto;
2227 }
2228
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2229 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2230 {
2231 size_t i;
2232
2233 for (i = 0; i < size; i++)
2234 if (table[i][0] == (int)hwcaps)
2235 return table[i][1];
2236
2237 return -EINVAL;
2238 }
2239
spi_nor_hwcaps_read2cmd(u32 hwcaps)2240 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2241 {
2242 static const int hwcaps_read2cmd[][2] = {
2243 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2244 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2245 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2246 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2247 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2248 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2249 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2250 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2251 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2252 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2253 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2254 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2255 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2256 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2257 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2258 };
2259
2260 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2261 ARRAY_SIZE(hwcaps_read2cmd));
2262 }
2263
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2264 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2265 {
2266 static const int hwcaps_pp2cmd[][2] = {
2267 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2268 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2269 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2270 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2271 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2272 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2273 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2274 };
2275
2276 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2277 ARRAY_SIZE(hwcaps_pp2cmd));
2278 }
2279
2280 /**
2281 * spi_nor_spimem_check_op - check if the operation is supported
2282 * by controller
2283 *@nor: pointer to a 'struct spi_nor'
2284 *@op: pointer to op template to be checked
2285 *
2286 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2287 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2288 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2289 struct spi_mem_op *op)
2290 {
2291 /*
2292 * First test with 4 address bytes. The opcode itself might
2293 * be a 3B addressing opcode but we don't care, because
2294 * SPI controller implementation should not check the opcode,
2295 * but just the sequence.
2296 */
2297 op->addr.nbytes = 4;
2298 if (!spi_mem_supports_op(nor->spimem, op)) {
2299 if (nor->mtd.size > SZ_16M)
2300 return -ENOTSUPP;
2301
2302 /* If flash size <= 16MB, 3 address bytes are sufficient */
2303 op->addr.nbytes = 3;
2304 if (!spi_mem_supports_op(nor->spimem, op))
2305 return -ENOTSUPP;
2306 }
2307
2308 return 0;
2309 }
2310
2311 /**
2312 * spi_nor_spimem_check_readop - check if the read op is supported
2313 * by controller
2314 *@nor: pointer to a 'struct spi_nor'
2315 *@read: pointer to op template to be checked
2316 *
2317 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2318 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2319 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2320 const struct spi_nor_read_command *read)
2321 {
2322 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2323 SPI_MEM_OP_ADDR(3, 0, 1),
2324 SPI_MEM_OP_DUMMY(0, 1),
2325 SPI_MEM_OP_DATA_IN(0, NULL, 1));
2326
2327 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2328 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2329 op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2330 op.dummy.buswidth = op.addr.buswidth;
2331 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2332 op.dummy.buswidth / 8;
2333
2334 return spi_nor_spimem_check_op(nor, &op);
2335 }
2336
2337 /**
2338 * spi_nor_spimem_check_pp - check if the page program op is supported
2339 * by controller
2340 *@nor: pointer to a 'struct spi_nor'
2341 *@pp: pointer to op template to be checked
2342 *
2343 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2344 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2345 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2346 const struct spi_nor_pp_command *pp)
2347 {
2348 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2349 SPI_MEM_OP_ADDR(3, 0, 1),
2350 SPI_MEM_OP_NO_DUMMY,
2351 SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2352
2353 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2354 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2355 op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2356
2357 return spi_nor_spimem_check_op(nor, &op);
2358 }
2359
2360 /**
2361 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2362 * based on SPI controller capabilities
2363 * @nor: pointer to a 'struct spi_nor'
2364 * @hwcaps: pointer to resulting capabilities after adjusting
2365 * according to controller and flash's capability
2366 */
2367 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2368 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2369 {
2370 struct spi_nor_flash_parameter *params = nor->params;
2371 unsigned int cap;
2372
2373 /* DTR modes are not supported yet, mask them all. */
2374 *hwcaps &= ~SNOR_HWCAPS_DTR;
2375
2376 /* X-X-X modes are not supported yet, mask them all. */
2377 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2378
2379 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2380 int rdidx, ppidx;
2381
2382 if (!(*hwcaps & BIT(cap)))
2383 continue;
2384
2385 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2386 if (rdidx >= 0 &&
2387 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2388 *hwcaps &= ~BIT(cap);
2389
2390 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2391 if (ppidx < 0)
2392 continue;
2393
2394 if (spi_nor_spimem_check_pp(nor,
2395 ¶ms->page_programs[ppidx]))
2396 *hwcaps &= ~BIT(cap);
2397 }
2398 }
2399
2400 /**
2401 * spi_nor_set_erase_type() - set a SPI NOR erase type
2402 * @erase: pointer to a structure that describes a SPI NOR erase type
2403 * @size: the size of the sector/block erased by the erase type
2404 * @opcode: the SPI command op code to erase the sector/block
