• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[];
71 }; /* 128 bytes + ring size */
72 
73 /*
74  * Plugging is meant to work with larger batches of IOs. If we don't
75  * have more than the below, then don't bother setting up a plug.
76  */
77 #define AIO_PLUG_THRESHOLD	2
78 
79 #define AIO_RING_PAGES	8
80 
81 struct kioctx_table {
82 	struct rcu_head		rcu;
83 	unsigned		nr;
84 	struct kioctx __rcu	*table[];
85 };
86 
87 struct kioctx_cpu {
88 	unsigned		reqs_available;
89 };
90 
91 struct ctx_rq_wait {
92 	struct completion comp;
93 	atomic_t count;
94 };
95 
96 struct kioctx {
97 	struct percpu_ref	users;
98 	atomic_t		dead;
99 
100 	struct percpu_ref	reqs;
101 
102 	unsigned long		user_id;
103 
104 	struct __percpu kioctx_cpu *cpu;
105 
106 	/*
107 	 * For percpu reqs_available, number of slots we move to/from global
108 	 * counter at a time:
109 	 */
110 	unsigned		req_batch;
111 	/*
112 	 * This is what userspace passed to io_setup(), it's not used for
113 	 * anything but counting against the global max_reqs quota.
114 	 *
115 	 * The real limit is nr_events - 1, which will be larger (see
116 	 * aio_setup_ring())
117 	 */
118 	unsigned		max_reqs;
119 
120 	/* Size of ringbuffer, in units of struct io_event */
121 	unsigned		nr_events;
122 
123 	unsigned long		mmap_base;
124 	unsigned long		mmap_size;
125 
126 	struct page		**ring_pages;
127 	long			nr_pages;
128 
129 	struct rcu_work		free_rwork;	/* see free_ioctx() */
130 
131 	/*
132 	 * signals when all in-flight requests are done
133 	 */
134 	struct ctx_rq_wait	*rq_wait;
135 
136 	struct {
137 		/*
138 		 * This counts the number of available slots in the ringbuffer,
139 		 * so we avoid overflowing it: it's decremented (if positive)
140 		 * when allocating a kiocb and incremented when the resulting
141 		 * io_event is pulled off the ringbuffer.
142 		 *
143 		 * We batch accesses to it with a percpu version.
144 		 */
145 		atomic_t	reqs_available;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		spinlock_t	ctx_lock;
150 		struct list_head active_reqs;	/* used for cancellation */
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct {
154 		struct mutex	ring_lock;
155 		wait_queue_head_t wait;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct {
159 		unsigned	tail;
160 		unsigned	completed_events;
161 		spinlock_t	completion_lock;
162 	} ____cacheline_aligned_in_smp;
163 
164 	struct page		*internal_pages[AIO_RING_PAGES];
165 	struct file		*aio_ring_file;
166 
167 	unsigned		id;
168 };
169 
170 /*
171  * First field must be the file pointer in all the
172  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173  */
174 struct fsync_iocb {
175 	struct file		*file;
176 	struct work_struct	work;
177 	bool			datasync;
178 	struct cred		*creds;
179 };
180 
181 struct poll_iocb {
182 	struct file		*file;
183 	struct wait_queue_head	*head;
184 	__poll_t		events;
185 	bool			cancelled;
186 	bool			work_scheduled;
187 	bool			work_need_resched;
188 	struct wait_queue_entry	wait;
189 	struct work_struct	work;
190 };
191 
192 /*
193  * NOTE! Each of the iocb union members has the file pointer
194  * as the first entry in their struct definition. So you can
195  * access the file pointer through any of the sub-structs,
196  * or directly as just 'ki_filp' in this struct.
197  */
198 struct aio_kiocb {
199 	union {
200 		struct file		*ki_filp;
201 		struct kiocb		rw;
202 		struct fsync_iocb	fsync;
203 		struct poll_iocb	poll;
204 	};
205 
206 	struct kioctx		*ki_ctx;
207 	kiocb_cancel_fn		*ki_cancel;
208 
209 	struct io_event		ki_res;
210 
211 	struct list_head	ki_list;	/* the aio core uses this
212 						 * for cancellation */
213 	refcount_t		ki_refcnt;
214 
215 	/*
216 	 * If the aio_resfd field of the userspace iocb is not zero,
217 	 * this is the underlying eventfd context to deliver events to.
