1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20
21 #define DRIVER_NAME "spi_stm32"
22
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1 0x00
25 #define STM32F4_SPI_CR2 0x04
26 #define STM32F4_SPI_SR 0x08
27 #define STM32F4_SPI_DR 0x0C
28 #define STM32F4_SPI_I2SCFGR 0x1C
29
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA BIT(0)
32 #define STM32F4_SPI_CR1_CPOL BIT(1)
33 #define STM32F4_SPI_CR1_MSTR BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT 3
35 #define STM32F4_SPI_CR1_BR GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST BIT(7)
38 #define STM32F4_SPI_CR1_SSI BIT(8)
39 #define STM32F4_SPI_CR1_SSM BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY BIT(10)
41 #define STM32F4_SPI_CR1_DFF BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN 0
47 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
48
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN BIT(1)
52 #define STM32F4_SPI_CR2_SSOE BIT(2)
53 #define STM32F4_SPI_CR2_FRF BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE BIT(7)
57
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE BIT(0)
60 #define STM32F4_SPI_SR_TXE BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE BIT(2)
62 #define STM32F4_SPI_SR_UDR BIT(3)
63 #define STM32F4_SPI_SR_CRCERR BIT(4)
64 #define STM32F4_SPI_SR_MODF BIT(5)
65 #define STM32F4_SPI_SR_OVR BIT(6)
66 #define STM32F4_SPI_SR_BSY BIT(7)
67 #define STM32F4_SPI_SR_FRE BIT(8)
68
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
71
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
75
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1 0x00
78 #define STM32H7_SPI_CR2 0x04
79 #define STM32H7_SPI_CFG1 0x08
80 #define STM32H7_SPI_CFG2 0x0C
81 #define STM32H7_SPI_IER 0x10
82 #define STM32H7_SPI_SR 0x14
83 #define STM32H7_SPI_IFCR 0x18
84 #define STM32H7_SPI_TXDR 0x20
85 #define STM32H7_SPI_RXDR 0x30
86 #define STM32H7_SPI_I2SCFGR 0x50
87
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE BIT(0)
90 #define STM32H7_SPI_CR1_MASRX BIT(8)
91 #define STM32H7_SPI_CR1_CSTART BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR BIT(11)
94 #define STM32H7_SPI_CR1_SSI BIT(12)
95
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0
98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
99
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
104 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28
108 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN 0
110 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
111
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4
114 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT 17
116 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT 19
118 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL BIT(25)
123 #define STM32H7_SPI_CFG2_SSM BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR BIT(31)
125
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE BIT(0)
128 #define STM32H7_SPI_IER_TXPIE BIT(1)
129 #define STM32H7_SPI_IER_DXPIE BIT(2)
130 #define STM32H7_SPI_IER_EOTIE BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE BIT(4)
132 #define STM32H7_SPI_IER_OVRIE BIT(6)
133 #define STM32H7_SPI_IER_MODFIE BIT(9)
134 #define STM32H7_SPI_IER_ALL GENMASK(10, 0)
135
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP BIT(0)
138 #define STM32H7_SPI_SR_TXP BIT(1)
139 #define STM32H7_SPI_SR_EOT BIT(3)
140 #define STM32H7_SPI_SR_OVR BIT(6)
141 #define STM32H7_SPI_SR_MODF BIT(9)
142 #define STM32H7_SPI_SR_SUSP BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13
144 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE BIT(15)
146
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
149
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
152
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
156
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX 0
159 #define STM32H7_SPI_SIMPLEX_TX 1
160 #define STM32H7_SPI_SIMPLEX_RX 2
161 #define STM32H7_SPI_HALF_DUPLEX 3
162
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX 0
165 #define SPI_SIMPLEX_TX 1
166 #define SPI_SIMPLEX_RX 2
167 #define SPI_3WIRE_TX 3
168 #define SPI_3WIRE_RX 4
169
170 #define SPI_1HZ_NS 1000000000
171
172 /*
173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174 * without fifo buffers.
175 */
176 #define SPI_DMA_MIN_BYTES 16
177
178 /**
179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 * @reg: register offset
181 * @mask: bitfield mask
182 * @shift: left shift
183 */
184 struct stm32_spi_reg {
185 int reg;
186 int mask;
187 int shift;
188 };
189
190 /**
191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192 * @en: enable register and SPI enable bit
193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195 * @cpol: clock polarity register and polarity bit
196 * @cpha: clock phase register and phase bit
197 * @lsb_first: LSB transmitted first register and bit
198 * @br: baud rate register and bitfields
199 * @rx: SPI RX data register
200 * @tx: SPI TX data register
201 */
202 struct stm32_spi_regspec {
203 const struct stm32_spi_reg en;
204 const struct stm32_spi_reg dma_rx_en;
205 const struct stm32_spi_reg dma_tx_en;
206 const struct stm32_spi_reg cpol;
207 const struct stm32_spi_reg cpha;
208 const struct stm32_spi_reg lsb_first;
209 const struct stm32_spi_reg br;
210 const struct stm32_spi_reg rx;
211 const struct stm32_spi_reg tx;
212 };
213
214 struct stm32_spi;
215
216 /**
217 * struct stm32_spi_cfg - stm32 compatible configuration data
218 * @regs: registers descriptions
219 * @get_fifo_size: routine to get fifo size
220 * @get_bpw_mask: routine to get bits per word mask
221 * @disable: routine to disable controller
222 * @config: routine to configure controller as SPI Master
223 * @set_bpw: routine to configure registers to for bits per word
224 * @set_mode: routine to configure registers to desired mode
225 * @set_data_idleness: optional routine to configure registers to desired idle
226 * time between frames (if driver has this functionality)
227 * @set_number_of_data: optional routine to configure registers to desired
228 * number of data (if driver has this functionality)
229 * @can_dma: routine to determine if the transfer is eligible for DMA use
230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231 * using DMA
232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234 * @transfer_one_irq: routine to configure interrupts for driver
235 * @irq_handler_event: Interrupt handler for SPI controller events
236 * @irq_handler_thread: thread of interrupt handler for SPI controller
237 * @baud_rate_div_min: minimum baud rate divisor
238 * @baud_rate_div_max: maximum baud rate divisor
239 * @has_fifo: boolean to know if fifo is used for driver
240 * @has_startbit: boolean to know if start bit is used to start transfer
241 */
242 struct stm32_spi_cfg {
243 const struct stm32_spi_regspec *regs;
244 int (*get_fifo_size)(struct stm32_spi *spi);
245 int (*get_bpw_mask)(struct stm32_spi *spi);
246 void (*disable)(struct stm32_spi *spi);
247 int (*config)(struct stm32_spi *spi);
248 void (*set_bpw)(struct stm32_spi *spi);
249 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 void (*dma_rx_cb)(void *data);
254 void (*dma_tx_cb)(void *data);
255 int (*transfer_one_irq)(struct stm32_spi *spi);
256 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 unsigned int baud_rate_div_min;
259 unsigned int baud_rate_div_max;
260 bool has_fifo;
261 };
262
263 /**
264 * struct stm32_spi - private data of the SPI controller
265 * @dev: driver model representation of the controller
266 * @master: controller master interface
267 * @cfg: compatible configuration data
268 * @base: virtual memory area
269 * @clk: hw kernel clock feeding the SPI clock generator
270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271 * @rst: SPI controller reset line
272 * @lock: prevent I/O concurrent access
273 * @irq: SPI controller interrupt line
274 * @fifo_size: size of the embedded fifo in bytes
275 * @cur_midi: master inter-data idleness in ns
276 * @cur_speed: speed configured in Hz
277 * @cur_bpw: number of bits in a single SPI data frame
278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279 * @cur_comm: SPI communication mode
280 * @cur_xferlen: current transfer length in bytes
281 * @cur_usedma: boolean to know if dma is used in current transfer
282 * @tx_buf: data to be written, or NULL
283 * @rx_buf: data to be read, or NULL
284 * @tx_len: number of data to be written in bytes
285 * @rx_len: number of data to be read in bytes
286 * @dma_tx: dma channel for TX transfer
287 * @dma_rx: dma channel for RX transfer
288 * @phys_addr: SPI registers physical base address
289 */
290 struct stm32_spi {
291 struct device *dev;
292 struct spi_master *master;
293 const struct stm32_spi_cfg *cfg;
294 void __iomem *base;
295 struct clk *clk;
296 u32 clk_rate;
297 struct reset_control *rst;
298 spinlock_t lock; /* prevent I/O concurrent access */
299 int irq;
300 unsigned int fifo_size;
301
302 unsigned int cur_midi;
303 unsigned int cur_speed;
304 unsigned int cur_bpw;
305 unsigned int cur_fthlv;
306 unsigned int cur_comm;
307 unsigned int cur_xferlen;
308 bool cur_usedma;
309
310 const void *tx_buf;
311 void *rx_buf;
312 int tx_len;
313 int rx_len;
314 struct dma_chan *dma_tx;
315 struct dma_chan *dma_rx;
316 dma_addr_t phys_addr;
317 };
318
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321
322 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324
325 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329
330 .rx = { STM32F4_SPI_DR },
331 .tx = { STM32F4_SPI_DR },
332 };
333
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 /* SPI data transfer is enabled but spi_ker_ck is idle.
