1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49
50 #include "internal.h"
51
52 #define KIOCB_KEY 0
53
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
57 struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[];
71 }; /* 128 bytes + ring size */
72
73 /*
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
76 */
77 #define AIO_PLUG_THRESHOLD 2
78
79 #define AIO_RING_PAGES 8
80
81 struct kioctx_table {
82 struct rcu_head rcu;
83 unsigned nr;
84 struct kioctx __rcu *table[];
85 };
86
87 struct kioctx_cpu {
88 unsigned reqs_available;
89 };
90
91 struct ctx_rq_wait {
92 struct completion comp;
93 atomic_t count;
94 };
95
96 struct kioctx {
97 struct percpu_ref users;
98 atomic_t dead;
99
100 struct percpu_ref reqs;
101
102 unsigned long user_id;
103
104 struct __percpu kioctx_cpu *cpu;
105
106 /*
107 * For percpu reqs_available, number of slots we move to/from global
108 * counter at a time:
109 */
110 unsigned req_batch;
111 /*
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
114 *
115 * The real limit is nr_events - 1, which will be larger (see
116 * aio_setup_ring())
117 */
118 unsigned max_reqs;
119
120 /* Size of ringbuffer, in units of struct io_event */
121 unsigned nr_events;
122
123 unsigned long mmap_base;
124 unsigned long mmap_size;
125
126 struct page **ring_pages;
127 long nr_pages;
128
129 struct rcu_work free_rwork; /* see free_ioctx() */
130
131 /*
132 * signals when all in-flight requests are done
133 */
134 struct ctx_rq_wait *rq_wait;
135
136 struct {
137 /*
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
142 *
143 * We batch accesses to it with a percpu version.
144 */
145 atomic_t reqs_available;
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 spinlock_t ctx_lock;
150 struct list_head active_reqs; /* used for cancellation */
151 } ____cacheline_aligned_in_smp;
152
153 struct {
154 struct mutex ring_lock;
155 wait_queue_head_t wait;
156 } ____cacheline_aligned_in_smp;
157
158 struct {
159 unsigned tail;
160 unsigned completed_events;
161 spinlock_t completion_lock;
162 } ____cacheline_aligned_in_smp;
163
164 struct page *internal_pages[AIO_RING_PAGES];
165 struct file *aio_ring_file;
166
167 unsigned id;
168 };
169
170 /*
171 * First field must be the file pointer in all the
172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173 */
174 struct fsync_iocb {
175 struct file *file;
176 struct work_struct work;
177 bool datasync;
178 struct cred *creds;
179 };
180
181 struct poll_iocb {
182 struct file *file;
183 struct wait_queue_head *head;
184 __poll_t events;
185 bool cancelled;
186 bool work_scheduled;
187 bool work_need_resched;
188 struct wait_queue_entry wait;
189 struct work_struct work;
190 };
191
192 /*
193 * NOTE! Each of the iocb union members has the file pointer
194 * as the first entry in their struct definition. So you can
195 * access the file pointer through any of the sub-structs,
196 * or directly as just 'ki_filp' in this struct.
197 */
198 struct aio_kiocb {
199 union {
200 struct file *ki_filp;
201 struct kiocb rw;
202 struct fsync_iocb fsync;
203 struct poll_iocb poll;
204 };
205
206 struct kioctx *ki_ctx;
207 kiocb_cancel_fn *ki_cancel;
208
209 struct io_event ki_res;
210
211 struct list_head ki_list; /* the aio core uses this
212 * for cancellation */
213 refcount_t ki_refcnt;
214
215 /*
216 * If the aio_resfd field of the userspace iocb is not zero,
217 * this is the underlying eventfd context to deliver events to.
218 */
219 struct eventfd_ctx *ki_eventfd;
220 };
221
222 /*------ sysctl variables----*/
223 static DEFINE_SPINLOCK(aio_nr_lock);
224 unsigned long aio_nr; /* current system wide number of aio requests */
225 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
226 /*----end sysctl variables---*/
227
228 static struct kmem_cache *kiocb_cachep;
229 static struct kmem_cache *kioctx_cachep;
230
231 static struct vfsmount *aio_mnt;
232
233 static const struct file_operations aio_ring_fops;
234 static const struct address_space_operations aio_ctx_aops;
235
aio_private_file(struct kioctx * ctx,loff_t nr_pages)236 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
237 {
238 struct file *file;
239 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
240 if (IS_ERR(inode))
241 return ERR_CAST(inode);
242
243 inode->i_mapping->a_ops = &aio_ctx_aops;
244 inode->i_mapping->private_data = ctx;
245 inode->i_size = PAGE_SIZE * nr_pages;
246
247 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
248 O_RDWR, &aio_ring_fops);
249 if (IS_ERR(file))
250 iput(inode);
251 return file;
252 }
253
aio_init_fs_context(struct fs_context * fc)254 static int aio_init_fs_context(struct fs_context *fc)
255 {
256 if (!init_pseudo(fc, AIO_RING_MAGIC))
257 return -ENOMEM;
258 fc->s_iflags |= SB_I_NOEXEC;
259 return 0;
260 }
261
262 /* aio_setup
263 * Creates the slab caches used by the aio routines, panic on
264 * failure as this is done early during the boot sequence.
265 */
aio_setup(void)266 static int __init aio_setup(void)
267 {
268 static struct file_system_type aio_fs = {
269 .name = "aio",
270 .init_fs_context = aio_init_fs_context,
271 .kill_sb = kill_anon_super,
272 };
273 aio_mnt = kern_mount(&aio_fs);
274 if (IS_ERR(aio_mnt))
275 panic("Failed to create aio fs mount.");
276
277 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 return 0;
280 }
281 __initcall(aio_setup);
282
put_aio_ring_file(struct kioctx * ctx)283 static void put_aio_ring_file(struct kioctx *ctx)
284 {
285 struct file *aio_ring_file = ctx->aio_ring_file;
286 struct address_space *i_mapping;
287
288 if (aio_ring_file) {
289 truncate_setsize(file_inode(aio_ring_file), 0);
290
291 /* Prevent further access to the kioctx from migratepages */
292 i_mapping = aio_ring_file->f_mapping;
293 spin_lock(&i_mapping->private_lock);
294 i_mapping->private_data = NULL;
295 ctx->aio_ring_file = NULL;
296 spin_unlock(&i_mapping->private_lock);
297
298 fput(aio_ring_file);
299 }
300 }
301
aio_free_ring(struct kioctx * ctx)302 static void aio_free_ring(struct kioctx *ctx)
303 {
304 int i;
305
306 /* Disconnect the kiotx from the ring file. This prevents future
307 * accesses to the kioctx from page migration.
308 */
309 put_aio_ring_file(ctx);
310
311 for (i = 0; i < ctx->nr_pages; i++) {
312 struct page *page;
313 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 page_count(ctx->ring_pages[i]));
315 page = ctx->ring_pages[i];
316 if (!page)
317 continue;
318 ctx->ring_pages[i] = NULL;
319 put_page(page);
320 }
321
322 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
323 kfree(ctx->ring_pages);
324 ctx->ring_pages = NULL;
325 }
326 }
327
aio_ring_mremap(struct vm_area_struct * vma)328 static int aio_ring_mremap(struct vm_area_struct *vma)
329 {
330 struct file *file = vma->vm_file;
331 struct mm_struct *mm = vma->vm_mm;
332 struct kioctx_table *table;
333 int i, res = -EINVAL;
334
335 spin_lock(&mm->ioctx_lock);
336 rcu_read_lock();
337 table = rcu_dereference(mm->ioctx_table);
338 for (i = 0; i < table->nr; i++) {
339 struct kioctx *ctx;
340
341 ctx = rcu_dereference(table->table[i]);
342 if (ctx && ctx->aio_ring_file == file) {
343 if (!atomic_read(&ctx->dead)) {
344 ctx->user_id = ctx->mmap_base = vma->vm_start;
345 res = 0;
346 }
347 break;
348 }
349 }
350
351 rcu_read_unlock();
352 spin_unlock(&mm->ioctx_lock);
353 return res;
354 }
355
356 static const struct vm_operations_struct aio_ring_vm_ops = {
357 .mremap = aio_ring_mremap,
358 #if IS_ENABLED(CONFIG_MMU)
359 .fault = filemap_fault,
360 .map_pages = filemap_map_pages,
361 .page_mkwrite = filemap_page_mkwrite,
362 #endif
363 };
364
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)365 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
366 {
367 vma->vm_flags |= VM_DONTEXPAND;
368 vma->vm_ops = &aio_ring_vm_ops;
369 return 0;
370 }
371
372 static const struct file_operations aio_ring_fops = {
373 .mmap = aio_ring_mmap,
374 };
375
376 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)377 static int aio_migratepage(struct address_space *mapping, struct page *new,
378 struct page *old, enum migrate_mode mode)
379 {
380 struct kioctx *ctx;
381 unsigned long flags;
382 pgoff_t idx;
383 int rc;
384
385 /*
386 * We cannot support the _NO_COPY case here, because copy needs to
387 * happen under the ctx->completion_lock. That does not work with the
388 * migration workflow of MIGRATE_SYNC_NO_COPY.
