1 // SPDX-License-Identifier: GPL-2.0-only
2 /* drivers/net/ethernet/micrel/ks8851.c
3 *
4 * Copyright 2009 Simtec Electronics
5 * http://www.simtec.co.uk/
6 * Ben Dooks <ben@simtec.co.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #define DEBUG
12
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/cache.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
22 #include <linux/regulator/consumer.h>
23
24 #include <linux/gpio.h>
25 #include <linux/of_gpio.h>
26 #include <linux/of_net.h>
27
28 #include "ks8851.h"
29
30 /**
31 * ks8851_lock - register access lock
32 * @ks: The chip state
33 * @flags: Spinlock flags
34 *
35 * Claim chip register access lock
36 */
ks8851_lock(struct ks8851_net * ks,unsigned long * flags)37 static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
38 {
39 ks->lock(ks, flags);
40 }
41
42 /**
43 * ks8851_unlock - register access unlock
44 * @ks: The chip state
45 * @flags: Spinlock flags
46 *
47 * Release chip register access lock
48 */
ks8851_unlock(struct ks8851_net * ks,unsigned long * flags)49 static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
50 {
51 ks->unlock(ks, flags);
52 }
53
54 /**
55 * ks8851_wrreg16 - write 16bit register value to chip
56 * @ks: The chip state
57 * @reg: The register address
58 * @val: The value to write
59 *
60 * Issue a write to put the value @val into the register specified in @reg.
61 */
ks8851_wrreg16(struct ks8851_net * ks,unsigned int reg,unsigned int val)62 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
63 unsigned int val)
64 {
65 ks->wrreg16(ks, reg, val);
66 }
67
68 /**
69 * ks8851_rdreg16 - read 16 bit register from device
70 * @ks: The chip information
71 * @reg: The register address
72 *
73 * Read a 16bit register from the chip, returning the result
74 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned int reg)75 static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
76 unsigned int reg)
77 {
78 return ks->rdreg16(ks, reg);
79 }
80
81 /**
82 * ks8851_soft_reset - issue one of the soft reset to the device
83 * @ks: The device state.
84 * @op: The bit(s) to set in the GRR
85 *
86 * Issue the relevant soft-reset command to the device's GRR register
87 * specified by @op.
88 *
89 * Note, the delays are in there as a caution to ensure that the reset
90 * has time to take effect and then complete. Since the datasheet does
91 * not currently specify the exact sequence, we have chosen something
92 * that seems to work with our device.
93 */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)94 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
95 {
96 ks8851_wrreg16(ks, KS_GRR, op);
97 mdelay(1); /* wait a short time to effect reset */
98 ks8851_wrreg16(ks, KS_GRR, 0);
99 mdelay(1); /* wait for condition to clear */
100 }
101
102 /**
103 * ks8851_set_powermode - set power mode of the device
104 * @ks: The device state
105 * @pwrmode: The power mode value to write to KS_PMECR.
106 *
107 * Change the power mode of the chip.
108 */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)109 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
110 {
111 unsigned pmecr;
112
113 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
114
115 pmecr = ks8851_rdreg16(ks, KS_PMECR);
116 pmecr &= ~PMECR_PM_MASK;
117 pmecr |= pwrmode;
118
119 ks8851_wrreg16(ks, KS_PMECR, pmecr);
120 }
121
122 /**
123 * ks8851_write_mac_addr - write mac address to device registers
124 * @dev: The network device
125 *
126 * Update the KS8851 MAC address registers from the address in @dev.
127 *
128 * This call assumes that the chip is not running, so there is no need to
129 * shutdown the RXQ process whilst setting this.
130 */
ks8851_write_mac_addr(struct net_device * dev)131 static int ks8851_write_mac_addr(struct net_device *dev)
132 {
133 struct ks8851_net *ks = netdev_priv(dev);
134 unsigned long flags;
135 u16 val;
136 int i;
137
138 ks8851_lock(ks, &flags);
139
140 /*
141 * Wake up chip in case it was powered off when stopped; otherwise,
142 * the first write to the MAC address does not take effect.
143 */
144 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
145
146 for (i = 0; i < ETH_ALEN; i += 2) {
147 val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
148 ks8851_wrreg16(ks, KS_MAR(i), val);
149 }
150
151 if (!netif_running(dev))
152 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
153
154 ks8851_unlock(ks, &flags);
155
156 return 0;
157 }
158
159 /**
160 * ks8851_read_mac_addr - read mac address from device registers
161 * @dev: The network device
162 *
163 * Update our copy of the KS8851 MAC address from the registers of @dev.