218 	 */
219 	struct eventfd_ctx	*ki_eventfd;
220 };
221 
222 /*------ sysctl variables----*/
223 static DEFINE_SPINLOCK(aio_nr_lock);
224 unsigned long aio_nr;		/* current system wide number of aio requests */
225 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
226 /*----end sysctl variables---*/
227 
228 static struct kmem_cache	*kiocb_cachep;
229 static struct kmem_cache	*kioctx_cachep;
230 
231 static struct vfsmount *aio_mnt;
232 
233 static const struct file_operations aio_ring_fops;
234 static const struct address_space_operations aio_ctx_aops;
235 
aio_private_file(struct kioctx * ctx,loff_t nr_pages)236 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
237 {
238 	struct file *file;
239 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
240 	if (IS_ERR(inode))
241 		return ERR_CAST(inode);
242 
243 	inode->i_mapping->a_ops = &aio_ctx_aops;
244 	inode->i_mapping->private_data = ctx;
245 	inode->i_size = PAGE_SIZE * nr_pages;
246 
247 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
248 				O_RDWR, &aio_ring_fops);
249 	if (IS_ERR(file))
250 		iput(inode);
251 	return file;
252 }
253 
aio_init_fs_context(struct fs_context * fc)254 static int aio_init_fs_context(struct fs_context *fc)
255 {
256 	if (!init_pseudo(fc, AIO_RING_MAGIC))
257 		return -ENOMEM;
258 	fc->s_iflags |= SB_I_NOEXEC;
259 	return 0;
260 }
261 
262 /* aio_setup
263  *	Creates the slab caches used by the aio routines, panic on
264  *	failure as this is done early during the boot sequence.
265  */
aio_setup(void)266 static int __init aio_setup(void)
267 {
268 	static struct file_system_type aio_fs = {
269 		.name		= "aio",
270 		.init_fs_context = aio_init_fs_context,
271 		.kill_sb	= kill_anon_super,
272 	};
273 	aio_mnt = kern_mount(&aio_fs);
274 	if (IS_ERR(aio_mnt))
275 		panic("Failed to create aio fs mount.");
276 
277 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 	return 0;
280 }
281 __initcall(aio_setup);
282 
put_aio_ring_file(struct kioctx * ctx)283 static void put_aio_ring_file(struct kioctx *ctx)
284 {
285 	struct file *aio_ring_file = ctx->aio_ring_file;
286 	struct address_space *i_mapping;
287 
288 	if (aio_ring_file) {
289 		truncate_setsize(file_inode(aio_ring_file), 0);
290 
291 		/* Prevent further access to the kioctx from migratepages */
292 		i_mapping = aio_ring_file->f_mapping;
293 		spin_lock(&i_mapping->private_lock);
294 		i_mapping->private_data = NULL;
295 		ctx->aio_ring_file = NULL;
296 		spin_unlock(&i_mapping->private_lock);
297 
298 		fput(aio_ring_file);
299 	}
300 }
301 
aio_free_ring(struct kioctx * ctx)302 static void aio_free_ring(struct kioctx *ctx)
303 {
304 	int i;
305 
306 	/* Disconnect the kiotx from the ring file.  This prevents future
307 	 * accesses to the kioctx from page migration.
308 	 */
309 	put_aio_ring_file(ctx);
310 
311 	for (i = 0; i < ctx->nr_pages; i++) {
312 		struct page *page;
313 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 				page_count(ctx->ring_pages[i]));
315 		page = ctx->ring_pages[i];
316 		if (!page)
317 			continue;
318 		ctx->ring_pages[i] = NULL;
319 		put_page(page);
320 	}
321 
322 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
323 		kfree(ctx->ring_pages);
324 		ctx->ring_pages = NULL;
325 	}
326 }
327 
aio_ring_mremap(struct vm_area_struct * vma)328 static int aio_ring_mremap(struct vm_area_struct *vma)
329 {
330 	struct file *file = vma->vm_file;
331 	struct mm_struct *mm = vma->vm_mm;
332 	struct kioctx_table *table;
333 	int i, res = -EINVAL;
334 
335 	spin_lock(&mm->ioctx_lock);
336 	rcu_read_lock();
337 	table = rcu_dereference(mm->ioctx_table);
338 	for (i = 0; i < table->nr; i++) {
339 		struct kioctx *ctx;
340 
341 		ctx = rcu_dereference(table->table[i]);
342 		if (ctx && ctx->aio_ring_file == file) {
343 			if (!atomic_read(&ctx->dead)) {
344 				ctx->user_id = ctx->mmap_base = vma->vm_start;
345 				res = 0;
346 			}
347 			break;
348 		}
349 	}
350 
351 	rcu_read_unlock();
352 	spin_unlock(&mm->ioctx_lock);
353 	return res;
354 }
355 
356 static const struct vm_operations_struct aio_ring_vm_ops = {
357 	.mremap		= aio_ring_mremap,
358 #if IS_ENABLED(CONFIG_MMU)
359 	.fault		= filemap_fault,
360 	.map_pages	= filemap_map_pages,
361 	.page_mkwrite	= filemap_page_mkwrite,