389 */
390 if (mode == MIGRATE_SYNC_NO_COPY)
391 return -EINVAL;
392
393 rc = 0;
394
395 /* mapping->private_lock here protects against the kioctx teardown. */
396 spin_lock(&mapping->private_lock);
397 ctx = mapping->private_data;
398 if (!ctx) {
399 rc = -EINVAL;
400 goto out;
401 }
402
403 /* The ring_lock mutex. The prevents aio_read_events() from writing
404 * to the ring's head, and prevents page migration from mucking in
405 * a partially initialized kiotx.
406 */
407 if (!mutex_trylock(&ctx->ring_lock)) {
408 rc = -EAGAIN;
409 goto out;
410 }
411
412 idx = old->index;
413 if (idx < (pgoff_t)ctx->nr_pages) {
414 /* Make sure the old page hasn't already been changed */
415 if (ctx->ring_pages[idx] != old)
416 rc = -EAGAIN;
417 } else
418 rc = -EINVAL;
419
420 if (rc != 0)
421 goto out_unlock;
422
423 /* Writeback must be complete */
424 BUG_ON(PageWriteback(old));
425 get_page(new);
426
427 rc = migrate_page_move_mapping(mapping, new, old, 1);
428 if (rc != MIGRATEPAGE_SUCCESS) {
429 put_page(new);
430 goto out_unlock;
431 }
432
433 /* Take completion_lock to prevent other writes to the ring buffer
434 * while the old page is copied to the new. This prevents new
435 * events from being lost.
436 */
437 spin_lock_irqsave(&ctx->completion_lock, flags);
438 migrate_page_copy(new, old);
439 BUG_ON(ctx->ring_pages[idx] != old);
440 ctx->ring_pages[idx] = new;
441 spin_unlock_irqrestore(&ctx->completion_lock, flags);
442
443 /* The old page is no longer accessible. */
444 put_page(old);
445
446 out_unlock:
447 mutex_unlock(&ctx->ring_lock);
448 out:
449 spin_unlock(&mapping->private_lock);
450 return rc;
451 }
452 #endif
453
454 static const struct address_space_operations aio_ctx_aops = {
455 .set_page_dirty = __set_page_dirty_no_writeback,
456 #if IS_ENABLED(CONFIG_MIGRATION)
457 .migratepage = aio_migratepage,
458 #endif
459 };
460
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)461 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
462 {
463 struct aio_ring *ring;
464 struct mm_struct *mm = current->mm;
465 unsigned long size, unused;
466 int nr_pages;
467 int i;
468 struct file *file;
469
470 /* Compensate for the ring buffer's head/tail overlap entry */
471 nr_events += 2; /* 1 is required, 2 for good luck */
472
473 size = sizeof(struct aio_ring);
474 size += sizeof(struct io_event) * nr_events;
475
476 nr_pages = PFN_UP(size);
477 if (nr_pages < 0)
478 return -EINVAL;
479
480 file = aio_private_file(ctx, nr_pages);
481 if (IS_ERR(file)) {
482 ctx->aio_ring_file = NULL;
483 return -ENOMEM;
484 }
485
486 ctx->aio_ring_file = file;
487 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
488 / sizeof(struct io_event);
489
490 ctx->ring_pages = ctx->internal_pages;
491 if (nr_pages > AIO_RING_PAGES) {
492 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
493 GFP_KERNEL);
494 if (!ctx->ring_pages) {
495 put_aio_ring_file(ctx);
496 return -ENOMEM;
497 }
498 }
499
500 for (i = 0; i < nr_pages; i++) {
501 struct page *page;
502 page = find_or_create_page(file->f_mapping,
503 i, GFP_HIGHUSER | __GFP_ZERO);
504 if (!page)
505 break;
506 pr_debug("pid(%d) page[%d]->count=%d\n",
507 current->pid, i, page_count(page));
508 SetPageUptodate(page);
509 unlock_page(page);
510
511 ctx->ring_pages[i] = page;
512 }
513 ctx->nr_pages = i;
514
515 if (unlikely(i != nr_pages)) {
516 aio_free_ring(ctx);
517 return -ENOMEM;
518 }
519
520 ctx->mmap_size = nr_pages * PAGE_SIZE;
521 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
522
523 if (mmap_write_lock_killable(mm)) {
524 ctx->mmap_size = 0;
525 aio_free_ring(ctx);
526 return -EINTR;
527 }
528
529 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
530 PROT_READ | PROT_WRITE,
531 MAP_SHARED, 0, &unused, NULL);
532 mmap_write_unlock(mm);
533 if (IS_ERR((void *)ctx->mmap_base)) {
534 ctx->mmap_size = 0;
535 aio_free_ring(ctx);
536 return -ENOMEM;
537 }
538
539 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
540
541 ctx->user_id = ctx->mmap_base;
542 ctx->nr_events = nr_events; /* trusted copy */
543
544 ring = kmap_atomic(ctx->ring_pages[0]);
545 ring->nr = nr_events; /* user copy */
546 ring->id = ~0U;
547 ring->head = ring->tail = 0;
548 ring->magic = AIO_RING_MAGIC;
549 ring->compat_features = AIO_RING_COMPAT_FEATURES;
550 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
551 ring->header_length = sizeof(struct aio_ring);
552 kunmap_atomic(ring);
553 flush_dcache_page(ctx->ring_pages[0]);
554
555 return 0;
556 }
557
558 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
559 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
560 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
561
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)562 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
563 {
564 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
565 struct kioctx *ctx = req->ki_ctx;
566 unsigned long flags;
567
568 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
569 return;
570
571 spin_lock_irqsave(&ctx->ctx_lock, flags);
572 list_add_tail(&req->ki_list, &ctx->active_reqs);
573 req->ki_cancel = cancel;
574 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
575 }
576 EXPORT_SYMBOL(kiocb_set_cancel_fn);
577
578 /*
579 * free_ioctx() should be RCU delayed to synchronize against the RCU
580 * protected lookup_ioctx() and also needs process context to call
581 * aio_free_ring(). Use rcu_work.
582 */
free_ioctx(struct work_struct * work)583 static void free_ioctx(struct work_struct *work)
584 {
585 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
586 free_rwork);
587 pr_debug("freeing %p\n", ctx);
588
589 aio_free_ring(ctx);
590 free_percpu(ctx->cpu);
591 percpu_ref_exit(&ctx->reqs);
592 percpu_ref_exit(&ctx->users);
593 kmem_cache_free(kioctx_cachep, ctx);
594 }
595
free_ioctx_reqs(struct percpu_ref * ref)596 static void free_ioctx_reqs(struct percpu_ref *ref)
597 {
598 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
599
600 /* At this point we know that there are no any in-flight requests */
601 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
602 complete(&ctx->rq_wait->comp);
603
604 /* Synchronize against RCU protected table->table[] dereferences */
605 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
606 queue_rcu_work(system_wq, &ctx->free_rwork);
607 }
608
609 /*
610 * When this function runs, the kioctx has been removed from the "hash table"
611 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
612 * now it's safe to cancel any that need to be.
613 */
free_ioctx_users(struct percpu_ref * ref)614 static void free_ioctx_users(struct percpu_ref *ref)
615 {
616 struct kioctx *ctx = container_of(ref, struct kioctx, users);
617 struct aio_kiocb *req;
618
619 spin_lock_irq(&ctx->ctx_lock);
620
621 while (!list_empty(&ctx->active_reqs)) {
622 req = list_first_entry(&ctx->active_reqs,
623 struct aio_kiocb, ki_list);
624 req->ki_cancel(&req->rw);
625 list_del_init(&req->ki_list);
626 }
627
628 spin_unlock_irq(&ctx->ctx_lock);
629
630 percpu_ref_kill(&ctx->reqs);
631 percpu_ref_put(&ctx->reqs);
632 }
633
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)634 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
635 {
636 unsigned i, new_nr;
637 struct kioctx_table *table, *old;
638 struct aio_ring *ring;
639
640 spin_lock(&mm->ioctx_lock);
641 table = rcu_dereference_raw(mm->ioctx_table);
642
643 while (1) {
644 if (table)
645 for (i = 0; i < table->nr; i++)
646 if (!rcu_access_pointer(table->table[i])) {
647 ctx->id = i;
648 rcu_assign_pointer(table->table[i], ctx);
649 spin_unlock(&mm->ioctx_lock);
650
651 /* While kioctx setup is in progress,
652 * we are protected from page migration
653 * changes ring_pages by ->ring_lock.