164 */
ks8851_read_mac_addr(struct net_device * dev)165 static void ks8851_read_mac_addr(struct net_device *dev)
166 {
167 struct ks8851_net *ks = netdev_priv(dev);
168 unsigned long flags;
169 u16 reg;
170 int i;
171
172 ks8851_lock(ks, &flags);
173
174 for (i = 0; i < ETH_ALEN; i += 2) {
175 reg = ks8851_rdreg16(ks, KS_MAR(i));
176 dev->dev_addr[i] = reg >> 8;
177 dev->dev_addr[i + 1] = reg & 0xff;
178 }
179
180 ks8851_unlock(ks, &flags);
181 }
182
183 /**
184 * ks8851_init_mac - initialise the mac address
185 * @ks: The device structure
186 * @np: The device node pointer
187 *
188 * Get or create the initial mac address for the device and then set that
189 * into the station address register. A mac address supplied in the device
190 * tree takes precedence. Otherwise, if there is an EEPROM present, then
191 * we try that. If no valid mac address is found we use eth_random_addr()
192 * to create a new one.
193 */
ks8851_init_mac(struct ks8851_net * ks,struct device_node * np)194 static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
195 {
196 struct net_device *dev = ks->netdev;
197 const u8 *mac_addr;
198
199 mac_addr = of_get_mac_address(np);
200 if (!IS_ERR(mac_addr)) {
201 ether_addr_copy(dev->dev_addr, mac_addr);
202 ks8851_write_mac_addr(dev);
203 return;
204 }
205
206 if (ks->rc_ccr & CCR_EEPROM) {
207 ks8851_read_mac_addr(dev);
208 if (is_valid_ether_addr(dev->dev_addr))
209 return;
210
211 netdev_err(ks->netdev, "invalid mac address read %pM\n",
212 dev->dev_addr);
213 }
214
215 eth_hw_addr_random(dev);
216 ks8851_write_mac_addr(dev);
217 }
218
219 /**
220 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
221 * @ks: The device state
222 * @rxpkt: The data for the received packet
223 *
224 * Dump the initial data from the packet to dev_dbg().
225 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)226 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
227 {
228 netdev_dbg(ks->netdev,
229 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
230 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
231 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
232 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
233 }
234
235 /**
236 * ks8851_rx_skb - receive skbuff
237 * @ks: The device state.
238 * @skb: The skbuff
239 */
ks8851_rx_skb(struct ks8851_net * ks,struct sk_buff * skb)240 static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
241 {
242 ks->rx_skb(ks, skb);
243 }
244
245 /**
246 * ks8851_rx_pkts - receive packets from the host
247 * @ks: The device information.
248 *
249 * This is called from the IRQ work queue when the system detects that there
250 * are packets in the receive queue. Find out how many packets there are and
251 * read them from the FIFO.
252 */
ks8851_rx_pkts(struct ks8851_net * ks)253 static void ks8851_rx_pkts(struct ks8851_net *ks)
254 {
255 struct sk_buff *skb;
256 unsigned rxfc;
257 unsigned rxlen;
258 unsigned rxstat;
259 u8 *rxpkt;
260
261 rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
262
263 netif_dbg(ks, rx_status, ks->netdev,
264 "%s: %d packets\n", __func__, rxfc);
265
266 /* Currently we're issuing a read per packet, but we could possibly
267 * improve the code by issuing a single read, getting the receive
268 * header, allocating the packet and then reading the packet data
269 * out in one go.
270 *
271 * This form of operation would require us to hold the SPI bus'
272 * chipselect low during the entie transaction to avoid any
273 * reset to the data stream coming from the chip.
274 */
275
276 for (; rxfc != 0; rxfc--) {
277 rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
278 rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
279
280 netif_dbg(ks, rx_status, ks->netdev,
281 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
282
283 /* the length of the packet includes the 32bit CRC */
284
285 /* set dma read address */
286 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
287
288 /* start DMA access */
289 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
290
291 if (rxlen > 4) {
292 unsigned int rxalign;
293
294 rxlen -= 4;
295 rxalign = ALIGN(rxlen, 4);
296 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
297 if (skb) {
298
299 /* 4 bytes of status header + 4 bytes of
300 * garbage: we put them before ethernet
301 * header, so that they are copied,
302 * but ignored.