2405 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2406 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2407 u8 opcode)
2408 {
2409 erase->size = size;
2410 erase->opcode = opcode;
2411 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2412 erase->size_shift = ffs(erase->size) - 1;
2413 erase->size_mask = (1 << erase->size_shift) - 1;
2414 }
2415
2416 /**
2417 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2418 * @map: the erase map of the SPI NOR
2419 * @erase_mask: bitmask encoding erase types that can erase the entire
2420 * flash memory
2421 * @flash_size: the spi nor flash memory size
2422 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2423 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2424 u8 erase_mask, u64 flash_size)
2425 {
2426 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2427 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2428 SNOR_LAST_REGION;
2429 map->uniform_region.size = flash_size;
2430 map->regions = &map->uniform_region;
2431 map->uniform_erase_type = erase_mask;
2432 }
2433
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt,struct spi_nor_flash_parameter * params)2434 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2435 const struct sfdp_parameter_header *bfpt_header,
2436 const struct sfdp_bfpt *bfpt,
2437 struct spi_nor_flash_parameter *params)
2438 {
2439 int ret;
2440
2441 if (nor->manufacturer && nor->manufacturer->fixups &&
2442 nor->manufacturer->fixups->post_bfpt) {
2443 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2444 bfpt, params);
2445 if (ret)
2446 return ret;
2447 }
2448
2449 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2450 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2451 params);
2452
2453 return 0;
2454 }
2455
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2456 static int spi_nor_select_read(struct spi_nor *nor,
2457 u32 shared_hwcaps)
2458 {
2459 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2460 const struct spi_nor_read_command *read;
2461
2462 if (best_match < 0)
2463 return -EINVAL;
2464
2465 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2466 if (cmd < 0)
2467 return -EINVAL;
2468
2469 read = &nor->params->reads[cmd];
2470 nor->read_opcode = read->opcode;
2471 nor->read_proto = read->proto;
2472
2473 /*
2474 * In the SPI NOR framework, we don't need to make the difference
2475 * between mode clock cycles and wait state clock cycles.
2476 * Indeed, the value of the mode clock cycles is used by a QSPI
2477 * flash memory to know whether it should enter or leave its 0-4-4
2478 * (Continuous Read / XIP) mode.
2479 * eXecution In Place is out of the scope of the mtd sub-system.
2480 * Hence we choose to merge both mode and wait state clock cycles
2481 * into the so called dummy clock cycles.
2482 */
2483 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2484 return 0;
2485 }
2486
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2487 static int spi_nor_select_pp(struct spi_nor *nor,
2488 u32 shared_hwcaps)
2489 {
2490 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2491 const struct spi_nor_pp_command *pp;
2492
2493 if (best_match < 0)
2494 return -EINVAL;
2495
2496 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2497 if (cmd < 0)
2498 return -EINVAL;
2499
2500 pp = &nor->params->page_programs[cmd];
2501 nor->program_opcode = pp->opcode;
2502 nor->write_proto = pp->proto;
2503 return 0;
2504 }
2505
2506 /**
2507 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2508 * @map: the erase map of the SPI NOR
2509 * @wanted_size: the erase type size to search for. Contains the value of
2510 * info->sector_size or of the "small sector" size in case
2511 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2512 *
2513 * Once the optimum uniform sector erase command is found, disable all the
2514 * other.
2515 *
2516 * Return: pointer to erase type on success, NULL otherwise.
2517 */
2518 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2519 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2520 const u32 wanted_size)
2521 {
2522 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2523 int i;
2524 u8 uniform_erase_type = map->uniform_erase_type;
2525
2526 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2527 if (!(uniform_erase_type & BIT(i)))
2528 continue;
2529
2530 tested_erase = &map->erase_type[i];
2531
2532 /*
2533 * If the current erase size is the one, stop here:
2534 * we have found the right uniform Sector Erase command.
2535 */
2536 if (tested_erase->size == wanted_size) {
2537 erase = tested_erase;
2538 break;
2539 }
2540
2541 /*
2542 * Otherwise, the current erase size is still a valid canditate.
2543 * Select the biggest valid candidate.
2544 */
2545 if (!erase && tested_erase->size)
2546 erase = tested_erase;
2547 /* keep iterating to find the wanted_size */
2548 }
2549
2550 if (!erase)
2551 return NULL;
2552
2553 /* Disable all other Sector Erase commands. */
2554 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2555 map->uniform_erase_type |= BIT(erase - map->erase_type);
2556 return erase;
2557 }
2558
spi_nor_select_erase(struct spi_nor * nor)2559 static int spi_nor_select_erase(struct spi_nor *nor)
2560 {
2561 struct spi_nor_erase_map *map = &nor->params->erase_map;
2562 const struct spi_nor_erase_type *erase = NULL;
2563 struct mtd_info *mtd = &nor->mtd;
2564 u32 wanted_size = nor->info->sector_size;
2565 int i;
2566
2567 /*
2568 * The previous implementation handling Sector Erase commands assumed
2569 * that the SPI flash memory has an uniform layout then used only one
2570 * of the supported erase sizes for all Sector Erase commands.
2571 * So to be backward compatible, the new implementation also tries to
2572 * manage the SPI flash memory as uniform with a single erase sector
2573 * size, when possible.
2574 */
2575 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2576 /* prefer "small sector" erase if possible */
2577 wanted_size = 4096u;
2578 #endif
2579
2580 if (spi_nor_has_uniform_erase(nor)) {
2581 erase = spi_nor_select_uniform_erase(map, wanted_size);
2582 if (!erase)
2583 return -EINVAL;
2584 nor->erase_opcode = erase->opcode;
2585 mtd->erasesize = erase->size;
2586 return 0;
2587 }
2588
2589 /*
2590 * For non-uniform SPI flash memory, set mtd->erasesize to the
2591 * maximum erase sector size. No need to set nor->erase_opcode.
