1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8 #define pr_fmt(fmt) "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT 4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY 0
49
50 #define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH 2048
56 #define SKB_ALIGNMENT 32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
bcmgenet_writel(u32 value,void __iomem * offset)71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
80 }
81
bcmgenet_readl(void __iomem * offset)82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
88 }
89
dmadesc_set_length_status(struct bcmgenet_priv * priv,void __iomem * d,u32 value)90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92 {
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
dmadesc_set_addr(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr)96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99 {
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
dmadesc_set(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr,u32 val)113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
118 }
119
dmadesc_get_addr(struct bcmgenet_priv * priv,void __iomem * d)120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 void __iomem *d)
122 {
123 dma_addr_t addr;
124
125 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127 /* Register writes to GISB bus can take couple hundred nanoseconds
128 * and are done for each packet, save these expensive writes unless
129 * the platform is explicitly configured for 64-bits/LPAE.
130 */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 if (priv->hw_params->flags & GENET_HAS_40BITS)
133 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 return addr;
136 }
137
138 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 NETIF_MSG_LINK)
142
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv * priv)143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145 if (GENET_IS_V1(priv))
146 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 else
148 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153 if (GENET_IS_V1(priv))
154 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 else
156 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160 * between GENET1.1 and GENET2. Only those currently being used
161 * by driver are defined.
162 */
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv * priv)163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
bcmgenet_bp_mc_get(struct bcmgenet_priv * priv)181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183 if (GENET_IS_V1(priv))
184 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 else
186 return bcmgenet_readl(priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
bcmgenet_bp_mc_set(struct bcmgenet_priv * priv,u32 val)190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192 if (GENET_IS_V1(priv))
193 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 else
195 bcmgenet_writel(val, priv->base +
196 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 DMA_RING_CFG = 0,
202 DMA_CTRL,
203 DMA_STATUS,
204 DMA_SCB_BURST_SIZE,
205 DMA_ARB_CTRL,
206 DMA_PRIORITY_0,
207 DMA_PRIORITY_1,
208 DMA_PRIORITY_2,
209 DMA_INDEX2RING_0,
210 DMA_INDEX2RING_1,
211 DMA_INDEX2RING_2,
212 DMA_INDEX2RING_3,
213 DMA_INDEX2RING_4,
214 DMA_INDEX2RING_5,
215 DMA_INDEX2RING_6,
216 DMA_INDEX2RING_7,
217 DMA_RING0_TIMEOUT,
218 DMA_RING1_TIMEOUT,
219 DMA_RING2_TIMEOUT,
220 DMA_RING3_TIMEOUT,
221 DMA_RING4_TIMEOUT,
222 DMA_RING5_TIMEOUT,
223 DMA_RING6_TIMEOUT,
224 DMA_RING7_TIMEOUT,
225 DMA_RING8_TIMEOUT,
226 DMA_RING9_TIMEOUT,
227 DMA_RING10_TIMEOUT,
228 DMA_RING11_TIMEOUT,
229 DMA_RING12_TIMEOUT,
230 DMA_RING13_TIMEOUT,
231 DMA_RING14_TIMEOUT,
232 DMA_RING15_TIMEOUT,
233 DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 [DMA_RING_CFG] = 0x00,
238 [DMA_CTRL] = 0x04,
239 [DMA_STATUS] = 0x08,
240 [DMA_SCB_BURST_SIZE] = 0x0C,
241 [DMA_ARB_CTRL] = 0x2C,
242 [DMA_PRIORITY_0] = 0x30,
243 [DMA_PRIORITY_1] = 0x34,
244 [DMA_PRIORITY_2] = 0x38,
245 [DMA_RING0_TIMEOUT] = 0x2C,
246 [DMA_RING1_TIMEOUT] = 0x30,
247 [DMA_RING2_TIMEOUT] = 0x34,
248 [DMA_RING3_TIMEOUT] = 0x38,
249 [DMA_RING4_TIMEOUT] = 0x3c,
250 [DMA_RING5_TIMEOUT] = 0x40,
251 [DMA_RING6_TIMEOUT] = 0x44,
252 [DMA_RING7_TIMEOUT] = 0x48,
253 [DMA_RING8_TIMEOUT] = 0x4c,
254 [DMA_RING9_TIMEOUT] = 0x50,
255 [DMA_RING10_TIMEOUT] = 0x54,
256 [DMA_RING11_TIMEOUT] = 0x58,
257 [DMA_RING12_TIMEOUT] = 0x5c,
258 [DMA_RING13_TIMEOUT] = 0x60,
259 [DMA_RING14_TIMEOUT] = 0x64,
260 [DMA_RING15_TIMEOUT] = 0x68,
261 [DMA_RING16_TIMEOUT] = 0x6C,
262 [DMA_INDEX2RING_0] = 0x70,
263 [DMA_INDEX2RING_1] = 0x74,
264 [DMA_INDEX2RING_2] = 0x78,
265 [DMA_INDEX2RING_3] = 0x7C,
266 [DMA_INDEX2RING_4] = 0x80,
267 [DMA_INDEX2RING_5] = 0x84,
268 [DMA_INDEX2RING_6] = 0x88,
269 [DMA_INDEX2RING_7] = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 [DMA_RING_CFG] = 0x00,
274 [DMA_CTRL] = 0x04,
275 [DMA_STATUS] = 0x08,
276 [DMA_SCB_BURST_SIZE] = 0x0C,
277 [DMA_ARB_CTRL] = 0x30,
278 [DMA_PRIORITY_0] = 0x34,
279 [DMA_PRIORITY_1] = 0x38,
280 [DMA_PRIORITY_2] = 0x3C,
281 [DMA_RING0_TIMEOUT] = 0x2C,
282 [DMA_RING1_TIMEOUT] = 0x30,
283 [DMA_RING2_TIMEOUT] = 0x34,
284 [DMA_RING3_TIMEOUT] = 0x38,
285 [DMA_RING4_TIMEOUT] = 0x3c,
286 [DMA_RING5_TIMEOUT] = 0x40,
287 [DMA_RING6_TIMEOUT] = 0x44,
288 [DMA_RING7_TIMEOUT] = 0x48,
289 [DMA_RING8_TIMEOUT] = 0x4c,
290 [DMA_RING9_TIMEOUT] = 0x50,
291 [DMA_RING10_TIMEOUT] = 0x54,
292 [DMA_RING11_TIMEOUT] = 0x58,
293 [DMA_RING12_TIMEOUT] = 0x5c,
294 [DMA_RING13_TIMEOUT] = 0x60,
295 [DMA_RING14_TIMEOUT] = 0x64,
296 [DMA_RING15_TIMEOUT] = 0x68,
297 [DMA_RING16_TIMEOUT] = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 [DMA_CTRL] = 0x00,
302 [DMA_STATUS] = 0x04,
303 [DMA_SCB_BURST_SIZE] = 0x0C,
304 [DMA_ARB_CTRL] = 0x30,
305 [DMA_PRIORITY_0] = 0x34,
306 [DMA_PRIORITY_1] = 0x38,
307 [DMA_PRIORITY_2] = 0x3C,
308 [DMA_RING0_TIMEOUT] = 0x2C,
309 [DMA_RING1_TIMEOUT] = 0x30,
310 [DMA_RING2_TIMEOUT] = 0x34,
311 [DMA_RING3_TIMEOUT] = 0x38,
312 [DMA_RING4_TIMEOUT] = 0x3c,
313 [DMA_RING5_TIMEOUT] = 0x40,
314 [DMA_RING6_TIMEOUT] = 0x44,
315 [DMA_RING7_TIMEOUT] = 0x48,
316 [DMA_RING8_TIMEOUT] = 0x4c,
317 [DMA_RING9_TIMEOUT] = 0x50,
318 [DMA_RING10_TIMEOUT] = 0x54,
319 [DMA_RING11_TIMEOUT] = 0x58,
320 [DMA_RING12_TIMEOUT] = 0x5c,
321 [DMA_RING13_TIMEOUT] = 0x60,
322 [DMA_RING14_TIMEOUT] = 0x64,
323 [DMA_RING15_TIMEOUT] = 0x68,
324 [DMA_RING16_TIMEOUT] = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
dev_to_priv(struct device * dev)330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332 return netdev_priv(dev_get_drvdata(dev));
333 }
334
bcmgenet_tdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 enum dma_reg r)
337 {
338 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
bcmgenet_tdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 u32 val, enum dma_reg r)
344 {
345 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
bcmgenet_rdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 enum dma_reg r)
351 {
352 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
bcmgenet_rdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 u32 val, enum dma_reg r)
358 {
359 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364 * we merge the common fields and just prefix with T/D the registers
365 * having different meaning depending on the direction
366 */
367 enum dma_ring_reg {
368 TDMA_READ_PTR = 0,
369 RDMA_WRITE_PTR = TDMA_READ_PTR,
370 TDMA_READ_PTR_HI,
371 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 TDMA_CONS_INDEX,
373 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 TDMA_PROD_INDEX,
375 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 DMA_RING_BUF_SIZE,
377 DMA_START_ADDR,
378 DMA_START_ADDR_HI,
379 DMA_END_ADDR,
380 DMA_END_ADDR_HI,
381 DMA_MBUF_DONE_THRESH,
382 TDMA_FLOW_PERIOD,
383 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 TDMA_WRITE_PTR,
385 RDMA_READ_PTR = TDMA_WRITE_PTR,
386 TDMA_WRITE_PTR_HI,
387 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391 * for obvious reasons the LO and HI word parts
392 * are contiguous, but this offsets the other
393 * registers.
394 */
395 static const u8 genet_dma_ring_regs_v4[] = {
396 [TDMA_READ_PTR] = 0x00,
397 [TDMA_READ_PTR_HI] = 0x04,
398 [TDMA_CONS_INDEX] = 0x08,
399 [TDMA_PROD_INDEX] = 0x0C,
400 [DMA_RING_BUF_SIZE] = 0x10,
401 [DMA_START_ADDR] = 0x14,
402 [DMA_START_ADDR_HI] = 0x18,
403 [DMA_END_ADDR] = 0x1C,
404 [DMA_END_ADDR_HI] = 0x20,
405 [DMA_MBUF_DONE_THRESH] = 0x24,
406 [TDMA_FLOW_PERIOD] = 0x28,
407 [TDMA_WRITE_PTR] = 0x2C,
408 [TDMA_WRITE_PTR_HI] = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412 [TDMA_READ_PTR] = 0x00,
413 [TDMA_CONS_INDEX] = 0x04,
414 [TDMA_PROD_INDEX] = 0x08,
415 [DMA_RING_BUF_SIZE] = 0x0C,
416 [DMA_START_ADDR] = 0x10,
417 [DMA_END_ADDR] = 0x14,
418 [DMA_MBUF_DONE_THRESH] = 0x18,
419 [TDMA_FLOW_PERIOD] = 0x1C,
420 [TDMA_WRITE_PTR] = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
bcmgenet_tdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429 {
430 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
bcmgenet_tdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438 {
439 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
bcmgenet_rdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 unsigned int ring,
446 enum dma_ring_reg r)
447 {
448 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
bcmgenet_rdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 unsigned int ring, u32 val,
455 enum dma_ring_reg r)
456 {
457 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 (DMA_RING_SIZE * ring) +
459 genet_dma_ring_regs[r]);
460 }
461
bcmgenet_hfb_enable_filter(struct bcmgenet_priv * priv,u32 f_index)462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464 u32 offset;
465 u32 reg;
466
467 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468 reg = bcmgenet_hfb_reg_readl(priv, offset);
469 reg |= (1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472 reg |= RBUF_HFB_EN;
473 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
bcmgenet_hfb_disable_filter(struct bcmgenet_priv * priv,u32 f_index)476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478 u32 offset, reg, reg1;
479
480 offset = HFB_FLT_ENABLE_V3PLUS;
481 reg = bcmgenet_hfb_reg_readl(priv, offset);
482 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483 if (f_index < 32) {
484 reg1 &= ~(1 << (f_index % 32));
485 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486 } else {
487 reg &= ~(1 << (f_index % 32));
488 bcmgenet_hfb_reg_writel(priv, reg, offset);
489 }
490 if (!reg && !reg1) {
491 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492 reg &= ~RBUF_HFB_EN;
493 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494 }
495 }
496
bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv * priv,u32 f_index,u32 rx_queue)497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498 u32 f_index, u32 rx_queue)
499 {
500 u32 offset;
501 u32 reg;
502
503 offset = f_index / 8;
504 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505 reg &= ~(0xF << (4 * (f_index % 8)));
506 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
bcmgenet_hfb_set_filter_length(struct bcmgenet_priv * priv,u32 f_index,u32 f_length)510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511 u32 f_index, u32 f_length)
512 {
513 u32 offset;
514 u32 reg;
515
516 offset = HFB_FLT_LEN_V3PLUS +
517 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518 sizeof(u32);
519 reg = bcmgenet_hfb_reg_readl(priv, offset);
520 reg &= ~(0xFF << (8 * (f_index % 4)));
521 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522 bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
bcmgenet_hfb_validate_mask(void * mask,size_t size)525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527 while (size) {
528 switch (*(unsigned char *)mask++) {
529 case 0x00:
530 case 0x0f:
531 case 0xf0:
532 case 0xff:
533 size--;
534 continue;
535 default:
536 return -EINVAL;
537 }
538 }
539
540 return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
bcmgenet_hfb_insert_data(struct bcmgenet_priv * priv,u32 f_index,u32 offset,void * val,void * mask,size_t size)546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547 u32 offset, void *val, void *mask,
548 size_t size)
549 {
550 u32 index, tmp;
551
552 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555 while (size--) {
556 if (offset++ & 1) {
557 tmp &= ~0x300FF;
558 tmp |= (*(unsigned char *)val++);
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0x30000;
562 break;
563 case 0xF0:
564 tmp |= 0x20000;
565 break;
566 case 0x0F:
567 tmp |= 0x10000;
568 break;
569 }
570 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571 if (size)
572 tmp = bcmgenet_hfb_readl(priv,
573 index * sizeof(u32));
574 } else {
575 tmp &= ~0xCFF00;
576 tmp |= (*(unsigned char *)val++) << 8;
577 switch ((*(unsigned char *)mask++)) {
578 case 0xFF:
579 tmp |= 0xC0000;
580 break;
581 case 0xF0:
582 tmp |= 0x80000;
583 break;
584 case 0x0F:
585 tmp |= 0x40000;
586 break;
587 }
588 if (!size)
589 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590 }
591 }
592
593 return 0;
594 }
595
bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv * priv,struct bcmgenet_rxnfc_rule * rule)596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597 struct bcmgenet_rxnfc_rule *rule)
598 {
599 struct ethtool_rx_flow_spec *fs = &rule->fs;
600 u32 offset = 0, f_length = 0, f;
601 u8 val_8, mask_8;
602 __be16 val_16;
603 u16 mask_16;
604 size_t size;
605
606 f = fs->location;
607 if (fs->flow_type & FLOW_MAC_EXT) {
608 bcmgenet_hfb_insert_data(priv, f, 0,
609 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610 sizeof(fs->h_ext.h_dest));
611 }
612
613 if (fs->flow_type & FLOW_EXT) {
614 if (fs->m_ext.vlan_etype ||
615 fs->m_ext.vlan_tci) {
616 bcmgenet_hfb_insert_data(priv, f, 12,
617 &fs->h_ext.vlan_etype,
618 &fs->m_ext.vlan_etype,
619 sizeof(fs->h_ext.vlan_etype));
620 bcmgenet_hfb_insert_data(priv, f, 14,
621 &fs->h_ext.vlan_tci,
622 &fs->m_ext.vlan_tci,
623 sizeof(fs->h_ext.vlan_tci));
624 offset += VLAN_HLEN;
625 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626 }
627 }
628
629 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630 case ETHER_FLOW:
631 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632 bcmgenet_hfb_insert_data(priv, f, 0,
633 &fs->h_u.ether_spec.h_dest,
634 &fs->m_u.ether_spec.h_dest,
635 sizeof(fs->h_u.ether_spec.h_dest));
636 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637 &fs->h_u.ether_spec.h_source,
638 &fs->m_u.ether_spec.h_source,
639 sizeof(fs->h_u.ether_spec.h_source));
640 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641 &fs->h_u.ether_spec.h_proto,
642 &fs->m_u.ether_spec.h_proto,
643 sizeof(fs->h_u.ether_spec.h_proto));
644 break;
645 case IP_USER_FLOW:
646 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647 /* Specify IP Ether Type */
648 val_16 = htons(ETH_P_IP);
649 mask_16 = 0xFFFF;
650 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651 &val_16, &mask_16, sizeof(val_16));
652 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653 &fs->h_u.usr_ip4_spec.tos,
654 &fs->m_u.usr_ip4_spec.tos,
655 sizeof(fs->h_u.usr_ip4_spec.tos));
656 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657 &fs->h_u.usr_ip4_spec.proto,
658 &fs->m_u.usr_ip4_spec.proto,
659 sizeof(fs->h_u.usr_ip4_spec.proto));
660 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661 &fs->h_u.usr_ip4_spec.ip4src,
662 &fs->m_u.usr_ip4_spec.ip4src,
663 sizeof(fs->h_u.usr_ip4_spec.ip4src));
664 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665 &fs->h_u.usr_ip4_spec.ip4dst,
666 &fs->m_u.usr_ip4_spec.ip4dst,
667 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669 break;
670
671 /* Only supports 20 byte IPv4 header */
672 val_8 = 0x45;
673 mask_8 = 0xFF;
674 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675 &val_8, &mask_8,
676 sizeof(val_8));
677 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678 bcmgenet_hfb_insert_data(priv, f,
679 ETH_HLEN + 20 + offset,
680 &fs->h_u.usr_ip4_spec.l4_4_bytes,
681 &fs->m_u.usr_ip4_spec.l4_4_bytes,
682 size);
683 f_length += DIV_ROUND_UP(size, 2);
684 break;
685 }
686
687 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689 /* Ring 0 flows can be handled by the default Descriptor Ring
690 * We'll map them to ring 0, but don't enable the filter
691 */
692 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694 } else {
695 /* Other Rx rings are direct mapped here */
696 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697 fs->ring_cookie);
698 bcmgenet_hfb_enable_filter(priv, f);
699 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700 }
701 }
702
703 /* bcmgenet_hfb_clear
704 *
705 * Clear Hardware Filter Block and disable all filtering.