303 */
304
305 rxpkt = skb_put(skb, rxlen) - 8;
306
307 ks->rdfifo(ks, rxpkt, rxalign + 8);
308
309 if (netif_msg_pktdata(ks))
310 ks8851_dbg_dumpkkt(ks, rxpkt);
311
312 skb->protocol = eth_type_trans(skb, ks->netdev);
313 ks8851_rx_skb(ks, skb);
314
315 ks->netdev->stats.rx_packets++;
316 ks->netdev->stats.rx_bytes += rxlen;
317 }
318 }
319
320 /* end DMA access and dequeue packet */
321 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
322 }
323 }
324
325 /**
326 * ks8851_irq - IRQ handler for dealing with interrupt requests
327 * @irq: IRQ number
328 * @_ks: cookie
329 *
330 * This handler is invoked when the IRQ line asserts to find out what happened.
331 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
332 * in thread context.
333 *
334 * Read the interrupt status, work out what needs to be done and then clear
335 * any of the interrupts that are not needed.
336 */
ks8851_irq(int irq,void * _ks)337 static irqreturn_t ks8851_irq(int irq, void *_ks)
338 {
339 struct ks8851_net *ks = _ks;
340 unsigned handled = 0;
341 unsigned long flags;
342 unsigned int status;
343
344 ks8851_lock(ks, &flags);
345
346 status = ks8851_rdreg16(ks, KS_ISR);
347
348 netif_dbg(ks, intr, ks->netdev,
349 "%s: status 0x%04x\n", __func__, status);
350
351 if (status & IRQ_LCI)
352 handled |= IRQ_LCI;
353
354 if (status & IRQ_LDI) {
355 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
356 pmecr &= ~PMECR_WKEVT_MASK;
357 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
358
359 handled |= IRQ_LDI;
360 }
361
362 if (status & IRQ_RXPSI)
363 handled |= IRQ_RXPSI;
364
365 if (status & IRQ_TXI) {
366 handled |= IRQ_TXI;
367
368 /* no lock here, tx queue should have been stopped */
369
370 /* update our idea of how much tx space is available to the
371 * system */
372 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
373
374 netif_dbg(ks, intr, ks->netdev,
375 "%s: txspace %d\n", __func__, ks->tx_space);
376 }
377
378 if (status & IRQ_RXI)
379 handled |= IRQ_RXI;
380
381 if (status & IRQ_SPIBEI) {
382 netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
383 handled |= IRQ_SPIBEI;
384 }
385
386 ks8851_wrreg16(ks, KS_ISR, handled);
387
388 if (status & IRQ_RXI) {
389 /* the datasheet says to disable the rx interrupt during
390 * packet read-out, however we're masking the interrupt
391 * from the device so do not bother masking just the RX
392 * from the device. */
393
394 ks8851_rx_pkts(ks);
395 }
396
397 /* if something stopped the rx process, probably due to wanting
398 * to change the rx settings, then do something about restarting
399 * it. */
400 if (status & IRQ_RXPSI) {
401 struct ks8851_rxctrl *rxc = &ks->rxctrl;
402
403 /* update the multicast hash table */
404 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
405 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
406 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
407 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
408
409 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
410 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
411 }
412
413 ks8851_unlock(ks, &flags);
414
415 if (status & IRQ_LCI)
416 mii_check_link(&ks->mii);
417
418 if (status & IRQ_TXI)
419 netif_wake_queue(ks->netdev);
420
421 return IRQ_HANDLED;
422 }
423
424 /**
425 * ks8851_flush_tx_work - flush outstanding TX work
426 * @ks: The device state
427 */
ks8851_flush_tx_work(struct ks8851_net * ks)428 static void ks8851_flush_tx_work(struct ks8851_net *ks)
429 {
430 if (ks->flush_tx_work)
431 ks->flush_tx_work(ks);
432 }
433
434 /**
435 * ks8851_net_open - open network device
436 * @dev: The network device being opened.
437 *
438 * Called when the network device is marked active, such as a user executing
439 * 'ifconfig up' on the device.