2592 */
2593 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2594 if (map->erase_type[i].size) {
2595 erase = &map->erase_type[i];
2596 break;
2597 }
2598 }
2599
2600 if (!erase)
2601 return -EINVAL;
2602
2603 mtd->erasesize = erase->size;
2604 return 0;
2605 }
2606
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2607 static int spi_nor_default_setup(struct spi_nor *nor,
2608 const struct spi_nor_hwcaps *hwcaps)
2609 {
2610 struct spi_nor_flash_parameter *params = nor->params;
2611 u32 ignored_mask, shared_mask;
2612 int err;
2613
2614 /*
2615 * Keep only the hardware capabilities supported by both the SPI
2616 * controller and the SPI flash memory.
2617 */
2618 shared_mask = hwcaps->mask & params->hwcaps.mask;
2619
2620 if (nor->spimem) {
2621 /*
2622 * When called from spi_nor_probe(), all caps are set and we
2623 * need to discard some of them based on what the SPI
2624 * controller actually supports (using spi_mem_supports_op()).
2625 */
2626 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2627 } else {
2628 /*
2629 * SPI n-n-n protocols are not supported when the SPI
2630 * controller directly implements the spi_nor interface.
2631 * Yet another reason to switch to spi-mem.
2632 */
2633 ignored_mask = SNOR_HWCAPS_X_X_X;
2634 if (shared_mask & ignored_mask) {
2635 dev_dbg(nor->dev,
2636 "SPI n-n-n protocols are not supported.\n");
2637 shared_mask &= ~ignored_mask;
2638 }
2639 }
2640
2641 /* Select the (Fast) Read command. */
2642 err = spi_nor_select_read(nor, shared_mask);
2643 if (err) {
2644 dev_dbg(nor->dev,
2645 "can't select read settings supported by both the SPI controller and memory.\n");
2646 return err;
2647 }
2648
2649 /* Select the Page Program command. */
2650 err = spi_nor_select_pp(nor, shared_mask);
2651 if (err) {
2652 dev_dbg(nor->dev,
2653 "can't select write settings supported by both the SPI controller and memory.\n");
2654 return err;
2655 }
2656
2657 /* Select the Sector Erase command. */
2658 err = spi_nor_select_erase(nor);
2659 if (err) {
2660 dev_dbg(nor->dev,
2661 "can't select erase settings supported by both the SPI controller and memory.\n");
2662 return err;
2663 }
2664
2665 return 0;
2666 }
2667
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2668 static int spi_nor_setup(struct spi_nor *nor,
2669 const struct spi_nor_hwcaps *hwcaps)
2670 {
2671 if (!nor->params->setup)
2672 return 0;
2673
2674 return nor->params->setup(nor, hwcaps);
2675 }
2676
2677 /**
2678 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2679 * settings based on MFR register and ->default_init() hook.
2680 * @nor: pointer to a 'struct spi_nor'.
2681 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2682 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2683 {
2684 if (nor->manufacturer && nor->manufacturer->fixups &&
2685 nor->manufacturer->fixups->default_init)
2686 nor->manufacturer->fixups->default_init(nor);
2687
2688 if (nor->info->fixups && nor->info->fixups->default_init)
2689 nor->info->fixups->default_init(nor);
2690 }
2691
2692 /**
2693 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2694 * based on JESD216 SFDP standard.
2695 * @nor: pointer to a 'struct spi_nor'.
2696 *
2697 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2698 * legacy flash parameters and settings will be restored.
2699 */
spi_nor_sfdp_init_params(struct spi_nor * nor)2700 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2701 {
2702 struct spi_nor_flash_parameter sfdp_params;
2703
2704 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2705
2706 if (spi_nor_parse_sfdp(nor, nor->params)) {
2707 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2708 nor->addr_width = 0;
2709 nor->flags &= ~SNOR_F_4B_OPCODES;
2710 }
2711 }
2712
2713 /**
2714 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2715 * based on nor->info data.
2716 * @nor: pointer to a 'struct spi_nor'.
