1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
34
35 /*
36 * All wire protocol details (storage protocol between the guest and the host)
37 * are consolidated here.
38 *
39 * Begin protocol definitions.
40 */
41
42 /*
43 * Version history:
44 * V1 Beta: 0.1
45 * V1 RC < 2008/1/31: 1.0
46 * V1 RC > 2008/1/31: 2.0
47 * Win7: 4.2
48 * Win8: 5.1
49 * Win8.1: 6.0
50 * Win10: 6.2
51 */
52
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \
54 (((MINOR_) & 0xff)))
55
56 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2)
61
62 /* Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64 VSTOR_OPERATION_COMPLETE_IO = 1,
65 VSTOR_OPERATION_REMOVE_DEVICE = 2,
66 VSTOR_OPERATION_EXECUTE_SRB = 3,
67 VSTOR_OPERATION_RESET_LUN = 4,
68 VSTOR_OPERATION_RESET_ADAPTER = 5,
69 VSTOR_OPERATION_RESET_BUS = 6,
70 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7,
71 VSTOR_OPERATION_END_INITIALIZATION = 8,
72 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9,
73 VSTOR_OPERATION_QUERY_PROPERTIES = 10,
74 VSTOR_OPERATION_ENUMERATE_BUS = 11,
75 VSTOR_OPERATION_FCHBA_DATA = 12,
76 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13,
77 VSTOR_OPERATION_MAXIMUM = 13
78 };
79
80 /*
81 * WWN packet for Fibre Channel HBA
82 */
83
84 struct hv_fc_wwn_packet {
85 u8 primary_active;
86 u8 reserved1[3];
87 u8 primary_port_wwn[8];
88 u8 primary_node_wwn[8];
89 u8 secondary_port_wwn[8];
90 u8 secondary_node_wwn[8];
91 };
92
93
94
95 /*
96 * SRB Flag Bits
97 */
98
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020
104 #define SRB_FLAGS_DATA_IN 0x00000040
105 #define SRB_FLAGS_DATA_OUT 0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400
111
112 /*
113 * This flag indicates the request is part of the workflow for processing a D3.
114 */
115 #define SRB_FLAGS_D3_PROCESSING 0x00000800
116 #define SRB_FLAGS_IS_ACTIVE 0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000
126
127 #define SP_UNTAGGED ((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST 0x20
129
130 /*
131 * Platform neutral description of a scsi request -
132 * this remains the same across the write regardless of 32/64 bit
133 * note: it's patterned off the SCSI_PASS_THROUGH structure
134 */
135 #define STORVSC_MAX_CMD_LEN 0x10
136
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12
139
140 #define STORVSC_SENSE_BUFFER_SIZE 0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14
142
143 /*
144 * Sense buffer size changed in win8; have a run-time
145 * variable to track the size we should use. This value will
146 * likely change during protocol negotiation but it is valid
147 * to start by assuming pre-Win8.
148 */
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
150
151 /*
152 * The storage protocol version is determined during the
153 * initial exchange with the host. It will indicate which
154 * storage functionality is available in the host.
155 */
156 static int vmstor_proto_version;
157
158 #define STORVSC_LOGGING_NONE 0
159 #define STORVSC_LOGGING_ERROR 1
160 #define STORVSC_LOGGING_WARN 2
161
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165 "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
166
do_logging(int level)167 static inline bool do_logging(int level)
168 {
169 return logging_level >= level;
170 }
171
172 #define storvsc_log(dev, level, fmt, ...) \
173 do { \
174 if (do_logging(level)) \
175 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \
176 } while (0)
177
178 struct vmscsi_win8_extension {
179 /*
180 * The following were added in Windows 8
181 */
182 u16 reserve;
183 u8 queue_tag;
184 u8 queue_action;
185 u32 srb_flags;
186 u32 time_out_value;
187 u32 queue_sort_ey;
188 } __packed;
189
190 struct vmscsi_request {
191 u16 length;
192 u8 srb_status;
193 u8 scsi_status;
194
195 u8 port_number;
196 u8 path_id;
197 u8 target_id;
198 u8 lun;
199
200 u8 cdb_length;
201 u8 sense_info_length;
202 u8 data_in;
203 u8 reserved;
204
205 u32 data_transfer_length;
206
207 union {
208 u8 cdb[STORVSC_MAX_CMD_LEN];
209 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
211 };
212 /*
213 * The following was added in win8.
214 */
215 struct vmscsi_win8_extension win8_extension;
216
217 } __attribute((packed));
218
219
220 /*
221 * The size of the vmscsi_request has changed in win8. The
222 * additional size is because of new elements added to the
223 * structure. These elements are valid only when we are talking
224 * to a win8 host.
225 * Track the correction to size we need to apply. This value
226 * will likely change during protocol negotiation but it is
227 * valid to start by assuming pre-Win8.
228 */
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
230
231 /*
232 * The list of storage protocols in order of preference.
233 */
234 struct vmstor_protocol {
235 int protocol_version;
236 int sense_buffer_size;
237 int vmscsi_size_delta;
238 };
239
240
241 static const struct vmstor_protocol vmstor_protocols[] = {
242 {
243 VMSTOR_PROTO_VERSION_WIN10,
244 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
245 0
246 },
247 {
248 VMSTOR_PROTO_VERSION_WIN8_1,
249 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
250 0
251 },
252 {
253 VMSTOR_PROTO_VERSION_WIN8,
254 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
255 0
256 },
257 {
258 VMSTOR_PROTO_VERSION_WIN7,
259 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260 sizeof(struct vmscsi_win8_extension),
261 },
262 {
263 VMSTOR_PROTO_VERSION_WIN6,
264 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265 sizeof(struct vmscsi_win8_extension),
266 }
267 };
268
269
270 /*
271 * This structure is sent during the initialization phase to get the different
272 * properties of the channel.
273 */
274
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1
276
277 struct vmstorage_channel_properties {
278 u32 reserved;
279 u16 max_channel_cnt;
280 u16 reserved1;
281
282 u32 flags;
283 u32 max_transfer_bytes;
284
285 u64 reserved2;
286 } __packed;
287
288 /* This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290 /* Major (MSW) and minor (LSW) version numbers. */
291 u16 major_minor;
292
293 /*
294 * Revision number is auto-incremented whenever this file is changed
295 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not
296 * definitely indicate incompatibility--but it does indicate mismatched
297 * builds.
298 * This is only used on the windows side. Just set it to 0.
299 */
300 u16 revision;
301 } __packed;
302
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2
306
307 struct vstor_packet {
308 /* Requested operation type */
309 enum vstor_packet_operation operation;
310
311 /* Flags - see below for values */
312 u32 flags;
313
314 /* Status of the request returned from the server side. */
315 u32 status;
316
317 /* Data payload area */
318 union {
319 /*
320 * Structure used to forward SCSI commands from the
321 * client to the server.
322 */
323 struct vmscsi_request vm_srb;
324
325 /* Structure used to query channel properties. */
326 struct vmstorage_channel_properties storage_channel_properties;
327
328 /* Used during version negotiations. */
329 struct vmstorage_protocol_version version;
330
331 /* Fibre channel address packet */
332 struct hv_fc_wwn_packet wwn_packet;
333
334 /* Number of sub-channels to create */
335 u16 sub_channel_count;
336
337 /* This will be the maximum of the union members */
338 u8 buffer[0x34];
339 };
340 } __packed;
341
342 /*
343 * Packet Flags:
344 *
345 * This flag indicates that the server should send back a completion for this
346 * packet.
347 */
348
349 #define REQUEST_COMPLETION_FLAG 0x1
350
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353 WRITE_TYPE = 0,
354 READ_TYPE,
355 UNKNOWN_TYPE,
356 };
357
358 /*
359 * SRB status codes and masks; a subset of the codes used here.
360 */
361
362 #define SRB_STATUS_AUTOSENSE_VALID 0x80
363 #define SRB_STATUS_QUEUE_FROZEN 0x40
364 #define SRB_STATUS_INVALID_LUN 0x20
365 #define SRB_STATUS_SUCCESS 0x01
366 #define SRB_STATUS_ABORTED 0x02
367 #define SRB_STATUS_ERROR 0x04
368 #define SRB_STATUS_DATA_OVERRUN 0x12
369
370 #define SRB_STATUS(status) \
371 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
372 /*
373 * This is the end of Protocol specific defines.