440 */
ks8851_net_open(struct net_device * dev)441 static int ks8851_net_open(struct net_device *dev)
442 {
443 struct ks8851_net *ks = netdev_priv(dev);
444 unsigned long flags;
445 int ret;
446
447 ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
448 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
449 dev->name, ks);
450 if (ret < 0) {
451 netdev_err(dev, "failed to get irq\n");
452 return ret;
453 }
454
455 /* lock the card, even if we may not actually be doing anything
456 * else at the moment */
457 ks8851_lock(ks, &flags);
458
459 netif_dbg(ks, ifup, ks->netdev, "opening\n");
460
461 /* bring chip out of any power saving mode it was in */
462 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
463
464 /* issue a soft reset to the RX/TX QMU to put it into a known
465 * state. */
466 ks8851_soft_reset(ks, GRR_QMU);
467
468 /* setup transmission parameters */
469
470 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
471 TXCR_TXPE | /* pad to min length */
472 TXCR_TXCRC | /* add CRC */
473 TXCR_TXFCE)); /* enable flow control */
474
475 /* auto-increment tx data, reset tx pointer */
476 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
477
478 /* setup receiver control */
479
480 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
481 RXCR1_RXFCE | /* enable flow control */
482 RXCR1_RXBE | /* broadcast enable */
483 RXCR1_RXUE | /* unicast enable */
484 RXCR1_RXE)); /* enable rx block */
485
486 /* transfer entire frames out in one go */
487 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
488
489 /* set receive counter timeouts */
490 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
491 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
492 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
493
494 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
495 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
496 RXQCR_RXDTTE); /* IRQ on time exceeded */
497
498 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
499
500 /* clear then enable interrupts */
501 ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
502 ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
503
504 netif_start_queue(ks->netdev);
505
506 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
507
508 ks8851_unlock(ks, &flags);
509 mii_check_link(&ks->mii);
510 return 0;
511 }
512
513 /**
514 * ks8851_net_stop - close network device
515 * @dev: The device being closed.
516 *
517 * Called to close down a network device which has been active. Cancell any
518 * work, shutdown the RX and TX process and then place the chip into a low
519 * power state whilst it is not being used.
520 */
ks8851_net_stop(struct net_device * dev)521 static int ks8851_net_stop(struct net_device *dev)
522 {
523 struct ks8851_net *ks = netdev_priv(dev);
524 unsigned long flags;
525
526 netif_info(ks, ifdown, dev, "shutting down\n");
527
528 netif_stop_queue(dev);
529
530 ks8851_lock(ks, &flags);
531 /* turn off the IRQs and ack any outstanding */
532 ks8851_wrreg16(ks, KS_IER, 0x0000);
533 ks8851_wrreg16(ks, KS_ISR, 0xffff);
534 ks8851_unlock(ks, &flags);
535
536 /* stop any outstanding work */
537 ks8851_flush_tx_work(ks);
538 flush_work(&ks->rxctrl_work);
539
540 ks8851_lock(ks, &flags);
541 /* shutdown RX process */
542 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
543
544 /* shutdown TX process */
545 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
546
547 /* set powermode to soft power down to save power */
548 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
549 ks8851_unlock(ks, &flags);
550
551 /* ensure any queued tx buffers are dumped */
552 while (!skb_queue_empty(&ks->txq)) {
553 struct sk_buff *txb = skb_dequeue(&ks->txq);
554
555 netif_dbg(ks, ifdown, ks->netdev,
556 "%s: freeing txb %p\n", __func__, txb);
557
558 dev_kfree_skb(txb);
559 }
560
561 free_irq(dev->irq, ks);
562
563 return 0;
564 }
565
566 /**
567 * ks8851_start_xmit - transmit packet
568 * @skb: The buffer to transmit
569 * @dev: The device used to transmit the packet.
570 *
571 * Called by the network layer to transmit the @skb. Queue the packet for
572 * the device and schedule the necessary work to transmit the packet when
573 * it is free.
574 *
575 * We do this to firstly avoid sleeping with the network device locked,
576 * and secondly so we can round up more than one packet to transmit which
577 * means we can try and avoid generating too many transmit done interrupts.
578 */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)579 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
580 struct net_device *dev)
581 {
582 struct ks8851_net *ks = netdev_priv(dev);
583
584 return ks->start_xmit(skb, dev);
585 }
586
587 /**
588 * ks8851_rxctrl_work - work handler to change rx mode
589 * @work: The work structure this belongs to.
590 *
591 * Lock the device and issue the necessary changes to the receive mode from
592 * the network device layer. This is done so that we can do this without
593 * having to sleep whilst holding the network device lock.
594 *
595 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
596 * receive parameters are programmed, we issue a write to disable the RXQ and
597 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
598 * complete. The interrupt handler then writes the new values into the chip.
