1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/kref.h>
4 #include <linux/list.h>
5 #include <linux/mutex.h>
6 #include <linux/phylink.h>
7 #include <linux/property.h>
8 #include <linux/rtnetlink.h>
9 #include <linux/slab.h>
10
11 #include "sfp.h"
12
13 struct sfp_quirk {
14 const char *vendor;
15 const char *part;
16 void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
17 };
18
19 /**
20 * struct sfp_bus - internal representation of a sfp bus
21 */
22 struct sfp_bus {
23 /* private: */
24 struct kref kref;
25 struct list_head node;
26 struct fwnode_handle *fwnode;
27
28 const struct sfp_socket_ops *socket_ops;
29 struct device *sfp_dev;
30 struct sfp *sfp;
31 const struct sfp_quirk *sfp_quirk;
32
33 const struct sfp_upstream_ops *upstream_ops;
34 void *upstream;
35 struct phy_device *phydev;
36
37 bool registered;
38 bool started;
39 };
40
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes)41 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
42 unsigned long *modes)
43 {
44 phylink_set(modes, 2500baseX_Full);
45 }
46
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes)47 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
48 unsigned long *modes)
49 {
50 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
51 * types including 10G Ethernet which is not truth. So clear all claimed
52 * modes and set only one mode which module supports: 1000baseX_Full.
53 */
54 phylink_zero(modes);
55 phylink_set(modes, 1000baseX_Full);
56 }
57
58 static const struct sfp_quirk sfp_quirks[] = {
59 {
60 // Alcatel Lucent G-010S-P can operate at 2500base-X, but
61 // incorrectly report 2500MBd NRZ in their EEPROM
62 .vendor = "ALCATELLUCENT",
63 .part = "G010SP",
64 .modes = sfp_quirk_2500basex,
65 }, {
66 // Alcatel Lucent G-010S-A can operate at 2500base-X, but
67 // report 3.2GBd NRZ in their EEPROM
68 .vendor = "ALCATELLUCENT",
69 .part = "3FE46541AA",
70 .modes = sfp_quirk_2500basex,
71 }, {
72 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
73 // NRZ in their EEPROM
74 .vendor = "HUAWEI",
75 .part = "MA5671A",
76 .modes = sfp_quirk_2500basex,
77 }, {
78 .vendor = "UBNT",
79 .part = "UF-INSTANT",
80 .modes = sfp_quirk_ubnt_uf_instant,
81 },
82 };
83
sfp_strlen(const char * str,size_t maxlen)84 static size_t sfp_strlen(const char *str, size_t maxlen)
85 {
86 size_t size, i;
87
88 /* Trailing characters should be filled with space chars */
89 for (i = 0, size = 0; i < maxlen; i++)
90 if (str[i] != ' ')
91 size = i + 1;
92
93 return size;
94 }
95
sfp_match(const char * qs,const char * str,size_t len)96 static bool sfp_match(const char *qs, const char *str, size_t len)
97 {
98 if (!qs)
99 return true;
100 if (strlen(qs) != len)
101 return false;
102 return !strncmp(qs, str, len);
103 }
104
sfp_lookup_quirk(const struct sfp_eeprom_id * id)105 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
106 {
107 const struct sfp_quirk *q;
108 unsigned int i;
109 size_t vs, ps;
110
111 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
112 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
113
114 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
115 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
116 sfp_match(q->part, id->base.vendor_pn, ps))
117 return q;
118
119 return NULL;
120 }
121
122 /**
123 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
124 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
125 * @id: a pointer to the module's &struct sfp_eeprom_id
126 * @support: optional pointer to an array of unsigned long for the
127 * ethtool support mask
128 *
129 * Parse the EEPROM identification given in @id, and return one of
130 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
131 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
132 * the connector type.
133 *
134 * If the port type is not known, returns %PORT_OTHER.