374 */
375
376 static int storvsc_ringbuffer_size = (128 * 1024);
377 static u32 max_outstanding_req_per_channel;
378 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
379
380 static int storvsc_vcpus_per_sub_channel = 4;
381
382 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
383 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
384
385 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
386 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
387
388 static int ring_avail_percent_lowater = 10;
389 module_param(ring_avail_percent_lowater, int, S_IRUGO);
390 MODULE_PARM_DESC(ring_avail_percent_lowater,
391 "Select a channel if available ring size > this in percent");
392
393 /*
394 * Timeout in seconds for all devices managed by this driver.
395 */
396 static int storvsc_timeout = 180;
397
398 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
399 static struct scsi_transport_template *fc_transport_template;
400 #endif
401
402 static void storvsc_on_channel_callback(void *context);
403
404 #define STORVSC_MAX_LUNS_PER_TARGET 255
405 #define STORVSC_MAX_TARGETS 2
406 #define STORVSC_MAX_CHANNELS 8
407
408 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255
409 #define STORVSC_FC_MAX_TARGETS 128
410 #define STORVSC_FC_MAX_CHANNELS 8
411
412 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64
413 #define STORVSC_IDE_MAX_TARGETS 1
414 #define STORVSC_IDE_MAX_CHANNELS 1
415
416 struct storvsc_cmd_request {
417 struct scsi_cmnd *cmd;
418
419 struct hv_device *device;
420
421 /* Synchronize the request/response if needed */
422 struct completion wait_event;
423
424 struct vmbus_channel_packet_multipage_buffer mpb;
425 struct vmbus_packet_mpb_array *payload;
426 u32 payload_sz;
427
428 struct vstor_packet vstor_packet;
429 };
430
431
432 /* A storvsc device is a device object that contains a vmbus channel */
433 struct storvsc_device {
434 struct hv_device *device;
435
436 bool destroy;
437 bool drain_notify;
438 atomic_t num_outstanding_req;
439 struct Scsi_Host *host;
440
441 wait_queue_head_t waiting_to_drain;
442
443 /*
444 * Each unique Port/Path/Target represents 1 channel ie scsi
445 * controller. In reality, the pathid, targetid is always 0
446 * and the port is set by us
447 */
448 unsigned int port_number;
449 unsigned char path_id;
450 unsigned char target_id;
451
452 /*
453 * Max I/O, the device can support.
454 */
455 u32 max_transfer_bytes;
456 /*
457 * Number of sub-channels we will open.
458 */
459 u16 num_sc;
460 struct vmbus_channel **stor_chns;
461 /*
462 * Mask of CPUs bound to subchannels.
463 */
464 struct cpumask alloced_cpus;
465 /*
466 * Serializes modifications of stor_chns[] from storvsc_do_io()
467 * and storvsc_change_target_cpu().
468 */
469 spinlock_t lock;
470 /* Used for vsc/vsp channel reset process */
471 struct storvsc_cmd_request init_request;
472 struct storvsc_cmd_request reset_request;
473 /*
474 * Currently active port and node names for FC devices.
475 */
476 u64 node_name;
477 u64 port_name;
478 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
479 struct fc_rport *rport;
480 #endif
481 };
482
483 struct hv_host_device {
484 struct hv_device *dev;
485 unsigned int port;
486 unsigned char path;
487 unsigned char target;
488 struct workqueue_struct *handle_error_wq;
489 struct work_struct host_scan_work;
490 struct Scsi_Host *host;
491 };
492
493 struct storvsc_scan_work {
494 struct work_struct work;
495 struct Scsi_Host *host;
496 u8 lun;
497 u8 tgt_id;
498 };
499
storvsc_device_scan(struct work_struct * work)500 static void storvsc_device_scan(struct work_struct *work)
501 {
502 struct storvsc_scan_work *wrk;
503 struct scsi_device *sdev;
504
505 wrk = container_of(work, struct storvsc_scan_work, work);
506
507 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
508 if (!sdev)
509 goto done;
510 scsi_rescan_device(&sdev->sdev_gendev);
511 scsi_device_put(sdev);
512
513 done:
514 kfree(wrk);
515 }
516
storvsc_host_scan(struct work_struct * work)517 static void storvsc_host_scan(struct work_struct *work)
518 {
519 struct Scsi_Host *host;
520 struct scsi_device *sdev;
521 struct hv_host_device *host_device =
522 container_of(work, struct hv_host_device, host_scan_work);
523
524 host = host_device->host;
525 /*
526 * Before scanning the host, first check to see if any of the
527 * currrently known devices have been hot removed. We issue a
528 * "unit ready" command against all currently known devices.
529 * This I/O will result in an error for devices that have been
530 * removed. As part of handling the I/O error, we remove the device.
531 *
532 * When a LUN is added or removed, the host sends us a signal to
533 * scan the host. Thus we are forced to discover the LUNs that
534 * may have been removed this way.
535 */
536 mutex_lock(&host->scan_mutex);
537 shost_for_each_device(sdev, host)
538 scsi_test_unit_ready(sdev, 1, 1, NULL);
539 mutex_unlock(&host->scan_mutex);
540 /*
541 * Now scan the host to discover LUNs that may have been added.
542 */
543 scsi_scan_host(host);
544 }
545
storvsc_remove_lun(struct work_struct * work)546 static void storvsc_remove_lun(struct work_struct *work)
547 {
548 struct storvsc_scan_work *wrk;
549 struct scsi_device *sdev;
550
551 wrk = container_of(work, struct storvsc_scan_work, work);
552 if (!scsi_host_get(wrk->host))
553 goto done;
554
555 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
556
557 if (sdev) {
558 scsi_remove_device(sdev);
559 scsi_device_put(sdev);
560 }
561 scsi_host_put(wrk->host);
562
563 done:
564 kfree(wrk);
565 }
566
567
568 /*
569 * We can get incoming messages from the host that are not in response to
570 * messages that we have sent out. An example of this would be messages
571 * received by the guest to notify dynamic addition/removal of LUNs. To
572 * deal with potential race conditions where the driver may be in the
573 * midst of being unloaded when we might receive an unsolicited message
574 * from the host, we have implemented a mechanism to gurantee sequential
575 * consistency:
576 *
577 * 1) Once the device is marked as being destroyed, we will fail all
578 * outgoing messages.
579 * 2) We permit incoming messages when the device is being destroyed,
580 * only to properly account for messages already sent out.
581 */
582
get_out_stor_device(struct hv_device * device)583 static inline struct storvsc_device *get_out_stor_device(
584 struct hv_device *device)
585 {
586 struct storvsc_device *stor_device;
587
588 stor_device = hv_get_drvdata(device);
589
590 if (stor_device && stor_device->destroy)
591 stor_device = NULL;
592
593 return stor_device;
594 }
595
596
storvsc_wait_to_drain(struct storvsc_device * dev)597 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
598 {
599 dev->drain_notify = true;
600 wait_event(dev->waiting_to_drain,
601 atomic_read(&dev->num_outstanding_req) == 0);
602 dev->drain_notify = false;
603 }
604
get_in_stor_device(struct hv_device * device)605 static inline struct storvsc_device *get_in_stor_device(
606 struct hv_device *device)
607 {
608 struct storvsc_device *stor_device;
609
610 stor_device = hv_get_drvdata(device);
611
612 if (!stor_device)
613 goto get_in_err;
614
615 /*
616 * If the device is being destroyed; allow incoming
617 * traffic only to cleanup outstanding requests.
618 */
619
620 if (stor_device->destroy &&
621 (atomic_read(&stor_device->num_outstanding_req) == 0))
622 stor_device = NULL;
623
624 get_in_err:
625 return stor_device;
626
627 }
628
storvsc_change_target_cpu(struct vmbus_channel * channel,u32 old,u32 new)629 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
630 u32 new)
631 {
632 struct storvsc_device *stor_device;
633 struct vmbus_channel *cur_chn;
634 bool old_is_alloced = false;
635 struct hv_device *device;
636 unsigned long flags;
637 int cpu;
638
639 device = channel->primary_channel ?