2717 */
spi_nor_info_init_params(struct spi_nor * nor)2718 static void spi_nor_info_init_params(struct spi_nor *nor)
2719 {
2720 struct spi_nor_flash_parameter *params = nor->params;
2721 struct spi_nor_erase_map *map = ¶ms->erase_map;
2722 const struct flash_info *info = nor->info;
2723 struct device_node *np = spi_nor_get_flash_node(nor);
2724 u8 i, erase_mask;
2725
2726 /* Initialize legacy flash parameters and settings. */
2727 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2728 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2729 params->setup = spi_nor_default_setup;
2730 /* Default to 16-bit Write Status (01h) Command */
2731 nor->flags |= SNOR_F_HAS_16BIT_SR;
2732
2733 /* Set SPI NOR sizes. */
2734 params->size = (u64)info->sector_size * info->n_sectors;
2735 params->page_size = info->page_size;
2736
2737 if (!(info->flags & SPI_NOR_NO_FR)) {
2738 /* Default to Fast Read for DT and non-DT platform devices. */
2739 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2740
2741 /* Mask out Fast Read if not requested at DT instantiation. */
2742 if (np && !of_property_read_bool(np, "m25p,fast-read"))
2743 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2744 }
2745
2746 /* (Fast) Read settings. */
2747 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2748 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2749 0, 0, SPINOR_OP_READ,
2750 SNOR_PROTO_1_1_1);
2751
2752 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2753 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2754 0, 8, SPINOR_OP_READ_FAST,
2755 SNOR_PROTO_1_1_1);
2756
2757 if (info->flags & SPI_NOR_DUAL_READ) {
2758 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2759 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2760 0, 8, SPINOR_OP_READ_1_1_2,
2761 SNOR_PROTO_1_1_2);
2762 }
2763
2764 if (info->flags & SPI_NOR_QUAD_READ) {
2765 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2766 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2767 0, 8, SPINOR_OP_READ_1_1_4,
2768 SNOR_PROTO_1_1_4);
2769 }
2770
2771 if (info->flags & SPI_NOR_OCTAL_READ) {
2772 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2773 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2774 0, 8, SPINOR_OP_READ_1_1_8,
2775 SNOR_PROTO_1_1_8);
2776 }
2777
2778 /* Page Program settings. */
2779 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2780 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2781 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2782
2783 /*
2784 * Sector Erase settings. Sort Erase Types in ascending order, with the
2785 * smallest erase size starting at BIT(0).
2786 */
2787 erase_mask = 0;
2788 i = 0;
2789 if (info->flags & SECT_4K_PMC) {
2790 erase_mask |= BIT(i);
2791 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2792 SPINOR_OP_BE_4K_PMC);
2793 i++;
2794 } else if (info->flags & SECT_4K) {
2795 erase_mask |= BIT(i);
2796 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2797 SPINOR_OP_BE_4K);
2798 i++;
2799 }
2800 erase_mask |= BIT(i);
2801 spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2802 SPINOR_OP_SE);
2803 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2804 }
2805
2806 /**
2807 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2808 * after SFDP has been parsed (is also called for SPI NORs that do not
2809 * support RDSFDP).
2810 * @nor: pointer to a 'struct spi_nor'
2811 *
2812 * Typically used to tweak various parameters that could not be extracted by
2813 * other means (i.e. when information provided by the SFDP/flash_info tables
2814 * are incomplete or wrong).
2815 */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2816 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2817 {
2818 if (nor->manufacturer && nor->manufacturer->fixups &&
2819 nor->manufacturer->fixups->post_sfdp)
2820 nor->manufacturer->fixups->post_sfdp(nor);
2821
2822 if (nor->info->fixups && nor->info->fixups->post_sfdp)
2823 nor->info->fixups->post_sfdp(nor);
2824 }
2825
2826 /**
2827 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2828 * @nor: pointer to a 'struct spi_nor'
2829 *
2830 * Used to set default flash parameters and settings when the ->default_init()
2831 * hook or the SFDP parser let voids.
2832 */
spi_nor_late_init_params(struct spi_nor * nor)2833 static void spi_nor_late_init_params(struct spi_nor *nor)
2834 {
2835 /*
2836 * NOR protection support. When locking_ops are not provided, we pick
2837 * the default ones.
2838 */
2839 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2840 nor->params->locking_ops = &spi_nor_sr_locking_ops;
2841 }
2842
2843 /**
2844 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2845 * @nor: pointer to a 'struct spi_nor'.
2846 *
2847 * The flash parameters and settings are initialized based on a sequence of
2848 * calls that are ordered by priority:
2849 *
2850 * 1/ Default flash parameters initialization. The initializations are done
2851 * based on nor->info data:
2852 * spi_nor_info_init_params()
2853 *
2854 * which can be overwritten by:
2855 * 2/ Manufacturer flash parameters initialization. The initializations are
2856 * done based on MFR register, or when the decisions can not be done solely
2857 * based on MFR, by using specific flash_info tweeks, ->default_init():
2858 * spi_nor_manufacturer_init_params()
2859 *
2860 * which can be overwritten by:
2861 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2862 * should be more accurate that the above.
2863 * spi_nor_sfdp_init_params()
2864 *
2865 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2866 * the flash parameters and settings immediately after parsing the Basic
2867 * Flash Parameter Table.
2868 *
2869 * which can be overwritten by:
2870 * 4/ Post SFDP flash parameters initialization. Used to tweak various
2871 * parameters that could not be extracted by other means (i.e. when
2872 * information provided by the SFDP/flash_info tables are incomplete or
2873 * wrong).
2874 * spi_nor_post_sfdp_fixups()
2875 *
2876 * 5/ Late default flash parameters initialization, used when the
2877 * ->default_init() hook or the SFDP parser do not set specific params.