135 */
sfp_parse_port(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support)136 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
137 unsigned long *support)
138 {
139 int port;
140
141 /* port is the physical connector, set this from the connector field. */
142 switch (id->base.connector) {
143 case SFF8024_CONNECTOR_SC:
144 case SFF8024_CONNECTOR_FIBERJACK:
145 case SFF8024_CONNECTOR_LC:
146 case SFF8024_CONNECTOR_MT_RJ:
147 case SFF8024_CONNECTOR_MU:
148 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
149 case SFF8024_CONNECTOR_MPO_1X12:
150 case SFF8024_CONNECTOR_MPO_2X16:
151 port = PORT_FIBRE;
152 break;
153
154 case SFF8024_CONNECTOR_RJ45:
155 port = PORT_TP;
156 break;
157
158 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
159 port = PORT_DA;
160 break;
161
162 case SFF8024_CONNECTOR_UNSPEC:
163 if (id->base.e1000_base_t) {
164 port = PORT_TP;
165 break;
166 }
167 fallthrough;
168 case SFF8024_CONNECTOR_SG: /* guess */
169 case SFF8024_CONNECTOR_HSSDC_II:
170 case SFF8024_CONNECTOR_NOSEPARATE:
171 case SFF8024_CONNECTOR_MXC_2X16:
172 port = PORT_OTHER;
173 break;
174 default:
175 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
176 id->base.connector);
177 port = PORT_OTHER;
178 break;
179 }
180
181 if (support) {
182 switch (port) {
183 case PORT_FIBRE:
184 phylink_set(support, FIBRE);
185 break;
186
187 case PORT_TP:
188 phylink_set(support, TP);
189 break;
190 }
191 }
192
193 return port;
194 }
195 EXPORT_SYMBOL_GPL(sfp_parse_port);
196
197 /**
198 * sfp_may_have_phy() - indicate whether the module may have a PHY
199 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
200 * @id: a pointer to the module's &struct sfp_eeprom_id
201 *
202 * Parse the EEPROM identification given in @id, and return whether
203 * this module may have a PHY.
204 */
sfp_may_have_phy(struct sfp_bus * bus,const struct sfp_eeprom_id * id)205 bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
206 {
207 if (id->base.e1000_base_t)
208 return true;
209
210 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
211 switch (id->base.extended_cc) {
212 case SFF8024_ECC_10GBASE_T_SFI:
213 case SFF8024_ECC_10GBASE_T_SR:
214 case SFF8024_ECC_5GBASE_T:
215 case SFF8024_ECC_2_5GBASE_T:
216 return true;
217 }
218 }
219
220 return false;
221 }
222 EXPORT_SYMBOL_GPL(sfp_may_have_phy);
223
224 /**
225 * sfp_parse_support() - Parse the eeprom id for supported link modes
226 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
227 * @id: a pointer to the module's &struct sfp_eeprom_id
228 * @support: pointer to an array of unsigned long for the ethtool support mask
229 *
230 * Parse the EEPROM identification information and derive the supported
231 * ethtool link modes for the module.
232 */
sfp_parse_support(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support)233 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
234 unsigned long *support)
235 {
236 unsigned int br_min, br_nom, br_max;
237 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
238
239 /* Decode the bitrate information to MBd */
240 br_min = br_nom = br_max = 0;
241 if (id->base.br_nominal) {
242 if (id->base.br_nominal != 255) {
243 br_nom = id->base.br_nominal * 100;
244 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
245 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
246 } else if (id->ext.br_max) {
247 br_nom = 250 * id->ext.br_max;
248 br_max = br_nom + br_nom * id->ext.br_min / 100;
249 br_min = br_nom - br_nom * id->ext.br_min / 100;
250 }
251
252 /* When using passive cables, in case neither BR,min nor BR,max
253 * are specified, set br_min to 0 as the nominal value is then
254 * used as the maximum.