640 channel->primary_channel->device_obj
641 : channel->device_obj;
642 stor_device = get_out_stor_device(device);
643 if (!stor_device)
644 return;
645
646 /* See storvsc_do_io() -> get_og_chn(). */
647 spin_lock_irqsave(&stor_device->lock, flags);
648
649 /*
650 * Determines if the storvsc device has other channels assigned to
651 * the "old" CPU to update the alloced_cpus mask and the stor_chns
652 * array.
653 */
654 if (device->channel != channel && device->channel->target_cpu == old) {
655 cur_chn = device->channel;
656 old_is_alloced = true;
657 goto old_is_alloced;
658 }
659 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
660 if (cur_chn == channel)
661 continue;
662 if (cur_chn->target_cpu == old) {
663 old_is_alloced = true;
664 goto old_is_alloced;
665 }
666 }
667
668 old_is_alloced:
669 if (old_is_alloced)
670 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
671 else
672 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
673
674 /* "Flush" the stor_chns array. */
675 for_each_possible_cpu(cpu) {
676 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
677 cpu, &stor_device->alloced_cpus))
678 WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
679 }
680
681 WRITE_ONCE(stor_device->stor_chns[new], channel);
682 cpumask_set_cpu(new, &stor_device->alloced_cpus);
683
684 spin_unlock_irqrestore(&stor_device->lock, flags);
685 }
686
handle_sc_creation(struct vmbus_channel * new_sc)687 static void handle_sc_creation(struct vmbus_channel *new_sc)
688 {
689 struct hv_device *device = new_sc->primary_channel->device_obj;
690 struct device *dev = &device->device;
691 struct storvsc_device *stor_device;
692 struct vmstorage_channel_properties props;
693 int ret;
694
695 stor_device = get_out_stor_device(device);
696 if (!stor_device)
697 return;
698
699 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
700
701 ret = vmbus_open(new_sc,
702 storvsc_ringbuffer_size,
703 storvsc_ringbuffer_size,
704 (void *)&props,
705 sizeof(struct vmstorage_channel_properties),
706 storvsc_on_channel_callback, new_sc);
707
708 /* In case vmbus_open() fails, we don't use the sub-channel. */
709 if (ret != 0) {
710 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
711 return;
712 }
713
714 new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
715
716 /* Add the sub-channel to the array of available channels. */
717 stor_device->stor_chns[new_sc->target_cpu] = new_sc;
718 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
719 }
720
handle_multichannel_storage(struct hv_device * device,int max_chns)721 static void handle_multichannel_storage(struct hv_device *device, int max_chns)
722 {
723 struct device *dev = &device->device;
724 struct storvsc_device *stor_device;
725 int num_sc;
726 struct storvsc_cmd_request *request;
727 struct vstor_packet *vstor_packet;
728 int ret, t;
729
730 /*
731 * If the number of CPUs is artificially restricted, such as
732 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
733 * sub-channels >= the number of CPUs. These sub-channels
734 * should not be created. The primary channel is already created
735 * and assigned to one CPU, so check against # CPUs - 1.
736 */
737 num_sc = min((int)(num_online_cpus() - 1), max_chns);
738 if (!num_sc)
739 return;
740
741 stor_device = get_out_stor_device(device);
742 if (!stor_device)
743 return;
744
745 stor_device->num_sc = num_sc;
746 request = &stor_device->init_request;
747 vstor_packet = &request->vstor_packet;
748
749 /*
750 * Establish a handler for dealing with subchannels.
751 */
752 vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
753
754 /*
755 * Request the host to create sub-channels.
756 */
757 memset(request, 0, sizeof(struct storvsc_cmd_request));
758 init_completion(&request->wait_event);
759 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
760 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
761 vstor_packet->sub_channel_count = num_sc;
762
763 ret = vmbus_sendpacket(device->channel, vstor_packet,
764 (sizeof(struct vstor_packet) -
765 vmscsi_size_delta),
766 (unsigned long)request,
767 VM_PKT_DATA_INBAND,
768 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
769
770 if (ret != 0) {
771 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
772 return;
773 }
774
775 t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
776 if (t == 0) {
777 dev_err(dev, "Failed to create sub-channel: timed out\n");
778 return;
779 }
780
781 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
782 vstor_packet->status != 0) {
783 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
784 vstor_packet->operation, vstor_packet->status);
785 return;
786 }
787
788 /*
789 * We need to do nothing here, because vmbus_process_offer()
790 * invokes channel->sc_creation_callback, which will open and use
791 * the sub-channel(s).
792 */
793 }
794
cache_wwn(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet)795 static void cache_wwn(struct storvsc_device *stor_device,
796 struct vstor_packet *vstor_packet)
797 {
798 /*
799 * Cache the currently active port and node ww names.
800 */
801 if (vstor_packet->wwn_packet.primary_active) {
802 stor_device->node_name =
803 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
804 stor_device->port_name =
805 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
806 } else {
807 stor_device->node_name =
808 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
809 stor_device->port_name =
810 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
811 }
812 }
813
814
storvsc_execute_vstor_op(struct hv_device * device,struct storvsc_cmd_request * request,bool status_check)815 static int storvsc_execute_vstor_op(struct hv_device *device,
816 struct storvsc_cmd_request *request,
817 bool status_check)
818 {
819 struct vstor_packet *vstor_packet;
820 int ret, t;
821
822 vstor_packet = &request->vstor_packet;
823
824 init_completion(&request->wait_event);
825 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
826
827 ret = vmbus_sendpacket(device->channel, vstor_packet,
828 (sizeof(struct vstor_packet) -
829 vmscsi_size_delta),
830 (unsigned long)request,
831 VM_PKT_DATA_INBAND,
832 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
833 if (ret != 0)
834 return ret;
835
836 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
837 if (t == 0)
838 return -ETIMEDOUT;
839
840 if (!status_check)
841 return ret;
842
843 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
844 vstor_packet->status != 0)
845 return -EINVAL;
846
847 return ret;
848 }
849
storvsc_channel_init(struct hv_device * device,bool is_fc)850 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
851 {
852 struct storvsc_device *stor_device;
853 struct storvsc_cmd_request *request;
854 struct vstor_packet *vstor_packet;
855 int ret, i;
856 int max_chns;
857 bool process_sub_channels = false;
858
859 stor_device = get_out_stor_device(device);
860 if (!stor_device)
861 return -ENODEV;
862
863 request = &stor_device->init_request;
864 vstor_packet = &request->vstor_packet;
865
866 /*
867 * Now, initiate the vsc/vsp initialization protocol on the open
868 * channel
869 */
870 memset(request, 0, sizeof(struct storvsc_cmd_request));
871 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
872 ret = storvsc_execute_vstor_op(device, request, true);
873 if (ret)
874 return ret;
875 /*
876 * Query host supported protocol version.
877 */
878
879 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
880 /* reuse the packet for version range supported */
881 memset(vstor_packet, 0, sizeof(struct vstor_packet));
882 vstor_packet->operation =
883 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
884
885 vstor_packet->version.major_minor =
886 vmstor_protocols[i].protocol_version;
887
888 /*
889 * The revision number is only used in Windows; set it to 0.
890 */
891 vstor_packet->version.revision = 0;
892 ret = storvsc_execute_vstor_op(device, request, false);
893 if (ret != 0)
894 return ret;
895
896 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
897 return -EINVAL;
898
899 if (vstor_packet->status == 0) {
900 vmstor_proto_version =
901 vmstor_protocols[i].protocol_version;
902
903 sense_buffer_size =
904 vmstor_protocols[i].sense_buffer_size;
905
906 vmscsi_size_delta =
907 vmstor_protocols[i].vmscsi_size_delta;
908
909 break;
910 }
911 }
912
913 if (vstor_packet->status != 0)
914 return -EINVAL;
915
916
917 memset(vstor_packet, 0, sizeof(struct vstor_packet));
918 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
919 ret = storvsc_execute_vstor_op(device, request, true);
920 if (ret != 0)
921 return ret;
922
923 /*
924 * Check to see if multi-channel support is there.
925 * Hosts that implement protocol version of 5.1 and above
926 * support multi-channel.
927 */
928 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
929
930 /*
931 * Allocate state to manage the sub-channels.
932 * We allocate an array based on the numbers of possible CPUs
933 * (Hyper-V does not support cpu online/offline).
934 * This Array will be sparseley populated with unique
935 * channels - primary + sub-channels.