2878 * spi_nor_late_init_params()
2879 */
spi_nor_init_params(struct spi_nor * nor)2880 static int spi_nor_init_params(struct spi_nor *nor)
2881 {
2882 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2883 if (!nor->params)
2884 return -ENOMEM;
2885
2886 spi_nor_info_init_params(nor);
2887
2888 spi_nor_manufacturer_init_params(nor);
2889
2890 if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2891 !(nor->info->flags & SPI_NOR_SKIP_SFDP))
2892 spi_nor_sfdp_init_params(nor);
2893
2894 spi_nor_post_sfdp_fixups(nor);
2895
2896 spi_nor_late_init_params(nor);
2897
2898 return 0;
2899 }
2900
2901 /**
2902 * spi_nor_quad_enable() - enable Quad I/O if needed.
2903 * @nor: pointer to a 'struct spi_nor'
2904 *
2905 * Return: 0 on success, -errno otherwise.
2906 */
spi_nor_quad_enable(struct spi_nor * nor)2907 static int spi_nor_quad_enable(struct spi_nor *nor)
2908 {
2909 if (!nor->params->quad_enable)
2910 return 0;
2911
2912 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2913 spi_nor_get_protocol_width(nor->write_proto) == 4))
2914 return 0;
2915
2916 return nor->params->quad_enable(nor);
2917 }
2918
2919 /**
2920 * spi_nor_try_unlock_all() - Tries to unlock the entire flash memory array.
2921 * @nor: pointer to a 'struct spi_nor'.
2922 *
2923 * Some SPI NOR flashes are write protected by default after a power-on reset
2924 * cycle, in order to avoid inadvertent writes during power-up. Backward
2925 * compatibility imposes to unlock the entire flash memory array at power-up
2926 * by default.
2927 *
2928 * Unprotecting the entire flash array will fail for boards which are hardware
2929 * write-protected. Thus any errors are ignored.
2930 */
spi_nor_try_unlock_all(struct spi_nor * nor)2931 static void spi_nor_try_unlock_all(struct spi_nor *nor)
2932 {
2933 int ret;
2934
2935 if (!(nor->flags & SNOR_F_HAS_LOCK))
2936 return;
2937
2938 ret = spi_nor_unlock(&nor->mtd, 0, nor->params->size);
2939 if (ret)
2940 dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
2941 }
2942
spi_nor_init(struct spi_nor * nor)2943 static int spi_nor_init(struct spi_nor *nor)
2944 {
2945 int err;
2946
2947 err = spi_nor_quad_enable(nor);
2948 if (err) {
2949 dev_dbg(nor->dev, "quad mode not supported\n");
2950 return err;
2951 }
2952
2953 spi_nor_try_unlock_all(nor);
2954
2955 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
2956 /*
2957 * If the RESET# pin isn't hooked up properly, or the system
2958 * otherwise doesn't perform a reset command in the boot
2959 * sequence, it's impossible to 100% protect against unexpected
2960 * reboots (e.g., crashes). Warn the user (or hopefully, system
2961 * designer) that this is bad.
2962 */
2963 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2964 "enabling reset hack; may not recover from unexpected reboots\n");
2965 nor->params->set_4byte_addr_mode(nor, true);
2966 }
2967
2968 return 0;
2969 }
2970
2971 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2972 static void spi_nor_resume(struct mtd_info *mtd)
2973 {
2974 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2975 struct device *dev = nor->dev;
2976 int ret;
2977
2978 /* re-initialize the nor chip */
2979 ret = spi_nor_init(nor);
2980 if (ret)
2981 dev_err(dev, "resume() failed\n");
2982 }
2983
spi_nor_get_device(struct mtd_info * mtd)2984 static int spi_nor_get_device(struct mtd_info *mtd)
2985 {
2986 struct mtd_info *master = mtd_get_master(mtd);
2987 struct spi_nor *nor = mtd_to_spi_nor(master);
2988 struct device *dev;
2989
2990 if (nor->spimem)
2991 dev = nor->spimem->spi->controller->dev.parent;
2992 else
2993 dev = nor->dev;
2994
2995 if (!try_module_get(dev->driver->owner))
2996 return -ENODEV;
2997
2998 return 0;
2999 }
3000
spi_nor_put_device(struct mtd_info * mtd)3001 static void spi_nor_put_device(struct mtd_info *mtd)
3002 {
3003 struct mtd_info *master = mtd_get_master(mtd);
3004 struct spi_nor *nor = mtd_to_spi_nor(master);
3005 struct device *dev;
3006
3007 if (nor->spimem)
3008 dev = nor->spimem->spi->controller->dev.parent;
3009 else
3010 dev = nor->dev;
3011
3012 module_put(dev->driver->owner);
3013 }
3014
spi_nor_restore(struct spi_nor * nor)3015 void spi_nor_restore(struct spi_nor *nor)
3016 {
3017 /* restore the addressing mode */
3018 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3019 nor->flags & SNOR_F_BROKEN_RESET)
3020 nor->params->set_4byte_addr_mode(nor, false);
3021 }
3022 EXPORT_SYMBOL_GPL(spi_nor_restore);