255 */
256 if (br_min == br_max && id->base.sfp_ct_passive)
257 br_min = 0;
258 }
259
260 /* Set ethtool support from the compliance fields. */
261 if (id->base.e10g_base_sr)
262 phylink_set(modes, 10000baseSR_Full);
263 if (id->base.e10g_base_lr)
264 phylink_set(modes, 10000baseLR_Full);
265 if (id->base.e10g_base_lrm)
266 phylink_set(modes, 10000baseLRM_Full);
267 if (id->base.e10g_base_er)
268 phylink_set(modes, 10000baseER_Full);
269 if (id->base.e1000_base_sx ||
270 id->base.e1000_base_lx ||
271 id->base.e1000_base_cx)
272 phylink_set(modes, 1000baseX_Full);
273 if (id->base.e1000_base_t) {
274 phylink_set(modes, 1000baseT_Half);
275 phylink_set(modes, 1000baseT_Full);
276 }
277
278 /* 1000Base-PX or 1000Base-BX10 */
279 if ((id->base.e_base_px || id->base.e_base_bx10) &&
280 br_min <= 1300 && br_max >= 1200)
281 phylink_set(modes, 1000baseX_Full);
282
283 /* For active or passive cables, select the link modes
284 * based on the bit rates and the cable compliance bytes.
285 */
286 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
287 /* This may look odd, but some manufacturers use 12000MBd */
288 if (br_min <= 12000 && br_max >= 10300)
289 phylink_set(modes, 10000baseCR_Full);
290 if (br_min <= 3200 && br_max >= 3100)
291 phylink_set(modes, 2500baseX_Full);
292 if (br_min <= 1300 && br_max >= 1200)
293 phylink_set(modes, 1000baseX_Full);
294 }
295 if (id->base.sfp_ct_passive) {
296 if (id->base.passive.sff8431_app_e)
297 phylink_set(modes, 10000baseCR_Full);
298 }
299 if (id->base.sfp_ct_active) {
300 if (id->base.active.sff8431_app_e ||
301 id->base.active.sff8431_lim) {
302 phylink_set(modes, 10000baseCR_Full);
303 }
304 }
305
306 switch (id->base.extended_cc) {
307 case SFF8024_ECC_UNSPEC:
308 break;
309 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
310 phylink_set(modes, 100000baseSR4_Full);
311 phylink_set(modes, 25000baseSR_Full);
312 break;
313 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
314 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
315 phylink_set(modes, 100000baseLR4_ER4_Full);
316 break;
317 case SFF8024_ECC_100GBASE_CR4:
318 phylink_set(modes, 100000baseCR4_Full);
319 fallthrough;
320 case SFF8024_ECC_25GBASE_CR_S:
321 case SFF8024_ECC_25GBASE_CR_N:
322 phylink_set(modes, 25000baseCR_Full);
323 break;
324 case SFF8024_ECC_10GBASE_T_SFI:
325 case SFF8024_ECC_10GBASE_T_SR:
326 phylink_set(modes, 10000baseT_Full);
327 break;
328 case SFF8024_ECC_5GBASE_T:
329 phylink_set(modes, 5000baseT_Full);
330 break;
331 case SFF8024_ECC_2_5GBASE_T:
332 phylink_set(modes, 2500baseT_Full);
333 break;
334 default:
335 dev_warn(bus->sfp_dev,
336 "Unknown/unsupported extended compliance code: 0x%02x\n",
337 id->base.extended_cc);
338 break;
339 }
340
341 /* For fibre channel SFP, derive possible BaseX modes */
342 if (id->base.fc_speed_100 ||
343 id->base.fc_speed_200 ||
344 id->base.fc_speed_400) {
345 if (id->base.br_nominal >= 31)
346 phylink_set(modes, 2500baseX_Full);
347 if (id->base.br_nominal >= 12)
348 phylink_set(modes, 1000baseX_Full);
349 }
350
351 /* If we haven't discovered any modes that this module supports, try
352 * the bitrate to determine supported modes. Some BiDi modules (eg,
353 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
354 * wavelengths, so do not set any transceiver bits.