936 * We will however populate all the slots to evenly distribute
937 * the load.
938 */
939 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
940 GFP_KERNEL);
941 if (stor_device->stor_chns == NULL)
942 return -ENOMEM;
943
944 device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
945
946 stor_device->stor_chns[device->channel->target_cpu] = device->channel;
947 cpumask_set_cpu(device->channel->target_cpu,
948 &stor_device->alloced_cpus);
949
950 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
951 if (vstor_packet->storage_channel_properties.flags &
952 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
953 process_sub_channels = true;
954 }
955 stor_device->max_transfer_bytes =
956 vstor_packet->storage_channel_properties.max_transfer_bytes;
957
958 if (!is_fc)
959 goto done;
960
961 /*
962 * For FC devices retrieve FC HBA data.
963 */
964 memset(vstor_packet, 0, sizeof(struct vstor_packet));
965 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
966 ret = storvsc_execute_vstor_op(device, request, true);
967 if (ret != 0)
968 return ret;
969
970 /*
971 * Cache the currently active port and node ww names.
972 */
973 cache_wwn(stor_device, vstor_packet);
974
975 done:
976
977 memset(vstor_packet, 0, sizeof(struct vstor_packet));
978 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
979 ret = storvsc_execute_vstor_op(device, request, true);
980 if (ret != 0)
981 return ret;
982
983 if (process_sub_channels)
984 handle_multichannel_storage(device, max_chns);
985
986 return ret;
987 }
988
storvsc_handle_error(struct vmscsi_request * vm_srb,struct scsi_cmnd * scmnd,struct Scsi_Host * host,u8 asc,u8 ascq)989 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
990 struct scsi_cmnd *scmnd,
991 struct Scsi_Host *host,
992 u8 asc, u8 ascq)
993 {
994 struct storvsc_scan_work *wrk;
995 void (*process_err_fn)(struct work_struct *work);
996 struct hv_host_device *host_dev = shost_priv(host);
997
998 /*
999 * In some situations, Hyper-V sets multiple bits in the
1000 * srb_status, such as ABORTED and ERROR. So process them
1001 * individually, with the most specific bits first.
1002 */
1003
1004 if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) {
1005 set_host_byte(scmnd, DID_NO_CONNECT);
1006 process_err_fn = storvsc_remove_lun;
1007 goto do_work;
1008 }
1009
1010 if (vm_srb->srb_status & SRB_STATUS_ABORTED) {
1011 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
1012 /* Capacity data has changed */
1013 (asc == 0x2a) && (ascq == 0x9)) {
1014 process_err_fn = storvsc_device_scan;
1015 /*
1016 * Retry the I/O that triggered this.
1017 */
1018 set_host_byte(scmnd, DID_REQUEUE);
1019 goto do_work;
1020 }
1021 }
1022
1023 if (vm_srb->srb_status & SRB_STATUS_ERROR) {
1024 /*
1025 * Let upper layer deal with error when
1026 * sense message is present.
1027 */
1028 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
1029 return;
1030
1031 /*
1032 * If there is an error; offline the device since all
1033 * error recovery strategies would have already been
1034 * deployed on the host side. However, if the command
1035 * were a pass-through command deal with it appropriately.
1036 */
1037 switch (scmnd->cmnd[0]) {
1038 case ATA_16:
1039 case ATA_12:
1040 set_host_byte(scmnd, DID_PASSTHROUGH);
1041 break;
1042 /*
1043 * On some Hyper-V hosts TEST_UNIT_READY command can
1044 * return SRB_STATUS_ERROR. Let the upper level code
1045 * deal with it based on the sense information.
1046 */
1047 case TEST_UNIT_READY:
1048 break;
1049 default:
1050 set_host_byte(scmnd, DID_ERROR);
1051 }
1052 }
1053 return;
1054
1055 do_work:
1056 /*
1057 * We need to schedule work to process this error; schedule it.
1058 */
1059 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1060 if (!wrk) {
1061 set_host_byte(scmnd, DID_TARGET_FAILURE);
1062 return;
1063 }
1064
1065 wrk->host = host;
1066 wrk->lun = vm_srb->lun;
1067 wrk->tgt_id = vm_srb->target_id;
1068 INIT_WORK(&wrk->work, process_err_fn);
1069 queue_work(host_dev->handle_error_wq, &wrk->work);
1070 }
1071
1072
storvsc_command_completion(struct storvsc_cmd_request * cmd_request,struct storvsc_device * stor_dev)1073 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1074 struct storvsc_device *stor_dev)
1075 {
1076 struct scsi_cmnd *scmnd = cmd_request->cmd;
1077 struct scsi_sense_hdr sense_hdr;
1078 struct vmscsi_request *vm_srb;
1079 u32 data_transfer_length;
1080 struct Scsi_Host *host;
1081 u32 payload_sz = cmd_request->payload_sz;
1082 void *payload = cmd_request->payload;
1083
1084 host = stor_dev->host;
1085
1086 vm_srb = &cmd_request->vstor_packet.vm_srb;
1087 data_transfer_length = vm_srb->data_transfer_length;
1088
1089 scmnd->result = vm_srb->scsi_status;
1090
1091 if (scmnd->result) {
1092 if (scsi_normalize_sense(scmnd->sense_buffer,
1093 SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1094 !(sense_hdr.sense_key == NOT_READY &&
1095 sense_hdr.asc == 0x03A) &&
1096 do_logging(STORVSC_LOGGING_ERROR))
1097 scsi_print_sense_hdr(scmnd->device, "storvsc",
1098 &sense_hdr);
1099 }
1100
1101 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1102 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1103 sense_hdr.ascq);
1104 /*
1105 * The Windows driver set data_transfer_length on
1106 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1107 * is untouched. In these cases we set it to 0.
1108 */
1109 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1110 data_transfer_length = 0;
1111 }
1112
1113 /* Validate data_transfer_length (from Hyper-V) */
1114 if (data_transfer_length > cmd_request->payload->range.len)
1115 data_transfer_length = cmd_request->payload->range.len;
1116
1117 scsi_set_resid(scmnd,
1118 cmd_request->payload->range.len - data_transfer_length);
1119
1120 scmnd->scsi_done(scmnd);
1121
1122 if (payload_sz >
1123 sizeof(struct vmbus_channel_packet_multipage_buffer))
1124 kfree(payload);
1125 }
1126
storvsc_on_io_completion(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1127 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1128 struct vstor_packet *vstor_packet,
1129 struct storvsc_cmd_request *request)
1130 {
1131 struct vstor_packet *stor_pkt;
1132 struct hv_device *device = stor_device->device;
1133
1134 stor_pkt = &request->vstor_packet;
1135
1136 /*
1137 * The current SCSI handling on the host side does
1138 * not correctly handle:
1139 * INQUIRY command with page code parameter set to 0x80
1140 * MODE_SENSE command with cmd[2] == 0x1c
1141 *
1142 * Setup srb and scsi status so this won't be fatal.
1143 * We do this so we can distinguish truly fatal failues
1144 * (srb status == 0x4) and off-line the device in that case.