706 */
bcmgenet_hfb_clear_filter(struct bcmgenet_priv * priv,u32 f_index)707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709 u32 base, i;
710
711 base = f_index * priv->hw_params->hfb_filter_size;
712 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
bcmgenet_hfb_clear(struct bcmgenet_priv * priv)716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718 u32 i;
719
720 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721 return;
722
723 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728 bcmgenet_rdma_writel(priv, 0x0, i);
729
730 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731 bcmgenet_hfb_reg_writel(priv, 0x0,
732 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
bcmgenet_hfb_init(struct bcmgenet_priv * priv)738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740 int i;
741
742 INIT_LIST_HEAD(&priv->rxnfc_list);
743 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744 return;
745
746 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749 }
750
751 bcmgenet_hfb_clear(priv);
752 }
753
bcmgenet_begin(struct net_device * dev)754 static int bcmgenet_begin(struct net_device *dev)
755 {
756 struct bcmgenet_priv *priv = netdev_priv(dev);
757
758 /* Turn on the clock */
759 return clk_prepare_enable(priv->clk);
760 }
761
bcmgenet_complete(struct net_device * dev)762 static void bcmgenet_complete(struct net_device *dev)
763 {
764 struct bcmgenet_priv *priv = netdev_priv(dev);
765
766 /* Turn off the clock */
767 clk_disable_unprepare(priv->clk);
768 }
769
bcmgenet_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771 struct ethtool_link_ksettings *cmd)
772 {
773 if (!netif_running(dev))
774 return -EINVAL;
775
776 if (!dev->phydev)
777 return -ENODEV;
778
779 phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781 return 0;
782 }
783
bcmgenet_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785 const struct ethtool_link_ksettings *cmd)
786 {
787 if (!netif_running(dev))
788 return -EINVAL;
789
790 if (!dev->phydev)
791 return -ENODEV;
792
793 return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
bcmgenet_set_features(struct net_device * dev,netdev_features_t features)796 static int bcmgenet_set_features(struct net_device *dev,
797 netdev_features_t features)
798 {
799 struct bcmgenet_priv *priv = netdev_priv(dev);
800 u32 reg;
801 int ret;
802
803 ret = clk_prepare_enable(priv->clk);
804 if (ret)
805 return ret;
806
807 /* Make sure we reflect the value of CRC_CMD_FWD */
808 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811 clk_disable_unprepare(priv->clk);
812
813 return ret;
814 }
815
bcmgenet_get_msglevel(struct net_device * dev)816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818 struct bcmgenet_priv *priv = netdev_priv(dev);
819
820 return priv->msg_enable;
821 }
822
bcmgenet_set_msglevel(struct net_device * dev,u32 level)823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825 struct bcmgenet_priv *priv = netdev_priv(dev);
826
827 priv->msg_enable = level;
828 }
829
bcmgenet_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec)830 static int bcmgenet_get_coalesce(struct net_device *dev,
831 struct ethtool_coalesce *ec)
832 {
833 struct bcmgenet_priv *priv = netdev_priv(dev);
834 struct bcmgenet_rx_ring *ring;
835 unsigned int i;
836
837 ec->tx_max_coalesced_frames =
838 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
839 DMA_MBUF_DONE_THRESH);
840 ec->rx_max_coalesced_frames =
841 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
842 DMA_MBUF_DONE_THRESH);
843 ec->rx_coalesce_usecs =
844 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
845
846 for (i = 0; i < priv->hw_params->rx_queues; i++) {
847 ring = &priv->rx_rings[i];
848 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
849 }
850 ring = &priv->rx_rings[DESC_INDEX];
851 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
852
853 return 0;
854 }
855
bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring * ring,u32 usecs,u32 pkts)856 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
857 u32 usecs, u32 pkts)
858 {
859 struct bcmgenet_priv *priv = ring->priv;
860 unsigned int i = ring->index;
861 u32 reg;
862
863 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
864
865 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
866 reg &= ~DMA_TIMEOUT_MASK;
867 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
868 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
869 }
870
bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring * ring,struct ethtool_coalesce * ec)871 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
872 struct ethtool_coalesce *ec)
873 {
874 struct dim_cq_moder moder;
875 u32 usecs, pkts;
876
877 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
878 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
879 usecs = ring->rx_coalesce_usecs;
880 pkts = ring->rx_max_coalesced_frames;
881
882 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
883 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
884 usecs = moder.usec;
885 pkts = moder.pkts;
886 }
887
888 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
889 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
890 }
891
bcmgenet_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec)892 static int bcmgenet_set_coalesce(struct net_device *dev,
893 struct ethtool_coalesce *ec)
894 {
895 struct bcmgenet_priv *priv = netdev_priv(dev);
896 unsigned int i;
897
898 /* Base system clock is 125Mhz, DMA timeout is this reference clock
899 * divided by 1024, which yields roughly 8.192us, our maximum value
900 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
901 */
902 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
903 ec->tx_max_coalesced_frames == 0 ||
904 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
905 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
906 return -EINVAL;
907
908 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
909 return -EINVAL;
910
911 /* GENET TDMA hardware does not support a configurable timeout, but will
912 * always generate an interrupt either after MBDONE packets have been
913 * transmitted, or when the ring is empty.
914 */
915
916 /* Program all TX queues with the same values, as there is no
917 * ethtool knob to do coalescing on a per-queue basis
918 */
919 for (i = 0; i < priv->hw_params->tx_queues; i++)
920 bcmgenet_tdma_ring_writel(priv, i,
921 ec->tx_max_coalesced_frames,
922 DMA_MBUF_DONE_THRESH);
923 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
924 ec->tx_max_coalesced_frames,
925 DMA_MBUF_DONE_THRESH);
926
927 for (i = 0; i < priv->hw_params->rx_queues; i++)
928 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
929 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
930
931 return 0;
932 }
933
934 /* standard ethtool support functions. */
935 enum bcmgenet_stat_type {
936 BCMGENET_STAT_NETDEV = -1,
937 BCMGENET_STAT_MIB_RX,
938 BCMGENET_STAT_MIB_TX,
939 BCMGENET_STAT_RUNT,
940 BCMGENET_STAT_MISC,
941 BCMGENET_STAT_SOFT,
942 };
943
944 struct bcmgenet_stats {
945 char stat_string[ETH_GSTRING_LEN];
946 int stat_sizeof;
947 int stat_offset;
948 enum bcmgenet_stat_type type;
949 /* reg offset from UMAC base for misc counters */
950 u16 reg_offset;
951 };
952
953 #define STAT_NETDEV(m) { \
954 .stat_string = __stringify(m), \
955 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
956 .stat_offset = offsetof(struct net_device_stats, m), \
957 .type = BCMGENET_STAT_NETDEV, \
958 }
959
960 #define STAT_GENET_MIB(str, m, _type) { \
961 .stat_string = str, \
962 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
963 .stat_offset = offsetof(struct bcmgenet_priv, m), \
964 .type = _type, \
965 }
966
967 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
968 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
969 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
970 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
971
972 #define STAT_GENET_MISC(str, m, offset) { \
973 .stat_string = str, \
974 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
975 .stat_offset = offsetof(struct bcmgenet_priv, m), \
976 .type = BCMGENET_STAT_MISC, \
977 .reg_offset = offset, \
978 }
979
980 #define STAT_GENET_Q(num) \
981 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
982 tx_rings[num].packets), \
983 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
984 tx_rings[num].bytes), \
985 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
986 rx_rings[num].bytes), \
987 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
988 rx_rings[num].packets), \
989 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
990 rx_rings[num].errors), \
991 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
992 rx_rings[num].dropped)
993
994 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
995 * between the end of TX stats and the beginning of the RX RUNT
996 */
997 #define BCMGENET_STAT_OFFSET 0xc
998
999 /* Hardware counters must be kept in sync because the order/offset
1000 * is important here (order in structure declaration = order in hardware)
1001 */
1002 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003 /* general stats */
1004 STAT_NETDEV(rx_packets),
1005 STAT_NETDEV(tx_packets),
1006 STAT_NETDEV(rx_bytes),
1007 STAT_NETDEV(tx_bytes),
1008 STAT_NETDEV(rx_errors),
1009 STAT_NETDEV(tx_errors),
1010 STAT_NETDEV(rx_dropped),
1011 STAT_NETDEV(tx_dropped),
1012 STAT_NETDEV(multicast),
1013 /* UniMAC RSV counters */
1014 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043 /* UniMAC TSV counters */
1044 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073 /* UniMAC RUNT counters */
1074 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078 /* Misc UniMAC counters */
1079 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080 UMAC_RBUF_OVFL_CNT_V1),
1081 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082 UMAC_RBUF_ERR_CNT_V1),
1083 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089 mib.tx_realloc_tsb_failed),
1090 /* Per TX queues */
1091 STAT_GENET_Q(0),
1092 STAT_GENET_Q(1),
1093 STAT_GENET_Q(2),
1094 STAT_GENET_Q(3),
1095 STAT_GENET_Q(16),
1096 };
1097
1098 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1099
bcmgenet_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1100 static void bcmgenet_get_drvinfo(struct net_device *dev,
1101 struct ethtool_drvinfo *info)
1102 {
1103 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1104 }
1105
bcmgenet_get_sset_count(struct net_device * dev,int string_set)1106 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1107 {
1108 switch (string_set) {
1109 case ETH_SS_STATS:
1110 return BCMGENET_STATS_LEN;
1111 default:
1112 return -EOPNOTSUPP;
1113 }
1114 }
1115
bcmgenet_get_strings(struct net_device * dev,u32 stringset,u8 * data)1116 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117 u8 *data)
1118 {
1119 int i;
1120
1121 switch (stringset) {
1122 case ETH_SS_STATS:
1123 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124 memcpy(data + i * ETH_GSTRING_LEN,
1125 bcmgenet_gstrings_stats[i].stat_string,
1126 ETH_GSTRING_LEN);
1127 }
1128 break;
1129 }
1130 }
1131
bcmgenet_update_stat_misc(struct bcmgenet_priv * priv,u16 offset)1132 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1133 {
1134 u16 new_offset;
1135 u32 val;
1136
1137 switch (offset) {
1138 case UMAC_RBUF_OVFL_CNT_V1:
1139 if (GENET_IS_V2(priv))
1140 new_offset = RBUF_OVFL_CNT_V2;
1141 else
1142 new_offset = RBUF_OVFL_CNT_V3PLUS;
1143
1144 val = bcmgenet_rbuf_readl(priv, new_offset);
1145 /* clear if overflowed */
1146 if (val == ~0)
1147 bcmgenet_rbuf_writel(priv, 0, new_offset);
1148 break;
1149 case UMAC_RBUF_ERR_CNT_V1:
1150 if (GENET_IS_V2(priv))
1151 new_offset = RBUF_ERR_CNT_V2;
1152 else
1153 new_offset = RBUF_ERR_CNT_V3PLUS;
1154
1155 val = bcmgenet_rbuf_readl(priv, new_offset);
1156 /* clear if overflowed */
1157 if (val == ~0)
1158 bcmgenet_rbuf_writel(priv, 0, new_offset);
1159 break;
1160 default:
1161 val = bcmgenet_umac_readl(priv, offset);
1162 /* clear if overflowed */
1163 if (val == ~0)
1164 bcmgenet_umac_writel(priv, 0, offset);
1165 break;
1166 }
1167
1168 return val;
1169 }
1170
bcmgenet_update_mib_counters(struct bcmgenet_priv * priv)1171 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1172 {
1173 int i, j = 0;
1174
1175 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176 const struct bcmgenet_stats *s;
1177 u8 offset = 0;
1178 u32 val = 0;
1179 char *p;
1180
1181 s = &bcmgenet_gstrings_stats[i];
1182 switch (s->type) {
1183 case BCMGENET_STAT_NETDEV:
1184 case BCMGENET_STAT_SOFT:
1185 continue;
1186 case BCMGENET_STAT_RUNT:
1187 offset += BCMGENET_STAT_OFFSET;
1188 fallthrough;
1189 case BCMGENET_STAT_MIB_TX:
1190 offset += BCMGENET_STAT_OFFSET;
1191 fallthrough;
1192 case BCMGENET_STAT_MIB_RX:
1193 val = bcmgenet_umac_readl(priv,
1194 UMAC_MIB_START + j + offset);
1195 offset = 0; /* Reset Offset */
1196 break;
1197 case BCMGENET_STAT_MISC:
1198 if (GENET_IS_V1(priv)) {
1199 val = bcmgenet_umac_readl(priv, s->reg_offset);
1200 /* clear if overflowed */
1201 if (val == ~0)
1202 bcmgenet_umac_writel(priv, 0,
1203 s->reg_offset);
1204 } else {
1205 val = bcmgenet_update_stat_misc(priv,
1206 s->reg_offset);
1207 }
1208 break;
1209 }
1210
1211 j += s->stat_sizeof;
1212 p = (char *)priv + s->stat_offset;
1213 *(u32 *)p = val;
1214 }
1215 }
1216
bcmgenet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1217 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218 struct ethtool_stats *stats,
1219 u64 *data)
1220 {
1221 struct bcmgenet_priv *priv = netdev_priv(dev);
1222 int i;
1223
1224 if (netif_running(dev))
1225 bcmgenet_update_mib_counters(priv);
1226
1227 dev->netdev_ops->ndo_get_stats(dev);
1228
1229 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230 const struct bcmgenet_stats *s;
1231 char *p;
1232
1233 s = &bcmgenet_gstrings_stats[i];
1234 if (s->type == BCMGENET_STAT_NETDEV)
1235 p = (char *)&dev->stats;
1236 else
1237 p = (char *)priv;
1238 p += s->stat_offset;
1239 if (sizeof(unsigned long) != sizeof(u32) &&
1240 s->stat_sizeof == sizeof(unsigned long))
1241 data[i] = *(unsigned long *)p;
1242 else
1243 data[i] = *(u32 *)p;
1244 }
1245 }
1246
bcmgenet_eee_enable_set(struct net_device * dev,bool enable)1247 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1248 {
1249 struct bcmgenet_priv *priv = netdev_priv(dev);
1250 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1251 u32 reg;
1252
1253 if (enable && !priv->clk_eee_enabled) {
1254 clk_prepare_enable(priv->clk_eee);
1255 priv->clk_eee_enabled = true;
1256 }
1257
1258 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1259 if (enable)
1260 reg |= EEE_EN;
1261 else
1262 reg &= ~EEE_EN;
1263 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1264
1265 /* Enable EEE and switch to a 27Mhz clock automatically */
1266 reg = bcmgenet_readl(priv->base + off);
1267 if (enable)
1268 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1269 else
1270 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1271 bcmgenet_writel(reg, priv->base + off);
1272
1273 /* Do the same for thing for RBUF */
1274 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1275 if (enable)
1276 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1277 else