654 */
655 ring = kmap_atomic(ctx->ring_pages[0]);
656 ring->id = ctx->id;
657 kunmap_atomic(ring);
658 return 0;
659 }
660
661 new_nr = (table ? table->nr : 1) * 4;
662 spin_unlock(&mm->ioctx_lock);
663
664 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
665 new_nr, GFP_KERNEL);
666 if (!table)
667 return -ENOMEM;
668
669 table->nr = new_nr;
670
671 spin_lock(&mm->ioctx_lock);
672 old = rcu_dereference_raw(mm->ioctx_table);
673
674 if (!old) {
675 rcu_assign_pointer(mm->ioctx_table, table);
676 } else if (table->nr > old->nr) {
677 memcpy(table->table, old->table,
678 old->nr * sizeof(struct kioctx *));
679
680 rcu_assign_pointer(mm->ioctx_table, table);
681 kfree_rcu(old, rcu);
682 } else {
683 kfree(table);
684 table = old;
685 }
686 }
687 }
688
aio_nr_sub(unsigned nr)689 static void aio_nr_sub(unsigned nr)
690 {
691 spin_lock(&aio_nr_lock);
692 if (WARN_ON(aio_nr - nr > aio_nr))
693 aio_nr = 0;
694 else
695 aio_nr -= nr;
696 spin_unlock(&aio_nr_lock);
697 }
698
699 /* ioctx_alloc
700 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
701 */
ioctx_alloc(unsigned nr_events)702 static struct kioctx *ioctx_alloc(unsigned nr_events)
703 {
704 struct mm_struct *mm = current->mm;
705 struct kioctx *ctx;
706 int err = -ENOMEM;
707
708 /*
709 * Store the original nr_events -- what userspace passed to io_setup(),
710 * for counting against the global limit -- before it changes.
711 */
712 unsigned int max_reqs = nr_events;
713
714 /*
715 * We keep track of the number of available ringbuffer slots, to prevent
716 * overflow (reqs_available), and we also use percpu counters for this.
717 *
718 * So since up to half the slots might be on other cpu's percpu counters
719 * and unavailable, double nr_events so userspace sees what they
720 * expected: additionally, we move req_batch slots to/from percpu
721 * counters at a time, so make sure that isn't 0:
722 */
723 nr_events = max(nr_events, num_possible_cpus() * 4);
724 nr_events *= 2;
725
726 /* Prevent overflows */
727 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
728 pr_debug("ENOMEM: nr_events too high\n");
729 return ERR_PTR(-EINVAL);
730 }
731
732 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
733 return ERR_PTR(-EAGAIN);
734
735 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
736 if (!ctx)
737 return ERR_PTR(-ENOMEM);
738
739 ctx->max_reqs = max_reqs;
740
741 spin_lock_init(&ctx->ctx_lock);
742 spin_lock_init(&ctx->completion_lock);
743 mutex_init(&ctx->ring_lock);
744 /* Protect against page migration throughout kiotx setup by keeping
745 * the ring_lock mutex held until setup is complete. */
746 mutex_lock(&ctx->ring_lock);
747 init_waitqueue_head(&ctx->wait);
748
749 INIT_LIST_HEAD(&ctx->active_reqs);
750
751 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
752 goto err;
753
754 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
755 goto err;
756
757 ctx->cpu = alloc_percpu(struct kioctx_cpu);
758 if (!ctx->cpu)
759 goto err;
760
761 err = aio_setup_ring(ctx, nr_events);
762 if (err < 0)
763 goto err;
764
765 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
766 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
767 if (ctx->req_batch < 1)
768 ctx->req_batch = 1;
769
770 /* limit the number of system wide aios */
771 spin_lock(&aio_nr_lock);
772 if (aio_nr + ctx->max_reqs > aio_max_nr ||
773 aio_nr + ctx->max_reqs < aio_nr) {
774 spin_unlock(&aio_nr_lock);
775 err = -EAGAIN;
776 goto err_ctx;
777 }
778 aio_nr += ctx->max_reqs;
779 spin_unlock(&aio_nr_lock);
780
781 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
782 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
783
784 err = ioctx_add_table(ctx, mm);
785 if (err)
786 goto err_cleanup;
787
788 /* Release the ring_lock mutex now that all setup is complete. */
789 mutex_unlock(&ctx->ring_lock);
790
791 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
792 ctx, ctx->user_id, mm, ctx->nr_events);
793 return ctx;
794
795 err_cleanup:
796 aio_nr_sub(ctx->max_reqs);
797 err_ctx:
798 atomic_set(&ctx->dead, 1);
799 if (ctx->mmap_size)
800 vm_munmap(ctx->mmap_base, ctx->mmap_size);
801 aio_free_ring(ctx);
802 err:
803 mutex_unlock(&ctx->ring_lock);
804 free_percpu(ctx->cpu);
805 percpu_ref_exit(&ctx->reqs);
806 percpu_ref_exit(&ctx->users);
807 kmem_cache_free(kioctx_cachep, ctx);
808 pr_debug("error allocating ioctx %d\n", err);
809 return ERR_PTR(err);
810 }
811
812 /* kill_ioctx
813 * Cancels all outstanding aio requests on an aio context. Used
814 * when the processes owning a context have all exited to encourage
815 * the rapid destruction of the kioctx.
816 */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)817 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
818 struct ctx_rq_wait *wait)
819 {
820 struct kioctx_table *table;
821
822 spin_lock(&mm->ioctx_lock);
823 if (atomic_xchg(&ctx->dead, 1)) {
824 spin_unlock(&mm->ioctx_lock);
825 return -EINVAL;
826 }
827
828 table = rcu_dereference_raw(mm->ioctx_table);
829 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
830 RCU_INIT_POINTER(table->table[ctx->id], NULL);
831 spin_unlock(&mm->ioctx_lock);
832
833 /* free_ioctx_reqs() will do the necessary RCU synchronization */
834 wake_up_all(&ctx->wait);
835
836 /*
837 * It'd be more correct to do this in free_ioctx(), after all
838 * the outstanding kiocbs have finished - but by then io_destroy
839 * has already returned, so io_setup() could potentially return
840 * -EAGAIN with no ioctxs actually in use (as far as userspace
841 * could tell).
842 */
843 aio_nr_sub(ctx->max_reqs);
844
845 if (ctx->mmap_size)
846 vm_munmap(ctx->mmap_base, ctx->mmap_size);
847
848 ctx->rq_wait = wait;
849 percpu_ref_kill(&ctx->users);
850 return 0;
851 }
852
853 /*
854 * exit_aio: called when the last user of mm goes away. At this point, there is
855 * no way for any new requests to be submited or any of the io_* syscalls to be
856 * called on the context.
857 *
858 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
859 * them.
860 */
exit_aio(struct mm_struct * mm)861 void exit_aio(struct mm_struct *mm)
862 {
863 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
864 struct ctx_rq_wait wait;
865 int i, skipped;
866
867 if (!table)
868 return;
869
870 atomic_set(&wait.count, table->nr);
871 init_completion(&wait.comp);
872
873 skipped = 0;
874 for (i = 0; i < table->nr; ++i) {
875 struct kioctx *ctx =
876 rcu_dereference_protected(table->table[i], true);
877
878 if (!ctx) {
879 skipped++;
880 continue;
881 }
882
883 /*
884 * We don't need to bother with munmap() here - exit_mmap(mm)
885 * is coming and it'll unmap everything. And we simply can't,
886 * this is not necessarily our ->mm.
887 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
888 * that it needs to unmap the area, just set it to 0.
889 */
890 ctx->mmap_size = 0;
891 kill_ioctx(mm, ctx, &wait);
892 }
893
894 if (!atomic_sub_and_test(skipped, &wait.count)) {
895 /* Wait until all IO for the context are done. */
896 wait_for_completion(&wait.comp);
897 }
898
899 RCU_INIT_POINTER(mm->ioctx_table, NULL);
900 kfree(table);
901 }
902
put_reqs_available(struct kioctx * ctx,unsigned nr)903 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
904 {
905 struct kioctx_cpu *kcpu;
906 unsigned long flags;
907
908 local_irq_save(flags);
909 kcpu = this_cpu_ptr(ctx->cpu);
910 kcpu->reqs_available += nr;
911
912 while (kcpu->reqs_available >= ctx->req_batch * 2) {
913 kcpu->reqs_available -= ctx->req_batch;
914 atomic_add(ctx->req_batch, &ctx->reqs_available);
915 }
916
917 local_irq_restore(flags);
918 }
919
__get_reqs_available(struct kioctx * ctx)920 static bool __get_reqs_available(struct kioctx *ctx)
921 {
922 struct kioctx_cpu *kcpu;
923 bool ret = false;
924 unsigned long flags;
925
926 local_irq_save(flags);
927 kcpu = this_cpu_ptr(ctx->cpu);
928 if (!kcpu->reqs_available) {
929 int old, avail = atomic_read(&ctx->reqs_available);
930
931 do {
932 if (avail < ctx->req_batch)
933 goto out;
934
935 old = avail;
936 avail = atomic_cmpxchg(&ctx->reqs_available,
937 avail, avail - ctx->req_batch);
938 } while (avail != old);
939
940 kcpu->reqs_available += ctx->req_batch;
941 }
942
943 ret = true;
944 kcpu->reqs_available--;
945 out:
946 local_irq_restore(flags);
947 return ret;
948 }
949
950 /* refill_reqs_available
951 * Updates the reqs_available reference counts used for tracking the
952 * number of free slots in the completion ring. This can be called
953 * from aio_complete() (to optimistically update reqs_available) or
954 * from aio_get_req() (the we're out of events case). It must be
955 * called holding ctx->completion_lock.