1145 */
1146
1147 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1148 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1149 vstor_packet->vm_srb.scsi_status = 0;
1150 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1151 }
1152
1153
1154 /* Copy over the status...etc */
1155 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1156 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1157
1158 /* Validate sense_info_length (from Hyper-V) */
1159 if (vstor_packet->vm_srb.sense_info_length > sense_buffer_size)
1160 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1161
1162 stor_pkt->vm_srb.sense_info_length =
1163 vstor_packet->vm_srb.sense_info_length;
1164
1165 if (vstor_packet->vm_srb.scsi_status != 0 ||
1166 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1167 storvsc_log(device, STORVSC_LOGGING_WARN,
1168 "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1169 stor_pkt->vm_srb.cdb[0],
1170 vstor_packet->vm_srb.scsi_status,
1171 vstor_packet->vm_srb.srb_status);
1172
1173 if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1174 /* CHECK_CONDITION */
1175 if (vstor_packet->vm_srb.srb_status &
1176 SRB_STATUS_AUTOSENSE_VALID) {
1177 /* autosense data available */
1178
1179 storvsc_log(device, STORVSC_LOGGING_WARN,
1180 "stor pkt %p autosense data valid - len %d\n",
1181 request, vstor_packet->vm_srb.sense_info_length);
1182
1183 memcpy(request->cmd->sense_buffer,
1184 vstor_packet->vm_srb.sense_data,
1185 vstor_packet->vm_srb.sense_info_length);
1186
1187 }
1188 }
1189
1190 stor_pkt->vm_srb.data_transfer_length =
1191 vstor_packet->vm_srb.data_transfer_length;
1192
1193 storvsc_command_completion(request, stor_device);
1194
1195 if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1196 stor_device->drain_notify)
1197 wake_up(&stor_device->waiting_to_drain);
1198
1199
1200 }
1201
storvsc_on_receive(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1202 static void storvsc_on_receive(struct storvsc_device *stor_device,
1203 struct vstor_packet *vstor_packet,
1204 struct storvsc_cmd_request *request)
1205 {
1206 struct hv_host_device *host_dev;
1207 switch (vstor_packet->operation) {
1208 case VSTOR_OPERATION_COMPLETE_IO:
1209 storvsc_on_io_completion(stor_device, vstor_packet, request);
1210 break;
1211
1212 case VSTOR_OPERATION_REMOVE_DEVICE:
1213 case VSTOR_OPERATION_ENUMERATE_BUS:
1214 host_dev = shost_priv(stor_device->host);
1215 queue_work(
1216 host_dev->handle_error_wq, &host_dev->host_scan_work);
1217 break;
1218
1219 case VSTOR_OPERATION_FCHBA_DATA:
1220 cache_wwn(stor_device, vstor_packet);
1221 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1222 fc_host_node_name(stor_device->host) = stor_device->node_name;
1223 fc_host_port_name(stor_device->host) = stor_device->port_name;
1224 #endif
1225 break;
1226 default:
1227 break;
1228 }
1229 }
1230
storvsc_on_channel_callback(void * context)1231 static void storvsc_on_channel_callback(void *context)
1232 {
1233 struct vmbus_channel *channel = (struct vmbus_channel *)context;
1234 const struct vmpacket_descriptor *desc;
1235 struct hv_device *device;
1236 struct storvsc_device *stor_device;
1237
1238 if (channel->primary_channel != NULL)
1239 device = channel->primary_channel->device_obj;
1240 else
1241 device = channel->device_obj;
1242
1243 stor_device = get_in_stor_device(device);
1244 if (!stor_device)
1245 return;
1246
1247 foreach_vmbus_pkt(desc, channel) {
1248 void *packet = hv_pkt_data(desc);
1249 struct storvsc_cmd_request *request;
1250
1251 request = (struct storvsc_cmd_request *)
1252 ((unsigned long)desc->trans_id);
1253
1254 if (request == &stor_device->init_request ||
1255 request == &stor_device->reset_request) {
1256 memcpy(&request->vstor_packet, packet,
1257 (sizeof(struct vstor_packet) - vmscsi_size_delta));
1258 complete(&request->wait_event);
1259 } else {
1260 storvsc_on_receive(stor_device, packet, request);
1261 }
1262 }
1263 }
1264
storvsc_connect_to_vsp(struct hv_device * device,u32 ring_size,bool is_fc)1265 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1266 bool is_fc)
1267 {
1268 struct vmstorage_channel_properties props;
1269 int ret;
1270
1271 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1272
1273 ret = vmbus_open(device->channel,
1274 ring_size,
1275 ring_size,
1276 (void *)&props,
1277 sizeof(struct vmstorage_channel_properties),
1278 storvsc_on_channel_callback, device->channel);
1279
1280 if (ret != 0)
1281 return ret;
1282
1283 ret = storvsc_channel_init(device, is_fc);
1284
1285 return ret;
1286 }
1287
storvsc_dev_remove(struct hv_device * device)1288 static int storvsc_dev_remove(struct hv_device *device)
1289 {
1290 struct storvsc_device *stor_device;
1291
1292 stor_device = hv_get_drvdata(device);
1293
1294 stor_device->destroy = true;
1295
1296 /* Make sure flag is set before waiting */
1297 wmb();
1298
1299 /*
1300 * At this point, all outbound traffic should be disable. We
1301 * only allow inbound traffic (responses) to proceed so that
1302 * outstanding requests can be completed.
1303 */
1304
1305 storvsc_wait_to_drain(stor_device);
1306
1307 /*
1308 * Since we have already drained, we don't need to busy wait
1309 * as was done in final_release_stor_device()
1310 * Note that we cannot set the ext pointer to NULL until
1311 * we have drained - to drain the outgoing packets, we need to
1312 * allow incoming packets.
1313 */
1314 hv_set_drvdata(device, NULL);
1315
1316 /* Close the channel */
1317 vmbus_close(device->channel);
1318
1319 kfree(stor_device->stor_chns);
1320 kfree(stor_device);
1321 return 0;
1322 }
1323
get_og_chn(struct storvsc_device * stor_device,u16 q_num)1324 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1325 u16 q_num)
1326 {
1327 u16 slot = 0;
1328 u16 hash_qnum;
1329 const struct cpumask *node_mask;
1330 int num_channels, tgt_cpu;
1331
1332 if (stor_device->num_sc == 0) {
1333 stor_device->stor_chns[q_num] = stor_device->device->channel;
1334 return stor_device->device->channel;
1335 }
1336
1337 /*
1338 * Our channel array is sparsley populated and we
1339 * initiated I/O on a processor/hw-q that does not
1340 * currently have a designated channel. Fix this.
1341 * The strategy is simple:
1342 * I. Ensure NUMA locality
1343 * II. Distribute evenly (best effort)
1344 */
1345
1346 node_mask = cpumask_of_node(cpu_to_node(q_num));
1347
1348 num_channels = 0;
1349 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1350 if (cpumask_test_cpu(tgt_cpu, node_mask))
1351 num_channels++;
1352 }
1353 if (num_channels == 0) {
1354 stor_device->stor_chns[q_num] = stor_device->device->channel;
1355 return stor_device->device->channel;
1356 }
1357
1358 hash_qnum = q_num;
1359 while (hash_qnum >= num_channels)
1360 hash_qnum -= num_channels;
1361
1362 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1363 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1364 continue;
1365 if (slot == hash_qnum)
1366 break;
1367 slot++;
1368 }
1369
1370 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1371
1372 return stor_device->stor_chns[q_num];
1373 }
1374
1375
storvsc_do_io(struct hv_device * device,struct storvsc_cmd_request * request,u16 q_num)1376 static int storvsc_do_io(struct hv_device *device,
1377 struct storvsc_cmd_request *request, u16 q_num)
1378 {
1379 struct storvsc_device *stor_device;
1380 struct vstor_packet *vstor_packet;
1381 struct vmbus_channel *outgoing_channel, *channel;
1382 unsigned long flags;
1383 int ret = 0;
1384 const struct cpumask *node_mask;
1385 int tgt_cpu;
1386
1387 vstor_packet = &request->vstor_packet;
1388 stor_device = get_out_stor_device(device);
1389
1390 if (!stor_device)
1391 return -ENODEV;
1392
1393
1394 request->device = device;
1395 /*
1396 * Select an appropriate channel to send the request out.
1397 */
1398 /* See storvsc_change_target_cpu(). */
1399 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1400 if (outgoing_channel != NULL) {
1401 if (outgoing_channel->target_cpu == q_num) {
1402 /*
1403 * Ideally, we want to pick a different channel if
1404 * available on the same NUMA node.