1278 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1279 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1280
1281 if (!enable && priv->clk_eee_enabled) {
1282 clk_disable_unprepare(priv->clk_eee);
1283 priv->clk_eee_enabled = false;
1284 }
1285
1286 priv->eee.eee_enabled = enable;
1287 priv->eee.eee_active = enable;
1288 }
1289
bcmgenet_get_eee(struct net_device * dev,struct ethtool_eee * e)1290 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1291 {
1292 struct bcmgenet_priv *priv = netdev_priv(dev);
1293 struct ethtool_eee *p = &priv->eee;
1294
1295 if (GENET_IS_V1(priv))
1296 return -EOPNOTSUPP;
1297
1298 if (!dev->phydev)
1299 return -ENODEV;
1300
1301 e->eee_enabled = p->eee_enabled;
1302 e->eee_active = p->eee_active;
1303 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1304
1305 return phy_ethtool_get_eee(dev->phydev, e);
1306 }
1307
bcmgenet_set_eee(struct net_device * dev,struct ethtool_eee * e)1308 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1309 {
1310 struct bcmgenet_priv *priv = netdev_priv(dev);
1311 struct ethtool_eee *p = &priv->eee;
1312 int ret = 0;
1313
1314 if (GENET_IS_V1(priv))
1315 return -EOPNOTSUPP;
1316
1317 if (!dev->phydev)
1318 return -ENODEV;
1319
1320 p->eee_enabled = e->eee_enabled;
1321
1322 if (!p->eee_enabled) {
1323 bcmgenet_eee_enable_set(dev, false);
1324 } else {
1325 ret = phy_init_eee(dev->phydev, 0);
1326 if (ret) {
1327 netif_err(priv, hw, dev, "EEE initialization failed\n");
1328 return ret;
1329 }
1330
1331 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1332 bcmgenet_eee_enable_set(dev, true);
1333 }
1334
1335 return phy_ethtool_set_eee(dev->phydev, e);
1336 }
1337
bcmgenet_validate_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1338 static int bcmgenet_validate_flow(struct net_device *dev,
1339 struct ethtool_rxnfc *cmd)
1340 {
1341 struct ethtool_usrip4_spec *l4_mask;
1342 struct ethhdr *eth_mask;
1343
1344 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1345 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1346 cmd->fs.location);
1347 return -EINVAL;
1348 }
1349
1350 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1351 case IP_USER_FLOW:
1352 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1353 /* don't allow mask which isn't valid */
1354 if (VALIDATE_MASK(l4_mask->ip4src) ||
1355 VALIDATE_MASK(l4_mask->ip4dst) ||
1356 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1357 VALIDATE_MASK(l4_mask->proto) ||
1358 VALIDATE_MASK(l4_mask->ip_ver) ||
1359 VALIDATE_MASK(l4_mask->tos)) {
1360 netdev_err(dev, "rxnfc: Unsupported mask\n");
1361 return -EINVAL;
1362 }
1363 break;
1364 case ETHER_FLOW:
1365 eth_mask = &cmd->fs.m_u.ether_spec;
1366 /* don't allow mask which isn't valid */
1367 if (VALIDATE_MASK(eth_mask->h_dest) ||
1368 VALIDATE_MASK(eth_mask->h_source) ||
1369 VALIDATE_MASK(eth_mask->h_proto)) {
1370 netdev_err(dev, "rxnfc: Unsupported mask\n");
1371 return -EINVAL;
1372 }
1373 break;
1374 default:
1375 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1376 cmd->fs.flow_type);
1377 return -EINVAL;
1378 }
1379
1380 if ((cmd->fs.flow_type & FLOW_EXT)) {
1381 /* don't allow mask which isn't valid */
1382 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1383 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1384 netdev_err(dev, "rxnfc: Unsupported mask\n");
1385 return -EINVAL;
1386 }
1387 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1388 netdev_err(dev, "rxnfc: user-def not supported\n");
1389 return -EINVAL;
1390 }
1391 }
1392
1393 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1394 /* don't allow mask which isn't valid */
1395 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1396 netdev_err(dev, "rxnfc: Unsupported mask\n");
1397 return -EINVAL;
1398 }
1399 }
1400
1401 return 0;
1402 }
1403
bcmgenet_insert_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1404 static int bcmgenet_insert_flow(struct net_device *dev,
1405 struct ethtool_rxnfc *cmd)
1406 {
1407 struct bcmgenet_priv *priv = netdev_priv(dev);
1408 struct bcmgenet_rxnfc_rule *loc_rule;
1409 int err;
1410
1411 if (priv->hw_params->hfb_filter_size < 128) {
1412 netdev_err(dev, "rxnfc: Not supported by this device\n");
1413 return -EINVAL;
1414 }
1415
1416 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1417 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1418 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1419 cmd->fs.ring_cookie);
1420 return -EINVAL;
1421 }
1422
1423 err = bcmgenet_validate_flow(dev, cmd);
1424 if (err)
1425 return err;
1426
1427 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1428 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1429 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1430 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1431 list_del(&loc_rule->list);
1432 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1433 }
1434 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1435 memcpy(&loc_rule->fs, &cmd->fs,
1436 sizeof(struct ethtool_rx_flow_spec));
1437
1438 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1439
1440 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1441
1442 return 0;
1443 }
1444
bcmgenet_delete_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1445 static int bcmgenet_delete_flow(struct net_device *dev,
1446 struct ethtool_rxnfc *cmd)
1447 {
1448 struct bcmgenet_priv *priv = netdev_priv(dev);
1449 struct bcmgenet_rxnfc_rule *rule;
1450 int err = 0;
1451
1452 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1453 return -EINVAL;
1454
1455 rule = &priv->rxnfc_rules[cmd->fs.location];
1456 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1457 err = -ENOENT;
1458 goto out;
1459 }
1460
1461 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1462 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1463 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1464 list_del(&rule->list);
1465 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1466 }
1467 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1468 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1469
1470 out:
1471 return err;
1472 }
1473
bcmgenet_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)1474 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1475 {
1476 struct bcmgenet_priv *priv = netdev_priv(dev);
1477 int err = 0;
1478
1479 switch (cmd->cmd) {
1480 case ETHTOOL_SRXCLSRLINS:
1481 err = bcmgenet_insert_flow(dev, cmd);
1482 break;
1483 case ETHTOOL_SRXCLSRLDEL:
1484 err = bcmgenet_delete_flow(dev, cmd);
1485 break;
1486 default:
1487 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1488 cmd->cmd);
1489 return -EINVAL;
1490 }
1491
1492 return err;
1493 }
1494
bcmgenet_get_flow(struct net_device * dev,struct ethtool_rxnfc * cmd,int loc)1495 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1496 int loc)
1497 {
1498 struct bcmgenet_priv *priv = netdev_priv(dev);
1499 struct bcmgenet_rxnfc_rule *rule;
1500 int err = 0;
1501
1502 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1503 return -EINVAL;
1504
1505 rule = &priv->rxnfc_rules[loc];
1506 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1507 err = -ENOENT;
1508 else
1509 memcpy(&cmd->fs, &rule->fs,
1510 sizeof(struct ethtool_rx_flow_spec));
1511
1512 return err;
1513 }
1514
bcmgenet_get_num_flows(struct bcmgenet_priv * priv)1515 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1516 {
1517 struct list_head *pos;
1518 int res = 0;
1519
1520 list_for_each(pos, &priv->rxnfc_list)
1521 res++;
1522
1523 return res;
1524 }
1525
bcmgenet_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1526 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1527 u32 *rule_locs)
1528 {
1529 struct bcmgenet_priv *priv = netdev_priv(dev);
1530 struct bcmgenet_rxnfc_rule *rule;
1531 int err = 0;
1532 int i = 0;
1533
1534 switch (cmd->cmd) {
1535 case ETHTOOL_GRXRINGS:
1536 cmd->data = priv->hw_params->rx_queues ?: 1;
1537 break;
1538 case ETHTOOL_GRXCLSRLCNT:
1539 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1540 cmd->data = MAX_NUM_OF_FS_RULES;
1541 break;
1542 case ETHTOOL_GRXCLSRULE:
1543 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1544 break;
1545 case ETHTOOL_GRXCLSRLALL:
1546 list_for_each_entry(rule, &priv->rxnfc_list, list)
1547 if (i < cmd->rule_cnt)
1548 rule_locs[i++] = rule->fs.location;
1549 cmd->rule_cnt = i;
1550 cmd->data = MAX_NUM_OF_FS_RULES;
1551 break;
1552 default:
1553 err = -EOPNOTSUPP;
1554 break;
1555 }
1556
1557 return err;
1558 }
1559
1560 /* standard ethtool support functions. */
1561 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1562 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1563 ETHTOOL_COALESCE_MAX_FRAMES |
1564 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1565 .begin = bcmgenet_begin,
1566 .complete = bcmgenet_complete,
1567 .get_strings = bcmgenet_get_strings,
1568 .get_sset_count = bcmgenet_get_sset_count,
1569 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1570 .get_drvinfo = bcmgenet_get_drvinfo,
1571 .get_link = ethtool_op_get_link,
1572 .get_msglevel = bcmgenet_get_msglevel,
1573 .set_msglevel = bcmgenet_set_msglevel,
1574 .get_wol = bcmgenet_get_wol,
1575 .set_wol = bcmgenet_set_wol,
1576 .get_eee = bcmgenet_get_eee,
1577 .set_eee = bcmgenet_set_eee,
1578 .nway_reset = phy_ethtool_nway_reset,
1579 .get_coalesce = bcmgenet_get_coalesce,
1580 .set_coalesce = bcmgenet_set_coalesce,
1581 .get_link_ksettings = bcmgenet_get_link_ksettings,
1582 .set_link_ksettings = bcmgenet_set_link_ksettings,
1583 .get_ts_info = ethtool_op_get_ts_info,
1584 .get_rxnfc = bcmgenet_get_rxnfc,
1585 .set_rxnfc = bcmgenet_set_rxnfc,
1586 };
1587
1588 /* Power down the unimac, based on mode. */
bcmgenet_power_down(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1589 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1590 enum bcmgenet_power_mode mode)
1591 {
1592 int ret = 0;
1593 u32 reg;
1594
1595 switch (mode) {
1596 case GENET_POWER_CABLE_SENSE:
1597 phy_detach(priv->dev->phydev);
1598 break;
1599
1600 case GENET_POWER_WOL_MAGIC:
1601 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1602 break;
1603
1604 case GENET_POWER_PASSIVE:
1605 /* Power down LED */
1606 if (priv->hw_params->flags & GENET_HAS_EXT) {
1607 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1608 if (GENET_IS_V5(priv))
1609 reg |= EXT_PWR_DOWN_PHY_EN |
1610 EXT_PWR_DOWN_PHY_RD |
1611 EXT_PWR_DOWN_PHY_SD |
1612 EXT_PWR_DOWN_PHY_RX |
1613 EXT_PWR_DOWN_PHY_TX |
1614 EXT_IDDQ_GLBL_PWR;
1615 else
1616 reg |= EXT_PWR_DOWN_PHY;
1617
1618 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1619 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1620
1621 bcmgenet_phy_power_set(priv->dev, false);
1622 }
1623 break;
1624 default:
1625 break;
1626 }
1627
1628 return ret;
1629 }
1630
bcmgenet_power_up(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1631 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1632 enum bcmgenet_power_mode mode)
1633 {
1634 u32 reg;
1635
1636 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1637 return;
1638
1639 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1640
1641 switch (mode) {
1642 case GENET_POWER_PASSIVE:
1643 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1644 EXT_ENERGY_DET_MASK);
1645 if (GENET_IS_V5(priv)) {
1646 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1647 EXT_PWR_DOWN_PHY_RD |
1648 EXT_PWR_DOWN_PHY_SD |
1649 EXT_PWR_DOWN_PHY_RX |
1650 EXT_PWR_DOWN_PHY_TX |
1651 EXT_IDDQ_GLBL_PWR);
1652 reg |= EXT_PHY_RESET;
1653 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1654 mdelay(1);
1655
1656 reg &= ~EXT_PHY_RESET;
1657 } else {
1658 reg &= ~EXT_PWR_DOWN_PHY;
1659 reg |= EXT_PWR_DN_EN_LD;
1660 }
1661 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1662 bcmgenet_phy_power_set(priv->dev, true);
1663 break;
1664
1665 case GENET_POWER_CABLE_SENSE:
1666 /* enable APD */
1667 if (!GENET_IS_V5(priv)) {
1668 reg |= EXT_PWR_DN_EN_LD;
1669 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670 }
1671 break;
1672 case GENET_POWER_WOL_MAGIC:
1673 bcmgenet_wol_power_up_cfg(priv, mode);
1674 return;
1675 default:
1676 break;
1677 }
1678 }
1679
bcmgenet_get_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1680 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1681 struct bcmgenet_tx_ring *ring)
1682 {
1683 struct enet_cb *tx_cb_ptr;
1684
1685 tx_cb_ptr = ring->cbs;
1686 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1687
1688 /* Advancing local write pointer */
1689 if (ring->write_ptr == ring->end_ptr)
1690 ring->write_ptr = ring->cb_ptr;
1691 else
1692 ring->write_ptr++;
1693
1694 return tx_cb_ptr;
1695 }
1696
bcmgenet_put_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1697 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1698 struct bcmgenet_tx_ring *ring)
1699 {
1700 struct enet_cb *tx_cb_ptr;
1701
1702 tx_cb_ptr = ring->cbs;
1703 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1704
1705 /* Rewinding local write pointer */
1706 if (ring->write_ptr == ring->cb_ptr)
1707 ring->write_ptr = ring->end_ptr;
1708 else
1709 ring->write_ptr--;
1710
1711 return tx_cb_ptr;
1712 }
1713
bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring * ring)1714 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1715 {
1716 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1717 INTRL2_CPU_MASK_SET);
1718 }
1719
bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring * ring)1720 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1721 {
1722 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1723 INTRL2_CPU_MASK_CLEAR);
1724 }
1725
bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring * ring)1726 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1727 {
1728 bcmgenet_intrl2_1_writel(ring->priv,
1729 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1730 INTRL2_CPU_MASK_SET);
1731 }
1732
bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring * ring)1733 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1734 {
1735 bcmgenet_intrl2_1_writel(ring->priv,
1736 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1737 INTRL2_CPU_MASK_CLEAR);
1738 }
1739
bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring * ring)1740 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1741 {
1742 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1743 INTRL2_CPU_MASK_SET);
1744 }
1745
bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring * ring)1746 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1747 {
1748 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1749 INTRL2_CPU_MASK_CLEAR);
1750 }
1751
bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring * ring)1752 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1753 {
1754 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1755 INTRL2_CPU_MASK_CLEAR);
1756 }
1757
bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring * ring)1758 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1759 {
1760 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1761 INTRL2_CPU_MASK_SET);
1762 }
1763
1764 /* Simple helper to free a transmit control block's resources
1765 * Returns an skb when the last transmit control block associated with the
1766 * skb is freed. The skb should be freed by the caller if necessary.