599 */
ks8851_rxctrl_work(struct work_struct * work)600 static void ks8851_rxctrl_work(struct work_struct *work)
601 {
602 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
603 unsigned long flags;
604
605 ks8851_lock(ks, &flags);
606
607 /* need to shutdown RXQ before modifying filter parameters */
608 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
609
610 ks8851_unlock(ks, &flags);
611 }
612
ks8851_set_rx_mode(struct net_device * dev)613 static void ks8851_set_rx_mode(struct net_device *dev)
614 {
615 struct ks8851_net *ks = netdev_priv(dev);
616 struct ks8851_rxctrl rxctrl;
617
618 memset(&rxctrl, 0, sizeof(rxctrl));
619
620 if (dev->flags & IFF_PROMISC) {
621 /* interface to receive everything */
622
623 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
624 } else if (dev->flags & IFF_ALLMULTI) {
625 /* accept all multicast packets */
626
627 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
628 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
629 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
630 struct netdev_hw_addr *ha;
631 u32 crc;
632
633 /* accept some multicast */
634
635 netdev_for_each_mc_addr(ha, dev) {
636 crc = ether_crc(ETH_ALEN, ha->addr);
637 crc >>= (32 - 6); /* get top six bits */
638
639 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
640 }
641
642 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
643 } else {
644 /* just accept broadcast / unicast */
645 rxctrl.rxcr1 = RXCR1_RXPAFMA;
646 }
647
648 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
649 RXCR1_RXBE | /* broadcast enable */
650 RXCR1_RXE | /* RX process enable */
651 RXCR1_RXFCE); /* enable flow control */
652
653 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
654
655 /* schedule work to do the actual set of the data if needed */
656
657 spin_lock(&ks->statelock);
658
659 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
660 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
661 schedule_work(&ks->rxctrl_work);
662 }
663
664 spin_unlock(&ks->statelock);
665 }
666
ks8851_set_mac_address(struct net_device * dev,void * addr)667 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
668 {
669 struct sockaddr *sa = addr;
670
671 if (netif_running(dev))
672 return -EBUSY;
673
674 if (!is_valid_ether_addr(sa->sa_data))
675 return -EADDRNOTAVAIL;
676
677 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
678 return ks8851_write_mac_addr(dev);
679 }
680
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)681 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
682 {
683 struct ks8851_net *ks = netdev_priv(dev);
684
685 if (!netif_running(dev))
686 return -EINVAL;
687
688 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
689 }
690
691 static const struct net_device_ops ks8851_netdev_ops = {
692 .ndo_open = ks8851_net_open,
693 .ndo_stop = ks8851_net_stop,
694 .ndo_do_ioctl = ks8851_net_ioctl,
695 .ndo_start_xmit = ks8851_start_xmit,
696 .ndo_set_mac_address = ks8851_set_mac_address,
697 .ndo_set_rx_mode = ks8851_set_rx_mode,
698 .ndo_validate_addr = eth_validate_addr,
699 };
700
701 /* ethtool support */
702
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)703 static void ks8851_get_drvinfo(struct net_device *dev,
704 struct ethtool_drvinfo *di)
705 {
706 strlcpy(di->driver, "KS8851", sizeof(di->driver));
707 strlcpy(di->version, "1.00", sizeof(di->version));
708 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
709 }
710
ks8851_get_msglevel(struct net_device * dev)711 static u32 ks8851_get_msglevel(struct net_device *dev)
712 {
713 struct ks8851_net *ks = netdev_priv(dev);
714 return ks->msg_enable;
715 }
716
ks8851_set_msglevel(struct net_device * dev,u32 to)717 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
718 {
719 struct ks8851_net *ks = netdev_priv(dev);
720 ks->msg_enable = to;
721 }
722
ks8851_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)723 static int ks8851_get_link_ksettings(struct net_device *dev,
724 struct ethtool_link_ksettings *cmd)
725 {
726 struct ks8851_net *ks = netdev_priv(dev);
727
728 mii_ethtool_get_link_ksettings(&ks->mii, cmd);
729
730 return 0;
731 }
732
ks8851_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)733 static int ks8851_set_link_ksettings(struct net_device *dev,
734 const struct ethtool_link_ksettings *cmd)
735 {
736 struct ks8851_net *ks = netdev_priv(dev);
737 return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
738 }
739
ks8851_get_link(struct net_device * dev)740 static u32 ks8851_get_link(struct net_device *dev)
741 {
742 struct ks8851_net *ks = netdev_priv(dev);
743 return mii_link_ok(&ks->mii);
744 }
745
ks8851_nway_reset(struct net_device * dev)746 static int ks8851_nway_reset(struct net_device *dev)
747 {
748 struct ks8851_net *ks = netdev_priv(dev);
749 return mii_nway_restart(&ks->mii);
750 }
751
752 /* EEPROM support */
753
ks8851_eeprom_regread(struct eeprom_93cx6 * ee)754 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
755 {
756 struct ks8851_net *ks = ee->data;
757 unsigned val;
758
759 val = ks8851_rdreg16(ks, KS_EEPCR);
760
761 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
762 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
763 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
764 }
765
ks8851_eeprom_regwrite(struct eeprom_93cx6 * ee)766 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
767 {
768 struct ks8851_net *ks = ee->data;
769 unsigned val = EEPCR_EESA; /* default - eeprom access on */
770
771 if (ee->drive_data)
772 val |= EEPCR_EESRWA;
773 if (ee->reg_data_in)
774 val |= EEPCR_EEDO;
775 if (ee->reg_data_clock)
776 val |= EEPCR_EESCK;
777 if (ee->reg_chip_select)
778 val |= EEPCR_EECS;
779
780 ks8851_wrreg16(ks, KS_EEPCR, val);
781 }
782
783 /**
784 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
785 * @ks: The network device state.