956 */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)957 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
958 unsigned tail)
959 {
960 unsigned events_in_ring, completed;
961
962 /* Clamp head since userland can write to it. */
963 head %= ctx->nr_events;
964 if (head <= tail)
965 events_in_ring = tail - head;
966 else
967 events_in_ring = ctx->nr_events - (head - tail);
968
969 completed = ctx->completed_events;
970 if (events_in_ring < completed)
971 completed -= events_in_ring;
972 else
973 completed = 0;
974
975 if (!completed)
976 return;
977
978 ctx->completed_events -= completed;
979 put_reqs_available(ctx, completed);
980 }
981
982 /* user_refill_reqs_available
983 * Called to refill reqs_available when aio_get_req() encounters an
984 * out of space in the completion ring.
985 */
user_refill_reqs_available(struct kioctx * ctx)986 static void user_refill_reqs_available(struct kioctx *ctx)
987 {
988 spin_lock_irq(&ctx->completion_lock);
989 if (ctx->completed_events) {
990 struct aio_ring *ring;
991 unsigned head;
992
993 /* Access of ring->head may race with aio_read_events_ring()
994 * here, but that's okay since whether we read the old version
995 * or the new version, and either will be valid. The important
996 * part is that head cannot pass tail since we prevent
997 * aio_complete() from updating tail by holding
998 * ctx->completion_lock. Even if head is invalid, the check
999 * against ctx->completed_events below will make sure we do the
1000 * safe/right thing.
1001 */
1002 ring = kmap_atomic(ctx->ring_pages[0]);
1003 head = ring->head;
1004 kunmap_atomic(ring);
1005
1006 refill_reqs_available(ctx, head, ctx->tail);
1007 }
1008
1009 spin_unlock_irq(&ctx->completion_lock);
1010 }
1011
get_reqs_available(struct kioctx * ctx)1012 static bool get_reqs_available(struct kioctx *ctx)
1013 {
1014 if (__get_reqs_available(ctx))
1015 return true;
1016 user_refill_reqs_available(ctx);
1017 return __get_reqs_available(ctx);
1018 }
1019
1020 /* aio_get_req
1021 * Allocate a slot for an aio request.
1022 * Returns NULL if no requests are free.
1023 *
1024 * The refcount is initialized to 2 - one for the async op completion,
1025 * one for the synchronous code that does this.
1026 */
aio_get_req(struct kioctx * ctx)1027 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1028 {
1029 struct aio_kiocb *req;
1030
1031 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1032 if (unlikely(!req))
1033 return NULL;
1034
1035 if (unlikely(!get_reqs_available(ctx))) {
1036 kmem_cache_free(kiocb_cachep, req);
1037 return NULL;
1038 }
1039
1040 percpu_ref_get(&ctx->reqs);
1041 req->ki_ctx = ctx;
1042 INIT_LIST_HEAD(&req->ki_list);
1043 refcount_set(&req->ki_refcnt, 2);
1044 req->ki_eventfd = NULL;
1045 return req;
1046 }
1047
lookup_ioctx(unsigned long ctx_id)1048 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1049 {
1050 struct aio_ring __user *ring = (void __user *)ctx_id;
1051 struct mm_struct *mm = current->mm;
1052 struct kioctx *ctx, *ret = NULL;
1053 struct kioctx_table *table;
1054 unsigned id;
1055
1056 if (get_user(id, &ring->id))
1057 return NULL;
1058
1059 rcu_read_lock();
1060 table = rcu_dereference(mm->ioctx_table);
1061
1062 if (!table || id >= table->nr)
1063 goto out;
1064
1065 id = array_index_nospec(id, table->nr);
1066 ctx = rcu_dereference(table->table[id]);
1067 if (ctx && ctx->user_id == ctx_id) {
1068 if (percpu_ref_tryget_live(&ctx->users))
1069 ret = ctx;
1070 }
1071 out:
1072 rcu_read_unlock();
1073 return ret;
1074 }
1075
iocb_destroy(struct aio_kiocb * iocb)1076 static inline void iocb_destroy(struct aio_kiocb *iocb)
1077 {
1078 if (iocb->ki_eventfd)
1079 eventfd_ctx_put(iocb->ki_eventfd);
1080 if (iocb->ki_filp)
1081 fput(iocb->ki_filp);
1082 percpu_ref_put(&iocb->ki_ctx->reqs);
1083 kmem_cache_free(kiocb_cachep, iocb);
1084 }
1085
1086 /* aio_complete
1087 * Called when the io request on the given iocb is complete.
1088 */
aio_complete(struct aio_kiocb * iocb)1089 static void aio_complete(struct aio_kiocb *iocb)
1090 {
1091 struct kioctx *ctx = iocb->ki_ctx;
1092 struct aio_ring *ring;
1093 struct io_event *ev_page, *event;
1094 unsigned tail, pos, head;
1095 unsigned long flags;
1096
1097 /*
1098 * Add a completion event to the ring buffer. Must be done holding
1099 * ctx->completion_lock to prevent other code from messing with the tail
1100 * pointer since we might be called from irq context.
1101 */
1102 spin_lock_irqsave(&ctx->completion_lock, flags);
1103
1104 tail = ctx->tail;
1105 pos = tail + AIO_EVENTS_OFFSET;
1106
1107 if (++tail >= ctx->nr_events)
1108 tail = 0;
1109
1110 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1111 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1112
1113 *event = iocb->ki_res;
1114
1115 kunmap_atomic(ev_page);
1116 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1117
1118 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1119 (void __user *)(unsigned long)iocb->ki_res.obj,
1120 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1121
1122 /* after flagging the request as done, we
1123 * must never even look at it again
1124 */
1125 smp_wmb(); /* make event visible before updating tail */
1126
1127 ctx->tail = tail;
1128
1129 ring = kmap_atomic(ctx->ring_pages[0]);
1130 head = ring->head;
1131 ring->tail = tail;
1132 kunmap_atomic(ring);
1133 flush_dcache_page(ctx->ring_pages[0]);
1134
1135 ctx->completed_events++;
1136 if (ctx->completed_events > 1)
1137 refill_reqs_available(ctx, head, tail);
1138 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1139
1140 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1141
1142 /*
1143 * Check if the user asked us to deliver the result through an
1144 * eventfd. The eventfd_signal() function is safe to be called
1145 * from IRQ context.
1146 */
1147 if (iocb->ki_eventfd)
1148 eventfd_signal(iocb->ki_eventfd, 1);
1149
1150 /*
1151 * We have to order our ring_info tail store above and test
1152 * of the wait list below outside the wait lock. This is
1153 * like in wake_up_bit() where clearing a bit has to be
1154 * ordered with the unlocked test.
1155 */
1156 smp_mb();
1157
1158 if (waitqueue_active(&ctx->wait))
1159 wake_up(&ctx->wait);
1160 }
1161
iocb_put(struct aio_kiocb * iocb)1162 static inline void iocb_put(struct aio_kiocb *iocb)
1163 {
1164 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1165 aio_complete(iocb);
1166 iocb_destroy(iocb);
1167 }
1168 }
1169
1170 /* aio_read_events_ring
1171 * Pull an event off of the ioctx's event ring. Returns the number of
1172 * events fetched
1173 */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1174 static long aio_read_events_ring(struct kioctx *ctx,
1175 struct io_event __user *event, long nr)
1176 {
1177 struct aio_ring *ring;
1178 unsigned head, tail, pos;
1179 long ret = 0;
1180 int copy_ret;
1181
1182 /*
1183 * The mutex can block and wake us up and that will cause
1184 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1185 * and repeat. This should be rare enough that it doesn't cause
1186 * peformance issues. See the comment in read_events() for more detail.
1187 */
1188 sched_annotate_sleep();
1189 mutex_lock(&ctx->ring_lock);
1190
1191 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1192 ring = kmap_atomic(ctx->ring_pages[0]);
1193 head = ring->head;
1194 tail = ring->tail;
1195 kunmap_atomic(ring);
1196
1197 /*
1198 * Ensure that once we've read the current tail pointer, that
1199 * we also see the events that were stored up to the tail.