1767 */
bcmgenet_free_tx_cb(struct device * dev,struct enet_cb * cb)1768 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1769 struct enet_cb *cb)
1770 {
1771 struct sk_buff *skb;
1772
1773 skb = cb->skb;
1774
1775 if (skb) {
1776 cb->skb = NULL;
1777 if (cb == GENET_CB(skb)->first_cb)
1778 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1779 dma_unmap_len(cb, dma_len),
1780 DMA_TO_DEVICE);
1781 else
1782 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1783 dma_unmap_len(cb, dma_len),
1784 DMA_TO_DEVICE);
1785 dma_unmap_addr_set(cb, dma_addr, 0);
1786
1787 if (cb == GENET_CB(skb)->last_cb)
1788 return skb;
1789
1790 } else if (dma_unmap_addr(cb, dma_addr)) {
1791 dma_unmap_page(dev,
1792 dma_unmap_addr(cb, dma_addr),
1793 dma_unmap_len(cb, dma_len),
1794 DMA_TO_DEVICE);
1795 dma_unmap_addr_set(cb, dma_addr, 0);
1796 }
1797
1798 return NULL;
1799 }
1800
1801 /* Simple helper to free a receive control block's resources */
bcmgenet_free_rx_cb(struct device * dev,struct enet_cb * cb)1802 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1803 struct enet_cb *cb)
1804 {
1805 struct sk_buff *skb;
1806
1807 skb = cb->skb;
1808 cb->skb = NULL;
1809
1810 if (dma_unmap_addr(cb, dma_addr)) {
1811 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1812 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1813 dma_unmap_addr_set(cb, dma_addr, 0);
1814 }
1815
1816 return skb;
1817 }
1818
1819 /* Unlocked version of the reclaim routine */
__bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1820 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1821 struct bcmgenet_tx_ring *ring)
1822 {
1823 struct bcmgenet_priv *priv = netdev_priv(dev);
1824 unsigned int txbds_processed = 0;
1825 unsigned int bytes_compl = 0;
1826 unsigned int pkts_compl = 0;
1827 unsigned int txbds_ready;
1828 unsigned int c_index;
1829 struct sk_buff *skb;
1830
1831 /* Clear status before servicing to reduce spurious interrupts */
1832 if (ring->index == DESC_INDEX)
1833 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1834 INTRL2_CPU_CLEAR);
1835 else
1836 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1837 INTRL2_CPU_CLEAR);
1838
1839 /* Compute how many buffers are transmitted since last xmit call */
1840 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1841 & DMA_C_INDEX_MASK;
1842 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1843
1844 netif_dbg(priv, tx_done, dev,
1845 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1846 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1847
1848 /* Reclaim transmitted buffers */
1849 while (txbds_processed < txbds_ready) {
1850 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1851 &priv->tx_cbs[ring->clean_ptr]);
1852 if (skb) {
1853 pkts_compl++;
1854 bytes_compl += GENET_CB(skb)->bytes_sent;
1855 dev_consume_skb_any(skb);
1856 }
1857
1858 txbds_processed++;
1859 if (likely(ring->clean_ptr < ring->end_ptr))
1860 ring->clean_ptr++;
1861 else
1862 ring->clean_ptr = ring->cb_ptr;
1863 }
1864
1865 ring->free_bds += txbds_processed;
1866 ring->c_index = c_index;
1867
1868 ring->packets += pkts_compl;
1869 ring->bytes += bytes_compl;
1870
1871 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1872 pkts_compl, bytes_compl);
1873
1874 return txbds_processed;
1875 }
1876
bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1877 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1878 struct bcmgenet_tx_ring *ring)
1879 {
1880 unsigned int released;
1881
1882 spin_lock_bh(&ring->lock);
1883 released = __bcmgenet_tx_reclaim(dev, ring);
1884 spin_unlock_bh(&ring->lock);
1885
1886 return released;
1887 }
1888
bcmgenet_tx_poll(struct napi_struct * napi,int budget)1889 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1890 {
1891 struct bcmgenet_tx_ring *ring =
1892 container_of(napi, struct bcmgenet_tx_ring, napi);
1893 unsigned int work_done = 0;
1894 struct netdev_queue *txq;
1895
1896 spin_lock(&ring->lock);
1897 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1898 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1899 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1900 netif_tx_wake_queue(txq);
1901 }
1902 spin_unlock(&ring->lock);
1903
1904 if (work_done == 0) {
1905 napi_complete(napi);
1906 ring->int_enable(ring);
1907
1908 return 0;
1909 }
1910
1911 return budget;
1912 }
1913
bcmgenet_tx_reclaim_all(struct net_device * dev)1914 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1915 {
1916 struct bcmgenet_priv *priv = netdev_priv(dev);
1917 int i;
1918
1919 if (netif_is_multiqueue(dev)) {
1920 for (i = 0; i < priv->hw_params->tx_queues; i++)
1921 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1922 }
1923
1924 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1925 }
1926
1927 /* Reallocate the SKB to put enough headroom in front of it and insert
1928 * the transmit checksum offsets in the descriptors
1929 */
bcmgenet_add_tsb(struct net_device * dev,struct sk_buff * skb)1930 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1931 struct sk_buff *skb)
1932 {
1933 struct bcmgenet_priv *priv = netdev_priv(dev);
1934 struct status_64 *status = NULL;
1935 struct sk_buff *new_skb;
1936 u16 offset;
1937 u8 ip_proto;
1938 __be16 ip_ver;
1939 u32 tx_csum_info;
1940
1941 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1942 /* If 64 byte status block enabled, must make sure skb has
1943 * enough headroom for us to insert 64B status block.
1944 */
1945 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1946 if (!new_skb) {
1947 dev_kfree_skb_any(skb);
1948 priv->mib.tx_realloc_tsb_failed++;
1949 dev->stats.tx_dropped++;
1950 return NULL;
1951 }
1952 dev_consume_skb_any(skb);
1953 skb = new_skb;
1954 priv->mib.tx_realloc_tsb++;
1955 }
1956
1957 skb_push(skb, sizeof(*status));
1958 status = (struct status_64 *)skb->data;
1959
1960 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1961 ip_ver = skb->protocol;
1962 switch (ip_ver) {
1963 case htons(ETH_P_IP):
1964 ip_proto = ip_hdr(skb)->protocol;
1965 break;
1966 case htons(ETH_P_IPV6):
1967 ip_proto = ipv6_hdr(skb)->nexthdr;
1968 break;
1969 default:
1970 /* don't use UDP flag */
1971 ip_proto = 0;
1972 break;
1973 }
1974
1975 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1976 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1977 (offset + skb->csum_offset) |
1978 STATUS_TX_CSUM_LV;
1979
1980 /* Set the special UDP flag for UDP */
1981 if (ip_proto == IPPROTO_UDP)
1982 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1983
1984 status->tx_csum_info = tx_csum_info;
1985 }
1986
1987 return skb;
1988 }
1989
bcmgenet_xmit(struct sk_buff * skb,struct net_device * dev)1990 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1991 {
1992 struct bcmgenet_priv *priv = netdev_priv(dev);
1993 struct device *kdev = &priv->pdev->dev;
1994 struct bcmgenet_tx_ring *ring = NULL;
1995 struct enet_cb *tx_cb_ptr;
1996 struct netdev_queue *txq;
1997 int nr_frags, index;
1998 dma_addr_t mapping;
1999 unsigned int size;
2000 skb_frag_t *frag;
2001 u32 len_stat;
2002 int ret;
2003 int i;
2004
2005 index = skb_get_queue_mapping(skb);
2006 /* Mapping strategy:
2007 * queue_mapping = 0, unclassified, packet xmited through ring16
2008 * queue_mapping = 1, goes to ring 0. (highest priority queue
2009 * queue_mapping = 2, goes to ring 1.
2010 * queue_mapping = 3, goes to ring 2.
2011 * queue_mapping = 4, goes to ring 3.
2012 */
2013 if (index == 0)
2014 index = DESC_INDEX;
2015 else
2016 index -= 1;
2017
2018 ring = &priv->tx_rings[index];
2019 txq = netdev_get_tx_queue(dev, ring->queue);
2020
2021 nr_frags = skb_shinfo(skb)->nr_frags;
2022
2023 spin_lock(&ring->lock);
2024 if (ring->free_bds <= (nr_frags + 1)) {
2025 if (!netif_tx_queue_stopped(txq)) {
2026 netif_tx_stop_queue(txq);
2027 netdev_err(dev,
2028 "%s: tx ring %d full when queue %d awake\n",
2029 __func__, index, ring->queue);
2030 }
2031 ret = NETDEV_TX_BUSY;
2032 goto out;
2033 }
2034
2035 /* Retain how many bytes will be sent on the wire, without TSB inserted
2036 * by transmit checksum offload
2037 */
2038 GENET_CB(skb)->bytes_sent = skb->len;
2039
2040 /* add the Transmit Status Block */
2041 skb = bcmgenet_add_tsb(dev, skb);
2042 if (!skb) {
2043 ret = NETDEV_TX_OK;
2044 goto out;
2045 }
2046
2047 for (i = 0; i <= nr_frags; i++) {
2048 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2049
2050 BUG_ON(!tx_cb_ptr);
2051
2052 if (!i) {
2053 /* Transmit single SKB or head of fragment list */
2054 GENET_CB(skb)->first_cb = tx_cb_ptr;
2055 size = skb_headlen(skb);
2056 mapping = dma_map_single(kdev, skb->data, size,
2057 DMA_TO_DEVICE);
2058 } else {
2059 /* xmit fragment */
2060 frag = &skb_shinfo(skb)->frags[i - 1];
2061 size = skb_frag_size(frag);
2062 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2063 DMA_TO_DEVICE);
2064 }
2065
2066 ret = dma_mapping_error(kdev, mapping);
2067 if (ret) {
2068 priv->mib.tx_dma_failed++;
2069 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2070 ret = NETDEV_TX_OK;
2071 goto out_unmap_frags;
2072 }
2073 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2074 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2075
2076 tx_cb_ptr->skb = skb;
2077
2078 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2079 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2080
2081 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2082 * will need to restore software padding of "runt" packets
2083 */
2084 if (!i) {
2085 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2086 if (skb->ip_summed == CHECKSUM_PARTIAL)
2087 len_stat |= DMA_TX_DO_CSUM;
2088 }
2089 if (i == nr_frags)
2090 len_stat |= DMA_EOP;
2091
2092 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2093 }
2094
2095 GENET_CB(skb)->last_cb = tx_cb_ptr;
2096 skb_tx_timestamp(skb);
2097
2098 /* Decrement total BD count and advance our write pointer */
2099 ring->free_bds -= nr_frags + 1;
2100 ring->prod_index += nr_frags + 1;
2101 ring->prod_index &= DMA_P_INDEX_MASK;
2102
2103 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2104
2105 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2106 netif_tx_stop_queue(txq);
2107
2108 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2109 /* Packets are ready, update producer index */
2110 bcmgenet_tdma_ring_writel(priv, ring->index,
2111 ring->prod_index, TDMA_PROD_INDEX);
2112 out:
2113 spin_unlock(&ring->lock);
2114
2115 return ret;
2116
2117 out_unmap_frags:
2118 /* Back up for failed control block mapping */
2119 bcmgenet_put_txcb(priv, ring);
2120
2121 /* Unmap successfully mapped control blocks */
2122 while (i-- > 0) {
2123 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2124 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2125 }
2126
2127 dev_kfree_skb(skb);
2128 goto out;
2129 }
2130
bcmgenet_rx_refill(struct bcmgenet_priv * priv,struct enet_cb * cb)2131 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2132 struct enet_cb *cb)
2133 {
2134 struct device *kdev = &priv->pdev->dev;
2135 struct sk_buff *skb;
2136 struct sk_buff *rx_skb;
2137 dma_addr_t mapping;
2138
2139 /* Allocate a new Rx skb */
2140 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2141 GFP_ATOMIC | __GFP_NOWARN);
2142 if (!skb) {
2143 priv->mib.alloc_rx_buff_failed++;
2144 netif_err(priv, rx_err, priv->dev,
2145 "%s: Rx skb allocation failed\n", __func__);
2146 return NULL;
2147 }
2148
2149 /* DMA-map the new Rx skb */
2150 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2151 DMA_FROM_DEVICE);
2152 if (dma_mapping_error(kdev, mapping)) {
2153 priv->mib.rx_dma_failed++;
2154 dev_kfree_skb_any(skb);
2155 netif_err(priv, rx_err, priv->dev,
2156 "%s: Rx skb DMA mapping failed\n", __func__);
2157 return NULL;
2158 }
2159
2160 /* Grab the current Rx skb from the ring and DMA-unmap it */
2161 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2162
2163 /* Put the new Rx skb on the ring */
2164 cb->skb = skb;
2165 dma_unmap_addr_set(cb, dma_addr, mapping);
2166 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2167 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2168
2169 /* Return the current Rx skb to caller */
2170 return rx_skb;
2171 }
2172
2173 /* bcmgenet_desc_rx - descriptor based rx process.
2174 * this could be called from bottom half, or from NAPI polling method.