336 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 */
338 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339
340 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342
343 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 STM32H7_SPI_CFG1_MBR_SHIFT },
348
349 .rx = { STM32H7_SPI_RXDR },
350 .tx = { STM32H7_SPI_TXDR },
351 };
352
stm32_spi_set_bits(struct stm32_spi * spi,u32 offset,u32 bits)353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 u32 offset, u32 bits)
355 {
356 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 spi->base + offset);
358 }
359
stm32_spi_clr_bits(struct stm32_spi * spi,u32 offset,u32 bits)360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 u32 offset, u32 bits)
362 {
363 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 spi->base + offset);
365 }
366
367 /**
368 * stm32h7_spi_get_fifo_size - Return fifo size
369 * @spi: pointer to the spi controller data structure
370 */
stm32h7_spi_get_fifo_size(struct stm32_spi * spi)371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373 unsigned long flags;
374 u32 count = 0;
375
376 spin_lock_irqsave(&spi->lock, flags);
377
378 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379
380 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382
383 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384
385 spin_unlock_irqrestore(&spi->lock, flags);
386
387 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388
389 return count;
390 }
391
392 /**
393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
394 * @spi: pointer to the spi controller data structure
395 */
stm32f4_spi_get_bpw_mask(struct stm32_spi * spi)396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401
402 /**
403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
404 * @spi: pointer to the spi controller data structure
405 */
stm32h7_spi_get_bpw_mask(struct stm32_spi * spi)406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 unsigned long flags;
409 u32 cfg1, max_bpw;
410
411 spin_lock_irqsave(&spi->lock, flags);
412
413 /*
414 * The most significant bit at DSIZE bit field is reserved when the
415 * maximum data size of periperal instances is limited to 16-bit
416 */
417 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418
419 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 max_bpw += 1;
423
424 spin_unlock_irqrestore(&spi->lock, flags);
425
426 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427
428 return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430
431 /**
432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
433 * @spi: pointer to the spi controller data structure
434 * @speed_hz: requested speed
435 * @min_div: minimum baud rate divisor
436 * @max_div: maximum baud rate divisor
437 *
438 * Return baud rate divisor value in case of success or -EINVAL
439 */
stm32_spi_prepare_mbr(struct stm32_spi * spi,u32 speed_hz,u32 min_div,u32 max_div)440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 u32 min_div, u32 max_div)
442 {
443 u32 div, mbrdiv;
444
445 /* Ensure spi->clk_rate is even */
446 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447
448 /*
449 * SPI framework set xfer->speed_hz to master->max_speed_hz if
450 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452 * no need to check it there.
453 * However, we need to ensure the following calculations.
454 */
455 if ((div < min_div) || (div > max_div))
456 return -EINVAL;
457
458 /* Determine the first power of 2 greater than or equal to div */
459 if (div & (div - 1))
460 mbrdiv = fls(div);
461 else
462 mbrdiv = fls(div) - 1;
463
464 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465
466 return mbrdiv - 1;
467 }
468
469 /**
470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471 * @spi: pointer to the spi controller data structure
472 * @xfer_len: length of the message to be transferred
473 */
stm32h7_spi_prepare_fthlv(struct stm32_spi * spi,u32 xfer_len)474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476 u32 fthlv, half_fifo, packet;
477
478 /* data packet should not exceed 1/2 of fifo space */
479 half_fifo = (spi->fifo_size / 2);
480
481 /* data_packet should not exceed transfer length */
482 if (half_fifo > xfer_len)
483 packet = xfer_len;
484 else
485 packet = half_fifo;
486
487 if (spi->cur_bpw <= 8)
488 fthlv = packet;
489 else if (spi->cur_bpw <= 16)
490 fthlv = packet / 2;
491 else
492 fthlv = packet / 4;
493
494 /* align packet size with data registers access */
495 if (spi->cur_bpw > 8)
496 fthlv += (fthlv % 2) ? 1 : 0;
497 else
498 fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0;
499
500 if (!fthlv)
501 fthlv = 1;
502
503 return fthlv;
504 }
505
506 /**
507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508 * @spi: pointer to the spi controller data structure
509 *
510 * Read from tx_buf depends on remaining bytes to avoid to read beyond
511 * tx_buf end.
512 */
stm32f4_spi_write_tx(struct stm32_spi * spi)513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516 STM32F4_SPI_SR_TXE)) {
517 u32 offs = spi->cur_xferlen - spi->tx_len;
518
519 if (spi->cur_bpw == 16) {
520 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521
522 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523 spi->tx_len -= sizeof(u16);
524 } else {
525 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526
527 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528 spi->tx_len -= sizeof(u8);
529 }
530 }
531
532 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534
535 /**
536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537 * @spi: pointer to the spi controller data structure
538 *
539 * Read from tx_buf depends on remaining bytes to avoid to read beyond
540 * tx_buf end.
541 */
stm32h7_spi_write_txfifo(struct stm32_spi * spi)542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544 while ((spi->tx_len > 0) &&
545 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546 STM32H7_SPI_SR_TXP)) {
547 u32 offs = spi->cur_xferlen - spi->tx_len;
548
549 if (spi->tx_len >= sizeof(u32)) {
550 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551
552 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 spi->tx_len -= sizeof(u32);
554 } else if (spi->tx_len >= sizeof(u16)) {
555 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556
557 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 spi->tx_len -= sizeof(u16);
559 } else {
560 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561
562 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 spi->tx_len -= sizeof(u8);
564 }
565 }
566
567 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569
570 /**
571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572 * @spi: pointer to the spi controller data structure
573 *
574 * Write in rx_buf depends on remaining bytes to avoid to write beyond
575 * rx_buf end.
576 */
stm32f4_spi_read_rx(struct stm32_spi * spi)577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580 STM32F4_SPI_SR_RXNE)) {
581 u32 offs = spi->cur_xferlen - spi->rx_len;
582
583 if (spi->cur_bpw == 16) {
584 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585
586 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587 spi->rx_len -= sizeof(u16);
588 } else {
589 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590
591 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592 spi->rx_len -= sizeof(u8);
593 }
594 }
595
596 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598
599 /**
600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601 * @spi: pointer to the spi controller data structure
602 * @flush: boolean indicating that FIFO should be flushed
603 *
604 * Write in rx_buf depends on remaining bytes to avoid to write beyond
605 * rx_buf end.