1200 */
1201 smp_rmb();
1202
1203 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1204
1205 if (head == tail)
1206 goto out;
1207
1208 head %= ctx->nr_events;
1209 tail %= ctx->nr_events;
1210
1211 while (ret < nr) {
1212 long avail;
1213 struct io_event *ev;
1214 struct page *page;
1215
1216 avail = (head <= tail ? tail : ctx->nr_events) - head;
1217 if (head == tail)
1218 break;
1219
1220 pos = head + AIO_EVENTS_OFFSET;
1221 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1222 pos %= AIO_EVENTS_PER_PAGE;
1223
1224 avail = min(avail, nr - ret);
1225 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1226
1227 ev = kmap(page);
1228 copy_ret = copy_to_user(event + ret, ev + pos,
1229 sizeof(*ev) * avail);
1230 kunmap(page);
1231
1232 if (unlikely(copy_ret)) {
1233 ret = -EFAULT;
1234 goto out;
1235 }
1236
1237 ret += avail;
1238 head += avail;
1239 head %= ctx->nr_events;
1240 }
1241
1242 ring = kmap_atomic(ctx->ring_pages[0]);
1243 ring->head = head;
1244 kunmap_atomic(ring);
1245 flush_dcache_page(ctx->ring_pages[0]);
1246
1247 pr_debug("%li h%u t%u\n", ret, head, tail);
1248 out:
1249 mutex_unlock(&ctx->ring_lock);
1250
1251 return ret;
1252 }
1253
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1254 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1255 struct io_event __user *event, long *i)
1256 {
1257 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1258
1259 if (ret > 0)
1260 *i += ret;
1261
1262 if (unlikely(atomic_read(&ctx->dead)))
1263 ret = -EINVAL;
1264
1265 if (!*i)
1266 *i = ret;
1267
1268 return ret < 0 || *i >= min_nr;
1269 }
1270
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1271 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1272 struct io_event __user *event,
1273 ktime_t until)
1274 {
1275 long ret = 0;
1276
1277 /*
1278 * Note that aio_read_events() is being called as the conditional - i.e.
1279 * we're calling it after prepare_to_wait() has set task state to
1280 * TASK_INTERRUPTIBLE.
1281 *
1282 * But aio_read_events() can block, and if it blocks it's going to flip
1283 * the task state back to TASK_RUNNING.
1284 *
1285 * This should be ok, provided it doesn't flip the state back to
1286 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1287 * will only happen if the mutex_lock() call blocks, and we then find
1288 * the ringbuffer empty. So in practice we should be ok, but it's
1289 * something to be aware of when touching this code.
1290 */
1291 if (until == 0)
1292 aio_read_events(ctx, min_nr, nr, event, &ret);
1293 else
1294 wait_event_interruptible_hrtimeout(ctx->wait,
1295 aio_read_events(ctx, min_nr, nr, event, &ret),
1296 until);
1297 return ret;
1298 }
1299
1300 /* sys_io_setup:
1301 * Create an aio_context capable of receiving at least nr_events.
1302 * ctxp must not point to an aio_context that already exists, and
1303 * must be initialized to 0 prior to the call. On successful
1304 * creation of the aio_context, *ctxp is filled in with the resulting
1305 * handle. May fail with -EINVAL if *ctxp is not initialized,
1306 * if the specified nr_events exceeds internal limits. May fail
1307 * with -EAGAIN if the specified nr_events exceeds the user's limit
1308 * of available events. May fail with -ENOMEM if insufficient kernel
1309 * resources are available. May fail with -EFAULT if an invalid
1310 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1311 * implemented.
1312 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1313 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1314 {
1315 struct kioctx *ioctx = NULL;
1316 unsigned long ctx;
1317 long ret;
1318
1319 ret = get_user(ctx, ctxp);
1320 if (unlikely(ret))
1321 goto out;
1322
1323 ret = -EINVAL;
1324 if (unlikely(ctx || nr_events == 0)) {
1325 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1326 ctx, nr_events);
1327 goto out;
1328 }
1329
1330 ioctx = ioctx_alloc(nr_events);
1331 ret = PTR_ERR(ioctx);
1332 if (!IS_ERR(ioctx)) {
1333 ret = put_user(ioctx->user_id, ctxp);
1334 if (ret)
1335 kill_ioctx(current->mm, ioctx, NULL);
1336 percpu_ref_put(&ioctx->users);
1337 }
1338
1339 out:
1340 return ret;
1341 }
1342
1343 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1344 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1345 {
1346 struct kioctx *ioctx = NULL;
1347 unsigned long ctx;
1348 long ret;
1349
1350 ret = get_user(ctx, ctx32p);
1351 if (unlikely(ret))
1352 goto out;
1353
1354 ret = -EINVAL;
1355 if (unlikely(ctx || nr_events == 0)) {
1356 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1357 ctx, nr_events);
1358 goto out;
1359 }
1360
1361 ioctx = ioctx_alloc(nr_events);
1362 ret = PTR_ERR(ioctx);
1363 if (!IS_ERR(ioctx)) {
1364 /* truncating is ok because it's a user address */
1365 ret = put_user((u32)ioctx->user_id, ctx32p);
1366 if (ret)
1367 kill_ioctx(current->mm, ioctx, NULL);
1368 percpu_ref_put(&ioctx->users);
1369 }
1370
1371 out:
1372 return ret;
1373 }
1374 #endif
1375
1376 /* sys_io_destroy:
1377 * Destroy the aio_context specified. May cancel any outstanding
1378 * AIOs and block on completion. Will fail with -ENOSYS if not
1379 * implemented. May fail with -EINVAL if the context pointed to
1380 * is invalid.
1381 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1382 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1383 {
1384 struct kioctx *ioctx = lookup_ioctx(ctx);
1385 if (likely(NULL != ioctx)) {
1386 struct ctx_rq_wait wait;
1387 int ret;
1388
1389 init_completion(&wait.comp);
1390 atomic_set(&wait.count, 1);
1391
1392 /* Pass requests_done to kill_ioctx() where it can be set
1393 * in a thread-safe way. If we try to set it here then we have
1394 * a race condition if two io_destroy() called simultaneously.
1395 */
1396 ret = kill_ioctx(current->mm, ioctx, &wait);
1397 percpu_ref_put(&ioctx->users);
1398
1399 /* Wait until all IO for the context are done. Otherwise kernel
1400 * keep using user-space buffers even if user thinks the context
1401 * is destroyed.
1402 */
1403 if (!ret)
1404 wait_for_completion(&wait.comp);
1405
1406 return ret;
1407 }
1408 pr_debug("EINVAL: invalid context id\n");
1409 return -EINVAL;
1410 }
1411
aio_remove_iocb(struct aio_kiocb * iocb)1412 static void aio_remove_iocb(struct aio_kiocb *iocb)
1413 {
1414 struct kioctx *ctx = iocb->ki_ctx;
1415 unsigned long flags;
1416
1417 spin_lock_irqsave(&ctx->ctx_lock, flags);
1418 list_del(&iocb->ki_list);
1419 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1420 }
1421
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1422 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1423 {
1424 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1425
1426 if (!list_empty_careful(&iocb->ki_list))
1427 aio_remove_iocb(iocb);
1428
1429 if (kiocb->ki_flags & IOCB_WRITE) {
1430 struct inode *inode = file_inode(kiocb->ki_filp);
1431
1432 /*
1433 * Tell lockdep we inherited freeze protection from submission
1434 * thread.
1435 */
1436 if (S_ISREG(inode->i_mode))
1437 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1438 file_end_write(kiocb->ki_filp);
1439 }
1440
1441 iocb->ki_res.res = res;
1442 iocb->ki_res.res2 = res2;
1443 iocb_put(iocb);
1444 }
1445
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1446 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1447 {
1448 int ret;
1449
1450 req->ki_complete = aio_complete_rw;
1451 req->private = NULL;
1452 req->ki_pos = iocb->aio_offset;
1453 req->ki_flags = iocb_flags(req->ki_filp);
1454 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1455 req->ki_flags |= IOCB_EVENTFD;
1456 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1457 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1458 /*
1459 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1460 * aio_reqprio is interpreted as an I/O scheduling
1461 * class and priority.
1462 */
1463 ret = ioprio_check_cap(iocb->aio_reqprio);
1464 if (ret) {
1465 pr_debug("aio ioprio check cap error: %d\n", ret);
1466 return ret;
1467 }
1468
1469 req->ki_ioprio = iocb->aio_reqprio;
1470 } else
1471 req->ki_ioprio = get_current_ioprio();
1472
1473 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1474 if (unlikely(ret))
1475 return ret;
1476
1477 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1478 return 0;
1479 }
1480
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1481 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1482 struct iovec **iovec, bool vectored, bool compat,
1483 struct iov_iter *iter)
1484 {
1485 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1486 size_t len = iocb->aio_nbytes;
1487
1488 if (!vectored) {
1489 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1490 *iovec = NULL;
1491 return ret;
1492 }
1493
1494 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1495 }
1496
aio_rw_done(struct kiocb * req,ssize_t ret)1497 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1498 {
1499 switch (ret) {
1500 case -EIOCBQUEUED:
1501 break;
1502 case -ERESTARTSYS:
1503 case -ERESTARTNOINTR:
1504 case -ERESTARTNOHAND:
1505 case -ERESTART_RESTARTBLOCK:
1506 /*
1507 * There's no easy way to restart the syscall since other AIO's
1508 * may be already running. Just fail this IO with EINTR.