2175 */
bcmgenet_desc_rx(struct bcmgenet_rx_ring * ring,unsigned int budget)2176 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2177 unsigned int budget)
2178 {
2179 struct bcmgenet_priv *priv = ring->priv;
2180 struct net_device *dev = priv->dev;
2181 struct enet_cb *cb;
2182 struct sk_buff *skb;
2183 u32 dma_length_status;
2184 unsigned long dma_flag;
2185 int len;
2186 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2187 unsigned int bytes_processed = 0;
2188 unsigned int p_index, mask;
2189 unsigned int discards;
2190
2191 /* Clear status before servicing to reduce spurious interrupts */
2192 if (ring->index == DESC_INDEX) {
2193 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2194 INTRL2_CPU_CLEAR);
2195 } else {
2196 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2197 bcmgenet_intrl2_1_writel(priv,
2198 mask,
2199 INTRL2_CPU_CLEAR);
2200 }
2201
2202 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2203
2204 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2205 DMA_P_INDEX_DISCARD_CNT_MASK;
2206 if (discards > ring->old_discards) {
2207 discards = discards - ring->old_discards;
2208 ring->errors += discards;
2209 ring->old_discards += discards;
2210
2211 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2212 if (ring->old_discards >= 0xC000) {
2213 ring->old_discards = 0;
2214 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2215 RDMA_PROD_INDEX);
2216 }
2217 }
2218
2219 p_index &= DMA_P_INDEX_MASK;
2220 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2221
2222 netif_dbg(priv, rx_status, dev,
2223 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2224
2225 while ((rxpktprocessed < rxpkttoprocess) &&
2226 (rxpktprocessed < budget)) {
2227 struct status_64 *status;
2228 __be16 rx_csum;
2229
2230 cb = &priv->rx_cbs[ring->read_ptr];
2231 skb = bcmgenet_rx_refill(priv, cb);
2232
2233 if (unlikely(!skb)) {
2234 ring->dropped++;
2235 goto next;
2236 }
2237
2238 status = (struct status_64 *)skb->data;
2239 dma_length_status = status->length_status;
2240 if (dev->features & NETIF_F_RXCSUM) {
2241 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2242 skb->csum = (__force __wsum)ntohs(rx_csum);
2243 skb->ip_summed = CHECKSUM_COMPLETE;
2244 }
2245
2246 /* DMA flags and length are still valid no matter how
2247 * we got the Receive Status Vector (64B RSB or register)
2248 */
2249 dma_flag = dma_length_status & 0xffff;
2250 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2251
2252 netif_dbg(priv, rx_status, dev,
2253 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2254 __func__, p_index, ring->c_index,
2255 ring->read_ptr, dma_length_status);
2256
2257 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2258 netif_err(priv, rx_status, dev,
2259 "dropping fragmented packet!\n");
2260 ring->errors++;
2261 dev_kfree_skb_any(skb);
2262 goto next;
2263 }
2264
2265 /* report errors */
2266 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2267 DMA_RX_OV |
2268 DMA_RX_NO |
2269 DMA_RX_LG |
2270 DMA_RX_RXER))) {
2271 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2272 (unsigned int)dma_flag);
2273 if (dma_flag & DMA_RX_CRC_ERROR)
2274 dev->stats.rx_crc_errors++;
2275 if (dma_flag & DMA_RX_OV)
2276 dev->stats.rx_over_errors++;
2277 if (dma_flag & DMA_RX_NO)
2278 dev->stats.rx_frame_errors++;
2279 if (dma_flag & DMA_RX_LG)
2280 dev->stats.rx_length_errors++;
2281 dev->stats.rx_errors++;
2282 dev_kfree_skb_any(skb);
2283 goto next;
2284 } /* error packet */
2285
2286 skb_put(skb, len);
2287
2288 /* remove RSB and hardware 2bytes added for IP alignment */
2289 skb_pull(skb, 66);
2290 len -= 66;
2291
2292 if (priv->crc_fwd_en) {
2293 skb_trim(skb, len - ETH_FCS_LEN);
2294 len -= ETH_FCS_LEN;
2295 }
2296
2297 bytes_processed += len;
2298
2299 /*Finish setting up the received SKB and send it to the kernel*/
2300 skb->protocol = eth_type_trans(skb, priv->dev);
2301 ring->packets++;
2302 ring->bytes += len;
2303 if (dma_flag & DMA_RX_MULT)
2304 dev->stats.multicast++;
2305
2306 /* Notify kernel */
2307 napi_gro_receive(&ring->napi, skb);
2308 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2309
2310 next:
2311 rxpktprocessed++;
2312 if (likely(ring->read_ptr < ring->end_ptr))
2313 ring->read_ptr++;
2314 else
2315 ring->read_ptr = ring->cb_ptr;
2316
2317 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2318 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2319 }
2320
2321 ring->dim.bytes = bytes_processed;
2322 ring->dim.packets = rxpktprocessed;
2323
2324 return rxpktprocessed;
2325 }
2326
2327 /* Rx NAPI polling method */
bcmgenet_rx_poll(struct napi_struct * napi,int budget)2328 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2329 {
2330 struct bcmgenet_rx_ring *ring = container_of(napi,
2331 struct bcmgenet_rx_ring, napi);
2332 struct dim_sample dim_sample = {};
2333 unsigned int work_done;
2334
2335 work_done = bcmgenet_desc_rx(ring, budget);
2336
2337 if (work_done < budget) {
2338 napi_complete_done(napi, work_done);
2339 ring->int_enable(ring);
2340 }
2341
2342 if (ring->dim.use_dim) {
2343 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2344 ring->dim.bytes, &dim_sample);
2345 net_dim(&ring->dim.dim, dim_sample);
2346 }
2347
2348 return work_done;
2349 }
2350
bcmgenet_dim_work(struct work_struct * work)2351 static void bcmgenet_dim_work(struct work_struct *work)
2352 {
2353 struct dim *dim = container_of(work, struct dim, work);
2354 struct bcmgenet_net_dim *ndim =
2355 container_of(dim, struct bcmgenet_net_dim, dim);
2356 struct bcmgenet_rx_ring *ring =
2357 container_of(ndim, struct bcmgenet_rx_ring, dim);
2358 struct dim_cq_moder cur_profile =
2359 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2360
2361 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2362 dim->state = DIM_START_MEASURE;
2363 }
2364
2365 /* Assign skb to RX DMA descriptor. */
bcmgenet_alloc_rx_buffers(struct bcmgenet_priv * priv,struct bcmgenet_rx_ring * ring)2366 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2367 struct bcmgenet_rx_ring *ring)
2368 {
2369 struct enet_cb *cb;
2370 struct sk_buff *skb;
2371 int i;
2372
2373 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2374
2375 /* loop here for each buffer needing assign */
2376 for (i = 0; i < ring->size; i++) {
2377 cb = ring->cbs + i;
2378 skb = bcmgenet_rx_refill(priv, cb);
2379 if (skb)
2380 dev_consume_skb_any(skb);
2381 if (!cb->skb)
2382 return -ENOMEM;
2383 }
2384
2385 return 0;
2386 }
2387
bcmgenet_free_rx_buffers(struct bcmgenet_priv * priv)2388 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2389 {
2390 struct sk_buff *skb;
2391 struct enet_cb *cb;
2392 int i;
2393
2394 for (i = 0; i < priv->num_rx_bds; i++) {
2395 cb = &priv->rx_cbs[i];
2396
2397 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2398 if (skb)
2399 dev_consume_skb_any(skb);
2400 }
2401 }
2402
umac_enable_set(struct bcmgenet_priv * priv,u32 mask,bool enable)2403 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2404 {
2405 u32 reg;
2406
2407 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2408 if (reg & CMD_SW_RESET)
2409 return;
2410 if (enable)
2411 reg |= mask;
2412 else
2413 reg &= ~mask;
2414 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2415
2416 /* UniMAC stops on a packet boundary, wait for a full-size packet
2417 * to be processed
2418 */
2419 if (enable == 0)
2420 usleep_range(1000, 2000);
2421 }
2422
reset_umac(struct bcmgenet_priv * priv)2423 static void reset_umac(struct bcmgenet_priv *priv)
2424 {
2425 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2426 bcmgenet_rbuf_ctrl_set(priv, 0);
2427 udelay(10);
2428
2429 /* issue soft reset and disable MAC while updating its registers */
2430 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2431 udelay(2);
2432 }
2433
bcmgenet_intr_disable(struct bcmgenet_priv * priv)2434 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2435 {
2436 /* Mask all interrupts.*/
2437 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2438 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2439 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2440 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2441 }
2442
bcmgenet_link_intr_enable(struct bcmgenet_priv * priv)2443 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2444 {
2445 u32 int0_enable = 0;
2446
2447 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2448 * and MoCA PHY
2449 */
2450 if (priv->internal_phy) {
2451 int0_enable |= UMAC_IRQ_LINK_EVENT;
2452 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2453 int0_enable |= UMAC_IRQ_PHY_DET_R;
2454 } else if (priv->ext_phy) {
2455 int0_enable |= UMAC_IRQ_LINK_EVENT;
2456 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2457 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2458 int0_enable |= UMAC_IRQ_LINK_EVENT;
2459 }
2460 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2461 }
2462
init_umac(struct bcmgenet_priv * priv)2463 static void init_umac(struct bcmgenet_priv *priv)
2464 {
2465 struct device *kdev = &priv->pdev->dev;
2466 u32 reg;
2467 u32 int0_enable = 0;
2468
2469 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2470
2471 reset_umac(priv);
2472
2473 /* clear tx/rx counter */
2474 bcmgenet_umac_writel(priv,
2475 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2476 UMAC_MIB_CTRL);
2477 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2478
2479 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2480
2481 /* init tx registers, enable TSB */
2482 reg = bcmgenet_tbuf_ctrl_get(priv);
2483 reg |= TBUF_64B_EN;
2484 bcmgenet_tbuf_ctrl_set(priv, reg);
2485
2486 /* init rx registers, enable ip header optimization and RSB */
2487 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2488 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2489 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2490
2491 /* enable rx checksumming */
2492 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2493 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2494 /* If UniMAC forwards CRC, we need to skip over it to get
2495 * a valid CHK bit to be set in the per-packet status word
2496 */
2497 if (priv->crc_fwd_en)
2498 reg |= RBUF_SKIP_FCS;
2499 else
2500 reg &= ~RBUF_SKIP_FCS;
2501 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2502
2503 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2504 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2505
2506 bcmgenet_intr_disable(priv);
2507
2508 /* Configure backpressure vectors for MoCA */
2509 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2510 reg = bcmgenet_bp_mc_get(priv);
2511 reg |= BIT(priv->hw_params->bp_in_en_shift);
2512
2513 /* bp_mask: back pressure mask */
2514 if (netif_is_multiqueue(priv->dev))
2515 reg |= priv->hw_params->bp_in_mask;
2516 else
2517 reg &= ~priv->hw_params->bp_in_mask;
2518 bcmgenet_bp_mc_set(priv, reg);
2519 }
2520
2521 /* Enable MDIO interrupts on GENET v3+ */
2522 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2523 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2524
2525 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2526
2527 dev_dbg(kdev, "done init umac\n");
2528 }
2529
bcmgenet_init_dim(struct bcmgenet_rx_ring * ring,void (* cb)(struct work_struct * work))2530 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2531 void (*cb)(struct work_struct *work))
2532 {
2533 struct bcmgenet_net_dim *dim = &ring->dim;
2534
2535 INIT_WORK(&dim->dim.work, cb);
2536 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2537 dim->event_ctr = 0;
2538 dim->packets = 0;
2539 dim->bytes = 0;
2540 }
2541
bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring * ring)2542 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2543 {
2544 struct bcmgenet_net_dim *dim = &ring->dim;
2545 struct dim_cq_moder moder;
2546 u32 usecs, pkts;
2547
2548 usecs = ring->rx_coalesce_usecs;
2549 pkts = ring->rx_max_coalesced_frames;
2550
2551 /* If DIM was enabled, re-apply default parameters */
2552 if (dim->use_dim) {
2553 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2554 usecs = moder.usec;
2555 pkts = moder.pkts;
2556 }
2557
2558 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2559 }
2560
2561 /* Initialize a Tx ring along with corresponding hardware registers */
bcmgenet_init_tx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2562 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2563 unsigned int index, unsigned int size,
2564 unsigned int start_ptr, unsigned int end_ptr)
2565 {
2566 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2567 u32 words_per_bd = WORDS_PER_BD(priv);
2568 u32 flow_period_val = 0;
2569
2570 spin_lock_init(&ring->lock);
2571 ring->priv = priv;
2572 ring->index = index;
2573 if (index == DESC_INDEX) {
2574 ring->queue = 0;
2575 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2576 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2577 } else {
2578 ring->queue = index + 1;
2579 ring->int_enable = bcmgenet_tx_ring_int_enable;
2580 ring->int_disable = bcmgenet_tx_ring_int_disable;
2581 }
2582 ring->cbs = priv->tx_cbs + start_ptr;
2583 ring->size = size;
2584 ring->clean_ptr = start_ptr;
2585 ring->c_index = 0;
2586 ring->free_bds = size;
2587 ring->write_ptr = start_ptr;
2588 ring->cb_ptr = start_ptr;
2589 ring->end_ptr = end_ptr - 1;
2590 ring->prod_index = 0;
2591
2592 /* Set flow period for ring != 16 */
2593 if (index != DESC_INDEX)
2594 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2595
2596 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2597 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2598 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2599 /* Disable rate control for now */
2600 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2601 TDMA_FLOW_PERIOD);
2602 bcmgenet_tdma_ring_writel(priv, index,
2603 ((size << DMA_RING_SIZE_SHIFT) |
2604 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2605
2606 /* Set start and end address, read and write pointers */
2607 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2608 DMA_START_ADDR);
2609 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2610 TDMA_READ_PTR);
2611 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2612 TDMA_WRITE_PTR);
2613 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2614 DMA_END_ADDR);
2615
2616 /* Initialize Tx NAPI */
2617 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2618 NAPI_POLL_WEIGHT);
2619 }
2620
2621 /* Initialize a RDMA ring */
bcmgenet_init_rx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2622 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2623 unsigned int index, unsigned int size,
2624 unsigned int start_ptr, unsigned int end_ptr)
2625 {
2626 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2627 u32 words_per_bd = WORDS_PER_BD(priv);
2628 int ret;
2629
2630 ring->priv = priv;
2631 ring->index = index;
2632 if (index == DESC_INDEX) {
2633 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2634 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2635 } else {
2636 ring->int_enable = bcmgenet_rx_ring_int_enable;
2637 ring->int_disable = bcmgenet_rx_ring_int_disable;
2638 }
2639 ring->cbs = priv->rx_cbs + start_ptr;
2640 ring->size = size;
2641 ring->c_index = 0;
2642 ring->read_ptr = start_ptr;
2643 ring->cb_ptr = start_ptr;
2644 ring->end_ptr = end_ptr - 1;
2645
2646 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2647 if (ret)
2648 return ret;
2649
2650 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2651 bcmgenet_init_rx_coalesce(ring);
2652
2653 /* Initialize Rx NAPI */
2654 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2655 NAPI_POLL_WEIGHT);
2656
2657 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2658 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2659 bcmgenet_rdma_ring_writel(priv, index,
2660 ((size << DMA_RING_SIZE_SHIFT) |
2661 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2662 bcmgenet_rdma_ring_writel(priv, index,
2663 (DMA_FC_THRESH_LO <<
2664 DMA_XOFF_THRESHOLD_SHIFT) |
2665 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2666
2667 /* Set start and end address, read and write pointers */
2668 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2669 DMA_START_ADDR);
2670 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2671 RDMA_READ_PTR);
2672 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673 RDMA_WRITE_PTR);
2674 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2675 DMA_END_ADDR);
2676
2677 return ret;
2678 }
2679
bcmgenet_enable_tx_napi(struct bcmgenet_priv * priv)2680 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2681 {
2682 unsigned int i;
2683 struct bcmgenet_tx_ring *ring;
2684
2685 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2686 ring = &priv->tx_rings[i];
2687 napi_enable(&ring->napi);
2688 ring->int_enable(ring);
2689 }
2690
2691 ring = &priv->tx_rings[DESC_INDEX];
2692 napi_enable(&ring->napi);
2693 ring->int_enable(ring);
2694 }
2695
bcmgenet_disable_tx_napi(struct bcmgenet_priv * priv)2696 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2697 {
2698 unsigned int i;
2699 struct bcmgenet_tx_ring *ring;
2700
2701 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2702 ring = &priv->tx_rings[i];
2703 napi_disable(&ring->napi);
2704 }
2705
2706 ring = &priv->tx_rings[DESC_INDEX];
2707 napi_disable(&ring->napi);
2708 }
2709
bcmgenet_fini_tx_napi(struct bcmgenet_priv * priv)2710 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2711 {
2712 unsigned int i;
2713 struct bcmgenet_tx_ring *ring;
2714
2715 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2716 ring = &priv->tx_rings[i];
2717 netif_napi_del(&ring->napi);
2718 }
2719
2720 ring = &priv->tx_rings[DESC_INDEX];
2721 netif_napi_del(&ring->napi);
2722 }
2723
2724 /* Initialize Tx queues
2725 *
2726 * Queues 0-3 are priority-based, each one has 32 descriptors,
2727 * with queue 0 being the highest priority queue.