3023
spi_nor_match_id(struct spi_nor * nor,const char * name)3024 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3025 const char *name)
3026 {
3027 unsigned int i, j;
3028
3029 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3030 for (j = 0; j < manufacturers[i]->nparts; j++) {
3031 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3032 nor->manufacturer = manufacturers[i];
3033 return &manufacturers[i]->parts[j];
3034 }
3035 }
3036 }
3037
3038 return NULL;
3039 }
3040
spi_nor_set_addr_width(struct spi_nor * nor)3041 static int spi_nor_set_addr_width(struct spi_nor *nor)
3042 {
3043 if (nor->addr_width) {
3044 /* already configured from SFDP */
3045 } else if (nor->info->addr_width) {
3046 nor->addr_width = nor->info->addr_width;
3047 } else {
3048 nor->addr_width = 3;
3049 }
3050
3051 if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3052 /* enable 4-byte addressing if the device exceeds 16MiB */
3053 nor->addr_width = 4;
3054 }
3055
3056 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3057 dev_dbg(nor->dev, "address width is too large: %u\n",
3058 nor->addr_width);
3059 return -EINVAL;
3060 }
3061
3062 /* Set 4byte opcodes when possible. */
3063 if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3064 !(nor->flags & SNOR_F_HAS_4BAIT))
3065 spi_nor_set_4byte_opcodes(nor);
3066
3067 return 0;
3068 }
3069
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3070 static void spi_nor_debugfs_init(struct spi_nor *nor,
3071 const struct flash_info *info)
3072 {
3073 struct mtd_info *mtd = &nor->mtd;
3074
3075 mtd->dbg.partname = info->name;
3076 mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3077 info->id_len, info->id);
3078 }
3079
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3080 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3081 const char *name)
3082 {
3083 const struct flash_info *info = NULL;
3084
3085 if (name)
3086 info = spi_nor_match_id(nor, name);
3087 /* Try to auto-detect if chip name wasn't specified or not found */
3088 if (!info)
3089 info = spi_nor_read_id(nor);
3090 if (IS_ERR_OR_NULL(info))
3091 return ERR_PTR(-ENOENT);
3092
3093 /*
3094 * If caller has specified name of flash model that can normally be
3095 * detected using JEDEC, let's verify it.
3096 */
3097 if (name && info->id_len) {
3098 const struct flash_info *jinfo;
3099
3100 jinfo = spi_nor_read_id(nor);
3101 if (IS_ERR(jinfo)) {
3102 return jinfo;
3103 } else if (jinfo != info) {
3104 /*
3105 * JEDEC knows better, so overwrite platform ID. We
3106 * can't trust partitions any longer, but we'll let
3107 * mtd apply them anyway, since some partitions may be
3108 * marked read-only, and we don't want to lose that
3109 * information, even if it's not 100% accurate.
3110 */
3111 dev_warn(nor->dev, "found %s, expected %s\n",
3112 jinfo->name, info->name);
3113 info = jinfo;
3114 }
3115 }
3116
3117 return info;
3118 }
3119
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3120 int spi_nor_scan(struct spi_nor *nor, const char *name,
3121 const struct spi_nor_hwcaps *hwcaps)
3122 {
3123 const struct flash_info *info;
3124 struct device *dev = nor->dev;
3125 struct mtd_info *mtd = &nor->mtd;
3126 struct device_node *np = spi_nor_get_flash_node(nor);
3127 int ret;
3128 int i;
3129
3130 ret = spi_nor_check(nor);
3131 if (ret)
3132 return ret;
3133
3134 /* Reset SPI protocol for all commands. */
3135 nor->reg_proto = SNOR_PROTO_1_1_1;
3136 nor->read_proto = SNOR_PROTO_1_1_1;
3137 nor->write_proto = SNOR_PROTO_1_1_1;
3138
3139 /*
3140 * We need the bounce buffer early to read/write registers when going
3141 * through the spi-mem layer (buffers have to be DMA-able).
3142 * For spi-mem drivers, we'll reallocate a new buffer if
3143 * nor->page_size turns out to be greater than PAGE_SIZE (which
3144 * shouldn't happen before long since NOR pages are usually less
3145 * than 1KB) after spi_nor_scan() returns.
3146 */
3147 nor->bouncebuf_size = PAGE_SIZE;
3148 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3149 GFP_KERNEL);
3150 if (!nor->bouncebuf)
3151 return -ENOMEM;
3152
3153 info = spi_nor_get_flash_info(nor, name);
3154 if (IS_ERR(info))
3155 return PTR_ERR(info);
3156
3157 nor->info = info;
3158
3159 spi_nor_debugfs_init(nor, info);
3160
3161 mutex_init(&nor->lock);
3162
3163 /*
3164 * Make sure the XSR_RDY flag is set before calling
3165 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3166 * with Atmel SPI NOR.