1509 */
1510 ret = -EINTR;
1511 fallthrough;
1512 default:
1513 req->ki_complete(req, ret, 0);
1514 }
1515 }
1516
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1517 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1518 bool vectored, bool compat)
1519 {
1520 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1521 struct iov_iter iter;
1522 struct file *file;
1523 int ret;
1524
1525 ret = aio_prep_rw(req, iocb);
1526 if (ret)
1527 return ret;
1528 file = req->ki_filp;
1529 if (unlikely(!(file->f_mode & FMODE_READ)))
1530 return -EBADF;
1531 ret = -EINVAL;
1532 if (unlikely(!file->f_op->read_iter))
1533 return -EINVAL;
1534
1535 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1536 if (ret < 0)
1537 return ret;
1538 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1539 if (!ret)
1540 aio_rw_done(req, call_read_iter(file, req, &iter));
1541 kfree(iovec);
1542 return ret;
1543 }
1544
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1545 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1546 bool vectored, bool compat)
1547 {
1548 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1549 struct iov_iter iter;
1550 struct file *file;
1551 int ret;
1552
1553 ret = aio_prep_rw(req, iocb);
1554 if (ret)
1555 return ret;
1556 file = req->ki_filp;
1557
1558 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1559 return -EBADF;
1560 if (unlikely(!file->f_op->write_iter))
1561 return -EINVAL;
1562
1563 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1564 if (ret < 0)
1565 return ret;
1566 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1567 if (!ret) {
1568 /*
1569 * Open-code file_start_write here to grab freeze protection,
1570 * which will be released by another thread in
1571 * aio_complete_rw(). Fool lockdep by telling it the lock got
1572 * released so that it doesn't complain about the held lock when
1573 * we return to userspace.
1574 */
1575 if (S_ISREG(file_inode(file)->i_mode)) {
1576 sb_start_write(file_inode(file)->i_sb);
1577 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1578 }
1579 req->ki_flags |= IOCB_WRITE;
1580 aio_rw_done(req, call_write_iter(file, req, &iter));
1581 }
1582 kfree(iovec);
1583 return ret;
1584 }
1585
aio_fsync_work(struct work_struct * work)1586 static void aio_fsync_work(struct work_struct *work)
1587 {
1588 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1589 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1590
1591 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1592 revert_creds(old_cred);
1593 put_cred(iocb->fsync.creds);
1594 iocb_put(iocb);
1595 }
1596
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1597 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598 bool datasync)
1599 {
1600 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1601 iocb->aio_rw_flags))
1602 return -EINVAL;
1603
1604 if (unlikely(!req->file->f_op->fsync))
1605 return -EINVAL;
1606
1607 req->creds = prepare_creds();
1608 if (!req->creds)
1609 return -ENOMEM;
1610
1611 req->datasync = datasync;
1612 INIT_WORK(&req->work, aio_fsync_work);
1613 schedule_work(&req->work);
1614 return 0;
1615 }
1616
aio_poll_put_work(struct work_struct * work)1617 static void aio_poll_put_work(struct work_struct *work)
1618 {
1619 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1620 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1621
1622 iocb_put(iocb);
1623 }
1624
1625 /*
1626 * Safely lock the waitqueue which the request is on, synchronizing with the
1627 * case where the ->poll() provider decides to free its waitqueue early.
1628 *
1629 * Returns true on success, meaning that req->head->lock was locked, req->wait
1630 * is on req->head, and an RCU read lock was taken. Returns false if the
1631 * request was already removed from its waitqueue (which might no longer exist).
1632 */
poll_iocb_lock_wq(struct poll_iocb * req)1633 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1634 {
1635 wait_queue_head_t *head;
1636
1637 /*
1638 * While we hold the waitqueue lock and the waitqueue is nonempty,
1639 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1640 * lock in the first place can race with the waitqueue being freed.
1641 *
1642 * We solve this as eventpoll does: by taking advantage of the fact that
1643 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1644 * we enter rcu_read_lock() and see that the pointer to the queue is
1645 * non-NULL, we can then lock it without the memory being freed out from
1646 * under us, then check whether the request is still on the queue.
1647 *
1648 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1649 * case the caller deletes the entry from the queue, leaving it empty.
1650 * In that case, only RCU prevents the queue memory from being freed.
1651 */
1652 rcu_read_lock();
1653 head = smp_load_acquire(&req->head);
1654 if (head) {
1655 spin_lock(&head->lock);
1656 if (!list_empty(&req->wait.entry))
1657 return true;
1658 spin_unlock(&head->lock);
1659 }
1660 rcu_read_unlock();
1661 return false;
1662 }
1663
poll_iocb_unlock_wq(struct poll_iocb * req)1664 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1665 {
1666 spin_unlock(&req->head->lock);
1667 rcu_read_unlock();
1668 }
1669
aio_poll_complete_work(struct work_struct * work)1670 static void aio_poll_complete_work(struct work_struct *work)
1671 {
1672 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1673 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1674 struct poll_table_struct pt = { ._key = req->events };
1675 struct kioctx *ctx = iocb->ki_ctx;
1676 __poll_t mask = 0;
1677
1678 if (!READ_ONCE(req->cancelled))
1679 mask = vfs_poll(req->file, &pt) & req->events;
1680
1681 /*
1682 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1683 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1684 * synchronize with them. In the cancellation case the list_del_init
1685 * itself is not actually needed, but harmless so we keep it in to
1686 * avoid further branches in the fast path.
1687 */
1688 spin_lock_irq(&ctx->ctx_lock);
1689 if (poll_iocb_lock_wq(req)) {
1690 if (!mask && !READ_ONCE(req->cancelled)) {
1691 /*
1692 * The request isn't actually ready to be completed yet.
1693 * Reschedule completion if another wakeup came in.
1694 */
1695 if (req->work_need_resched) {
1696 schedule_work(&req->work);
1697 req->work_need_resched = false;
1698 } else {
1699 req->work_scheduled = false;
1700 }
1701 poll_iocb_unlock_wq(req);
1702 spin_unlock_irq(&ctx->ctx_lock);
1703 return;
1704 }
1705 list_del_init(&req->wait.entry);
1706 poll_iocb_unlock_wq(req);
1707 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1708 list_del_init(&iocb->ki_list);
1709 iocb->ki_res.res = mangle_poll(mask);
1710 spin_unlock_irq(&ctx->ctx_lock);
1711
1712 iocb_put(iocb);
1713 }
1714
1715 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1716 static int aio_poll_cancel(struct kiocb *iocb)
1717 {
1718 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1719 struct poll_iocb *req = &aiocb->poll;
1720
1721 if (poll_iocb_lock_wq(req)) {
1722 WRITE_ONCE(req->cancelled, true);
1723 if (!req->work_scheduled) {
1724 schedule_work(&aiocb->poll.work);
1725 req->work_scheduled = true;
1726 }
1727 poll_iocb_unlock_wq(req);
1728 } /* else, the request was force-cancelled by POLLFREE already */
1729
1730 return 0;
1731 }
1732
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1733 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1734 void *key)
1735 {
1736 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1737 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1738 __poll_t mask = key_to_poll(key);
1739 unsigned long flags;
1740
1741 /* for instances that support it check for an event match first: */
1742 if (mask && !(mask & req->events))
1743 return 0;
1744
1745 /*
1746 * Complete the request inline if possible. This requires that three
1747 * conditions be met:
1748 * 1. An event mask must have been passed. If a plain wakeup was done
1749 * instead, then mask == 0 and we have to call vfs_poll() to get
1750 * the events, so inline completion isn't possible.
1751 * 2. The completion work must not have already been scheduled.
1752 * 3. ctx_lock must not be busy. We have to use trylock because we
1753 * already hold the waitqueue lock, so this inverts the normal
1754 * locking order. Use irqsave/irqrestore because not all
1755 * filesystems (e.g. fuse) call this function with IRQs disabled,
1756 * yet IRQs have to be disabled before ctx_lock is obtained.
1757 */
1758 if (mask && !req->work_scheduled &&
1759 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1760 struct kioctx *ctx = iocb->ki_ctx;
1761
1762 list_del_init(&req->wait.entry);
1763 list_del(&iocb->ki_list);
1764 iocb->ki_res.res = mangle_poll(mask);
1765 if (iocb->ki_eventfd && eventfd_signal_count()) {
1766 iocb = NULL;
1767 INIT_WORK(&req->work, aio_poll_put_work);
1768 schedule_work(&req->work);
1769 }
1770 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1771 if (iocb)
1772 iocb_put(iocb);
1773 } else {
1774 /*
1775 * Schedule the completion work if needed. If it was already
1776 * scheduled, record that another wakeup came in.
1777 *
1778 * Don't remove the request from the waitqueue here, as it might
1779 * not actually be complete yet (we won't know until vfs_poll()
1780 * is called), and we must not miss any wakeups. POLLFREE is an
1781 * exception to this; see below.
1782 */
1783 if (req->work_scheduled) {
1784 req->work_need_resched = true;
1785 } else {
1786 schedule_work(&req->work);
1787 req->work_scheduled = true;
1788 }
1789
1790 /*
1791 * If the waitqueue is being freed early but we can't complete
1792 * the request inline, we have to tear down the request as best
1793 * we can. That means immediately removing the request from its
1794 * waitqueue and preventing all further accesses to the
1795 * waitqueue via the request. We also need to schedule the
1796 * completion work (done above). Also mark the request as
1797 * cancelled, to potentially skip an unneeded call to ->poll().