786 *
787 * Check for the presence of an EEPROM, and then activate software access
788 * to the device.
789 */
ks8851_eeprom_claim(struct ks8851_net * ks)790 static int ks8851_eeprom_claim(struct ks8851_net *ks)
791 {
792 /* start with clock low, cs high */
793 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
794 return 0;
795 }
796
797 /**
798 * ks8851_eeprom_release - release the EEPROM interface
799 * @ks: The device state
800 *
801 * Release the software access to the device EEPROM
802 */
ks8851_eeprom_release(struct ks8851_net * ks)803 static void ks8851_eeprom_release(struct ks8851_net *ks)
804 {
805 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
806
807 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
808 }
809
810 #define KS_EEPROM_MAGIC (0x00008851)
811
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)812 static int ks8851_set_eeprom(struct net_device *dev,
813 struct ethtool_eeprom *ee, u8 *data)
814 {
815 struct ks8851_net *ks = netdev_priv(dev);
816 int offset = ee->offset;
817 unsigned long flags;
818 int len = ee->len;
819 u16 tmp;
820
821 /* currently only support byte writing */
822 if (len != 1)
823 return -EINVAL;
824
825 if (ee->magic != KS_EEPROM_MAGIC)
826 return -EINVAL;
827
828 if (!(ks->rc_ccr & CCR_EEPROM))
829 return -ENOENT;
830
831 ks8851_lock(ks, &flags);
832
833 ks8851_eeprom_claim(ks);
834
835 eeprom_93cx6_wren(&ks->eeprom, true);
836
837 /* ethtool currently only supports writing bytes, which means
838 * we have to read/modify/write our 16bit EEPROMs */
839
840 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
841
842 if (offset & 1) {
843 tmp &= 0xff;
844 tmp |= *data << 8;
845 } else {
846 tmp &= 0xff00;
847 tmp |= *data;
848 }
849
850 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
851 eeprom_93cx6_wren(&ks->eeprom, false);
852
853 ks8851_eeprom_release(ks);
854 ks8851_unlock(ks, &flags);
855
856 return 0;
857 }
858
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)859 static int ks8851_get_eeprom(struct net_device *dev,
860 struct ethtool_eeprom *ee, u8 *data)
861 {
862 struct ks8851_net *ks = netdev_priv(dev);
863 int offset = ee->offset;
864 unsigned long flags;
865 int len = ee->len;
866
867 /* must be 2 byte aligned */
868 if (len & 1 || offset & 1)
869 return -EINVAL;
870
871 if (!(ks->rc_ccr & CCR_EEPROM))
872 return -ENOENT;
873
874 ks8851_lock(ks, &flags);
875
876 ks8851_eeprom_claim(ks);
877
878 ee->magic = KS_EEPROM_MAGIC;
879
880 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
881 ks8851_eeprom_release(ks);
882 ks8851_unlock(ks, &flags);
883
884 return 0;
885 }
886
ks8851_get_eeprom_len(struct net_device * dev)887 static int ks8851_get_eeprom_len(struct net_device *dev)
888 {
889 struct ks8851_net *ks = netdev_priv(dev);
890
891 /* currently, we assume it is an 93C46 attached, so return 128 */
892 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
893 }
894
895 static const struct ethtool_ops ks8851_ethtool_ops = {
896 .get_drvinfo = ks8851_get_drvinfo,
897 .get_msglevel = ks8851_get_msglevel,
898 .set_msglevel = ks8851_set_msglevel,
899 .get_link = ks8851_get_link,
900 .nway_reset = ks8851_nway_reset,
901 .get_eeprom_len = ks8851_get_eeprom_len,
902 .get_eeprom = ks8851_get_eeprom,
903 .set_eeprom = ks8851_set_eeprom,
904 .get_link_ksettings = ks8851_get_link_ksettings,
905 .set_link_ksettings = ks8851_set_link_ksettings,
906 };
907
908 /* MII interface controls */
909
910 /**
911 * ks8851_phy_reg - convert MII register into a KS8851 register
912 * @reg: MII register number.
913 *
914 * Return the KS8851 register number for the corresponding MII PHY register
915 * if possible. Return zero if the MII register has no direct mapping to the
916 * KS8851 register set.