3167 */
3168 if (info->flags & SPI_NOR_XSR_RDY)
3169 nor->flags |= SNOR_F_READY_XSR_RDY;
3170
3171 if (info->flags & SPI_NOR_HAS_LOCK)
3172 nor->flags |= SNOR_F_HAS_LOCK;
3173
3174 mtd->_write = spi_nor_write;
3175
3176 /* Init flash parameters based on flash_info struct and SFDP */
3177 ret = spi_nor_init_params(nor);
3178 if (ret)
3179 return ret;
3180
3181 if (!mtd->name)
3182 mtd->name = dev_name(dev);
3183 mtd->priv = nor;
3184 mtd->type = MTD_NORFLASH;
3185 mtd->writesize = 1;
3186 mtd->flags = MTD_CAP_NORFLASH;
3187 mtd->size = nor->params->size;
3188 mtd->_erase = spi_nor_erase;
3189 mtd->_read = spi_nor_read;
3190 mtd->_resume = spi_nor_resume;
3191 mtd->_get_device = spi_nor_get_device;
3192 mtd->_put_device = spi_nor_put_device;
3193
3194 if (nor->params->locking_ops) {
3195 mtd->_lock = spi_nor_lock;
3196 mtd->_unlock = spi_nor_unlock;
3197 mtd->_is_locked = spi_nor_is_locked;
3198 }
3199
3200 if (info->flags & USE_FSR)
3201 nor->flags |= SNOR_F_USE_FSR;
3202 if (info->flags & SPI_NOR_HAS_TB) {
3203 nor->flags |= SNOR_F_HAS_SR_TB;
3204 if (info->flags & SPI_NOR_TB_SR_BIT6)
3205 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3206 }
3207
3208 if (info->flags & NO_CHIP_ERASE)
3209 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3210 if (info->flags & USE_CLSR)
3211 nor->flags |= SNOR_F_USE_CLSR;
3212
3213 if (info->flags & SPI_NOR_4BIT_BP) {
3214 nor->flags |= SNOR_F_HAS_4BIT_BP;
3215 if (info->flags & SPI_NOR_BP3_SR_BIT6)
3216 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3217 }
3218
3219 if (info->flags & SPI_NOR_NO_ERASE)
3220 mtd->flags |= MTD_NO_ERASE;
3221
3222 mtd->dev.parent = dev;
3223 nor->page_size = nor->params->page_size;
3224 mtd->writebufsize = nor->page_size;
3225
3226 if (of_property_read_bool(np, "broken-flash-reset"))
3227 nor->flags |= SNOR_F_BROKEN_RESET;
3228
3229 /*
3230 * Configure the SPI memory:
3231 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3232 * - set the number of dummy cycles (mode cycles + wait states).
3233 * - set the SPI protocols for register and memory accesses.
3234 */
3235 ret = spi_nor_setup(nor, hwcaps);
3236 if (ret)
3237 return ret;
3238
3239 if (info->flags & SPI_NOR_4B_OPCODES)
3240 nor->flags |= SNOR_F_4B_OPCODES;
3241
3242 ret = spi_nor_set_addr_width(nor);
3243 if (ret)
3244 return ret;
3245
3246 /* Send all the required SPI flash commands to initialize device */
3247 ret = spi_nor_init(nor);
3248 if (ret)
3249 return ret;
3250
3251 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3252 (long long)mtd->size >> 10);
3253
3254 dev_dbg(dev,
3255 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3256 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3257 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3258 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3259
3260 if (mtd->numeraseregions)
3261 for (i = 0; i < mtd->numeraseregions; i++)
3262 dev_dbg(dev,
3263 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3264 ".erasesize = 0x%.8x (%uKiB), "
3265 ".numblocks = %d }\n",
3266 i, (long long)mtd->eraseregions[i].offset,
3267 mtd->eraseregions[i].erasesize,
3268 mtd->eraseregions[i].erasesize / 1024,
3269 mtd->eraseregions[i].numblocks);
3270 return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(spi_nor_scan);
3273
spi_nor_create_read_dirmap(struct spi_nor * nor)3274 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3275 {
3276 struct spi_mem_dirmap_info info = {
3277 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
3278 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3279 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
3280 SPI_MEM_OP_DATA_IN(0, NULL, 1)),
3281 .offset = 0,
3282 .length = nor->mtd.size,
3283 };
3284 struct spi_mem_op *op = &info.op_tmpl;
3285
3286 /* get transfer protocols. */
3287 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
3288 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
3289 op->dummy.buswidth = op->addr.buswidth;
3290 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3291
3292 /* convert the dummy cycles to the number of bytes */
3293 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3294
3295 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3296 &info);
3297 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3298 }
3299
spi_nor_create_write_dirmap(struct spi_nor * nor)3300 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3301 {
3302 struct spi_mem_dirmap_info info = {
3303 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
3304 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3305 SPI_MEM_OP_NO_DUMMY,
3306 SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
3307 .offset = 0,
3308 .length = nor->mtd.size,
3309 };
3310 struct spi_mem_op *op = &info.op_tmpl;
3311
3312 /* get transfer protocols. */
3313 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
3314 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
3315 op->dummy.buswidth = op->addr.buswidth;
3316 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3317
3318 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3319 op->addr.nbytes = 0;
3320
3321 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3322 &info);
3323 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3324 }
3325
spi_nor_probe(struct spi_mem * spimem)3326 static int spi_nor_probe(struct spi_mem *spimem)
3327 {
3328 struct spi_device *spi = spimem->spi;
3329 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3330 struct spi_nor *nor;
3331 /*
3332 * Enable all caps by default. The core will mask them after
3333 * checking what's really supported using spi_mem_supports_op().
3334 */
3335 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3336 char *flash_name;
3337 int ret;
3338
3339 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3340 if (!nor)
3341 return -ENOMEM;
3342
3343 nor->spimem = spimem;
3344 nor->dev = &spi->dev;
3345 spi_nor_set_flash_node(nor, spi->dev.of_node);
3346
3347 spi_mem_set_drvdata(spimem, nor);
3348
3349 if (data && data->name)
3350 nor->mtd.name = data->name;
3351
3352 if (!nor->mtd.name)
3353 nor->mtd.name = spi_mem_get_name(spimem);
3354
3355 /*
3356 * For some (historical?) reason many platforms provide two different
3357 * names in flash_platform_data: "name" and "type". Quite often name is
3358 * set to "m25p80" and then "type" provides a real chip name.