362 #endif
363 };
364 
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)365 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
366 {
367 	vma->vm_flags |= VM_DONTEXPAND;
368 	vma->vm_ops = &aio_ring_vm_ops;
369 	return 0;
370 }
371 
372 static const struct file_operations aio_ring_fops = {
373 	.mmap = aio_ring_mmap,
374 };
375 
376 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)377 static int aio_migratepage(struct address_space *mapping, struct page *new,
378 			struct page *old, enum migrate_mode mode)
379 {
380 	struct kioctx *ctx;
381 	unsigned long flags;
382 	pgoff_t idx;
383 	int rc;
384 
385 	/*
386 	 * We cannot support the _NO_COPY case here, because copy needs to
387 	 * happen under the ctx->completion_lock. That does not work with the
388 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
389 	 */
390 	if (mode == MIGRATE_SYNC_NO_COPY)
391 		return -EINVAL;
392 
393 	rc = 0;
394 
395 	/* mapping->private_lock here protects against the kioctx teardown.  */
396 	spin_lock(&mapping->private_lock);
397 	ctx = mapping->private_data;
398 	if (!ctx) {
399 		rc = -EINVAL;
400 		goto out;
401 	}
402 
403 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
404 	 * to the ring's head, and prevents page migration from mucking in
405 	 * a partially initialized kiotx.
406 	 */
407 	if (!mutex_trylock(&ctx->ring_lock)) {
408 		rc = -EAGAIN;
409 		goto out;
410 	}
411 
412 	idx = old->index;
413 	if (idx < (pgoff_t)ctx->nr_pages) {
414 		/* Make sure the old page hasn't already been changed */
415 		if (ctx->ring_pages[idx] != old)
416 			rc = -EAGAIN;
417 	} else
418 		rc = -EINVAL;
419 
420 	if (rc != 0)
421 		goto out_unlock;
422 
423 	/* Writeback must be complete */
424 	BUG_ON(PageWriteback(old));
425 	get_page(new);
426 
427 	rc = migrate_page_move_mapping(mapping, new, old, 1);
428 	if (rc != MIGRATEPAGE_SUCCESS) {
429 		put_page(new);
430 		goto out_unlock;
431 	}
432 
433 	/* Take completion_lock to prevent other writes to the ring buffer
434 	 * while the old page is copied to the new.  This prevents new
435 	 * events from being lost.
436 	 */
437 	spin_lock_irqsave(&ctx->completion_lock, flags);
438 	migrate_page_copy(new, old);
439 	BUG_ON(ctx->ring_pages[idx] != old);
440 	ctx->ring_pages[idx] = new;
441 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
442 
443 	/* The old page is no longer accessible. */
444 	put_page(old);
445 
446 out_unlock:
447 	mutex_unlock(&ctx->ring_lock);
448 out:
449 	spin_unlock(&mapping->private_lock);
450 	return rc;
451 }
452 #endif
453 
454 static const struct address_space_operations aio_ctx_aops = {
455 	.set_page_dirty = __set_page_dirty_no_writeback,
456 #if IS_ENABLED(CONFIG_MIGRATION)
457 	.migratepage	= aio_migratepage,
458 #endif
459 };
460 
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)461 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
462 {
463 	struct aio_ring *ring;
464 	struct mm_struct *mm = current->mm;
465 	unsigned long size, unused;
466 	int nr_pages;
467 	int i;
468 	struct file *file;
469 
470 	/* Compensate for the ring buffer's head/tail overlap entry */
471 	nr_events += 2;	/* 1 is required, 2 for good luck */
472 
473 	size = sizeof(struct aio_ring);
474 	size += sizeof(struct io_event) * nr_events;
475 
476 	nr_pages = PFN_UP(size);
477 	if (nr_pages < 0)
478 		return -EINVAL;
479 
480 	file = aio_private_file(ctx, nr_pages);
481 	if (IS_ERR(file)) {
482 		ctx->aio_ring_file = NULL;
483 		return -ENOMEM;
484 	}
485 
486 	ctx->aio_ring_file = file;
487 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
488 			/ sizeof(struct io_event);
489 
490 	ctx->ring_pages = ctx->internal_pages;
491 	if (nr_pages > AIO_RING_PAGES) {
492 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
493 					  GFP_KERNEL);
494 		if (!ctx->ring_pages) {
495 			put_aio_ring_file(ctx);
496 			return -ENOMEM;
497 		}
498 	}
499 
500 	for (i = 0; i < nr_pages; i++) {
501 		struct page *page;
502 		page = find_or_create_page(file->f_mapping,
503 					   i, GFP_HIGHUSER | __GFP_ZERO);
504 		if (!page)
505 			break;
506 		pr_debug("pid(%d) page[%d]->count=%d\n",
507 			 current->pid, i, page_count(page));
508 		SetPageUptodate(page);
509 		unlock_page(page);
510 
511 		ctx->ring_pages[i] = page;