917 */
ks8851_phy_reg(int reg)918 static int ks8851_phy_reg(int reg)
919 {
920 switch (reg) {
921 case MII_BMCR:
922 return KS_P1MBCR;
923 case MII_BMSR:
924 return KS_P1MBSR;
925 case MII_PHYSID1:
926 return KS_PHY1ILR;
927 case MII_PHYSID2:
928 return KS_PHY1IHR;
929 case MII_ADVERTISE:
930 return KS_P1ANAR;
931 case MII_LPA:
932 return KS_P1ANLPR;
933 }
934
935 return 0x0;
936 }
937
938 /**
939 * ks8851_phy_read - MII interface PHY register read.
940 * @dev: The network device the PHY is on.
941 * @phy_addr: Address of PHY (ignored as we only have one)
942 * @reg: The register to read.
943 *
944 * This call reads data from the PHY register specified in @reg. Since the
945 * device does not support all the MII registers, the non-existent values
946 * are always returned as zero.
947 *
948 * We return zero for unsupported registers as the MII code does not check
949 * the value returned for any error status, and simply returns it to the
950 * caller. The mii-tool that the driver was tested with takes any -ve error
951 * as real PHY capabilities, thus displaying incorrect data to the user.
952 */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)953 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
954 {
955 struct ks8851_net *ks = netdev_priv(dev);
956 unsigned long flags;
957 int ksreg;
958 int result;
959
960 ksreg = ks8851_phy_reg(reg);
961 if (!ksreg)
962 return 0x0; /* no error return allowed, so use zero */
963
964 ks8851_lock(ks, &flags);
965 result = ks8851_rdreg16(ks, ksreg);
966 ks8851_unlock(ks, &flags);
967
968 return result;
969 }
970
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)971 static void ks8851_phy_write(struct net_device *dev,
972 int phy, int reg, int value)
973 {
974 struct ks8851_net *ks = netdev_priv(dev);
975 unsigned long flags;
976 int ksreg;
977
978 ksreg = ks8851_phy_reg(reg);
979 if (ksreg) {
980 ks8851_lock(ks, &flags);
981 ks8851_wrreg16(ks, ksreg, value);
982 ks8851_unlock(ks, &flags);
983 }
984 }
985
986 /**
987 * ks8851_read_selftest - read the selftest memory info.
988 * @ks: The device state
989 *
990 * Read and check the TX/RX memory selftest information.
991 */
ks8851_read_selftest(struct ks8851_net * ks)992 static int ks8851_read_selftest(struct ks8851_net *ks)
993 {
994 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
995 int ret = 0;
996 unsigned rd;
997
998 rd = ks8851_rdreg16(ks, KS_MBIR);
999
1000 if ((rd & both_done) != both_done) {
1001 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1002 return 0;
1003 }
1004
1005 if (rd & MBIR_TXMBFA) {
1006 netdev_err(ks->netdev, "TX memory selftest fail\n");
1007 ret |= 1;
1008 }
1009
1010 if (rd & MBIR_RXMBFA) {
1011 netdev_err(ks->netdev, "RX memory selftest fail\n");
1012 ret |= 2;
1013 }
1014
1015 return 0;
1016 }
1017
1018 /* driver bus management functions */
1019
1020 #ifdef CONFIG_PM_SLEEP
1021
ks8851_suspend(struct device * dev)1022 int ks8851_suspend(struct device *dev)
1023 {
1024 struct ks8851_net *ks = dev_get_drvdata(dev);
1025 struct net_device *netdev = ks->netdev;
1026
1027 if (netif_running(netdev)) {
1028 netif_device_detach(netdev);
1029 ks8851_net_stop(netdev);
1030 }
1031
1032 return 0;
1033 }
1034 EXPORT_SYMBOL_GPL(ks8851_suspend);
1035
ks8851_resume(struct device * dev)1036 int ks8851_resume(struct device *dev)
1037 {
1038 struct ks8851_net *ks = dev_get_drvdata(dev);
1039 struct net_device *netdev = ks->netdev;
1040
1041 if (netif_running(netdev)) {
1042 ks8851_net_open(netdev);
1043 netif_device_attach(netdev);
1044 }
1045
1046 return 0;
1047 }
1048 EXPORT_SYMBOL_GPL(ks8851_resume);
1049 #endif
1050
ks8851_probe_common(struct net_device * netdev,struct device * dev,int msg_en)1051 int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1052 int msg_en)
1053 {
1054 struct ks8851_net *ks = netdev_priv(netdev);
1055 unsigned cider;
1056 int gpio;
1057 int ret;
1058
1059 ks->netdev = netdev;
1060 ks->tx_space = 6144;
1061
1062 gpio = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, NULL);