1798 */
1799 if (mask & POLLFREE) {
1800 WRITE_ONCE(req->cancelled, true);
1801 list_del_init(&req->wait.entry);
1802
1803 /*
1804 * Careful: this *must* be the last step, since as soon
1805 * as req->head is NULL'ed out, the request can be
1806 * completed and freed, since aio_poll_complete_work()
1807 * will no longer need to take the waitqueue lock.
1808 */
1809 smp_store_release(&req->head, NULL);
1810 }
1811 }
1812 return 1;
1813 }
1814
1815 struct aio_poll_table {
1816 struct poll_table_struct pt;
1817 struct aio_kiocb *iocb;
1818 bool queued;
1819 int error;
1820 };
1821
1822 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1823 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1824 struct poll_table_struct *p)
1825 {
1826 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1827
1828 /* multiple wait queues per file are not supported */
1829 if (unlikely(pt->queued)) {
1830 pt->error = -EINVAL;
1831 return;
1832 }
1833
1834 pt->queued = true;
1835 pt->error = 0;
1836 pt->iocb->poll.head = head;
1837 add_wait_queue(head, &pt->iocb->poll.wait);
1838 }
1839
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1840 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1841 {
1842 struct kioctx *ctx = aiocb->ki_ctx;
1843 struct poll_iocb *req = &aiocb->poll;
1844 struct aio_poll_table apt;
1845 bool cancel = false;
1846 __poll_t mask;
1847
1848 /* reject any unknown events outside the normal event mask. */
1849 if ((u16)iocb->aio_buf != iocb->aio_buf)
1850 return -EINVAL;
1851 /* reject fields that are not defined for poll */
1852 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1853 return -EINVAL;
1854
1855 INIT_WORK(&req->work, aio_poll_complete_work);
1856 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1857
1858 req->head = NULL;
1859 req->cancelled = false;
1860 req->work_scheduled = false;
1861 req->work_need_resched = false;
1862
1863 apt.pt._qproc = aio_poll_queue_proc;
1864 apt.pt._key = req->events;
1865 apt.iocb = aiocb;
1866 apt.queued = false;
1867 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1868
1869 /* initialized the list so that we can do list_empty checks */
1870 INIT_LIST_HEAD(&req->wait.entry);
1871 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1872
1873 mask = vfs_poll(req->file, &apt.pt) & req->events;
1874 spin_lock_irq(&ctx->ctx_lock);
1875 if (likely(apt.queued)) {
1876 bool on_queue = poll_iocb_lock_wq(req);
1877
1878 if (!on_queue || req->work_scheduled) {
1879 /*
1880 * aio_poll_wake() already either scheduled the async
1881 * completion work, or completed the request inline.
1882 */
1883 if (apt.error) /* unsupported case: multiple queues */
1884 cancel = true;
1885 apt.error = 0;
1886 mask = 0;
1887 }
1888 if (mask || apt.error) {
1889 /* Steal to complete synchronously. */
1890 list_del_init(&req->wait.entry);
1891 } else if (cancel) {
1892 /* Cancel if possible (may be too late though). */
1893 WRITE_ONCE(req->cancelled, true);
1894 } else if (on_queue) {
1895 /*
1896 * Actually waiting for an event, so add the request to
1897 * active_reqs so that it can be cancelled if needed.
1898 */
1899 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1900 aiocb->ki_cancel = aio_poll_cancel;
1901 }
1902 if (on_queue)
1903 poll_iocb_unlock_wq(req);
1904 }
1905 if (mask) { /* no async, we'd stolen it */
1906 aiocb->ki_res.res = mangle_poll(mask);
1907 apt.error = 0;
1908 }
1909 spin_unlock_irq(&ctx->ctx_lock);
1910 if (mask)
1911 iocb_put(aiocb);
1912 return apt.error;
1913 }
1914
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1915 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1916 struct iocb __user *user_iocb, struct aio_kiocb *req,
1917 bool compat)
1918 {
1919 req->ki_filp = fget(iocb->aio_fildes);
1920 if (unlikely(!req->ki_filp))
1921 return -EBADF;
1922
1923 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1924 struct eventfd_ctx *eventfd;
1925 /*
1926 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1927 * instance of the file* now. The file descriptor must be
1928 * an eventfd() fd, and will be signaled for each completed
1929 * event using the eventfd_signal() function.
1930 */
1931 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1932 if (IS_ERR(eventfd))
1933 return PTR_ERR(eventfd);
1934
1935 req->ki_eventfd = eventfd;
1936 }
1937
1938 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1939 pr_debug("EFAULT: aio_key\n");
1940 return -EFAULT;
1941 }
1942
1943 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1944 req->ki_res.data = iocb->aio_data;
1945 req->ki_res.res = 0;
1946 req->ki_res.res2 = 0;
1947
1948 switch (iocb->aio_lio_opcode) {
1949 case IOCB_CMD_PREAD:
1950 return aio_read(&req->rw, iocb, false, compat);
1951 case IOCB_CMD_PWRITE:
1952 return aio_write(&req->rw, iocb, false, compat);
1953 case IOCB_CMD_PREADV:
1954 return aio_read(&req->rw, iocb, true, compat);
1955 case IOCB_CMD_PWRITEV:
1956 return aio_write(&req->rw, iocb, true, compat);
1957 case IOCB_CMD_FSYNC:
1958 return aio_fsync(&req->fsync, iocb, false);
1959 case IOCB_CMD_FDSYNC:
1960 return aio_fsync(&req->fsync, iocb, true);
1961 case IOCB_CMD_POLL:
1962 return aio_poll(req, iocb);
1963 default:
1964 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1965 return -EINVAL;
1966 }
1967 }
1968
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1969 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1970 bool compat)
1971 {
1972 struct aio_kiocb *req;
1973 struct iocb iocb;
1974 int err;
1975
1976 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1977 return -EFAULT;
1978
1979 /* enforce forwards compatibility on users */
1980 if (unlikely(iocb.aio_reserved2)) {
1981 pr_debug("EINVAL: reserve field set\n");
1982 return -EINVAL;
1983 }
1984
1985 /* prevent overflows */
1986 if (unlikely(
1987 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1988 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1989 ((ssize_t)iocb.aio_nbytes < 0)
1990 )) {
1991 pr_debug("EINVAL: overflow check\n");
1992 return -EINVAL;
1993 }
1994
1995 req = aio_get_req(ctx);
1996 if (unlikely(!req))
1997 return -EAGAIN;
1998
1999 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2000
2001 /* Done with the synchronous reference */
2002 iocb_put(req);
2003
2004 /*
2005 * If err is 0, we'd either done aio_complete() ourselves or have
2006 * arranged for that to be done asynchronously. Anything non-zero
2007 * means that we need to destroy req ourselves.
2008 */
2009 if (unlikely(err)) {
2010 iocb_destroy(req);
2011 put_reqs_available(ctx, 1);
2012 }
2013 return err;
2014 }
2015
2016 /* sys_io_submit:
2017 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2018 * the number of iocbs queued. May return -EINVAL if the aio_context
2019 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2020 * *iocbpp[0] is not properly initialized, if the operation specified
2021 * is invalid for the file descriptor in the iocb. May fail with
2022 * -EFAULT if any of the data structures point to invalid data. May
2023 * fail with -EBADF if the file descriptor specified in the first
2024 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2025 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2026 * fail with -ENOSYS if not implemented.
2027 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2028 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2029 struct iocb __user * __user *, iocbpp)
2030 {
2031 struct kioctx *ctx;
2032 long ret = 0;
2033 int i = 0;
2034 struct blk_plug plug;
2035
2036 if (unlikely(nr < 0))
2037 return -EINVAL;
2038
2039 ctx = lookup_ioctx(ctx_id);
2040 if (unlikely(!ctx)) {
2041 pr_debug("EINVAL: invalid context id\n");
2042 return -EINVAL;
2043 }
2044
2045 if (nr > ctx->nr_events)
2046 nr = ctx->nr_events;
2047
2048 if (nr > AIO_PLUG_THRESHOLD)
2049 blk_start_plug(&plug);
2050 for (i = 0; i < nr; i++) {
2051 struct iocb __user *user_iocb;
2052
2053 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2054 ret = -EFAULT;
2055 break;
2056 }
2057
2058 ret = io_submit_one(ctx, user_iocb, false);
2059 if (ret)
2060 break;
2061 }
2062 if (nr > AIO_PLUG_THRESHOLD)
2063 blk_finish_plug(&plug);
2064
2065 percpu_ref_put(&ctx->users);
2066 return i ? i : ret;
2067 }
2068
2069 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2070 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2071 int, nr, compat_uptr_t __user *, iocbpp)
2072 {
2073 struct kioctx *ctx;
2074 long ret = 0;
2075 int i = 0;
2076 struct blk_plug plug;
2077
2078 if (unlikely(nr < 0))
2079 return -EINVAL;
2080
2081 ctx = lookup_ioctx(ctx_id);
2082 if (unlikely(!ctx)) {
2083 pr_debug("EINVAL: invalid context id\n");
2084 return -EINVAL;
2085 }
2086
2087 if (nr > ctx->nr_events)
2088 nr = ctx->nr_events;
2089
2090 if (nr > AIO_PLUG_THRESHOLD)
2091 blk_start_plug(&plug);
2092 for (i = 0; i < nr; i++) {
2093 compat_uptr_t user_iocb;
2094
2095 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2096 ret = -EFAULT;
2097 break;
2098 }
2099
2100 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2101 if (ret)
2102 break;
2103 }
2104 if (nr > AIO_PLUG_THRESHOLD)
2105 blk_finish_plug(&plug);
2106
2107 percpu_ref_put(&ctx->users);
2108 return i ? i : ret;
2109 }
2110 #endif
2111
2112 /* sys_io_cancel:
2113 * Attempts to cancel an iocb previously passed to io_submit. If
2114 * the operation is successfully cancelled, the resulting event is
2115 * copied into the memory pointed to by result without being placed
2116 * into the completion queue and 0 is returned. May fail with
2117 * -EFAULT if any of the data structures pointed to are invalid.