606 */
stm32h7_spi_read_rxfifo(struct stm32_spi * spi,bool flush)607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611 STM32H7_SPI_SR_RXPLVL_SHIFT;
612
613 while ((spi->rx_len > 0) &&
614 ((sr & STM32H7_SPI_SR_RXP) ||
615 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 u32 offs = spi->cur_xferlen - spi->rx_len;
617
618 if ((spi->rx_len >= sizeof(u32)) ||
619 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621
622 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 spi->rx_len -= sizeof(u32);
624 } else if ((spi->rx_len >= sizeof(u16)) ||
625 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627
628 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 spi->rx_len -= sizeof(u16);
630 } else {
631 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632
633 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 spi->rx_len -= sizeof(u8);
635 }
636
637 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 }
641
642 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643 flush ? "(flush)" : "", spi->rx_len);
644 }
645
646 /**
647 * stm32_spi_enable - Enable SPI controller
648 * @spi: pointer to the spi controller data structure
649 */
stm32_spi_enable(struct stm32_spi * spi)650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652 dev_dbg(spi->dev, "enable controller\n");
653
654 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655 spi->cfg->regs->en.mask);
656 }
657
658 /**
659 * stm32f4_spi_disable - Disable SPI controller
660 * @spi: pointer to the spi controller data structure
661 */
stm32f4_spi_disable(struct stm32_spi * spi)662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664 unsigned long flags;
665 u32 sr;
666
667 dev_dbg(spi->dev, "disable controller\n");
668
669 spin_lock_irqsave(&spi->lock, flags);
670
671 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672 STM32F4_SPI_CR1_SPE)) {
673 spin_unlock_irqrestore(&spi->lock, flags);
674 return;
675 }
676
677 /* Disable interrupts */
678 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679 STM32F4_SPI_CR2_RXNEIE |
680 STM32F4_SPI_CR2_ERRIE);
681
682 /* Wait until BSY = 0 */
683 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684 sr, !(sr & STM32F4_SPI_SR_BSY),
685 10, 100000) < 0) {
686 dev_warn(spi->dev, "disabling condition timeout\n");
687 }
688
689 if (spi->cur_usedma && spi->dma_tx)
690 dmaengine_terminate_all(spi->dma_tx);
691 if (spi->cur_usedma && spi->dma_rx)
692 dmaengine_terminate_all(spi->dma_rx);
693
694 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695
696 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697 STM32F4_SPI_CR2_RXDMAEN);
698
699 /* Sequence to clear OVR flag */
700 readl_relaxed(spi->base + STM32F4_SPI_DR);
701 readl_relaxed(spi->base + STM32F4_SPI_SR);
702
703 spin_unlock_irqrestore(&spi->lock, flags);
704 }
705
706 /**
707 * stm32h7_spi_disable - Disable SPI controller
708 * @spi: pointer to the spi controller data structure
709 *
710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712 * RX-Fifo.
713 * Normally, if TSIZE has been configured, we should relax the hardware at the
714 * reception of the EOT interrupt. But in case of error, EOT will not be
715 * raised. So the subsystem unprepare_message call allows us to properly
716 * complete the transfer from an hardware point of view.
717 */
stm32h7_spi_disable(struct stm32_spi * spi)718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720 unsigned long flags;
721 u32 cr1, sr;
722
723 dev_dbg(spi->dev, "disable controller\n");
724
725 spin_lock_irqsave(&spi->lock, flags);
726
727 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728
729 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 spin_unlock_irqrestore(&spi->lock, flags);
731 return;
732 }
733
734 /* Wait on EOT or suspend the flow */
735 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736 sr, !(sr & STM32H7_SPI_SR_EOT),
737 10, 100000) < 0) {
738 if (cr1 & STM32H7_SPI_CR1_CSTART) {
739 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740 spi->base + STM32H7_SPI_CR1);
741 if (readl_relaxed_poll_timeout_atomic(
742 spi->base + STM32H7_SPI_SR,
743 sr, !(sr & STM32H7_SPI_SR_SUSP),
744 10, 100000) < 0)
745 dev_warn(spi->dev,
746 "Suspend request timeout\n");
747 }
748 }
749
750 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751 stm32h7_spi_read_rxfifo(spi, true);
752
753 if (spi->cur_usedma && spi->dma_tx)
754 dmaengine_terminate_all(spi->dma_tx);
755 if (spi->cur_usedma && spi->dma_rx)
756 dmaengine_terminate_all(spi->dma_rx);
757
758 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759
760 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761 STM32H7_SPI_CFG1_RXDMAEN);
762
763 /* Disable interrupts and clear status flags */
764 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766
767 spin_unlock_irqrestore(&spi->lock, flags);
768 }
769
770 /**
771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772 * @master: controller master interface
773 * @spi_dev: pointer to the spi device
774 * @transfer: pointer to spi transfer
775 *
776 * If driver has fifo and the current transfer size is greater than fifo size,
777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778 */
stm32_spi_can_dma(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)779 static bool stm32_spi_can_dma(struct spi_master *master,
780 struct spi_device *spi_dev,
781 struct spi_transfer *transfer)
782 {
783 unsigned int dma_size;
784 struct stm32_spi *spi = spi_master_get_devdata(master);
785
786 if (spi->cfg->has_fifo)
787 dma_size = spi->fifo_size;
788 else
789 dma_size = SPI_DMA_MIN_BYTES;
790
791 dev_dbg(spi->dev, "%s: %s\n", __func__,
792 (transfer->len > dma_size) ? "true" : "false");
793
794 return (transfer->len > dma_size);
795 }
796
797 /**
798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799 * @irq: interrupt line
800 * @dev_id: SPI controller master interface
801 */
stm32f4_spi_irq_event(int irq,void * dev_id)802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804 struct spi_master *master = dev_id;
805 struct stm32_spi *spi = spi_master_get_devdata(master);
806 u32 sr, mask = 0;
807 bool end = false;
808
809 spin_lock(&spi->lock);
810
811 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812 /*
813 * BSY flag is not handled in interrupt but it is normal behavior when
814 * this flag is set.
815 */
816 sr &= ~STM32F4_SPI_SR_BSY;
817
818 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819 spi->cur_comm == SPI_3WIRE_TX)) {
820 /* OVR flag shouldn't be handled for TX only mode */
821 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822 mask |= STM32F4_SPI_SR_TXE;
823 }
824
825 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826 spi->cur_comm == SPI_SIMPLEX_RX ||
827 spi->cur_comm == SPI_3WIRE_RX)) {
828 /* TXE flag is set and is handled when RXNE flag occurs */
829 sr &= ~STM32F4_SPI_SR_TXE;
830 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831 }
832
833 if (!(sr & mask)) {
834 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835 spin_unlock(&spi->lock);
836 return IRQ_NONE;
837 }
838
839 if (sr & STM32F4_SPI_SR_OVR) {
840 dev_warn(spi->dev, "Overrun: received value discarded\n");
841
842 /* Sequence to clear OVR flag */
843 readl_relaxed(spi->base + STM32F4_SPI_DR);
844 readl_relaxed(spi->base + STM32F4_SPI_SR);
845
846 /*
847 * If overrun is detected, it means that something went wrong,
848 * so stop the current transfer. Transfer can wait for next
849 * RXNE but DR is already read and end never happens.