2728 *
2729 * Queue 16 is the default Tx queue with
2730 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2731 *
2732 * The transmit control block pool is then partitioned as follows:
2733 * - Tx queue 0 uses tx_cbs[0..31]
2734 * - Tx queue 1 uses tx_cbs[32..63]
2735 * - Tx queue 2 uses tx_cbs[64..95]
2736 * - Tx queue 3 uses tx_cbs[96..127]
2737 * - Tx queue 16 uses tx_cbs[128..255]
2738 */
bcmgenet_init_tx_queues(struct net_device * dev)2739 static void bcmgenet_init_tx_queues(struct net_device *dev)
2740 {
2741 struct bcmgenet_priv *priv = netdev_priv(dev);
2742 u32 i, dma_enable;
2743 u32 dma_ctrl, ring_cfg;
2744 u32 dma_priority[3] = {0, 0, 0};
2745
2746 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2747 dma_enable = dma_ctrl & DMA_EN;
2748 dma_ctrl &= ~DMA_EN;
2749 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2750
2751 dma_ctrl = 0;
2752 ring_cfg = 0;
2753
2754 /* Enable strict priority arbiter mode */
2755 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2756
2757 /* Initialize Tx priority queues */
2758 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2759 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2760 i * priv->hw_params->tx_bds_per_q,
2761 (i + 1) * priv->hw_params->tx_bds_per_q);
2762 ring_cfg |= (1 << i);
2763 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2764 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2765 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2766 }
2767
2768 /* Initialize Tx default queue 16 */
2769 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2770 priv->hw_params->tx_queues *
2771 priv->hw_params->tx_bds_per_q,
2772 TOTAL_DESC);
2773 ring_cfg |= (1 << DESC_INDEX);
2774 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2775 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2776 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2777 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2778
2779 /* Set Tx queue priorities */
2780 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2781 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2782 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2783
2784 /* Enable Tx queues */
2785 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2786
2787 /* Enable Tx DMA */
2788 if (dma_enable)
2789 dma_ctrl |= DMA_EN;
2790 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2791 }
2792
bcmgenet_enable_rx_napi(struct bcmgenet_priv * priv)2793 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2794 {
2795 unsigned int i;
2796 struct bcmgenet_rx_ring *ring;
2797
2798 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2799 ring = &priv->rx_rings[i];
2800 napi_enable(&ring->napi);
2801 ring->int_enable(ring);
2802 }
2803
2804 ring = &priv->rx_rings[DESC_INDEX];
2805 napi_enable(&ring->napi);
2806 ring->int_enable(ring);
2807 }
2808
bcmgenet_disable_rx_napi(struct bcmgenet_priv * priv)2809 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2810 {
2811 unsigned int i;
2812 struct bcmgenet_rx_ring *ring;
2813
2814 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2815 ring = &priv->rx_rings[i];
2816 napi_disable(&ring->napi);
2817 cancel_work_sync(&ring->dim.dim.work);
2818 }
2819
2820 ring = &priv->rx_rings[DESC_INDEX];
2821 napi_disable(&ring->napi);
2822 cancel_work_sync(&ring->dim.dim.work);
2823 }
2824
bcmgenet_fini_rx_napi(struct bcmgenet_priv * priv)2825 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2826 {
2827 unsigned int i;
2828 struct bcmgenet_rx_ring *ring;
2829
2830 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2831 ring = &priv->rx_rings[i];
2832 netif_napi_del(&ring->napi);
2833 }
2834
2835 ring = &priv->rx_rings[DESC_INDEX];
2836 netif_napi_del(&ring->napi);
2837 }
2838
2839 /* Initialize Rx queues
2840 *
2841 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2842 * used to direct traffic to these queues.
2843 *
2844 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2845 */
bcmgenet_init_rx_queues(struct net_device * dev)2846 static int bcmgenet_init_rx_queues(struct net_device *dev)
2847 {
2848 struct bcmgenet_priv *priv = netdev_priv(dev);
2849 u32 i;
2850 u32 dma_enable;
2851 u32 dma_ctrl;
2852 u32 ring_cfg;
2853 int ret;
2854
2855 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2856 dma_enable = dma_ctrl & DMA_EN;
2857 dma_ctrl &= ~DMA_EN;
2858 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2859
2860 dma_ctrl = 0;
2861 ring_cfg = 0;
2862
2863 /* Initialize Rx priority queues */
2864 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2865 ret = bcmgenet_init_rx_ring(priv, i,
2866 priv->hw_params->rx_bds_per_q,
2867 i * priv->hw_params->rx_bds_per_q,
2868 (i + 1) *
2869 priv->hw_params->rx_bds_per_q);
2870 if (ret)
2871 return ret;
2872
2873 ring_cfg |= (1 << i);
2874 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2875 }
2876
2877 /* Initialize Rx default queue 16 */
2878 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2879 priv->hw_params->rx_queues *
2880 priv->hw_params->rx_bds_per_q,
2881 TOTAL_DESC);
2882 if (ret)
2883 return ret;
2884
2885 ring_cfg |= (1 << DESC_INDEX);
2886 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2887
2888 /* Enable rings */
2889 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2890
2891 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2892 if (dma_enable)
2893 dma_ctrl |= DMA_EN;
2894 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2895
2896 return 0;
2897 }
2898
bcmgenet_dma_teardown(struct bcmgenet_priv * priv)2899 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2900 {
2901 int ret = 0;
2902 int timeout = 0;
2903 u32 reg;
2904 u32 dma_ctrl;
2905 int i;
2906
2907 /* Disable TDMA to stop add more frames in TX DMA */
2908 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2909 reg &= ~DMA_EN;
2910 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2911
2912 /* Check TDMA status register to confirm TDMA is disabled */
2913 while (timeout++ < DMA_TIMEOUT_VAL) {
2914 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2915 if (reg & DMA_DISABLED)
2916 break;
2917
2918 udelay(1);
2919 }
2920
2921 if (timeout == DMA_TIMEOUT_VAL) {
2922 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2923 ret = -ETIMEDOUT;
2924 }
2925
2926 /* Wait 10ms for packet drain in both tx and rx dma */
2927 usleep_range(10000, 20000);
2928
2929 /* Disable RDMA */
2930 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2931 reg &= ~DMA_EN;
2932 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2933
2934 timeout = 0;
2935 /* Check RDMA status register to confirm RDMA is disabled */
2936 while (timeout++ < DMA_TIMEOUT_VAL) {
2937 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2938 if (reg & DMA_DISABLED)
2939 break;
2940
2941 udelay(1);
2942 }
2943
2944 if (timeout == DMA_TIMEOUT_VAL) {
2945 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2946 ret = -ETIMEDOUT;
2947 }
2948
2949 dma_ctrl = 0;
2950 for (i = 0; i < priv->hw_params->rx_queues; i++)
2951 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2952 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2953 reg &= ~dma_ctrl;
2954 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2955
2956 dma_ctrl = 0;
2957 for (i = 0; i < priv->hw_params->tx_queues; i++)
2958 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2959 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2960 reg &= ~dma_ctrl;
2961 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2962
2963 return ret;
2964 }
2965
bcmgenet_fini_dma(struct bcmgenet_priv * priv)2966 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2967 {
2968 struct netdev_queue *txq;
2969 int i;
2970
2971 bcmgenet_fini_rx_napi(priv);
2972 bcmgenet_fini_tx_napi(priv);
2973
2974 for (i = 0; i < priv->num_tx_bds; i++)
2975 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2976 priv->tx_cbs + i));
2977
2978 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2979 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2980 netdev_tx_reset_queue(txq);
2981 }
2982
2983 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2984 netdev_tx_reset_queue(txq);
2985
2986 bcmgenet_free_rx_buffers(priv);
2987 kfree(priv->rx_cbs);
2988 kfree(priv->tx_cbs);
2989 }
2990
2991 /* init_edma: Initialize DMA control register */
bcmgenet_init_dma(struct bcmgenet_priv * priv)2992 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2993 {
2994 int ret;
2995 unsigned int i;
2996 struct enet_cb *cb;
2997
2998 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2999
3000 /* Initialize common Rx ring structures */
3001 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3002 priv->num_rx_bds = TOTAL_DESC;
3003 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3004 GFP_KERNEL);
3005 if (!priv->rx_cbs)
3006 return -ENOMEM;
3007
3008 for (i = 0; i < priv->num_rx_bds; i++) {
3009 cb = priv->rx_cbs + i;
3010 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3011 }
3012
3013 /* Initialize common TX ring structures */
3014 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3015 priv->num_tx_bds = TOTAL_DESC;
3016 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3017 GFP_KERNEL);
3018 if (!priv->tx_cbs) {
3019 kfree(priv->rx_cbs);
3020 return -ENOMEM;
3021 }
3022
3023 for (i = 0; i < priv->num_tx_bds; i++) {
3024 cb = priv->tx_cbs + i;
3025 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3026 }
3027
3028 /* Init rDma */
3029 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3030 DMA_SCB_BURST_SIZE);
3031
3032 /* Initialize Rx queues */
3033 ret = bcmgenet_init_rx_queues(priv->dev);
3034 if (ret) {
3035 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3036 bcmgenet_free_rx_buffers(priv);
3037 kfree(priv->rx_cbs);
3038 kfree(priv->tx_cbs);
3039 return ret;
3040 }
3041
3042 /* Init tDma */
3043 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3044 DMA_SCB_BURST_SIZE);
3045
3046 /* Initialize Tx queues */
3047 bcmgenet_init_tx_queues(priv->dev);
3048
3049 return 0;
3050 }
3051
3052 /* Interrupt bottom half */
bcmgenet_irq_task(struct work_struct * work)3053 static void bcmgenet_irq_task(struct work_struct *work)
3054 {
3055 unsigned int status;
3056 struct bcmgenet_priv *priv = container_of(
3057 work, struct bcmgenet_priv, bcmgenet_irq_work);
3058
3059 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3060
3061 spin_lock_irq(&priv->lock);
3062 status = priv->irq0_stat;
3063 priv->irq0_stat = 0;
3064 spin_unlock_irq(&priv->lock);
3065
3066 if (status & UMAC_IRQ_PHY_DET_R &&
3067 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3068 phy_init_hw(priv->dev->phydev);
3069 genphy_config_aneg(priv->dev->phydev);
3070 }
3071
3072 /* Link UP/DOWN event */
3073 if (status & UMAC_IRQ_LINK_EVENT)
3074 phy_mac_interrupt(priv->dev->phydev);
3075
3076 }
3077
3078 /* bcmgenet_isr1: handle Rx and Tx priority queues */
bcmgenet_isr1(int irq,void * dev_id)3079 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3080 {
3081 struct bcmgenet_priv *priv = dev_id;
3082 struct bcmgenet_rx_ring *rx_ring;
3083 struct bcmgenet_tx_ring *tx_ring;
3084 unsigned int index, status;
3085
3086 /* Read irq status */
3087 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3088 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3089
3090 /* clear interrupts */
3091 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3092
3093 netif_dbg(priv, intr, priv->dev,
3094 "%s: IRQ=0x%x\n", __func__, status);
3095
3096 /* Check Rx priority queue interrupts */
3097 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3098 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3099 continue;
3100
3101 rx_ring = &priv->rx_rings[index];
3102 rx_ring->dim.event_ctr++;
3103
3104 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3105 rx_ring->int_disable(rx_ring);
3106 __napi_schedule_irqoff(&rx_ring->napi);
3107 }
3108 }
3109
3110 /* Check Tx priority queue interrupts */
3111 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3112 if (!(status & BIT(index)))
3113 continue;
3114
3115 tx_ring = &priv->tx_rings[index];
3116
3117 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3118 tx_ring->int_disable(tx_ring);
3119 __napi_schedule_irqoff(&tx_ring->napi);
3120 }
3121 }
3122
3123 return IRQ_HANDLED;
3124 }
3125
3126 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
bcmgenet_isr0(int irq,void * dev_id)3127 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3128 {
3129 struct bcmgenet_priv *priv = dev_id;
3130 struct bcmgenet_rx_ring *rx_ring;
3131 struct bcmgenet_tx_ring *tx_ring;
3132 unsigned int status;
3133 unsigned long flags;
3134
3135 /* Read irq status */
3136 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3137 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3138
3139 /* clear interrupts */
3140 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3141
3142 netif_dbg(priv, intr, priv->dev,
3143 "IRQ=0x%x\n", status);
3144
3145 if (status & UMAC_IRQ_RXDMA_DONE) {
3146 rx_ring = &priv->rx_rings[DESC_INDEX];
3147 rx_ring->dim.event_ctr++;
3148
3149 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3150 rx_ring->int_disable(rx_ring);
3151 __napi_schedule_irqoff(&rx_ring->napi);
3152 }
3153 }
3154
3155 if (status & UMAC_IRQ_TXDMA_DONE) {
3156 tx_ring = &priv->tx_rings[DESC_INDEX];
3157
3158 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3159 tx_ring->int_disable(tx_ring);
3160 __napi_schedule_irqoff(&tx_ring->napi);
3161 }
3162 }
3163
3164 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3165 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3166 wake_up(&priv->wq);
3167 }
3168
3169 /* all other interested interrupts handled in bottom half */
3170 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3171 if (status) {
3172 /* Save irq status for bottom-half processing. */
3173 spin_lock_irqsave(&priv->lock, flags);
3174 priv->irq0_stat |= status;
3175 spin_unlock_irqrestore(&priv->lock, flags);
3176
3177 schedule_work(&priv->bcmgenet_irq_work);
3178 }
3179
3180 return IRQ_HANDLED;
3181 }
3182
bcmgenet_wol_isr(int irq,void * dev_id)3183 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3184 {
3185 /* Acknowledge the interrupt */
3186 return IRQ_HANDLED;
3187 }
3188
3189 #ifdef CONFIG_NET_POLL_CONTROLLER
bcmgenet_poll_controller(struct net_device * dev)3190 static void bcmgenet_poll_controller(struct net_device *dev)
3191 {
3192 struct bcmgenet_priv *priv = netdev_priv(dev);
3193
3194 /* Invoke the main RX/TX interrupt handler */
3195 disable_irq(priv->irq0);
3196 bcmgenet_isr0(priv->irq0, priv);
3197 enable_irq(priv->irq0);
3198
3199 /* And the interrupt handler for RX/TX priority queues */
3200 disable_irq(priv->irq1);
3201 bcmgenet_isr1(priv->irq1, priv);
3202 enable_irq(priv->irq1);
3203 }
3204 #endif
3205
bcmgenet_umac_reset(struct bcmgenet_priv * priv)3206 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3207 {
3208 u32 reg;
3209
3210 reg = bcmgenet_rbuf_ctrl_get(priv);
3211 reg |= BIT(1);
3212 bcmgenet_rbuf_ctrl_set(priv, reg);
3213 udelay(10);
3214
3215 reg &= ~BIT(1);
3216 bcmgenet_rbuf_ctrl_set(priv, reg);
3217 udelay(10);
3218 }
3219
bcmgenet_set_hw_addr(struct bcmgenet_priv * priv,unsigned char * addr)3220 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3221 unsigned char *addr)
3222 {
3223 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3224 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3225 }
3226
bcmgenet_get_hw_addr(struct bcmgenet_priv * priv,unsigned char * addr)3227 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3228 unsigned char *addr)
3229 {
3230 u32 addr_tmp;
3231
3232 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3233 put_unaligned_be32(addr_tmp, &addr[0]);
3234 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3235 put_unaligned_be16(addr_tmp, &addr[4]);
3236 }
3237
3238 /* Returns a reusable dma control register value */
bcmgenet_dma_disable(struct bcmgenet_priv * priv)3239 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3240 {
3241 unsigned int i;
3242 u32 reg;
3243 u32 dma_ctrl;
3244
3245 /* disable DMA */
3246 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3247 for (i = 0; i < priv->hw_params->tx_queues; i++)
3248 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3249 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3250 reg &= ~dma_ctrl;
3251 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3252
3253 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3254 for (i = 0; i < priv->hw_params->rx_queues; i++)
3255 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3256 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3257 reg &= ~dma_ctrl;
3258 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3259
3260 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3261 udelay(10);
3262 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3263
3264 return dma_ctrl;
3265 }
3266
bcmgenet_enable_dma(struct bcmgenet_priv * priv,u32 dma_ctrl)3267 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3268 {
3269 u32 reg;
3270
3271 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3272 reg |= dma_ctrl;
3273 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3274
3275 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3276 reg |= dma_ctrl;
3277 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3278 }
3279
bcmgenet_netif_start(struct net_device * dev)3280 static void bcmgenet_netif_start(struct net_device *dev)
3281 {
3282 struct bcmgenet_priv *priv = netdev_priv(dev);
3283
3284 /* Start the network engine */
3285 bcmgenet_set_rx_mode(dev);
3286 bcmgenet_enable_rx_napi(priv);
3287
3288 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3289
3290 bcmgenet_enable_tx_napi(priv);
3291
3292 /* Monitor link interrupts now */
3293 bcmgenet_link_intr_enable(priv);
3294
3295 phy_start(dev->phydev);
3296 }
3297
bcmgenet_open(struct net_device * dev)3298 static int bcmgenet_open(struct net_device *dev)
3299 {
3300 struct bcmgenet_priv *priv = netdev_priv(dev);
3301 unsigned long dma_ctrl;
3302 int ret;
3303
3304 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3305
3306 /* Turn on the clock */
3307 clk_prepare_enable(priv->clk);
3308
3309 /* If this is an internal GPHY, power it back on now, before UniMAC is
3310 * brought out of reset as absolutely no UniMAC activity is allowed
3311 */
3312 if (priv->internal_phy)
3313 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3314
3315 /* take MAC out of reset */
3316 bcmgenet_umac_reset(priv);
3317
3318 init_umac(priv);
3319
3320 /* Apply features again in case we changed them while interface was
3321 * down
3322 */
3323 bcmgenet_set_features(dev, dev->features);
3324
3325 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3326
3327 /* Disable RX/TX DMA and flush TX queues */
3328 dma_ctrl = bcmgenet_dma_disable(priv);
3329
3330 /* Reinitialize TDMA and RDMA and SW housekeeping */
3331 ret = bcmgenet_init_dma(priv);
3332 if (ret) {
3333 netdev_err(dev, "failed to initialize DMA\n");
3334 goto err_clk_disable;
3335 }
3336
3337 /* Always enable ring 16 - descriptor ring */
3338 bcmgenet_enable_dma(priv, dma_ctrl);
3339
3340 /* HFB init */
3341 bcmgenet_hfb_init(priv);
3342
3343 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3344 dev->name, priv);
3345 if (ret < 0) {
3346 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3347 goto err_fini_dma;
3348 }
3349
3350 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3351 dev->name, priv);
3352 if (ret < 0) {
3353 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3354 goto err_irq0;
3355 }
3356
3357 ret = bcmgenet_mii_probe(dev);
3358 if (ret) {
3359 netdev_err(dev, "failed to connect to PHY\n");
3360 goto err_irq1;
3361 }
3362
3363 bcmgenet_netif_start(dev);
3364
3365 netif_tx_start_all_queues(dev);
3366
3367 return 0;
3368
3369 err_irq1:
3370 free_irq(priv->irq1, priv);
3371 err_irq0:
3372 free_irq(priv->irq0, priv);
3373 err_fini_dma:
3374 bcmgenet_dma_teardown(priv);
3375 bcmgenet_fini_dma(priv);
3376 err_clk_disable:
3377 if (priv->internal_phy)
3378 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3379 clk_disable_unprepare(priv->clk);
3380 return ret;
3381 }
3382
bcmgenet_netif_stop(struct net_device * dev)3383 static void bcmgenet_netif_stop(struct net_device *dev)
3384 {
3385 struct bcmgenet_priv *priv = netdev_priv(dev);
3386
3387 bcmgenet_disable_tx_napi(priv);
3388 netif_tx_disable(dev);
3389
3390 /* Disable MAC receive */
3391 umac_enable_set(priv, CMD_RX_EN, false);
3392
3393 bcmgenet_dma_teardown(priv);
3394
3395 /* Disable MAC transmit. TX DMA disabled must be done before this */
3396 umac_enable_set(priv, CMD_TX_EN, false);
3397
3398 phy_stop(dev->phydev);
3399 bcmgenet_disable_rx_napi(priv);
3400 bcmgenet_intr_disable(priv);
3401
3402 /* Wait for pending work items to complete. Since interrupts are
3403 * disabled no new work will be scheduled.