2118 * May fail with -EINVAL if aio_context specified by ctx_id is
2119 * invalid. May fail with -EAGAIN if the iocb specified was not
2120 * cancelled. Will fail with -ENOSYS if not implemented.
2121 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2122 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2123 struct io_event __user *, result)
2124 {
2125 struct kioctx *ctx;
2126 struct aio_kiocb *kiocb;
2127 int ret = -EINVAL;
2128 u32 key;
2129 u64 obj = (u64)(unsigned long)iocb;
2130
2131 if (unlikely(get_user(key, &iocb->aio_key)))
2132 return -EFAULT;
2133 if (unlikely(key != KIOCB_KEY))
2134 return -EINVAL;
2135
2136 ctx = lookup_ioctx(ctx_id);
2137 if (unlikely(!ctx))
2138 return -EINVAL;
2139
2140 spin_lock_irq(&ctx->ctx_lock);
2141 /* TODO: use a hash or array, this sucks. */
2142 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2143 if (kiocb->ki_res.obj == obj) {
2144 ret = kiocb->ki_cancel(&kiocb->rw);
2145 list_del_init(&kiocb->ki_list);
2146 break;
2147 }
2148 }
2149 spin_unlock_irq(&ctx->ctx_lock);
2150
2151 if (!ret) {
2152 /*
2153 * The result argument is no longer used - the io_event is
2154 * always delivered via the ring buffer. -EINPROGRESS indicates
2155 * cancellation is progress:
2156 */
2157 ret = -EINPROGRESS;
2158 }
2159
2160 percpu_ref_put(&ctx->users);
2161
2162 return ret;
2163 }
2164
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2165 static long do_io_getevents(aio_context_t ctx_id,
2166 long min_nr,
2167 long nr,
2168 struct io_event __user *events,
2169 struct timespec64 *ts)
2170 {
2171 ktime_t until = KTIME_MAX;
2172 struct kioctx *ioctx = NULL;
2173 long ret = -EINVAL;
2174
2175 if (ts) {
2176 if (!timespec64_valid(ts))
2177 return ret;
2178 until = timespec64_to_ktime(*ts);
2179 }
2180
2181 ioctx = lookup_ioctx(ctx_id);
2182 if (likely(ioctx)) {
2183 if (likely(min_nr <= nr && min_nr >= 0))
2184 ret = read_events(ioctx, min_nr, nr, events, until);
2185 percpu_ref_put(&ioctx->users);
2186 }
2187
2188 return ret;
2189 }
2190
2191 /* io_getevents:
2192 * Attempts to read at least min_nr events and up to nr events from
2193 * the completion queue for the aio_context specified by ctx_id. If
2194 * it succeeds, the number of read events is returned. May fail with
2195 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2196 * out of range, if timeout is out of range. May fail with -EFAULT
2197 * if any of the memory specified is invalid. May return 0 or
2198 * < min_nr if the timeout specified by timeout has elapsed
2199 * before sufficient events are available, where timeout == NULL
2200 * specifies an infinite timeout. Note that the timeout pointed to by
2201 * timeout is relative. Will fail with -ENOSYS if not implemented.
2202 */
2203 #ifdef CONFIG_64BIT
2204
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2205 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2206 long, min_nr,
2207 long, nr,
2208 struct io_event __user *, events,
2209 struct __kernel_timespec __user *, timeout)
2210 {
2211 struct timespec64 ts;
2212 int ret;
2213
2214 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2215 return -EFAULT;
2216
2217 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2218 if (!ret && signal_pending(current))
2219 ret = -EINTR;
2220 return ret;
2221 }
2222
2223 #endif
2224
2225 struct __aio_sigset {
2226 const sigset_t __user *sigmask;
2227 size_t sigsetsize;
2228 };
2229
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2230 SYSCALL_DEFINE6(io_pgetevents,
2231 aio_context_t, ctx_id,
2232 long, min_nr,
2233 long, nr,
2234 struct io_event __user *, events,
2235 struct __kernel_timespec __user *, timeout,
2236 const struct __aio_sigset __user *, usig)
2237 {
2238 struct __aio_sigset ksig = { NULL, };
2239 struct timespec64 ts;
2240 bool interrupted;
2241 int ret;
2242
2243 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2244 return -EFAULT;
2245
2246 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2247 return -EFAULT;
2248
2249 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2250 if (ret)
2251 return ret;
2252
2253 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2254
2255 interrupted = signal_pending(current);
2256 restore_saved_sigmask_unless(interrupted);
2257 if (interrupted && !ret)
2258 ret = -ERESTARTNOHAND;
2259
2260 return ret;
2261 }
2262
2263 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2264
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2265 SYSCALL_DEFINE6(io_pgetevents_time32,
2266 aio_context_t, ctx_id,
2267 long, min_nr,
2268 long, nr,
2269 struct io_event __user *, events,
2270 struct old_timespec32 __user *, timeout,
2271 const struct __aio_sigset __user *, usig)
2272 {
2273 struct __aio_sigset ksig = { NULL, };
2274 struct timespec64 ts;
2275 bool interrupted;
2276 int ret;
2277
2278 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2279 return -EFAULT;
2280
2281 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2282 return -EFAULT;
2283
2284
2285 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2286 if (ret)
2287 return ret;
2288
2289 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2290
2291 interrupted = signal_pending(current);
2292 restore_saved_sigmask_unless(interrupted);
2293 if (interrupted && !ret)
2294 ret = -ERESTARTNOHAND;
2295
2296 return ret;
2297 }
2298
2299 #endif
2300
2301 #if defined(CONFIG_COMPAT_32BIT_TIME)
2302
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2303 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2304 __s32, min_nr,
2305 __s32, nr,
2306 struct io_event __user *, events,
2307 struct old_timespec32 __user *, timeout)
2308 {
2309 struct timespec64 t;
2310 int ret;
2311
2312 if (timeout && get_old_timespec32(&t, timeout))
2313 return -EFAULT;
2314
2315 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2316 if (!ret && signal_pending(current))
2317 ret = -EINTR;
2318 return ret;
2319 }
2320
2321 #endif
2322
2323 #ifdef CONFIG_COMPAT
2324
2325 struct __compat_aio_sigset {
2326 compat_uptr_t sigmask;
2327 compat_size_t sigsetsize;
2328 };
2329
2330 #if defined(CONFIG_COMPAT_32BIT_TIME)
2331
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2332 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2333 compat_aio_context_t, ctx_id,
2334 compat_long_t, min_nr,
2335 compat_long_t, nr,
2336 struct io_event __user *, events,
2337 struct old_timespec32 __user *, timeout,
2338 const struct __compat_aio_sigset __user *, usig)
2339 {
2340 struct __compat_aio_sigset ksig = { 0, };
2341 struct timespec64 t;
2342 bool interrupted;
2343 int ret;
2344
2345 if (timeout && get_old_timespec32(&t, timeout))
2346 return -EFAULT;
2347
2348 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2349 return -EFAULT;
2350
2351 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2352 if (ret)
2353 return ret;
2354
2355 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2356
2357 interrupted = signal_pending(current);
2358 restore_saved_sigmask_unless(interrupted);
2359 if (interrupted && !ret)
2360 ret = -ERESTARTNOHAND;
2361
2362 return ret;
2363 }
2364
2365 #endif
2366
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2367 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2368 compat_aio_context_t, ctx_id,
2369 compat_long_t, min_nr,
2370 compat_long_t, nr,
2371 struct io_event __user *, events,
2372 struct __kernel_timespec __user *, timeout,
2373 const struct __compat_aio_sigset __user *, usig)
2374 {
2375 struct __compat_aio_sigset ksig = { 0, };
2376 struct timespec64 t;
2377 bool interrupted;
2378 int ret;
2379
2380 if (timeout && get_timespec64(&t, timeout))
2381 return -EFAULT;
2382
2383 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2384 return -EFAULT;
2385
2386 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2387 if (ret)
2388 return ret;
2389
2390 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2391
2392 interrupted = signal_pending(current);
2393 restore_saved_sigmask_unless(interrupted);
2394 if (interrupted && !ret)
2395 ret = -ERESTARTNOHAND;
2396
2397 return ret;
2398 }
2399 #endif
2400