355 */
356 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
357 /* If the bit rate allows 1000baseX */
358 if (br_nom && br_min <= 1300 && br_max >= 1200)
359 phylink_set(modes, 1000baseX_Full);
360 }
361
362 if (bus->sfp_quirk)
363 bus->sfp_quirk->modes(id, modes);
364
365 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
366
367 phylink_set(support, Autoneg);
368 phylink_set(support, Pause);
369 phylink_set(support, Asym_Pause);
370 }
371 EXPORT_SYMBOL_GPL(sfp_parse_support);
372
373 /**
374 * sfp_select_interface() - Select appropriate phy_interface_t mode
375 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
376 * @link_modes: ethtool link modes mask
377 *
378 * Derive the phy_interface_t mode for the SFP module from the link
379 * modes mask.
380 */
sfp_select_interface(struct sfp_bus * bus,unsigned long * link_modes)381 phy_interface_t sfp_select_interface(struct sfp_bus *bus,
382 unsigned long *link_modes)
383 {
384 if (phylink_test(link_modes, 10000baseCR_Full) ||
385 phylink_test(link_modes, 10000baseSR_Full) ||
386 phylink_test(link_modes, 10000baseLR_Full) ||
387 phylink_test(link_modes, 10000baseLRM_Full) ||
388 phylink_test(link_modes, 10000baseER_Full) ||
389 phylink_test(link_modes, 10000baseT_Full))
390 return PHY_INTERFACE_MODE_10GBASER;
391
392 if (phylink_test(link_modes, 2500baseX_Full))
393 return PHY_INTERFACE_MODE_2500BASEX;
394
395 if (phylink_test(link_modes, 1000baseT_Half) ||
396 phylink_test(link_modes, 1000baseT_Full))
397 return PHY_INTERFACE_MODE_SGMII;
398
399 if (phylink_test(link_modes, 1000baseX_Full))
400 return PHY_INTERFACE_MODE_1000BASEX;
401
402 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
403
404 return PHY_INTERFACE_MODE_NA;
405 }
406 EXPORT_SYMBOL_GPL(sfp_select_interface);
407
408 static LIST_HEAD(sfp_buses);
409 static DEFINE_MUTEX(sfp_mutex);
410
sfp_get_upstream_ops(struct sfp_bus * bus)411 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
412 {
413 return bus->registered ? bus->upstream_ops : NULL;
414 }
415
sfp_bus_get(struct fwnode_handle * fwnode)416 static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
417 {
418 struct sfp_bus *sfp, *new, *found = NULL;
419
420 new = kzalloc(sizeof(*new), GFP_KERNEL);
421
422 mutex_lock(&sfp_mutex);
423
424 list_for_each_entry(sfp, &sfp_buses, node) {
425 if (sfp->fwnode == fwnode) {
426 kref_get(&sfp->kref);
427 found = sfp;
428 break;
429 }
430 }
431
432 if (!found && new) {
433 kref_init(&new->kref);
434 new->fwnode = fwnode;
435 list_add(&new->node, &sfp_buses);
436 found = new;
437 new = NULL;
438 }
439
440 mutex_unlock(&sfp_mutex);
441
442 kfree(new);
443
444 return found;
445 }
446
sfp_bus_release(struct kref * kref)447 static void sfp_bus_release(struct kref *kref)
448 {
449 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
450
451 list_del(&bus->node);
452 mutex_unlock(&sfp_mutex);
453 kfree(bus);
454 }
455
456 /**
457 * sfp_bus_put() - put a reference on the &struct sfp_bus
458 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
459 *
460 * Put a reference on the &struct sfp_bus and free the underlying structure
461 * if this was the last reference.