3404 */
3405 cancel_work_sync(&priv->bcmgenet_irq_work);
3406
3407 priv->old_link = -1;
3408 priv->old_speed = -1;
3409 priv->old_duplex = -1;
3410 priv->old_pause = -1;
3411
3412 /* tx reclaim */
3413 bcmgenet_tx_reclaim_all(dev);
3414 bcmgenet_fini_dma(priv);
3415 }
3416
bcmgenet_close(struct net_device * dev)3417 static int bcmgenet_close(struct net_device *dev)
3418 {
3419 struct bcmgenet_priv *priv = netdev_priv(dev);
3420 int ret = 0;
3421
3422 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3423
3424 bcmgenet_netif_stop(dev);
3425
3426 /* Really kill the PHY state machine and disconnect from it */
3427 phy_disconnect(dev->phydev);
3428
3429 free_irq(priv->irq0, priv);
3430 free_irq(priv->irq1, priv);
3431
3432 if (priv->internal_phy)
3433 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3434
3435 clk_disable_unprepare(priv->clk);
3436
3437 return ret;
3438 }
3439
bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring * ring)3440 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3441 {
3442 struct bcmgenet_priv *priv = ring->priv;
3443 u32 p_index, c_index, intsts, intmsk;
3444 struct netdev_queue *txq;
3445 unsigned int free_bds;
3446 bool txq_stopped;
3447
3448 if (!netif_msg_tx_err(priv))
3449 return;
3450
3451 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3452
3453 spin_lock(&ring->lock);
3454 if (ring->index == DESC_INDEX) {
3455 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3456 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3457 } else {
3458 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3459 intmsk = 1 << ring->index;
3460 }
3461 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3462 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3463 txq_stopped = netif_tx_queue_stopped(txq);
3464 free_bds = ring->free_bds;
3465 spin_unlock(&ring->lock);
3466
3467 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3468 "TX queue status: %s, interrupts: %s\n"
3469 "(sw)free_bds: %d (sw)size: %d\n"
3470 "(sw)p_index: %d (hw)p_index: %d\n"
3471 "(sw)c_index: %d (hw)c_index: %d\n"
3472 "(sw)clean_p: %d (sw)write_p: %d\n"
3473 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3474 ring->index, ring->queue,
3475 txq_stopped ? "stopped" : "active",
3476 intsts & intmsk ? "enabled" : "disabled",
3477 free_bds, ring->size,
3478 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3479 ring->c_index, c_index & DMA_C_INDEX_MASK,
3480 ring->clean_ptr, ring->write_ptr,
3481 ring->cb_ptr, ring->end_ptr);
3482 }
3483
bcmgenet_timeout(struct net_device * dev,unsigned int txqueue)3484 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3485 {
3486 struct bcmgenet_priv *priv = netdev_priv(dev);
3487 u32 int0_enable = 0;
3488 u32 int1_enable = 0;
3489 unsigned int q;
3490
3491 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3492
3493 for (q = 0; q < priv->hw_params->tx_queues; q++)
3494 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3495 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3496
3497 bcmgenet_tx_reclaim_all(dev);
3498
3499 for (q = 0; q < priv->hw_params->tx_queues; q++)
3500 int1_enable |= (1 << q);
3501
3502 int0_enable = UMAC_IRQ_TXDMA_DONE;
3503
3504 /* Re-enable TX interrupts if disabled */
3505 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3506 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3507
3508 netif_trans_update(dev);
3509
3510 dev->stats.tx_errors++;
3511
3512 netif_tx_wake_all_queues(dev);
3513 }
3514
3515 #define MAX_MDF_FILTER 17
3516
bcmgenet_set_mdf_addr(struct bcmgenet_priv * priv,unsigned char * addr,int * i)3517 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3518 unsigned char *addr,
3519 int *i)
3520 {
3521 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3522 UMAC_MDF_ADDR + (*i * 4));
3523 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3524 addr[4] << 8 | addr[5],
3525 UMAC_MDF_ADDR + ((*i + 1) * 4));
3526 *i += 2;
3527 }
3528
bcmgenet_set_rx_mode(struct net_device * dev)3529 static void bcmgenet_set_rx_mode(struct net_device *dev)
3530 {
3531 struct bcmgenet_priv *priv = netdev_priv(dev);
3532 struct netdev_hw_addr *ha;
3533 int i, nfilter;
3534 u32 reg;
3535
3536 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3537
3538 /* Number of filters needed */
3539 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3540
3541 /*
3542 * Turn on promicuous mode for three scenarios
3543 * 1. IFF_PROMISC flag is set
3544 * 2. IFF_ALLMULTI flag is set
3545 * 3. The number of filters needed exceeds the number filters
3546 * supported by the hardware.
3547 */
3548 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3549 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3550 (nfilter > MAX_MDF_FILTER)) {
3551 reg |= CMD_PROMISC;
3552 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3553 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3554 return;
3555 } else {
3556 reg &= ~CMD_PROMISC;
3557 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3558 }
3559
3560 /* update MDF filter */
3561 i = 0;
3562 /* Broadcast */
3563 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3564 /* my own address.*/
3565 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3566
3567 /* Unicast */
3568 netdev_for_each_uc_addr(ha, dev)
3569 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3570
3571 /* Multicast */
3572 netdev_for_each_mc_addr(ha, dev)
3573 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574
3575 /* Enable filters */
3576 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3577 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3578 }
3579
3580 /* Set the hardware MAC address. */
bcmgenet_set_mac_addr(struct net_device * dev,void * p)3581 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3582 {
3583 struct sockaddr *addr = p;
3584
3585 /* Setting the MAC address at the hardware level is not possible
3586 * without disabling the UniMAC RX/TX enable bits.
3587 */
3588 if (netif_running(dev))
3589 return -EBUSY;
3590
3591 ether_addr_copy(dev->dev_addr, addr->sa_data);
3592
3593 return 0;
3594 }
3595
bcmgenet_get_stats(struct net_device * dev)3596 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3597 {
3598 struct bcmgenet_priv *priv = netdev_priv(dev);
3599 unsigned long tx_bytes = 0, tx_packets = 0;
3600 unsigned long rx_bytes = 0, rx_packets = 0;
3601 unsigned long rx_errors = 0, rx_dropped = 0;
3602 struct bcmgenet_tx_ring *tx_ring;
3603 struct bcmgenet_rx_ring *rx_ring;
3604 unsigned int q;
3605
3606 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3607 tx_ring = &priv->tx_rings[q];
3608 tx_bytes += tx_ring->bytes;
3609 tx_packets += tx_ring->packets;
3610 }
3611 tx_ring = &priv->tx_rings[DESC_INDEX];
3612 tx_bytes += tx_ring->bytes;
3613 tx_packets += tx_ring->packets;
3614
3615 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3616 rx_ring = &priv->rx_rings[q];
3617
3618 rx_bytes += rx_ring->bytes;
3619 rx_packets += rx_ring->packets;
3620 rx_errors += rx_ring->errors;
3621 rx_dropped += rx_ring->dropped;
3622 }
3623 rx_ring = &priv->rx_rings[DESC_INDEX];
3624 rx_bytes += rx_ring->bytes;
3625 rx_packets += rx_ring->packets;
3626 rx_errors += rx_ring->errors;
3627 rx_dropped += rx_ring->dropped;
3628
3629 dev->stats.tx_bytes = tx_bytes;
3630 dev->stats.tx_packets = tx_packets;
3631 dev->stats.rx_bytes = rx_bytes;
3632 dev->stats.rx_packets = rx_packets;
3633 dev->stats.rx_errors = rx_errors;
3634 dev->stats.rx_missed_errors = rx_errors;
3635 dev->stats.rx_dropped = rx_dropped;
3636 return &dev->stats;
3637 }
3638
bcmgenet_change_carrier(struct net_device * dev,bool new_carrier)3639 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3640 {
3641 struct bcmgenet_priv *priv = netdev_priv(dev);
3642
3643 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3644 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3645 return -EOPNOTSUPP;
3646
3647 if (new_carrier)
3648 netif_carrier_on(dev);
3649 else
3650 netif_carrier_off(dev);
3651
3652 return 0;
3653 }
3654
3655 static const struct net_device_ops bcmgenet_netdev_ops = {
3656 .ndo_open = bcmgenet_open,
3657 .ndo_stop = bcmgenet_close,
3658 .ndo_start_xmit = bcmgenet_xmit,
3659 .ndo_tx_timeout = bcmgenet_timeout,
3660 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3661 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3662 .ndo_do_ioctl = phy_do_ioctl_running,
3663 .ndo_set_features = bcmgenet_set_features,
3664 #ifdef CONFIG_NET_POLL_CONTROLLER
3665 .ndo_poll_controller = bcmgenet_poll_controller,
3666 #endif
3667 .ndo_get_stats = bcmgenet_get_stats,
3668 .ndo_change_carrier = bcmgenet_change_carrier,
3669 };
3670
3671 /* Array of GENET hardware parameters/characteristics */
3672 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3673 [GENET_V1] = {
3674 .tx_queues = 0,
3675 .tx_bds_per_q = 0,
3676 .rx_queues = 0,
3677 .rx_bds_per_q = 0,
3678 .bp_in_en_shift = 16,
3679 .bp_in_mask = 0xffff,
3680 .hfb_filter_cnt = 16,
3681 .qtag_mask = 0x1F,
3682 .hfb_offset = 0x1000,
3683 .rdma_offset = 0x2000,
3684 .tdma_offset = 0x3000,
3685 .words_per_bd = 2,
3686 },
3687 [GENET_V2] = {
3688 .tx_queues = 4,
3689 .tx_bds_per_q = 32,
3690 .rx_queues = 0,
3691 .rx_bds_per_q = 0,
3692 .bp_in_en_shift = 16,
3693 .bp_in_mask = 0xffff,
3694 .hfb_filter_cnt = 16,
3695 .qtag_mask = 0x1F,
3696 .tbuf_offset = 0x0600,
3697 .hfb_offset = 0x1000,
3698 .hfb_reg_offset = 0x2000,
3699 .rdma_offset = 0x3000,
3700 .tdma_offset = 0x4000,
3701 .words_per_bd = 2,
3702 .flags = GENET_HAS_EXT,
3703 },
3704 [GENET_V3] = {
3705 .tx_queues = 4,
3706 .tx_bds_per_q = 32,
3707 .rx_queues = 0,
3708 .rx_bds_per_q = 0,
3709 .bp_in_en_shift = 17,
3710 .bp_in_mask = 0x1ffff,
3711 .hfb_filter_cnt = 48,
3712 .hfb_filter_size = 128,
3713 .qtag_mask = 0x3F,
3714 .tbuf_offset = 0x0600,
3715 .hfb_offset = 0x8000,
3716 .hfb_reg_offset = 0xfc00,
3717 .rdma_offset = 0x10000,
3718 .tdma_offset = 0x11000,
3719 .words_per_bd = 2,
3720 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3721 GENET_HAS_MOCA_LINK_DET,
3722 },
3723 [GENET_V4] = {
3724 .tx_queues = 4,
3725 .tx_bds_per_q = 32,
3726 .rx_queues = 0,
3727 .rx_bds_per_q = 0,
3728 .bp_in_en_shift = 17,
3729 .bp_in_mask = 0x1ffff,
3730 .hfb_filter_cnt = 48,
3731 .hfb_filter_size = 128,
3732 .qtag_mask = 0x3F,
3733 .tbuf_offset = 0x0600,
3734 .hfb_offset = 0x8000,
3735 .hfb_reg_offset = 0xfc00,
3736 .rdma_offset = 0x2000,
3737 .tdma_offset = 0x4000,
3738 .words_per_bd = 3,
3739 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3740 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3741 },
3742 [GENET_V5] = {
3743 .tx_queues = 4,
3744 .tx_bds_per_q = 32,
3745 .rx_queues = 0,
3746 .rx_bds_per_q = 0,
3747 .bp_in_en_shift = 17,
3748 .bp_in_mask = 0x1ffff,
3749 .hfb_filter_cnt = 48,
3750 .hfb_filter_size = 128,
3751 .qtag_mask = 0x3F,
3752 .tbuf_offset = 0x0600,
3753 .hfb_offset = 0x8000,
3754 .hfb_reg_offset = 0xfc00,
3755 .rdma_offset = 0x2000,
3756 .tdma_offset = 0x4000,
3757 .words_per_bd = 3,
3758 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3759 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3760 },
3761 };
3762
3763 /* Infer hardware parameters from the detected GENET version */
bcmgenet_set_hw_params(struct bcmgenet_priv * priv)3764 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3765 {
3766 struct bcmgenet_hw_params *params;
3767 u32 reg;
3768 u8 major;
3769 u16 gphy_rev;
3770
3771 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3772 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3773 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3774 } else if (GENET_IS_V3(priv)) {
3775 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3776 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3777 } else if (GENET_IS_V2(priv)) {
3778 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3779 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3780 } else if (GENET_IS_V1(priv)) {
3781 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3782 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3783 }
3784
3785 /* enum genet_version starts at 1 */
3786 priv->hw_params = &bcmgenet_hw_params[priv->version];
3787 params = priv->hw_params;
3788
3789 /* Read GENET HW version */
3790 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3791 major = (reg >> 24 & 0x0f);
3792 if (major == 6)
3793 major = 5;
3794 else if (major == 5)
3795 major = 4;
3796 else if (major == 0)
3797 major = 1;
3798 if (major != priv->version) {
3799 dev_err(&priv->pdev->dev,
3800 "GENET version mismatch, got: %d, configured for: %d\n",
3801 major, priv->version);
3802 }
3803
3804 /* Print the GENET core version */
3805 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3806 major, (reg >> 16) & 0x0f, reg & 0xffff);
3807
3808 /* Store the integrated PHY revision for the MDIO probing function
3809 * to pass this information to the PHY driver. The PHY driver expects
3810 * to find the PHY major revision in bits 15:8 while the GENET register
3811 * stores that information in bits 7:0, account for that.