850 */
851 end = true;
852 goto end_irq;
853 }
854
855 if (sr & STM32F4_SPI_SR_TXE) {
856 if (spi->tx_buf)
857 stm32f4_spi_write_tx(spi);
858 if (spi->tx_len == 0)
859 end = true;
860 }
861
862 if (sr & STM32F4_SPI_SR_RXNE) {
863 stm32f4_spi_read_rx(spi);
864 if (spi->rx_len == 0)
865 end = true;
866 else if (spi->tx_buf)/* Load data for discontinuous mode */
867 stm32f4_spi_write_tx(spi);
868 }
869
870 end_irq:
871 if (end) {
872 /* Immediately disable interrupts to do not generate new one */
873 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874 STM32F4_SPI_CR2_TXEIE |
875 STM32F4_SPI_CR2_RXNEIE |
876 STM32F4_SPI_CR2_ERRIE);
877 spin_unlock(&spi->lock);
878 return IRQ_WAKE_THREAD;
879 }
880
881 spin_unlock(&spi->lock);
882 return IRQ_HANDLED;
883 }
884
885 /**
886 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887 * @irq: interrupt line
888 * @dev_id: SPI controller master interface
889 */
stm32f4_spi_irq_thread(int irq,void * dev_id)890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891 {
892 struct spi_master *master = dev_id;
893 struct stm32_spi *spi = spi_master_get_devdata(master);
894
895 spi_finalize_current_transfer(master);
896 stm32f4_spi_disable(spi);
897
898 return IRQ_HANDLED;
899 }
900
901 /**
902 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903 * @irq: interrupt line
904 * @dev_id: SPI controller master interface
905 */
stm32h7_spi_irq_thread(int irq,void * dev_id)906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907 {
908 struct spi_master *master = dev_id;
909 struct stm32_spi *spi = spi_master_get_devdata(master);
910 u32 sr, ier, mask;
911 unsigned long flags;
912 bool end = false;
913
914 spin_lock_irqsave(&spi->lock, flags);
915
916 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918
919 mask = ier;
920 /*
921 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
922 * SUSP to acknowledge it later. TXC is automatically cleared
923 */
924
925 mask |= STM32H7_SPI_SR_SUSP;
926 /*
927 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
928 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
929 */
930 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
931 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
932
933 if (!(sr & mask)) {
934 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
935 sr, ier);
936 spin_unlock_irqrestore(&spi->lock, flags);
937 return IRQ_NONE;
938 }
939
940 if (sr & STM32H7_SPI_SR_SUSP) {
941 static DEFINE_RATELIMIT_STATE(rs,
942 DEFAULT_RATELIMIT_INTERVAL * 10,
943 1);
944 if (__ratelimit(&rs))
945 dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
946 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
947 stm32h7_spi_read_rxfifo(spi, false);
948 /*
949 * If communication is suspended while using DMA, it means
950 * that something went wrong, so stop the current transfer
951 */
952 if (spi->cur_usedma)
953 end = true;
954 }
955
956 if (sr & STM32H7_SPI_SR_MODF) {
957 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
958 end = true;
959 }
960
961 if (sr & STM32H7_SPI_SR_OVR) {
962 dev_err(spi->dev, "Overrun: RX data lost\n");
963 end = true;
964 }
965
966 if (sr & STM32H7_SPI_SR_EOT) {
967 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
968 stm32h7_spi_read_rxfifo(spi, true);
969 end = true;
970 }
971
972 if (sr & STM32H7_SPI_SR_TXP)
973 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
974 stm32h7_spi_write_txfifo(spi);
975
976 if (sr & STM32H7_SPI_SR_RXP)
977 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
978 stm32h7_spi_read_rxfifo(spi, false);
979
980 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
981
982 spin_unlock_irqrestore(&spi->lock, flags);
983
984 if (end) {
985 stm32h7_spi_disable(spi);
986 spi_finalize_current_transfer(master);
987 }
988
989 return IRQ_HANDLED;
990 }
991
992 /**
993 * stm32_spi_prepare_msg - set up the controller to transfer a single message
994 * @master: controller master interface
995 * @msg: pointer to spi message
996 */
stm32_spi_prepare_msg(struct spi_master * master,struct spi_message * msg)997 static int stm32_spi_prepare_msg(struct spi_master *master,
998 struct spi_message *msg)
999 {
1000 struct stm32_spi *spi = spi_master_get_devdata(master);
1001 struct spi_device *spi_dev = msg->spi;
1002 struct device_node *np = spi_dev->dev.of_node;
1003 unsigned long flags;
1004 u32 clrb = 0, setb = 0;
1005
1006 /* SPI slave device may need time between data frames */
1007 spi->cur_midi = 0;
1008 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1009 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1010
1011 if (spi_dev->mode & SPI_CPOL)
1012 setb |= spi->cfg->regs->cpol.mask;
1013 else
1014 clrb |= spi->cfg->regs->cpol.mask;
1015
1016 if (spi_dev->mode & SPI_CPHA)
1017 setb |= spi->cfg->regs->cpha.mask;
1018 else
1019 clrb |= spi->cfg->regs->cpha.mask;
1020
1021 if (spi_dev->mode & SPI_LSB_FIRST)
1022 setb |= spi->cfg->regs->lsb_first.mask;
1023 else
1024 clrb |= spi->cfg->regs->lsb_first.mask;
1025
1026 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1027 spi_dev->mode & SPI_CPOL,
1028 spi_dev->mode & SPI_CPHA,
1029 spi_dev->mode & SPI_LSB_FIRST,
1030 spi_dev->mode & SPI_CS_HIGH);
1031
1032 spin_lock_irqsave(&spi->lock, flags);
1033
1034 /* CPOL, CPHA and LSB FIRST bits have common register */
1035 if (clrb || setb)
1036 writel_relaxed(
1037 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1038 ~clrb) | setb,
1039 spi->base + spi->cfg->regs->cpol.reg);
1040
1041 spin_unlock_irqrestore(&spi->lock, flags);
1042
1043 return 0;
1044 }
1045
1046 /**
1047 * stm32f4_spi_dma_tx_cb - dma callback
1048 * @data: pointer to the spi controller data structure
1049 *
1050 * DMA callback is called when the transfer is complete for DMA TX channel.
1051 */
stm32f4_spi_dma_tx_cb(void * data)1052 static void stm32f4_spi_dma_tx_cb(void *data)
1053 {
1054 struct stm32_spi *spi = data;
1055
1056 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1057 spi_finalize_current_transfer(spi->master);
1058 stm32f4_spi_disable(spi);
1059 }
1060 }
1061
1062 /**
1063 * stm32f4_spi_dma_rx_cb - dma callback
1064 * @data: pointer to the spi controller data structure
1065 *
1066 * DMA callback is called when the transfer is complete for DMA RX channel.
1067 */
stm32f4_spi_dma_rx_cb(void * data)1068 static void stm32f4_spi_dma_rx_cb(void *data)
1069 {
1070 struct stm32_spi *spi = data;
1071
1072 spi_finalize_current_transfer(spi->master);
1073 stm32f4_spi_disable(spi);
1074 }
1075
1076 /**
1077 * stm32h7_spi_dma_cb - dma callback
1078 * @data: pointer to the spi controller data structure
1079 *
1080 * DMA callback is called when the transfer is complete or when an error
1081 * occurs. If the transfer is complete, EOT flag is raised.
1082 */
stm32h7_spi_dma_cb(void * data)1083 static void stm32h7_spi_dma_cb(void *data)
1084 {
1085 struct stm32_spi *spi = data;
1086 unsigned long flags;
1087 u32 sr;
1088
1089 spin_lock_irqsave(&spi->lock, flags);
1090
1091 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1092
1093 spin_unlock_irqrestore(&spi->lock, flags);
1094
1095 if (!(sr & STM32H7_SPI_SR_EOT))
1096 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1097
1098 /* Now wait for EOT, or SUSP or OVR in case of error */
1099 }
1100
1101 /**
1102 * stm32_spi_dma_config - configure dma slave channel depending on current
1103 * transfer bits_per_word.