462 */
sfp_bus_put(struct sfp_bus * bus)463 void sfp_bus_put(struct sfp_bus *bus)
464 {
465 if (bus)
466 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
467 }
468 EXPORT_SYMBOL_GPL(sfp_bus_put);
469
sfp_register_bus(struct sfp_bus * bus)470 static int sfp_register_bus(struct sfp_bus *bus)
471 {
472 const struct sfp_upstream_ops *ops = bus->upstream_ops;
473 int ret;
474
475 if (ops) {
476 if (ops->link_down)
477 ops->link_down(bus->upstream);
478 if (ops->connect_phy && bus->phydev) {
479 ret = ops->connect_phy(bus->upstream, bus->phydev);
480 if (ret)
481 return ret;
482 }
483 }
484 bus->registered = true;
485 bus->socket_ops->attach(bus->sfp);
486 if (bus->started)
487 bus->socket_ops->start(bus->sfp);
488 bus->upstream_ops->attach(bus->upstream, bus);
489 return 0;
490 }
491
sfp_unregister_bus(struct sfp_bus * bus)492 static void sfp_unregister_bus(struct sfp_bus *bus)
493 {
494 const struct sfp_upstream_ops *ops = bus->upstream_ops;
495
496 if (bus->registered) {
497 bus->upstream_ops->detach(bus->upstream, bus);
498 if (bus->started)
499 bus->socket_ops->stop(bus->sfp);
500 bus->socket_ops->detach(bus->sfp);
501 if (bus->phydev && ops && ops->disconnect_phy)
502 ops->disconnect_phy(bus->upstream);
503 }
504 bus->registered = false;
505 }
506
507 /**
508 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
509 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
510 * @modinfo: a &struct ethtool_modinfo
511 *
512 * Fill in the type and eeprom_len parameters in @modinfo for a module on
513 * the sfp bus specified by @bus.
514 *
515 * Returns 0 on success or a negative errno number.
516 */
sfp_get_module_info(struct sfp_bus * bus,struct ethtool_modinfo * modinfo)517 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
518 {
519 return bus->socket_ops->module_info(bus->sfp, modinfo);
520 }
521 EXPORT_SYMBOL_GPL(sfp_get_module_info);
522
523 /**
524 * sfp_get_module_eeprom() - Read the SFP module EEPROM
525 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
526 * @ee: a &struct ethtool_eeprom
527 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
528 *
529 * Read the EEPROM as specified by the supplied @ee. See the documentation
530 * for &struct ethtool_eeprom for the region to be read.
531 *
532 * Returns 0 on success or a negative errno number.
533 */
sfp_get_module_eeprom(struct sfp_bus * bus,struct ethtool_eeprom * ee,u8 * data)534 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
535 u8 *data)
536 {
537 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
538 }
539 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
540
541 /**
542 * sfp_upstream_start() - Inform the SFP that the network device is up
543 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
544 *
545 * Inform the SFP socket that the network device is now up, so that the
546 * module can be enabled by allowing TX_DISABLE to be deasserted. This
547 * should be called from the network device driver's &struct net_device_ops
548 * ndo_open() method.
549 */
sfp_upstream_start(struct sfp_bus * bus)550 void sfp_upstream_start(struct sfp_bus *bus)
551 {
552 if (bus->registered)
553 bus->socket_ops->start(bus->sfp);
554 bus->started = true;
555 }
556 EXPORT_SYMBOL_GPL(sfp_upstream_start);
557
558 /**
559 * sfp_upstream_stop() - Inform the SFP that the network device is down
560 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
561 *
562 * Inform the SFP socket that the network device is now up, so that the
563 * module can be disabled by asserting TX_DISABLE, disabling the laser
564 * in optical modules. This should be called from the network device
565 * driver's &struct net_device_ops ndo_stop() method.
566 */
sfp_upstream_stop(struct sfp_bus * bus)567 void sfp_upstream_stop(struct sfp_bus *bus)
568 {
569 if (bus->registered)
570 bus->socket_ops->stop(bus->sfp);
571 bus->started = false;
572 }
573 EXPORT_SYMBOL_GPL(sfp_upstream_stop);
574
sfp_upstream_clear(struct sfp_bus * bus)575 static void sfp_upstream_clear(struct sfp_bus *bus)
576 {
577 bus->upstream_ops = NULL;
578 bus->upstream = NULL;
579 }
580
581 /**
582 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
583 * @fwnode: firmware node for the parent device (MAC or PHY)
584 *
585 * Parse the parent device's firmware node for a SFP bus, and locate
586 * the sfp_bus structure, incrementing its reference count. This must
587 * be put via sfp_bus_put() when done.