1405 */
1406 node_mask = cpumask_of_node(cpu_to_node(q_num));
1407 for_each_cpu_wrap(tgt_cpu,
1408 &stor_device->alloced_cpus, q_num + 1) {
1409 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1410 continue;
1411 if (tgt_cpu == q_num)
1412 continue;
1413 channel = READ_ONCE(
1414 stor_device->stor_chns[tgt_cpu]);
1415 if (channel == NULL)
1416 continue;
1417 if (hv_get_avail_to_write_percent(
1418 &channel->outbound)
1419 > ring_avail_percent_lowater) {
1420 outgoing_channel = channel;
1421 goto found_channel;
1422 }
1423 }
1424
1425 /*
1426 * All the other channels on the same NUMA node are
1427 * busy. Try to use the channel on the current CPU
1428 */
1429 if (hv_get_avail_to_write_percent(
1430 &outgoing_channel->outbound)
1431 > ring_avail_percent_lowater)
1432 goto found_channel;
1433
1434 /*
1435 * If we reach here, all the channels on the current
1436 * NUMA node are busy. Try to find a channel in
1437 * other NUMA nodes
1438 */
1439 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1440 if (cpumask_test_cpu(tgt_cpu, node_mask))
1441 continue;
1442 channel = READ_ONCE(
1443 stor_device->stor_chns[tgt_cpu]);
1444 if (channel == NULL)
1445 continue;
1446 if (hv_get_avail_to_write_percent(
1447 &channel->outbound)
1448 > ring_avail_percent_lowater) {
1449 outgoing_channel = channel;
1450 goto found_channel;
1451 }
1452 }
1453 }
1454 } else {
1455 spin_lock_irqsave(&stor_device->lock, flags);
1456 outgoing_channel = stor_device->stor_chns[q_num];
1457 if (outgoing_channel != NULL) {
1458 spin_unlock_irqrestore(&stor_device->lock, flags);
1459 goto found_channel;
1460 }
1461 outgoing_channel = get_og_chn(stor_device, q_num);
1462 spin_unlock_irqrestore(&stor_device->lock, flags);
1463 }
1464
1465 found_channel:
1466 vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1467
1468 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1469 vmscsi_size_delta);
1470
1471
1472 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1473
1474
1475 vstor_packet->vm_srb.data_transfer_length =
1476 request->payload->range.len;
1477
1478 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1479
1480 if (request->payload->range.len) {
1481
1482 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1483 request->payload, request->payload_sz,
1484 vstor_packet,
1485 (sizeof(struct vstor_packet) -
1486 vmscsi_size_delta),
1487 (unsigned long)request);
1488 } else {
1489 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1490 (sizeof(struct vstor_packet) -
1491 vmscsi_size_delta),
1492 (unsigned long)request,
1493 VM_PKT_DATA_INBAND,
1494 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1495 }
1496
1497 if (ret != 0)
1498 return ret;
1499
1500 atomic_inc(&stor_device->num_outstanding_req);
1501
1502 return ret;
1503 }
1504
storvsc_device_alloc(struct scsi_device * sdevice)1505 static int storvsc_device_alloc(struct scsi_device *sdevice)
1506 {
1507 /*
1508 * Set blist flag to permit the reading of the VPD pages even when
1509 * the target may claim SPC-2 compliance. MSFT targets currently
1510 * claim SPC-2 compliance while they implement post SPC-2 features.
1511 * With this flag we can correctly handle WRITE_SAME_16 issues.
1512 *
1513 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1514 * still supports REPORT LUN.
1515 */
1516 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1517
1518 return 0;
1519 }
1520
storvsc_device_configure(struct scsi_device * sdevice)1521 static int storvsc_device_configure(struct scsi_device *sdevice)
1522 {
1523 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1524
1525 sdevice->no_write_same = 1;
1526
1527 /*
1528 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1529 * if the device is a MSFT virtual device. If the host is
1530 * WIN10 or newer, allow write_same.
1531 */
1532 if (!strncmp(sdevice->vendor, "Msft", 4)) {
1533 switch (vmstor_proto_version) {
1534 case VMSTOR_PROTO_VERSION_WIN8:
1535 case VMSTOR_PROTO_VERSION_WIN8_1:
1536 sdevice->scsi_level = SCSI_SPC_3;
1537 break;
1538 }
1539
1540 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1541 sdevice->no_write_same = 0;
1542 }
1543
1544 return 0;
1545 }
1546
storvsc_get_chs(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int * info)1547 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1548 sector_t capacity, int *info)
1549 {
1550 sector_t nsect = capacity;
1551 sector_t cylinders = nsect;
1552 int heads, sectors_pt;
1553
1554 /*
1555 * We are making up these values; let us keep it simple.
1556 */
1557 heads = 0xff;
1558 sectors_pt = 0x3f; /* Sectors per track */
1559 sector_div(cylinders, heads * sectors_pt);
1560 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1561 cylinders = 0xffff;
1562
1563 info[0] = heads;
1564 info[1] = sectors_pt;
1565 info[2] = (int)cylinders;
1566
1567 return 0;
1568 }
1569
storvsc_host_reset_handler(struct scsi_cmnd * scmnd)1570 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1571 {
1572 struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1573 struct hv_device *device = host_dev->dev;
1574
1575 struct storvsc_device *stor_device;
1576 struct storvsc_cmd_request *request;
1577 struct vstor_packet *vstor_packet;
1578 int ret, t;
1579
1580
1581 stor_device = get_out_stor_device(device);
1582 if (!stor_device)
1583 return FAILED;
1584
1585 request = &stor_device->reset_request;
1586 vstor_packet = &request->vstor_packet;
1587 memset(vstor_packet, 0, sizeof(struct vstor_packet));
1588
1589 init_completion(&request->wait_event);
1590
1591 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1592 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1593 vstor_packet->vm_srb.path_id = stor_device->path_id;
1594
1595 ret = vmbus_sendpacket(device->channel, vstor_packet,
1596 (sizeof(struct vstor_packet) -
1597 vmscsi_size_delta),
1598 (unsigned long)&stor_device->reset_request,
1599 VM_PKT_DATA_INBAND,
1600 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1601 if (ret != 0)
1602 return FAILED;
1603
1604 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1605 if (t == 0)
1606 return TIMEOUT_ERROR;
1607
1608
1609 /*
1610 * At this point, all outstanding requests in the adapter
1611 * should have been flushed out and return to us
1612 * There is a potential race here where the host may be in
1613 * the process of responding when we return from here.
1614 * Just wait for all in-transit packets to be accounted for
1615 * before we return from here.
1616 */
1617 storvsc_wait_to_drain(stor_device);
1618
1619 return SUCCESS;
1620 }
1621
1622 /*
1623 * The host guarantees to respond to each command, although I/O latencies might
1624 * be unbounded on Azure. Reset the timer unconditionally to give the host a
1625 * chance to perform EH.
1626 */
storvsc_eh_timed_out(struct scsi_cmnd * scmnd)1627 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1628 {
1629 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1630 if (scmnd->device->host->transportt == fc_transport_template)
1631 return fc_eh_timed_out(scmnd);
1632 #endif
1633 return BLK_EH_RESET_TIMER;
1634 }
1635
storvsc_scsi_cmd_ok(struct scsi_cmnd * scmnd)1636 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1637 {
1638 bool allowed = true;
1639 u8 scsi_op = scmnd->cmnd[0];
1640
1641 switch (scsi_op) {
1642 /* the host does not handle WRITE_SAME, log accident usage */
1643 case WRITE_SAME:
1644 /*
1645 * smartd sends this command and the host does not handle
1646 * this. So, don't send it.
1647 */
1648 case SET_WINDOW:
1649 scmnd->result = ILLEGAL_REQUEST << 16;
1650 allowed = false;
1651 break;
1652 default:
1653 break;
1654 }
1655 return allowed;
1656 }
1657
storvsc_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * scmnd)1658 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1659 {
1660 int ret;
1661 struct hv_host_device *host_dev = shost_priv(host);
1662 struct hv_device *dev = host_dev->dev;
1663 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1664 int i;
1665 struct scatterlist *sgl;
1666 unsigned int sg_count = 0;
1667 struct vmscsi_request *vm_srb;
1668 struct scatterlist *cur_sgl;
1669 struct vmbus_packet_mpb_array *payload;
1670 u32 payload_sz;
1671 u32 length;
1672
1673 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1674 /*
1675 * On legacy hosts filter unimplemented commands.
1676 * Future hosts are expected to correctly handle
1677 * unsupported commands. Furthermore, it is
1678 * possible that some of the currently
1679 * unsupported commands maybe supported in
1680 * future versions of the host.