1104 * @spi: pointer to the spi controller data structure
1105 * @dma_conf: pointer to the dma_slave_config structure
1106 * @dir: direction of the dma transfer
1107 */
stm32_spi_dma_config(struct stm32_spi * spi,struct dma_slave_config * dma_conf,enum dma_transfer_direction dir)1108 static void stm32_spi_dma_config(struct stm32_spi *spi,
1109 struct dma_slave_config *dma_conf,
1110 enum dma_transfer_direction dir)
1111 {
1112 enum dma_slave_buswidth buswidth;
1113 u32 maxburst;
1114
1115 if (spi->cur_bpw <= 8)
1116 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117 else if (spi->cur_bpw <= 16)
1118 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1119 else
1120 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1121
1122 if (spi->cfg->has_fifo) {
1123 /* Valid for DMA Half or Full Fifo threshold */
1124 if (spi->cur_fthlv == 2)
1125 maxburst = 1;
1126 else
1127 maxburst = spi->cur_fthlv;
1128 } else {
1129 maxburst = 1;
1130 }
1131
1132 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1133 dma_conf->direction = dir;
1134 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1135 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1136 dma_conf->src_addr_width = buswidth;
1137 dma_conf->src_maxburst = maxburst;
1138
1139 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1140 buswidth, maxburst);
1141 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1142 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1143 dma_conf->dst_addr_width = buswidth;
1144 dma_conf->dst_maxburst = maxburst;
1145
1146 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1147 buswidth, maxburst);
1148 }
1149 }
1150
1151 /**
1152 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1153 * interrupts
1154 * @spi: pointer to the spi controller data structure
1155 *
1156 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1157 * in progress.
1158 */
stm32f4_spi_transfer_one_irq(struct stm32_spi * spi)1159 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1160 {
1161 unsigned long flags;
1162 u32 cr2 = 0;
1163
1164 /* Enable the interrupts relative to the current communication mode */
1165 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1166 cr2 |= STM32F4_SPI_CR2_TXEIE;
1167 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1168 spi->cur_comm == SPI_SIMPLEX_RX ||
1169 spi->cur_comm == SPI_3WIRE_RX) {
1170 /* In transmit-only mode, the OVR flag is set in the SR register
1171 * since the received data are never read. Therefore set OVR
1172 * interrupt only when rx buffer is available.
1173 */
1174 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1175 } else {
1176 return -EINVAL;
1177 }
1178
1179 spin_lock_irqsave(&spi->lock, flags);
1180
1181 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1182
1183 stm32_spi_enable(spi);
1184
1185 /* starting data transfer when buffer is loaded */
1186 if (spi->tx_buf)
1187 stm32f4_spi_write_tx(spi);
1188
1189 spin_unlock_irqrestore(&spi->lock, flags);
1190
1191 return 1;
1192 }
1193
1194 /**
1195 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1196 * interrupts
1197 * @spi: pointer to the spi controller data structure
1198 *
1199 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1200 * in progress.
1201 */
stm32h7_spi_transfer_one_irq(struct stm32_spi * spi)1202 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1203 {
1204 unsigned long flags;
1205 u32 ier = 0;
1206
1207 /* Enable the interrupts relative to the current communication mode */
1208 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1209 ier |= STM32H7_SPI_IER_DXPIE;
1210 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1211 ier |= STM32H7_SPI_IER_TXPIE;
1212 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1213 ier |= STM32H7_SPI_IER_RXPIE;
1214
1215 /* Enable the interrupts relative to the end of transfer */
1216 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1217 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1218
1219 spin_lock_irqsave(&spi->lock, flags);
1220
1221 stm32_spi_enable(spi);
1222
1223 /* Be sure to have data in fifo before starting data transfer */
1224 if (spi->tx_buf)
1225 stm32h7_spi_write_txfifo(spi);
1226
1227 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1228
1229 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1230
1231 spin_unlock_irqrestore(&spi->lock, flags);
1232
1233 return 1;
1234 }
1235
1236 /**
1237 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1238 * transfer using DMA
1239 * @spi: pointer to the spi controller data structure
1240 */
stm32f4_spi_transfer_one_dma_start(struct stm32_spi * spi)1241 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1242 {
1243 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1244 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1245 spi->cur_comm == SPI_FULL_DUPLEX) {
1246 /*
1247 * In transmit-only mode, the OVR flag is set in the SR register
1248 * since the received data are never read. Therefore set OVR
1249 * interrupt only when rx buffer is available.
1250 */
1251 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1252 }
1253
1254 stm32_spi_enable(spi);
1255 }
1256
1257 /**
1258 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1259 * transfer using DMA
1260 * @spi: pointer to the spi controller data structure
1261 */
stm32h7_spi_transfer_one_dma_start(struct stm32_spi * spi)1262 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1263 {
1264 /* Enable the interrupts relative to the end of transfer */
1265 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1266 STM32H7_SPI_IER_TXTFIE |
1267 STM32H7_SPI_IER_OVRIE |
1268 STM32H7_SPI_IER_MODFIE);
1269
1270 stm32_spi_enable(spi);
1271
1272 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1273 }
1274
1275 /**
1276 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1277 * @spi: pointer to the spi controller data structure
1278 * @xfer: pointer to the spi_transfer structure
1279 *
1280 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1281 * in progress.
1282 */
stm32_spi_transfer_one_dma(struct stm32_spi * spi,struct spi_transfer * xfer)1283 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1284 struct spi_transfer *xfer)
1285 {
1286 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1287 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1288 unsigned long flags;
1289
1290 spin_lock_irqsave(&spi->lock, flags);
1291
1292 rx_dma_desc = NULL;
1293 if (spi->rx_buf && spi->dma_rx) {
1294 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1295 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1296
1297 /* Enable Rx DMA request */
1298 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1299 spi->cfg->regs->dma_rx_en.mask);
1300
1301 rx_dma_desc = dmaengine_prep_slave_sg(
1302 spi->dma_rx, xfer->rx_sg.sgl,
1303 xfer->rx_sg.nents,
1304 rx_dma_conf.direction,
1305 DMA_PREP_INTERRUPT);
1306 }
1307
1308 tx_dma_desc = NULL;
1309 if (spi->tx_buf && spi->dma_tx) {
1310 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1311 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1312
1313 tx_dma_desc = dmaengine_prep_slave_sg(
1314 spi->dma_tx, xfer->tx_sg.sgl,
1315 xfer->tx_sg.nents,
1316 tx_dma_conf.direction,
1317 DMA_PREP_INTERRUPT);
1318 }
1319
1320 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1321 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1322 goto dma_desc_error;
1323
1324 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1325 goto dma_desc_error;
1326
1327 if (rx_dma_desc) {
1328 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1329 rx_dma_desc->callback_param = spi;
1330
1331 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1332 dev_err(spi->dev, "Rx DMA submit failed\n");
1333 goto dma_desc_error;
1334 }
1335 /* Enable Rx DMA channel */
1336 dma_async_issue_pending(spi->dma_rx);
1337 }
1338
1339 if (tx_dma_desc) {
1340 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1341 spi->cur_comm == SPI_3WIRE_TX) {
1342 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1343 tx_dma_desc->callback_param = spi;
1344 }
1345
1346 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1347 dev_err(spi->dev, "Tx DMA submit failed\n");
1348 goto dma_submit_error;
1349 }
1350 /* Enable Tx DMA channel */
1351 dma_async_issue_pending(spi->dma_tx);
1352
1353 /* Enable Tx DMA request */
1354 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1355 spi->cfg->regs->dma_tx_en.mask);
1356 }
1357
1358 spi->cfg->transfer_one_dma_start(spi);
1359
1360 spin_unlock_irqrestore(&spi->lock, flags);
1361
1362 return 1;
1363
1364 dma_submit_error:
1365 if (spi->dma_rx)
1366 dmaengine_terminate_all(spi->dma_rx);
1367
1368 dma_desc_error:
1369 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1370 spi->cfg->regs->dma_rx_en.mask);
1371
1372 spin_unlock_irqrestore(&spi->lock, flags);
1373
1374 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1375
1376 spi->cur_usedma = false;
1377 return spi->cfg->transfer_one_irq(spi);
1378 }
1379
1380 /**
1381 * stm32f4_spi_set_bpw - Configure bits per word
1382 * @spi: pointer to the spi controller data structure
1383 */
stm32f4_spi_set_bpw(struct stm32_spi * spi)1384 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1385 {
1386 if (spi->cur_bpw == 16)
1387 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1388 else
1389 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1390 }
1391
1392 /**
1393 * stm32h7_spi_set_bpw - configure bits per word
1394 * @spi: pointer to the spi controller data structure
1395 */
stm32h7_spi_set_bpw(struct stm32_spi * spi)1396 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1397 {
1398 u32 bpw, fthlv;
1399 u32 cfg1_clrb = 0, cfg1_setb = 0;
1400
1401 bpw = spi->cur_bpw - 1;
1402
1403 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1404 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1405 STM32H7_SPI_CFG1_DSIZE;
1406
1407 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1408 fthlv = spi->cur_fthlv - 1;
1409
1410 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1411 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1412 STM32H7_SPI_CFG1_FTHLV;
1413
1414 writel_relaxed(
1415 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1416 ~cfg1_clrb) | cfg1_setb,
1417 spi->base + STM32H7_SPI_CFG1);
1418 }
1419
1420 /**
1421 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1422 * @spi: pointer to the spi controller data structure
1423 * @mbrdiv: baud rate divisor value
1424 */
stm32_spi_set_mbr(struct stm32_spi * spi,u32 mbrdiv)1425 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1426 {
1427 u32 clrb = 0, setb = 0;
1428
1429 clrb |= spi->cfg->regs->br.mask;
1430 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1431 spi->cfg->regs->br.mask;
1432
1433 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1434 ~clrb) | setb,
1435 spi->base + spi->cfg->regs->br.reg);
1436 }
1437
1438 /**
1439 * stm32_spi_communication_type - return transfer communication type
1440 * @spi_dev: pointer to the spi device
1441 * @transfer: pointer to spi transfer
1442 */
stm32_spi_communication_type(struct spi_device * spi_dev,struct spi_transfer * transfer)1443 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1444 struct spi_transfer *transfer)
1445 {
1446 unsigned int type = SPI_FULL_DUPLEX;
1447
1448 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1449 /*
1450 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1451 * is forbidden and unvalidated by SPI subsystem so depending
1452 * on the valid buffer, we can determine the direction of the
1453 * transfer.