588 *
589 * Returns:
590 * - on success, a pointer to the sfp_bus structure,
591 * - %NULL if no SFP is specified,
592 * - on failure, an error pointer value:
593 *
594 * - corresponding to the errors detailed for
595 * fwnode_property_get_reference_args().
596 * - %-ENOMEM if we failed to allocate the bus.
597 * - an error from the upstream's connect_phy() method.
598 */
sfp_bus_find_fwnode(struct fwnode_handle * fwnode)599 struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
600 {
601 struct fwnode_reference_args ref;
602 struct sfp_bus *bus;
603 int ret;
604
605 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
606 0, 0, &ref);
607 if (ret == -ENOENT)
608 return NULL;
609 else if (ret < 0)
610 return ERR_PTR(ret);
611
612 if (!fwnode_device_is_available(ref.fwnode)) {
613 fwnode_handle_put(ref.fwnode);
614 return NULL;
615 }
616
617 bus = sfp_bus_get(ref.fwnode);
618 fwnode_handle_put(ref.fwnode);
619 if (!bus)
620 return ERR_PTR(-ENOMEM);
621
622 return bus;
623 }
624 EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
625
626 /**
627 * sfp_bus_add_upstream() - parse and register the neighbouring device
628 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
629 * @upstream: the upstream private data
630 * @ops: the upstream's &struct sfp_upstream_ops
631 *
632 * Add upstream driver for the SFP bus, and if the bus is complete, register
633 * the SFP bus using sfp_register_upstream(). This takes a reference on the
634 * bus, so it is safe to put the bus after this call.
635 *
636 * Returns:
637 * - on success, a pointer to the sfp_bus structure,
638 * - %NULL if no SFP is specified,
639 * - on failure, an error pointer value:
640 *
641 * - corresponding to the errors detailed for
642 * fwnode_property_get_reference_args().
643 * - %-ENOMEM if we failed to allocate the bus.
644 * - an error from the upstream's connect_phy() method.
645 */
sfp_bus_add_upstream(struct sfp_bus * bus,void * upstream,const struct sfp_upstream_ops * ops)646 int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
647 const struct sfp_upstream_ops *ops)
648 {
649 int ret;
650
651 /* If no bus, return success */
652 if (!bus)
653 return 0;
654
655 rtnl_lock();
656 kref_get(&bus->kref);
657 bus->upstream_ops = ops;
658 bus->upstream = upstream;
659
660 if (bus->sfp) {
661 ret = sfp_register_bus(bus);
662 if (ret)
663 sfp_upstream_clear(bus);
664 } else {
665 ret = 0;
666 }
667 rtnl_unlock();
668
669 if (ret)
670 sfp_bus_put(bus);
671
672 return ret;
673 }
674 EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
675
676 /**
677 * sfp_bus_del_upstream() - Delete a sfp bus
678 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
679 *
680 * Delete a previously registered upstream connection for the SFP
681 * module. @bus should have been added by sfp_bus_add_upstream().