3812 *
3813 * On newer chips, starting with PHY revision G0, a new scheme is
3814 * deployed similar to the Starfighter 2 switch with GPHY major
3815 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3816 * is reserved as well as special value 0x01ff, we have a small
3817 * heuristic to check for the new GPHY revision and re-arrange things
3818 * so the GPHY driver is happy.
3819 */
3820 gphy_rev = reg & 0xffff;
3821
3822 if (GENET_IS_V5(priv)) {
3823 /* The EPHY revision should come from the MDIO registers of
3824 * the PHY not from GENET.
3825 */
3826 if (gphy_rev != 0) {
3827 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3828 gphy_rev);
3829 }
3830 /* This is reserved so should require special treatment */
3831 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3832 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3833 return;
3834 /* This is the good old scheme, just GPHY major, no minor nor patch */
3835 } else if ((gphy_rev & 0xf0) != 0) {
3836 priv->gphy_rev = gphy_rev << 8;
3837 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3838 } else if ((gphy_rev & 0xff00) != 0) {
3839 priv->gphy_rev = gphy_rev;
3840 }
3841
3842 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3843 if (!(params->flags & GENET_HAS_40BITS))
3844 pr_warn("GENET does not support 40-bits PA\n");
3845 #endif
3846
3847 pr_debug("Configuration for version: %d\n"
3848 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3849 "BP << en: %2d, BP msk: 0x%05x\n"
3850 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3851 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3852 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3853 "Words/BD: %d\n",
3854 priv->version,
3855 params->tx_queues, params->tx_bds_per_q,
3856 params->rx_queues, params->rx_bds_per_q,
3857 params->bp_in_en_shift, params->bp_in_mask,
3858 params->hfb_filter_cnt, params->qtag_mask,
3859 params->tbuf_offset, params->hfb_offset,
3860 params->hfb_reg_offset,
3861 params->rdma_offset, params->tdma_offset,
3862 params->words_per_bd);
3863 }
3864
3865 struct bcmgenet_plat_data {
3866 enum bcmgenet_version version;
3867 u32 dma_max_burst_length;
3868 };
3869
3870 static const struct bcmgenet_plat_data v1_plat_data = {
3871 .version = GENET_V1,
3872 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3873 };
3874
3875 static const struct bcmgenet_plat_data v2_plat_data = {
3876 .version = GENET_V2,
3877 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3878 };
3879
3880 static const struct bcmgenet_plat_data v3_plat_data = {
3881 .version = GENET_V3,
3882 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3883 };
3884
3885 static const struct bcmgenet_plat_data v4_plat_data = {
3886 .version = GENET_V4,
3887 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3888 };
3889
3890 static const struct bcmgenet_plat_data v5_plat_data = {
3891 .version = GENET_V5,
3892 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3893 };
3894
3895 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3896 .version = GENET_V5,
3897 .dma_max_burst_length = 0x08,
3898 };
3899
3900 static const struct of_device_id bcmgenet_match[] = {
3901 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3902 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3903 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3904 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3905 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3906 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3907 { },
3908 };
3909 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3910
bcmgenet_probe(struct platform_device * pdev)3911 static int bcmgenet_probe(struct platform_device *pdev)
3912 {
3913 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3914 const struct bcmgenet_plat_data *pdata;
3915 struct bcmgenet_priv *priv;
3916 struct net_device *dev;
3917 unsigned int i;
3918 int err = -EIO;
3919
3920 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3921 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3922 GENET_MAX_MQ_CNT + 1);
3923 if (!dev) {
3924 dev_err(&pdev->dev, "can't allocate net device\n");
3925 return -ENOMEM;
3926 }
3927
3928 priv = netdev_priv(dev);
3929 priv->irq0 = platform_get_irq(pdev, 0);
3930 if (priv->irq0 < 0) {
3931 err = priv->irq0;
3932 goto err;
3933 }
3934 priv->irq1 = platform_get_irq(pdev, 1);
3935 if (priv->irq1 < 0) {
3936 err = priv->irq1;
3937 goto err;
3938 }
3939 priv->wol_irq = platform_get_irq_optional(pdev, 2);
3940
3941 priv->base = devm_platform_ioremap_resource(pdev, 0);
3942 if (IS_ERR(priv->base)) {
3943 err = PTR_ERR(priv->base);
3944 goto err;
3945 }
3946
3947 spin_lock_init(&priv->lock);
3948
3949 SET_NETDEV_DEV(dev, &pdev->dev);
3950 dev_set_drvdata(&pdev->dev, dev);
3951 dev->watchdog_timeo = 2 * HZ;
3952 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3953 dev->netdev_ops = &bcmgenet_netdev_ops;
3954
3955 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3956
3957 /* Set default features */
3958 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3959 NETIF_F_RXCSUM;
3960 dev->hw_features |= dev->features;
3961 dev->vlan_features |= dev->features;
3962
3963 /* Request the WOL interrupt and advertise suspend if available */
3964 priv->wol_irq_disabled = true;
3965 if (priv->wol_irq > 0) {
3966 err = devm_request_irq(&pdev->dev, priv->wol_irq,
3967 bcmgenet_wol_isr, 0, dev->name, priv);
3968 if (!err)
3969 device_set_wakeup_capable(&pdev->dev, 1);
3970 }
3971
3972 /* Set the needed headroom to account for any possible
3973 * features enabling/disabling at runtime
3974 */
3975 dev->needed_headroom += 64;
3976
3977 netdev_boot_setup_check(dev);
3978
3979 priv->dev = dev;
3980 priv->pdev = pdev;
3981
3982 pdata = device_get_match_data(&pdev->dev);
3983 if (pdata) {
3984 priv->version = pdata->version;
3985 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3986 } else {
3987 priv->version = pd->genet_version;
3988 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3989 }
3990
3991 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3992 if (IS_ERR(priv->clk)) {
3993 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3994 err = PTR_ERR(priv->clk);
3995 goto err;
3996 }
3997
3998 err = clk_prepare_enable(priv->clk);
3999 if (err)
4000 goto err;
4001
4002 bcmgenet_set_hw_params(priv);
4003
4004 err = -EIO;
4005 if (priv->hw_params->flags & GENET_HAS_40BITS)
4006 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4007 if (err)
4008 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4009 if (err)
4010 goto err_clk_disable;
4011
4012 /* Mii wait queue */
4013 init_waitqueue_head(&priv->wq);
4014 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4015 priv->rx_buf_len = RX_BUF_LENGTH;
4016 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4017
4018 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4019 if (IS_ERR(priv->clk_wol)) {
4020 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4021 err = PTR_ERR(priv->clk_wol);
4022 goto err_clk_disable;
4023 }
4024
4025 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4026 if (IS_ERR(priv->clk_eee)) {
4027 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4028 err = PTR_ERR(priv->clk_eee);
4029 goto err_clk_disable;
4030 }
4031
4032 /* If this is an internal GPHY, power it on now, before UniMAC is
4033 * brought out of reset as absolutely no UniMAC activity is allowed
4034 */
4035 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4036 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4037
4038 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4039 ether_addr_copy(dev->dev_addr, pd->mac_address);
4040 else
4041 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4042 if (has_acpi_companion(&pdev->dev))
4043 bcmgenet_get_hw_addr(priv, dev->dev_addr);
4044
4045 if (!is_valid_ether_addr(dev->dev_addr)) {
4046 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4047 eth_hw_addr_random(dev);
4048 }
4049
4050 reset_umac(priv);
4051
4052 err = bcmgenet_mii_init(dev);
4053 if (err)
4054 goto err_clk_disable;
4055
4056 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4057 * just the ring 16 descriptor based TX
4058 */
4059 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4060 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4061
4062 /* Set default coalescing parameters */
4063 for (i = 0; i < priv->hw_params->rx_queues; i++)
4064 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4065 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4066
4067 /* libphy will determine the link state */
4068 netif_carrier_off(dev);
4069
4070 /* Turn off the main clock, WOL clock is handled separately */
4071 clk_disable_unprepare(priv->clk);
4072
4073 err = register_netdev(dev);
4074 if (err) {
4075 bcmgenet_mii_exit(dev);
4076 goto err;
4077 }
4078
4079 return err;
4080
4081 err_clk_disable:
4082 clk_disable_unprepare(priv->clk);
4083 err:
4084 free_netdev(dev);
4085 return err;
4086 }
4087
bcmgenet_remove(struct platform_device * pdev)4088 static int bcmgenet_remove(struct platform_device *pdev)
4089 {
4090 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4091
4092 dev_set_drvdata(&pdev->dev, NULL);
4093 unregister_netdev(priv->dev);
4094 bcmgenet_mii_exit(priv->dev);
4095 free_netdev(priv->dev);
4096
4097 return 0;
4098 }
4099
bcmgenet_shutdown(struct platform_device * pdev)4100 static void bcmgenet_shutdown(struct platform_device *pdev)
4101 {
4102 bcmgenet_remove(pdev);
4103 }
4104
4105 #ifdef CONFIG_PM_SLEEP
bcmgenet_resume_noirq(struct device * d)4106 static int bcmgenet_resume_noirq(struct device *d)
4107 {
4108 struct net_device *dev = dev_get_drvdata(d);
4109 struct bcmgenet_priv *priv = netdev_priv(dev);
4110 int ret;
4111 u32 reg;
4112
4113 if (!netif_running(dev))
4114 return 0;
4115
4116 /* Turn on the clock */
4117 ret = clk_prepare_enable(priv->clk);
4118 if (ret)
4119 return ret;
4120
4121 if (device_may_wakeup(d) && priv->wolopts) {
4122 /* Account for Wake-on-LAN events and clear those events
4123 * (Some devices need more time between enabling the clocks
4124 * and the interrupt register reflecting the wake event so
4125 * read the register twice)
4126 */
4127 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4128 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4129 if (reg & UMAC_IRQ_WAKE_EVENT)
4130 pm_wakeup_event(&priv->pdev->dev, 0);
4131 }
4132
4133 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4134
4135 return 0;
4136 }
4137
bcmgenet_resume(struct device * d)4138 static int bcmgenet_resume(struct device *d)
4139 {
4140 struct net_device *dev = dev_get_drvdata(d);
4141 struct bcmgenet_priv *priv = netdev_priv(dev);
4142 struct bcmgenet_rxnfc_rule *rule;
4143 unsigned long dma_ctrl;
4144 int ret;
4145
4146 if (!netif_running(dev))
4147 return 0;
4148
4149 /* From WOL-enabled suspend, switch to regular clock */
4150 if (device_may_wakeup(d) && priv->wolopts)
4151 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4152
4153 /* If this is an internal GPHY, power it back on now, before UniMAC is
4154 * brought out of reset as absolutely no UniMAC activity is allowed
4155 */
4156 if (priv->internal_phy)
4157 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4158
4159 bcmgenet_umac_reset(priv);
4160
4161 init_umac(priv);
4162
4163 phy_init_hw(dev->phydev);
4164
4165 /* Speed settings must be restored */
4166 genphy_config_aneg(dev->phydev);
4167 bcmgenet_mii_config(priv->dev, false);
4168
4169 /* Restore enabled features */
4170 bcmgenet_set_features(dev, dev->features);
4171
4172 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4173
4174 /* Restore hardware filters */
4175 bcmgenet_hfb_clear(priv);
4176 list_for_each_entry(rule, &priv->rxnfc_list, list)
4177 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4178 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4179
4180 /* Disable RX/TX DMA and flush TX queues */
4181 dma_ctrl = bcmgenet_dma_disable(priv);
4182
4183 /* Reinitialize TDMA and RDMA and SW housekeeping */
4184 ret = bcmgenet_init_dma(priv);
4185 if (ret) {
4186 netdev_err(dev, "failed to initialize DMA\n");
4187 goto out_clk_disable;
4188 }
4189
4190 /* Always enable ring 16 - descriptor ring */
4191 bcmgenet_enable_dma(priv, dma_ctrl);
4192
4193 if (!device_may_wakeup(d))
4194 phy_resume(dev->phydev);
4195
4196 if (priv->eee.eee_enabled)
4197 bcmgenet_eee_enable_set(dev, true);
4198
4199 bcmgenet_netif_start(dev);
4200
4201 netif_device_attach(dev);
4202
4203 return 0;
4204
4205 out_clk_disable:
4206 if (priv->internal_phy)
4207 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4208 clk_disable_unprepare(priv->clk);
4209 return ret;
4210 }
4211
bcmgenet_suspend(struct device * d)4212 static int bcmgenet_suspend(struct device *d)
4213 {
4214 struct net_device *dev = dev_get_drvdata(d);
4215 struct bcmgenet_priv *priv = netdev_priv(dev);
4216
4217 if (!netif_running(dev))
4218 return 0;
4219
4220 netif_device_detach(dev);
4221
4222 bcmgenet_netif_stop(dev);
4223
4224 if (!device_may_wakeup(d))
4225 phy_suspend(dev->phydev);
4226
4227 /* Disable filtering */
4228 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4229
4230 return 0;
4231 }
4232
bcmgenet_suspend_noirq(struct device * d)4233 static int bcmgenet_suspend_noirq(struct device *d)
4234 {
4235 struct net_device *dev = dev_get_drvdata(d);
4236 struct bcmgenet_priv *priv = netdev_priv(dev);
4237 int ret = 0;
4238
4239 if (!netif_running(dev))
4240 return 0;
4241
4242 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4243 if (device_may_wakeup(d) && priv->wolopts)
4244 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4245 else if (priv->internal_phy)
4246 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4247
4248 /* Let the framework handle resumption and leave the clocks on */
4249 if (ret)
4250 return ret;
4251
4252 /* Turn off the clocks */
4253 clk_disable_unprepare(priv->clk);
4254
4255 return 0;
4256 }
4257 #else
4258 #define bcmgenet_suspend NULL
4259 #define bcmgenet_suspend_noirq NULL
4260 #define bcmgenet_resume NULL
4261 #define bcmgenet_resume_noirq NULL
4262 #endif /* CONFIG_PM_SLEEP */
4263
4264 static const struct dev_pm_ops bcmgenet_pm_ops = {
4265 .suspend = bcmgenet_suspend,
4266 .suspend_noirq = bcmgenet_suspend_noirq,
4267 .resume = bcmgenet_resume,
4268 .resume_noirq = bcmgenet_resume_noirq,
4269 };
4270
4271 static const struct acpi_device_id genet_acpi_match[] = {
4272 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4273 { },
4274 };
4275 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4276
4277 static struct platform_driver bcmgenet_driver = {
4278 .probe = bcmgenet_probe,
4279 .remove = bcmgenet_remove,
4280 .shutdown = bcmgenet_shutdown,
4281 .driver = {
4282 .name = "bcmgenet",
4283 .of_match_table = bcmgenet_match,
4284 .pm = &bcmgenet_pm_ops,
4285 .acpi_match_table = genet_acpi_match,
4286 },
4287 };
4288 module_platform_driver(bcmgenet_driver);
4289
4290 MODULE_AUTHOR("Broadcom Corporation");
4291 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4292 MODULE_ALIAS("platform:bcmgenet");
4293 MODULE_LICENSE("GPL");
4294 MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4295