3359 * If that's the case, respect "type" and ignore a "name".
3360 */
3361 if (data && data->type)
3362 flash_name = data->type;
3363 else if (!strcmp(spi->modalias, "spi-nor"))
3364 flash_name = NULL; /* auto-detect */
3365 else
3366 flash_name = spi->modalias;
3367
3368 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3369 if (ret)
3370 return ret;
3371
3372 /*
3373 * None of the existing parts have > 512B pages, but let's play safe
3374 * and add this logic so that if anyone ever adds support for such
3375 * a NOR we don't end up with buffer overflows.
3376 */
3377 if (nor->page_size > PAGE_SIZE) {
3378 nor->bouncebuf_size = nor->page_size;
3379 devm_kfree(nor->dev, nor->bouncebuf);
3380 nor->bouncebuf = devm_kmalloc(nor->dev,
3381 nor->bouncebuf_size,
3382 GFP_KERNEL);
3383 if (!nor->bouncebuf)
3384 return -ENOMEM;
3385 }
3386
3387 ret = spi_nor_create_read_dirmap(nor);
3388 if (ret)
3389 return ret;
3390
3391 ret = spi_nor_create_write_dirmap(nor);
3392 if (ret)
3393 return ret;
3394
3395 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3396 data ? data->nr_parts : 0);
3397 }
3398
spi_nor_remove(struct spi_mem * spimem)3399 static int spi_nor_remove(struct spi_mem *spimem)
3400 {
3401 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3402
3403 spi_nor_restore(nor);
3404
3405 /* Clean up MTD stuff. */
3406 return mtd_device_unregister(&nor->mtd);
3407 }
3408
spi_nor_shutdown(struct spi_mem * spimem)3409 static void spi_nor_shutdown(struct spi_mem *spimem)
3410 {
3411 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3412
3413 spi_nor_restore(nor);
3414 }
3415
3416 /*
3417 * Do NOT add to this array without reading the following:
3418 *
3419 * Historically, many flash devices are bound to this driver by their name. But
3420 * since most of these flash are compatible to some extent, and their
3421 * differences can often be differentiated by the JEDEC read-ID command, we
3422 * encourage new users to add support to the spi-nor library, and simply bind
3423 * against a generic string here (e.g., "jedec,spi-nor").
3424 *
3425 * Many flash names are kept here in this list (as well as in spi-nor.c) to
3426 * keep them available as module aliases for existing platforms.
3427 */
3428 static const struct spi_device_id spi_nor_dev_ids[] = {
3429 /*
3430 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3431 * hack around the fact that the SPI core does not provide uevent
3432 * matching for .of_match_table
3433 */
3434 {"spi-nor"},
3435
3436 /*
3437 * Entries not used in DTs that should be safe to drop after replacing
3438 * them with "spi-nor" in platform data.
3439 */
3440 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3441
3442 /*
3443 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3444 * should be kept for backward compatibility.
3445 */
3446 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3447 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3448 {"mx25l25635e"},{"mx66l51235l"},
3449 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3450 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3451 {"s25fl064k"},
3452 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3453 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3454 {"m25p64"}, {"m25p128"},
3455 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3456 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3457
3458 /* Flashes that can't be detected using JEDEC */
3459 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3460 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3461 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3462
3463 /* Everspin MRAMs (non-JEDEC) */
3464 { "mr25h128" }, /* 128 Kib, 40 MHz */
3465 { "mr25h256" }, /* 256 Kib, 40 MHz */
3466 { "mr25h10" }, /* 1 Mib, 40 MHz */
3467 { "mr25h40" }, /* 4 Mib, 40 MHz */
3468
3469 { },
3470 };
3471 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3472
3473 static const struct of_device_id spi_nor_of_table[] = {
3474 /*
3475 * Generic compatibility for SPI NOR that can be identified by the
3476 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3477 */
3478 { .compatible = "jedec,spi-nor" },
3479 { /* sentinel */ },
3480 };
3481 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3482
3483 /*
3484 * REVISIT: many of these chips have deep power-down modes, which
3485 * should clearly be entered on suspend() to minimize power use.
3486 * And also when they're otherwise idle...
3487 */
3488 static struct spi_mem_driver spi_nor_driver = {
3489 .spidrv = {
3490 .driver = {
3491 .name = "spi-nor",
3492 .of_match_table = spi_nor_of_table,
3493 },
3494 .id_table = spi_nor_dev_ids,
3495 },
3496 .probe = spi_nor_probe,
3497 .remove = spi_nor_remove,
3498 .shutdown = spi_nor_shutdown,
3499 };
3500 module_spi_mem_driver(spi_nor_driver);
3501
3502 MODULE_LICENSE("GPL v2");
3503 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3504 MODULE_AUTHOR("Mike Lavender");
3505 MODULE_DESCRIPTION("framework for SPI NOR");
3506