1454 */
1455 if (!transfer->tx_buf)
1456 type = SPI_3WIRE_RX;
1457 else
1458 type = SPI_3WIRE_TX;
1459 } else {
1460 if (!transfer->tx_buf)
1461 type = SPI_SIMPLEX_RX;
1462 else if (!transfer->rx_buf)
1463 type = SPI_SIMPLEX_TX;
1464 }
1465
1466 return type;
1467 }
1468
1469 /**
1470 * stm32f4_spi_set_mode - configure communication mode
1471 * @spi: pointer to the spi controller data structure
1472 * @comm_type: type of communication to configure
1473 */
stm32f4_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1474 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1475 {
1476 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1477 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1478 STM32F4_SPI_CR1_BIDIMODE |
1479 STM32F4_SPI_CR1_BIDIOE);
1480 } else if (comm_type == SPI_FULL_DUPLEX ||
1481 comm_type == SPI_SIMPLEX_RX) {
1482 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1483 STM32F4_SPI_CR1_BIDIMODE |
1484 STM32F4_SPI_CR1_BIDIOE);
1485 } else if (comm_type == SPI_3WIRE_RX) {
1486 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1487 STM32F4_SPI_CR1_BIDIMODE);
1488 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1489 STM32F4_SPI_CR1_BIDIOE);
1490 } else {
1491 return -EINVAL;
1492 }
1493
1494 return 0;
1495 }
1496
1497 /**
1498 * stm32h7_spi_set_mode - configure communication mode
1499 * @spi: pointer to the spi controller data structure
1500 * @comm_type: type of communication to configure
1501 */
stm32h7_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1502 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1503 {
1504 u32 mode;
1505 u32 cfg2_clrb = 0, cfg2_setb = 0;
1506
1507 if (comm_type == SPI_3WIRE_RX) {
1508 mode = STM32H7_SPI_HALF_DUPLEX;
1509 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1510 } else if (comm_type == SPI_3WIRE_TX) {
1511 mode = STM32H7_SPI_HALF_DUPLEX;
1512 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1513 } else if (comm_type == SPI_SIMPLEX_RX) {
1514 mode = STM32H7_SPI_SIMPLEX_RX;
1515 } else if (comm_type == SPI_SIMPLEX_TX) {
1516 mode = STM32H7_SPI_SIMPLEX_TX;
1517 } else {
1518 mode = STM32H7_SPI_FULL_DUPLEX;
1519 }
1520
1521 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1522 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1523 STM32H7_SPI_CFG2_COMM;
1524
1525 writel_relaxed(
1526 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1527 ~cfg2_clrb) | cfg2_setb,
1528 spi->base + STM32H7_SPI_CFG2);
1529
1530 return 0;
1531 }
1532
1533 /**
1534 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1535 * consecutive data frames in master mode
1536 * @spi: pointer to the spi controller data structure
1537 * @len: transfer len
1538 */
stm32h7_spi_data_idleness(struct stm32_spi * spi,u32 len)1539 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1540 {
1541 u32 cfg2_clrb = 0, cfg2_setb = 0;
1542
1543 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1544 if ((len > 1) && (spi->cur_midi > 0)) {
1545 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1546 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1547 (u32)STM32H7_SPI_CFG2_MIDI >>
1548 STM32H7_SPI_CFG2_MIDI_SHIFT);
1549
1550 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1551 sck_period_ns, midi, midi * sck_period_ns);
1552 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1553 STM32H7_SPI_CFG2_MIDI;
1554 }
1555
1556 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1557 ~cfg2_clrb) | cfg2_setb,
1558 spi->base + STM32H7_SPI_CFG2);
1559 }
1560
1561 /**
1562 * stm32h7_spi_number_of_data - configure number of data at current transfer
1563 * @spi: pointer to the spi controller data structure
1564 * @nb_words: transfer length (in words)
1565 */
stm32h7_spi_number_of_data(struct stm32_spi * spi,u32 nb_words)1566 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1567 {
1568 u32 cr2_clrb = 0, cr2_setb = 0;
1569
1570 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1571 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1572 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1573 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1574 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1575 ~cr2_clrb) | cr2_setb,
1576 spi->base + STM32H7_SPI_CR2);
1577 } else {
1578 return -EMSGSIZE;
1579 }
1580
1581 return 0;
1582 }
1583
1584 /**
1585 * stm32_spi_transfer_one_setup - common setup to transfer a single
1586 * spi_transfer either using DMA or
1587 * interrupts.
1588 * @spi: pointer to the spi controller data structure
1589 * @spi_dev: pointer to the spi device
1590 * @transfer: pointer to spi transfer
1591 */
stm32_spi_transfer_one_setup(struct stm32_spi * spi,struct spi_device * spi_dev,struct spi_transfer * transfer)1592 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1593 struct spi_device *spi_dev,
1594 struct spi_transfer *transfer)
1595 {
1596 unsigned long flags;
1597 unsigned int comm_type;
1598 int nb_words, ret = 0;
1599 int mbr;
1600
1601 spin_lock_irqsave(&spi->lock, flags);
1602
1603 spi->cur_xferlen = transfer->len;
1604
1605 spi->cur_bpw = transfer->bits_per_word;
1606 spi->cfg->set_bpw(spi);
1607
1608 /* Update spi->cur_speed with real clock speed */
1609 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1610 spi->cfg->baud_rate_div_min,
1611 spi->cfg->baud_rate_div_max);
1612 if (mbr < 0) {
1613 ret = mbr;
1614 goto out;
1615 }
1616
1617 transfer->speed_hz = spi->cur_speed;
1618 stm32_spi_set_mbr(spi, mbr);
1619
1620 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1621 ret = spi->cfg->set_mode(spi, comm_type);
1622 if (ret < 0)
1623 goto out;
1624
1625 spi->cur_comm = comm_type;
1626
1627 if (spi->cfg->set_data_idleness)
1628 spi->cfg->set_data_idleness(spi, transfer->len);
1629
1630 if (spi->cur_bpw <= 8)
1631 nb_words = transfer->len;
1632 else if (spi->cur_bpw <= 16)
1633 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1634 else
1635 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1636
1637 if (spi->cfg->set_number_of_data) {
1638 ret = spi->cfg->set_number_of_data(spi, nb_words);
1639 if (ret < 0)
1640 goto out;
1641 }
1642
1643 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1644 spi->cur_comm);
1645 dev_dbg(spi->dev,
1646 "data frame of %d-bit, data packet of %d data frames\n",
1647 spi->cur_bpw, spi->cur_fthlv);
1648 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1649 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1650 spi->cur_xferlen, nb_words);
1651 dev_dbg(spi->dev, "dma %s\n",
1652 (spi->cur_usedma) ? "enabled" : "disabled");
1653
1654 out:
1655 spin_unlock_irqrestore(&spi->lock, flags);
1656
1657 return ret;
1658 }
1659
1660 /**
1661 * stm32_spi_transfer_one - transfer a single spi_transfer
1662 * @master: controller master interface
1663 * @spi_dev: pointer to the spi device
1664 * @transfer: pointer to spi transfer
1665 *
1666 * It must return 0 if the transfer is finished or 1 if the transfer is still
1667 * in progress.