682 */
sfp_bus_del_upstream(struct sfp_bus * bus)683 void sfp_bus_del_upstream(struct sfp_bus *bus)
684 {
685 if (bus) {
686 rtnl_lock();
687 if (bus->sfp)
688 sfp_unregister_bus(bus);
689 sfp_upstream_clear(bus);
690 rtnl_unlock();
691
692 sfp_bus_put(bus);
693 }
694 }
695 EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
696
697 /* Socket driver entry points */
sfp_add_phy(struct sfp_bus * bus,struct phy_device * phydev)698 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
699 {
700 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
701 int ret = 0;
702
703 if (ops && ops->connect_phy)
704 ret = ops->connect_phy(bus->upstream, phydev);
705
706 if (ret == 0)
707 bus->phydev = phydev;
708
709 return ret;
710 }
711 EXPORT_SYMBOL_GPL(sfp_add_phy);
712
sfp_remove_phy(struct sfp_bus * bus)713 void sfp_remove_phy(struct sfp_bus *bus)
714 {
715 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
716
717 if (ops && ops->disconnect_phy)
718 ops->disconnect_phy(bus->upstream);
719 bus->phydev = NULL;
720 }
721 EXPORT_SYMBOL_GPL(sfp_remove_phy);
722
sfp_link_up(struct sfp_bus * bus)723 void sfp_link_up(struct sfp_bus *bus)
724 {
725 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
726
727 if (ops && ops->link_up)
728 ops->link_up(bus->upstream);
729 }
730 EXPORT_SYMBOL_GPL(sfp_link_up);
731
sfp_link_down(struct sfp_bus * bus)732 void sfp_link_down(struct sfp_bus *bus)
733 {
734 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
735
736 if (ops && ops->link_down)
737 ops->link_down(bus->upstream);
738 }
739 EXPORT_SYMBOL_GPL(sfp_link_down);
740
sfp_module_insert(struct sfp_bus * bus,const struct sfp_eeprom_id * id)741 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
742 {
743 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
744 int ret = 0;
745
746 bus->sfp_quirk = sfp_lookup_quirk(id);
747
748 if (ops && ops->module_insert)
749 ret = ops->module_insert(bus->upstream, id);
750
751 return ret;
752 }
753 EXPORT_SYMBOL_GPL(sfp_module_insert);
754
sfp_module_remove(struct sfp_bus * bus)755 void sfp_module_remove(struct sfp_bus *bus)
756 {
757 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
758
759 if (ops && ops->module_remove)
760 ops->module_remove(bus->upstream);
761
762 bus->sfp_quirk = NULL;
763 }
764 EXPORT_SYMBOL_GPL(sfp_module_remove);
765
sfp_module_start(struct sfp_bus * bus)766 int sfp_module_start(struct sfp_bus *bus)
767 {
768 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
769 int ret = 0;
770
771 if (ops && ops->module_start)
772 ret = ops->module_start(bus->upstream);
773
774 return ret;
775 }
776 EXPORT_SYMBOL_GPL(sfp_module_start);
777
sfp_module_stop(struct sfp_bus * bus)778 void sfp_module_stop(struct sfp_bus *bus)
779 {
780 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
781
782 if (ops && ops->module_stop)
783 ops->module_stop(bus->upstream);
784 }
785 EXPORT_SYMBOL_GPL(sfp_module_stop);
786
sfp_socket_clear(struct sfp_bus * bus)787 static void sfp_socket_clear(struct sfp_bus *bus)
788 {
789 bus->sfp_dev = NULL;
790 bus->sfp = NULL;
791 bus->socket_ops = NULL;
792 }
793
sfp_register_socket(struct device * dev,struct sfp * sfp,const struct sfp_socket_ops * ops)794 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
795 const struct sfp_socket_ops *ops)
796 {
797 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
798 int ret = 0;
799
800 if (bus) {
801 rtnl_lock();
802 bus->sfp_dev = dev;
803 bus->sfp = sfp;
804 bus->socket_ops = ops;
805
806 if (bus->upstream_ops) {
807 ret = sfp_register_bus(bus);
808 if (ret)
809 sfp_socket_clear(bus);
810 }
811 rtnl_unlock();
812 }
813
814 if (ret) {
815 sfp_bus_put(bus);
816 bus = NULL;
817 }
818
819 return bus;
820 }
821 EXPORT_SYMBOL_GPL(sfp_register_socket);
822
sfp_unregister_socket(struct sfp_bus * bus)823 void sfp_unregister_socket(struct sfp_bus *bus)
824 {
825 rtnl_lock();
826 if (bus->upstream_ops)
827 sfp_unregister_bus(bus);
828 sfp_socket_clear(bus);
829 rtnl_unlock();
830
831 sfp_bus_put(bus);
832 }
833 EXPORT_SYMBOL_GPL(sfp_unregister_socket);
834