1063 if (gpio == -EPROBE_DEFER)
1064 return gpio;
1065
1066 ks->gpio = gpio;
1067 if (gpio_is_valid(gpio)) {
1068 ret = devm_gpio_request_one(dev, gpio,
1069 GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1070 if (ret) {
1071 dev_err(dev, "reset gpio request failed\n");
1072 return ret;
1073 }
1074 }
1075
1076 ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1077 if (IS_ERR(ks->vdd_io)) {
1078 ret = PTR_ERR(ks->vdd_io);
1079 goto err_reg_io;
1080 }
1081
1082 ret = regulator_enable(ks->vdd_io);
1083 if (ret) {
1084 dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1085 goto err_reg_io;
1086 }
1087
1088 ks->vdd_reg = devm_regulator_get(dev, "vdd");
1089 if (IS_ERR(ks->vdd_reg)) {
1090 ret = PTR_ERR(ks->vdd_reg);
1091 goto err_reg;
1092 }
1093
1094 ret = regulator_enable(ks->vdd_reg);
1095 if (ret) {
1096 dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1097 goto err_reg;
1098 }
1099
1100 if (gpio_is_valid(gpio)) {
1101 usleep_range(10000, 11000);
1102 gpio_set_value(gpio, 1);
1103 }
1104
1105 spin_lock_init(&ks->statelock);
1106
1107 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1108
1109 /* setup EEPROM state */
1110 ks->eeprom.data = ks;
1111 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1112 ks->eeprom.register_read = ks8851_eeprom_regread;
1113 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1114
1115 /* setup mii state */
1116 ks->mii.dev = netdev;
1117 ks->mii.phy_id = 1,
1118 ks->mii.phy_id_mask = 1;
1119 ks->mii.reg_num_mask = 0xf;
1120 ks->mii.mdio_read = ks8851_phy_read;
1121 ks->mii.mdio_write = ks8851_phy_write;
1122
1123 dev_info(dev, "message enable is %d\n", msg_en);
1124
1125 /* set the default message enable */
1126 ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1127 NETIF_MSG_PROBE |
1128 NETIF_MSG_LINK);
1129
1130 skb_queue_head_init(&ks->txq);
1131
1132 netdev->ethtool_ops = &ks8851_ethtool_ops;
1133 SET_NETDEV_DEV(netdev, dev);
1134
1135 dev_set_drvdata(dev, ks);
1136
1137 netif_carrier_off(ks->netdev);
1138 netdev->if_port = IF_PORT_100BASET;
1139 netdev->netdev_ops = &ks8851_netdev_ops;
1140
1141 /* issue a global soft reset to reset the device. */
1142 ks8851_soft_reset(ks, GRR_GSR);
1143
1144 /* simple check for a valid chip being connected to the bus */
1145 cider = ks8851_rdreg16(ks, KS_CIDER);
1146 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1147 dev_err(dev, "failed to read device ID\n");
1148 ret = -ENODEV;
1149 goto err_id;
1150 }
1151
1152 /* cache the contents of the CCR register for EEPROM, etc. */
1153 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1154
1155 ks8851_read_selftest(ks);
1156 ks8851_init_mac(ks, dev->of_node);
1157
1158 ret = register_netdev(netdev);
1159 if (ret) {
1160 dev_err(dev, "failed to register network device\n");
1161 goto err_netdev;
1162 }
1163
1164 netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1165 CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1166 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1167
1168 return 0;
1169
1170 err_netdev:
1171 err_id:
1172 if (gpio_is_valid(gpio))
1173 gpio_set_value(gpio, 0);
1174 regulator_disable(ks->vdd_reg);
1175 err_reg:
1176 regulator_disable(ks->vdd_io);
1177 err_reg_io:
1178 return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(ks8851_probe_common);
1181
ks8851_remove_common(struct device * dev)1182 int ks8851_remove_common(struct device *dev)
1183 {
1184 struct ks8851_net *priv = dev_get_drvdata(dev);
1185
1186 if (netif_msg_drv(priv))
1187 dev_info(dev, "remove\n");
1188
1189 unregister_netdev(priv->netdev);
1190 if (gpio_is_valid(priv->gpio))
1191 gpio_set_value(priv->gpio, 0);
1192 regulator_disable(priv->vdd_reg);
1193 regulator_disable(priv->vdd_io);
1194
1195 return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(ks8851_remove_common);
1198
1199 MODULE_DESCRIPTION("KS8851 Network driver");
1200 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1201 MODULE_LICENSE("GPL");
1202