1668 */
stm32_spi_transfer_one(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)1669 static int stm32_spi_transfer_one(struct spi_master *master,
1670 struct spi_device *spi_dev,
1671 struct spi_transfer *transfer)
1672 {
1673 struct stm32_spi *spi = spi_master_get_devdata(master);
1674 int ret;
1675
1676 /* Don't do anything on 0 bytes transfers */
1677 if (transfer->len == 0)
1678 return 0;
1679
1680 spi->tx_buf = transfer->tx_buf;
1681 spi->rx_buf = transfer->rx_buf;
1682 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1683 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1684
1685 spi->cur_usedma = (master->can_dma &&
1686 master->can_dma(master, spi_dev, transfer));
1687
1688 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1689 if (ret) {
1690 dev_err(spi->dev, "SPI transfer setup failed\n");
1691 return ret;
1692 }
1693
1694 if (spi->cur_usedma)
1695 return stm32_spi_transfer_one_dma(spi, transfer);
1696 else
1697 return spi->cfg->transfer_one_irq(spi);
1698 }
1699
1700 /**
1701 * stm32_spi_unprepare_msg - relax the hardware
1702 * @master: controller master interface
1703 * @msg: pointer to the spi message
1704 */
stm32_spi_unprepare_msg(struct spi_master * master,struct spi_message * msg)1705 static int stm32_spi_unprepare_msg(struct spi_master *master,
1706 struct spi_message *msg)
1707 {
1708 struct stm32_spi *spi = spi_master_get_devdata(master);
1709
1710 spi->cfg->disable(spi);
1711
1712 return 0;
1713 }
1714
1715 /**
1716 * stm32f4_spi_config - Configure SPI controller as SPI master
1717 * @spi: pointer to the spi controller data structure
1718 */
stm32f4_spi_config(struct stm32_spi * spi)1719 static int stm32f4_spi_config(struct stm32_spi *spi)
1720 {
1721 unsigned long flags;
1722
1723 spin_lock_irqsave(&spi->lock, flags);
1724
1725 /* Ensure I2SMOD bit is kept cleared */
1726 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1727 STM32F4_SPI_I2SCFGR_I2SMOD);
1728
1729 /*
1730 * - SS input value high
1731 * - transmitter half duplex direction
1732 * - Set the master mode (default Motorola mode)
1733 * - Consider 1 master/n slaves configuration and
1734 * SS input value is determined by the SSI bit
1735 */
1736 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1737 STM32F4_SPI_CR1_BIDIOE |
1738 STM32F4_SPI_CR1_MSTR |
1739 STM32F4_SPI_CR1_SSM);
1740
1741 spin_unlock_irqrestore(&spi->lock, flags);
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * stm32h7_spi_config - Configure SPI controller as SPI master
1748 * @spi: pointer to the spi controller data structure
1749 */
stm32h7_spi_config(struct stm32_spi * spi)1750 static int stm32h7_spi_config(struct stm32_spi *spi)
1751 {
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(&spi->lock, flags);
1755
1756 /* Ensure I2SMOD bit is kept cleared */
1757 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1758 STM32H7_SPI_I2SCFGR_I2SMOD);
1759
1760 /*
1761 * - SS input value high
1762 * - transmitter half duplex direction
1763 * - automatic communication suspend when RX-Fifo is full
1764 */
1765 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1766 STM32H7_SPI_CR1_HDDIR |
1767 STM32H7_SPI_CR1_MASRX);
1768
1769 /*
1770 * - Set the master mode (default Motorola mode)
1771 * - Consider 1 master/n slaves configuration and
1772 * SS input value is determined by the SSI bit
1773 * - keep control of all associated GPIOs
1774 */
1775 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1776 STM32H7_SPI_CFG2_SSM |
1777 STM32H7_SPI_CFG2_AFCNTR);
1778
1779 spin_unlock_irqrestore(&spi->lock, flags);
1780
1781 return 0;
1782 }
1783
1784 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1785 .regs = &stm32f4_spi_regspec,
1786 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1787 .disable = stm32f4_spi_disable,
1788 .config = stm32f4_spi_config,
1789 .set_bpw = stm32f4_spi_set_bpw,
1790 .set_mode = stm32f4_spi_set_mode,
1791 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1792 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1793 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1794 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1795 .irq_handler_event = stm32f4_spi_irq_event,
1796 .irq_handler_thread = stm32f4_spi_irq_thread,
1797 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1798 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1799 .has_fifo = false,
1800 };
1801
1802 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1803 .regs = &stm32h7_spi_regspec,
1804 .get_fifo_size = stm32h7_spi_get_fifo_size,
1805 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1806 .disable = stm32h7_spi_disable,
1807 .config = stm32h7_spi_config,
1808 .set_bpw = stm32h7_spi_set_bpw,
1809 .set_mode = stm32h7_spi_set_mode,
1810 .set_data_idleness = stm32h7_spi_data_idleness,
1811 .set_number_of_data = stm32h7_spi_number_of_data,
1812 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1813 .dma_rx_cb = stm32h7_spi_dma_cb,
1814 .dma_tx_cb = stm32h7_spi_dma_cb,
1815 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1816 .irq_handler_thread = stm32h7_spi_irq_thread,
1817 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1818 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1819 .has_fifo = true,
1820 };
1821
1822 static const struct of_device_id stm32_spi_of_match[] = {
1823 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1824 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1825 {},
1826 };
1827 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1828
stm32_spi_probe(struct platform_device * pdev)1829 static int stm32_spi_probe(struct platform_device *pdev)
1830 {
1831 struct spi_master *master;
1832 struct stm32_spi *spi;
1833 struct resource *res;
1834 int ret;
1835
1836 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1837 if (!master) {
1838 dev_err(&pdev->dev, "spi master allocation failed\n");
1839 return -ENOMEM;
1840 }
1841 platform_set_drvdata(pdev, master);
1842
1843 spi = spi_master_get_devdata(master);
1844 spi->dev = &pdev->dev;
1845 spi->master = master;
1846 spin_lock_init(&spi->lock);
1847
1848 spi->cfg = (const struct stm32_spi_cfg *)
1849 of_match_device(pdev->dev.driver->of_match_table,
1850 &pdev->dev)->data;
1851
1852 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1853 spi->base = devm_ioremap_resource(&pdev->dev, res);
1854 if (IS_ERR(spi->base))
1855 return PTR_ERR(spi->base);
1856
1857 spi->phys_addr = (dma_addr_t)res->start;
1858
1859 spi->irq = platform_get_irq(pdev, 0);
1860 if (spi->irq <= 0)
1861 return dev_err_probe(&pdev->dev, spi->irq,
1862 "failed to get irq\n");
1863
1864 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1865 spi->cfg->irq_handler_event,
1866 spi->cfg->irq_handler_thread,