1681 */
1682 if (!storvsc_scsi_cmd_ok(scmnd)) {
1683 scmnd->scsi_done(scmnd);
1684 return 0;
1685 }
1686 }
1687
1688 /* Setup the cmd request */
1689 cmd_request->cmd = scmnd;
1690
1691 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1692 vm_srb = &cmd_request->vstor_packet.vm_srb;
1693 vm_srb->win8_extension.time_out_value = 60;
1694
1695 vm_srb->win8_extension.srb_flags |=
1696 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1697
1698 if (scmnd->device->tagged_supported) {
1699 vm_srb->win8_extension.srb_flags |=
1700 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1701 vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1702 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1703 }
1704
1705 /* Build the SRB */
1706 switch (scmnd->sc_data_direction) {
1707 case DMA_TO_DEVICE:
1708 vm_srb->data_in = WRITE_TYPE;
1709 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1710 break;
1711 case DMA_FROM_DEVICE:
1712 vm_srb->data_in = READ_TYPE;
1713 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1714 break;
1715 case DMA_NONE:
1716 vm_srb->data_in = UNKNOWN_TYPE;
1717 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1718 break;
1719 default:
1720 /*
1721 * This is DMA_BIDIRECTIONAL or something else we are never
1722 * supposed to see here.
1723 */
1724 WARN(1, "Unexpected data direction: %d\n",
1725 scmnd->sc_data_direction);
1726 return -EINVAL;
1727 }
1728
1729
1730 vm_srb->port_number = host_dev->port;
1731 vm_srb->path_id = scmnd->device->channel;
1732 vm_srb->target_id = scmnd->device->id;
1733 vm_srb->lun = scmnd->device->lun;
1734
1735 vm_srb->cdb_length = scmnd->cmd_len;
1736
1737 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1738
1739 sgl = (struct scatterlist *)scsi_sglist(scmnd);
1740 sg_count = scsi_sg_count(scmnd);
1741
1742 length = scsi_bufflen(scmnd);
1743 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1744 payload_sz = sizeof(cmd_request->mpb);
1745
1746 if (sg_count) {
1747 unsigned int hvpgoff = 0;
1748 unsigned long offset_in_hvpg = sgl->offset & ~HV_HYP_PAGE_MASK;
1749 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1750 u64 hvpfn;
1751
1752 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1753
1754 payload_sz = (hvpg_count * sizeof(u64) +
1755 sizeof(struct vmbus_packet_mpb_array));
1756 payload = kzalloc(payload_sz, GFP_ATOMIC);
1757 if (!payload)
1758 return SCSI_MLQUEUE_DEVICE_BUSY;
1759 }
1760
1761 /*
1762 * sgl is a list of PAGEs, and payload->range.pfn_array
1763 * expects the page number in the unit of HV_HYP_PAGE_SIZE (the
1764 * page size that Hyper-V uses, so here we need to divide PAGEs
1765 * into HV_HYP_PAGE in case that PAGE_SIZE > HV_HYP_PAGE_SIZE.
1766 * Besides, payload->range.offset should be the offset in one
1767 * HV_HYP_PAGE.
1768 */
1769 payload->range.len = length;
1770 payload->range.offset = offset_in_hvpg;
1771 hvpgoff = sgl->offset >> HV_HYP_PAGE_SHIFT;
1772
1773 cur_sgl = sgl;
1774 for (i = 0; i < hvpg_count; i++) {
1775 /*
1776 * 'i' is the index of hv pages in the payload and
1777 * 'hvpgoff' is the offset (in hv pages) of the first
1778 * hv page in the the first page. The relationship
1779 * between the sum of 'i' and 'hvpgoff' and the offset
1780 * (in hv pages) in a payload page ('hvpgoff_in_page')
1781 * is as follow:
1782 *
1783 * |------------------ PAGE -------------------|
1784 * | NR_HV_HYP_PAGES_IN_PAGE hvpgs in total |
1785 * |hvpg|hvpg| ... |hvpg|... |hvpg|
1786 * ^ ^ ^ ^
1787 * +-hvpgoff-+ +-hvpgoff_in_page-+
1788 * ^ |
1789 * +--------------------- i ---------------------------+
1790 */
1791 unsigned int hvpgoff_in_page =
1792 (i + hvpgoff) % NR_HV_HYP_PAGES_IN_PAGE;
1793
1794 /*
1795 * Two cases that we need to fetch a page:
1796 * 1) i == 0, the first step or
1797 * 2) hvpgoff_in_page == 0, when we reach the boundary
1798 * of a page.
1799 */
1800 if (hvpgoff_in_page == 0 || i == 0) {
1801 hvpfn = page_to_hvpfn(sg_page(cur_sgl));
1802 cur_sgl = sg_next(cur_sgl);
1803 }
1804
1805 payload->range.pfn_array[i] = hvpfn + hvpgoff_in_page;
1806 }
1807 }
1808
1809 cmd_request->payload = payload;
1810 cmd_request->payload_sz = payload_sz;
1811
1812 /* Invokes the vsc to start an IO */
1813 ret = storvsc_do_io(dev, cmd_request, get_cpu());
1814 put_cpu();
1815
1816 if (ret == -EAGAIN) {
1817 if (payload_sz > sizeof(cmd_request->mpb))
1818 kfree(payload);
1819 /* no more space */
1820 return SCSI_MLQUEUE_DEVICE_BUSY;
1821 }
1822
1823 return 0;
1824 }
1825
1826 static struct scsi_host_template scsi_driver = {
1827 .module = THIS_MODULE,
1828 .name = "storvsc_host_t",
1829 .cmd_size = sizeof(struct storvsc_cmd_request),
1830 .bios_param = storvsc_get_chs,
1831 .queuecommand = storvsc_queuecommand,
1832 .eh_host_reset_handler = storvsc_host_reset_handler,
1833 .proc_name = "storvsc_host",
1834 .eh_timed_out = storvsc_eh_timed_out,
1835 .slave_alloc = storvsc_device_alloc,
1836 .slave_configure = storvsc_device_configure,
1837 .cmd_per_lun = 2048,
1838 .this_id = -1,
1839 /* Make sure we dont get a sg segment crosses a page boundary */
1840 .dma_boundary = PAGE_SIZE-1,
1841 /* Ensure there are no gaps in presented sgls */
1842 .virt_boundary_mask = PAGE_SIZE-1,
1843 .no_write_same = 1,
1844 .track_queue_depth = 1,
1845 .change_queue_depth = storvsc_change_queue_depth,
1846 };
1847
1848 enum {
1849 SCSI_GUID,
1850 IDE_GUID,
1851 SFC_GUID,
1852 };
1853
1854 static const struct hv_vmbus_device_id id_table[] = {
1855 /* SCSI guid */
1856 { HV_SCSI_GUID,
1857 .driver_data = SCSI_GUID
1858 },
1859 /* IDE guid */
1860 { HV_IDE_GUID,
1861 .driver_data = IDE_GUID
1862 },
1863 /* Fibre Channel GUID */
1864 {
1865 HV_SYNTHFC_GUID,
1866 .driver_data = SFC_GUID
1867 },
1868 { },
1869 };
1870
1871 MODULE_DEVICE_TABLE(vmbus, id_table);
1872
1873 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1874
hv_dev_is_fc(struct hv_device * hv_dev)1875 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1876 {
1877 return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1878 }
1879
storvsc_probe(struct hv_device * device,const struct hv_vmbus_device_id * dev_id)1880 static int storvsc_probe(struct hv_device *device,
1881 const struct hv_vmbus_device_id *dev_id)
1882 {
1883 int ret;
1884 int num_cpus = num_online_cpus();
1885 struct Scsi_Host *host;
1886 struct hv_host_device *host_dev;
1887 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1888 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1889 int target = 0;
1890 struct storvsc_device *stor_device;
1891 int max_luns_per_target;
1892 int max_targets;
1893 int max_channels;
1894 int max_sub_channels = 0;
1895
1896 /*
1897 * Based on the windows host we are running on,
1898 * set state to properly communicate with the host.
1899 */
1900
1901 if (vmbus_proto_version < VERSION_WIN8) {
1902 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1903 max_targets = STORVSC_IDE_MAX_TARGETS;
1904 max_channels = STORVSC_IDE_MAX_CHANNELS;
1905 } else {
1906 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1907 max_targets = STORVSC_MAX_TARGETS;
1908 max_channels = STORVSC_MAX_CHANNELS;
1909 /*
1910 * On Windows8 and above, we support sub-channels for storage
1911 * on SCSI and FC controllers.
1912 * The number of sub-channels offerred is based on the number of
1913 * VCPUs in the guest.