1867 IRQF_ONESHOT, pdev->name, master);
1868 if (ret) {
1869 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1870 ret);
1871 return ret;
1872 }
1873
1874 spi->clk = devm_clk_get(&pdev->dev, NULL);
1875 if (IS_ERR(spi->clk)) {
1876 ret = PTR_ERR(spi->clk);
1877 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1878 return ret;
1879 }
1880
1881 ret = clk_prepare_enable(spi->clk);
1882 if (ret) {
1883 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1884 return ret;
1885 }
1886 spi->clk_rate = clk_get_rate(spi->clk);
1887 if (!spi->clk_rate) {
1888 dev_err(&pdev->dev, "clk rate = 0\n");
1889 ret = -EINVAL;
1890 goto err_clk_disable;
1891 }
1892
1893 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1894 if (!IS_ERR(spi->rst)) {
1895 reset_control_assert(spi->rst);
1896 udelay(2);
1897 reset_control_deassert(spi->rst);
1898 }
1899
1900 if (spi->cfg->has_fifo)
1901 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1902
1903 ret = spi->cfg->config(spi);
1904 if (ret) {
1905 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1906 ret);
1907 goto err_clk_disable;
1908 }
1909
1910 master->dev.of_node = pdev->dev.of_node;
1911 master->auto_runtime_pm = true;
1912 master->bus_num = pdev->id;
1913 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1914 SPI_3WIRE;
1915 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1916 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1917 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1918 master->use_gpio_descriptors = true;
1919 master->prepare_message = stm32_spi_prepare_msg;
1920 master->transfer_one = stm32_spi_transfer_one;
1921 master->unprepare_message = stm32_spi_unprepare_msg;
1922 master->flags = SPI_MASTER_MUST_TX;
1923
1924 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1925 if (IS_ERR(spi->dma_tx)) {
1926 ret = PTR_ERR(spi->dma_tx);
1927 spi->dma_tx = NULL;
1928 if (ret == -EPROBE_DEFER)
1929 goto err_clk_disable;
1930
1931 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1932 } else {
1933 master->dma_tx = spi->dma_tx;
1934 }
1935
1936 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1937 if (IS_ERR(spi->dma_rx)) {
1938 ret = PTR_ERR(spi->dma_rx);
1939 spi->dma_rx = NULL;
1940 if (ret == -EPROBE_DEFER)
1941 goto err_dma_release;
1942
1943 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1944 } else {
1945 master->dma_rx = spi->dma_rx;
1946 }
1947
1948 if (spi->dma_tx || spi->dma_rx)
1949 master->can_dma = stm32_spi_can_dma;
1950
1951 pm_runtime_set_active(&pdev->dev);
1952 pm_runtime_get_noresume(&pdev->dev);
1953 pm_runtime_enable(&pdev->dev);
1954
1955 ret = spi_register_master(master);
1956 if (ret) {
1957 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1958 ret);
1959 goto err_pm_disable;
1960 }
1961
1962 if (!master->cs_gpiods) {
1963 dev_err(&pdev->dev, "no CS gpios available\n");
1964 ret = -EINVAL;
1965 goto err_pm_disable;
1966 }
1967
1968 dev_info(&pdev->dev, "driver initialized\n");
1969
1970 return 0;
1971
1972 err_pm_disable:
1973 pm_runtime_disable(&pdev->dev);
1974 pm_runtime_put_noidle(&pdev->dev);
1975 pm_runtime_set_suspended(&pdev->dev);
1976 err_dma_release:
1977 if (spi->dma_tx)
1978 dma_release_channel(spi->dma_tx);
1979 if (spi->dma_rx)
1980 dma_release_channel(spi->dma_rx);
1981 err_clk_disable:
1982 clk_disable_unprepare(spi->clk);
1983
1984 return ret;
1985 }
1986
stm32_spi_remove(struct platform_device * pdev)1987 static int stm32_spi_remove(struct platform_device *pdev)
1988 {
1989 struct spi_master *master = platform_get_drvdata(pdev);
1990 struct stm32_spi *spi = spi_master_get_devdata(master);
1991
1992 pm_runtime_get_sync(&pdev->dev);
1993
1994 spi_unregister_master(master);
1995 spi->cfg->disable(spi);
1996
1997 pm_runtime_disable(&pdev->dev);
1998 pm_runtime_put_noidle(&pdev->dev);
1999 pm_runtime_set_suspended(&pdev->dev);
2000 if (master->dma_tx)
2001 dma_release_channel(master->dma_tx);
2002 if (master->dma_rx)
2003 dma_release_channel(master->dma_rx);
2004
2005 clk_disable_unprepare(spi->clk);
2006
2007
2008 pinctrl_pm_select_sleep_state(&pdev->dev);
2009
2010 return 0;
2011 }
2012
2013 #ifdef CONFIG_PM
stm32_spi_runtime_suspend(struct device * dev)2014 static int stm32_spi_runtime_suspend(struct device *dev)
2015 {
2016 struct spi_master *master = dev_get_drvdata(dev);
2017 struct stm32_spi *spi = spi_master_get_devdata(master);
2018
2019 clk_disable_unprepare(spi->clk);
2020
2021 return pinctrl_pm_select_sleep_state(dev);
2022 }
2023
stm32_spi_runtime_resume(struct device * dev)2024 static int stm32_spi_runtime_resume(struct device *dev)
2025 {
2026 struct spi_master *master = dev_get_drvdata(dev);
2027 struct stm32_spi *spi = spi_master_get_devdata(master);
2028 int ret;
2029
2030 ret = pinctrl_pm_select_default_state(dev);
2031 if (ret)
2032 return ret;
2033
2034 return clk_prepare_enable(spi->clk);
2035 }
2036 #endif
2037
2038 #ifdef CONFIG_PM_SLEEP
stm32_spi_suspend(struct device * dev)2039 static int stm32_spi_suspend(struct device *dev)
2040 {
2041 struct spi_master *master = dev_get_drvdata(dev);
2042 int ret;
2043
2044 ret = spi_master_suspend(master);
2045 if (ret)
2046 return ret;
2047
2048 return pm_runtime_force_suspend(dev);
2049 }
2050
stm32_spi_resume(struct device * dev)2051 static int stm32_spi_resume(struct device *dev)
2052 {
2053 struct spi_master *master = dev_get_drvdata(dev);
2054 struct stm32_spi *spi = spi_master_get_devdata(master);
2055 int ret;
2056
2057 ret = pm_runtime_force_resume(dev);
2058 if (ret)
2059 return ret;
2060
2061 ret = spi_master_resume(master);
2062 if (ret) {
2063 clk_disable_unprepare(spi->clk);
2064 return ret;
2065 }
2066
2067 ret = pm_runtime_get_sync(dev);
2068 if (ret < 0) {
2069 pm_runtime_put_noidle(dev);
2070 dev_err(dev, "Unable to power device:%d\n", ret);
2071 return ret;
2072 }
2073
2074 spi->cfg->config(spi);
2075
2076 pm_runtime_mark_last_busy(dev);
2077 pm_runtime_put_autosuspend(dev);
2078
2079 return 0;
2080 }
2081 #endif
2082
2083 static const struct dev_pm_ops stm32_spi_pm_ops = {
2084 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2085 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2086 stm32_spi_runtime_resume, NULL)
2087 };
2088
2089 static struct platform_driver stm32_spi_driver = {
2090 .probe = stm32_spi_probe,
2091 .remove = stm32_spi_remove,
2092 .driver = {
2093 .name = DRIVER_NAME,
2094 .pm = &stm32_spi_pm_ops,
2095 .of_match_table = stm32_spi_of_match,
2096 },
2097 };
2098
2099 module_platform_driver(stm32_spi_driver);
2100
2101 MODULE_ALIAS("platform:" DRIVER_NAME);
2102 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2103 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2104 MODULE_LICENSE("GPL v2");
2105