1914 */
1915 if (!dev_is_ide)
1916 max_sub_channels =
1917 (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1918 }
1919
1920 scsi_driver.can_queue = max_outstanding_req_per_channel *
1921 (max_sub_channels + 1) *
1922 (100 - ring_avail_percent_lowater) / 100;
1923
1924 host = scsi_host_alloc(&scsi_driver,
1925 sizeof(struct hv_host_device));
1926 if (!host)
1927 return -ENOMEM;
1928
1929 host_dev = shost_priv(host);
1930 memset(host_dev, 0, sizeof(struct hv_host_device));
1931
1932 host_dev->port = host->host_no;
1933 host_dev->dev = device;
1934 host_dev->host = host;
1935
1936
1937 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1938 if (!stor_device) {
1939 ret = -ENOMEM;
1940 goto err_out0;
1941 }
1942
1943 stor_device->destroy = false;
1944 init_waitqueue_head(&stor_device->waiting_to_drain);
1945 stor_device->device = device;
1946 stor_device->host = host;
1947 spin_lock_init(&stor_device->lock);
1948 hv_set_drvdata(device, stor_device);
1949
1950 stor_device->port_number = host->host_no;
1951 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1952 if (ret)
1953 goto err_out1;
1954
1955 host_dev->path = stor_device->path_id;
1956 host_dev->target = stor_device->target_id;
1957
1958 switch (dev_id->driver_data) {
1959 case SFC_GUID:
1960 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1961 host->max_id = STORVSC_FC_MAX_TARGETS;
1962 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1963 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1964 host->transportt = fc_transport_template;
1965 #endif
1966 break;
1967
1968 case SCSI_GUID:
1969 host->max_lun = max_luns_per_target;
1970 host->max_id = max_targets;
1971 host->max_channel = max_channels - 1;
1972 break;
1973
1974 default:
1975 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1976 host->max_id = STORVSC_IDE_MAX_TARGETS;
1977 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1978 break;
1979 }
1980 /* max cmd length */
1981 host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1982
1983 /*
1984 * set the table size based on the info we got
1985 * from the host.
1986 */
1987 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
1988 /*
1989 * For non-IDE disks, the host supports multiple channels.
1990 * Set the number of HW queues we are supporting.
1991 */
1992 if (!dev_is_ide)
1993 host->nr_hw_queues = num_present_cpus();
1994
1995 /*
1996 * Set the error handler work queue.
1997 */
1998 host_dev->handle_error_wq =
1999 alloc_ordered_workqueue("storvsc_error_wq_%d",
2000 WQ_MEM_RECLAIM,
2001 host->host_no);
2002 if (!host_dev->handle_error_wq) {
2003 ret = -ENOMEM;
2004 goto err_out2;
2005 }
2006 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2007 /* Register the HBA and start the scsi bus scan */
2008 ret = scsi_add_host(host, &device->device);
2009 if (ret != 0)
2010 goto err_out3;
2011
2012 if (!dev_is_ide) {
2013 scsi_scan_host(host);
2014 } else {
2015 target = (device->dev_instance.b[5] << 8 |
2016 device->dev_instance.b[4]);
2017 ret = scsi_add_device(host, 0, target, 0);
2018 if (ret)
2019 goto err_out4;
2020 }
2021 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2022 if (host->transportt == fc_transport_template) {
2023 struct fc_rport_identifiers ids = {
2024 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2025 };
2026
2027 fc_host_node_name(host) = stor_device->node_name;
2028 fc_host_port_name(host) = stor_device->port_name;
2029 stor_device->rport = fc_remote_port_add(host, 0, &ids);
2030 if (!stor_device->rport) {
2031 ret = -ENOMEM;
2032 goto err_out4;
2033 }
2034 }
2035 #endif
2036 return 0;
2037
2038 err_out4:
2039 scsi_remove_host(host);
2040
2041 err_out3:
2042 destroy_workqueue(host_dev->handle_error_wq);
2043
2044 err_out2:
2045 /*
2046 * Once we have connected with the host, we would need to
2047 * to invoke storvsc_dev_remove() to rollback this state and
2048 * this call also frees up the stor_device; hence the jump around
2049 * err_out1 label.
2050 */
2051 storvsc_dev_remove(device);
2052 goto err_out0;
2053
2054 err_out1:
2055 kfree(stor_device->stor_chns);
2056 kfree(stor_device);
2057
2058 err_out0:
2059 scsi_host_put(host);
2060 return ret;
2061 }
2062
2063 /* Change a scsi target's queue depth */
storvsc_change_queue_depth(struct scsi_device * sdev,int queue_depth)2064 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2065 {
2066 if (queue_depth > scsi_driver.can_queue)
2067 queue_depth = scsi_driver.can_queue;
2068
2069 return scsi_change_queue_depth(sdev, queue_depth);
2070 }
2071
storvsc_remove(struct hv_device * dev)2072 static int storvsc_remove(struct hv_device *dev)
2073 {
2074 struct storvsc_device *stor_device = hv_get_drvdata(dev);
2075 struct Scsi_Host *host = stor_device->host;
2076 struct hv_host_device *host_dev = shost_priv(host);
2077
2078 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2079 if (host->transportt == fc_transport_template) {
2080 fc_remote_port_delete(stor_device->rport);
2081 fc_remove_host(host);
2082 }
2083 #endif
2084 destroy_workqueue(host_dev->handle_error_wq);
2085 scsi_remove_host(host);
2086 storvsc_dev_remove(dev);
2087 scsi_host_put(host);
2088
2089 return 0;
2090 }
2091
storvsc_suspend(struct hv_device * hv_dev)2092 static int storvsc_suspend(struct hv_device *hv_dev)
2093 {
2094 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2095 struct Scsi_Host *host = stor_device->host;
2096 struct hv_host_device *host_dev = shost_priv(host);
2097
2098 storvsc_wait_to_drain(stor_device);
2099
2100 drain_workqueue(host_dev->handle_error_wq);
2101
2102 vmbus_close(hv_dev->channel);
2103
2104 kfree(stor_device->stor_chns);
2105 stor_device->stor_chns = NULL;
2106
2107 cpumask_clear(&stor_device->alloced_cpus);
2108
2109 return 0;
2110 }
2111
storvsc_resume(struct hv_device * hv_dev)2112 static int storvsc_resume(struct hv_device *hv_dev)
2113 {
2114 int ret;
2115
2116 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2117 hv_dev_is_fc(hv_dev));
2118 return ret;
2119 }
2120
2121 static struct hv_driver storvsc_drv = {
2122 .name = KBUILD_MODNAME,
2123 .id_table = id_table,
2124 .probe = storvsc_probe,
2125 .remove = storvsc_remove,
2126 .suspend = storvsc_suspend,
2127 .resume = storvsc_resume,
2128 .driver = {
2129 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2130 },
2131 };
2132
2133 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2134 static struct fc_function_template fc_transport_functions = {
2135 .show_host_node_name = 1,
2136 .show_host_port_name = 1,
2137 };
2138 #endif
2139
storvsc_drv_init(void)2140 static int __init storvsc_drv_init(void)
2141 {
2142 int ret;
2143
2144 /*
2145 * Divide the ring buffer data size (which is 1 page less
2146 * than the ring buffer size since that page is reserved for
2147 * the ring buffer indices) by the max request size (which is
2148 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2149 */
2150 max_outstanding_req_per_channel =
2151 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2152 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2153 sizeof(struct vstor_packet) + sizeof(u64) -
2154 vmscsi_size_delta,
2155 sizeof(u64)));
2156
2157 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2158 fc_transport_template = fc_attach_transport(&fc_transport_functions);
2159 if (!fc_transport_template)
2160 return -ENODEV;
2161 #endif
2162
2163 ret = vmbus_driver_register(&storvsc_drv);
2164
2165 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2166 if (ret)
2167 fc_release_transport(fc_transport_template);
2168 #endif
2169
2170 return ret;
2171 }
2172
storvsc_drv_exit(void)2173 static void __exit storvsc_drv_exit(void)
2174 {
2175 vmbus_driver_unregister(&storvsc_drv);
2176 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2177 fc_release_transport(fc_transport_template);
2178 #endif
2179 }
2180
2181 MODULE_LICENSE("GPL");
2182 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2183 module_init(storvsc_drv_init);
2184 module_exit(storvsc_drv_exit);
2185