512 	}
513 	ctx->nr_pages = i;
514 
515 	if (unlikely(i != nr_pages)) {
516 		aio_free_ring(ctx);
517 		return -ENOMEM;
518 	}
519 
520 	ctx->mmap_size = nr_pages * PAGE_SIZE;
521 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
522 
523 	if (mmap_write_lock_killable(mm)) {
524 		ctx->mmap_size = 0;
525 		aio_free_ring(ctx);
526 		return -EINTR;
527 	}
528 
529 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
530 				 PROT_READ | PROT_WRITE,
531 				 MAP_SHARED, 0, &unused, NULL);
532 	mmap_write_unlock(mm);
533 	if (IS_ERR((void *)ctx->mmap_base)) {
534 		ctx->mmap_size = 0;
535 		aio_free_ring(ctx);
536 		return -ENOMEM;
537 	}
538 
539 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
540 
541 	ctx->user_id = ctx->mmap_base;
542 	ctx->nr_events = nr_events; /* trusted copy */
543 
544 	ring = kmap_atomic(ctx->ring_pages[0]);
545 	ring->nr = nr_events;	/* user copy */
546 	ring->id = ~0U;
547 	ring->head = ring->tail = 0;
548 	ring->magic = AIO_RING_MAGIC;
549 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
550 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
551 	ring->header_length = sizeof(struct aio_ring);
552 	kunmap_atomic(ring);
553 	flush_dcache_page(ctx->ring_pages[0]);
554 
555 	return 0;
556 }
557 
558 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
559 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
560 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
561 
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)562 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
563 {
564 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
565 	struct kioctx *ctx = req->ki_ctx;
566 	unsigned long flags;
567 
568 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
569 		return;
570 
571 	spin_lock_irqsave(&ctx->ctx_lock, flags);
572 	list_add_tail(&req->ki_list, &ctx->active_reqs);
573 	req->ki_cancel = cancel;
574 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
575 }
576 EXPORT_SYMBOL(kiocb_set_cancel_fn);
577 
578 /*
579  * free_ioctx() should be RCU delayed to synchronize against the RCU
580  * protected lookup_ioctx() and also needs process context to call
581  * aio_free_ring().  Use rcu_work.
582  */
free_ioctx(struct work_struct * work)583 static void free_ioctx(struct work_struct *work)
584 {
585 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
586 					  free_rwork);
587 	pr_debug("freeing %p\n", ctx);
588 
589 	aio_free_ring(ctx);
590 	free_percpu(ctx->cpu);
591 	percpu_ref_exit(&ctx->reqs);
592 	percpu_ref_exit(&ctx->users);
593 	kmem_cache_free(kioctx_cachep, ctx);
594 }
595 
free_ioctx_reqs(struct percpu_ref * ref)596 static void free_ioctx_reqs(struct percpu_ref *ref)
597 {
598 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
599 
600 	/* At this point we know that there are no any in-flight requests */
601 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
602 		complete(&ctx->rq_wait->comp);
603 
604 	/* Synchronize against RCU protected table->table[] dereferences */
605 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
606 	queue_rcu_work(system_wq, &ctx->free_rwork);
607 }
608 
609 /*
610  * When this function runs, the kioctx has been removed from the "hash table"
611  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
612  * now it's safe to cancel any that need to be.
613  */
free_ioctx_users(struct percpu_ref * ref)614 static void free_ioctx_users(struct percpu_ref *ref)
615 {
616 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
617 	struct aio_kiocb *req;
618 
619 	spin_lock_irq(&ctx->ctx_lock);
620 
621 	while (!list_empty(&ctx->active_reqs)) {
622 		req = list_first_entry(&ctx->active_reqs,
623 				       struct aio_kiocb, ki_list);
624 		req->ki_cancel(&req->rw);
625 		list_del_init(&req->ki_list);
626 	}
627 
628 	spin_unlock_irq(&ctx->ctx_lock);
629 
630 	percpu_ref_kill(&ctx->reqs);
631 	percpu_ref_put(&ctx->reqs);
632 }
633 
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)634 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
635 {
636 	unsigned i, new_nr;
637 	struct kioctx_table *table, *old;
638 	struct aio_ring *ring;
639 
640 	spin_lock(&mm->ioctx_lock);
641 	table = rcu_dereference_raw(mm->ioctx_table);
642 
643 	while (1) {
644 		if (table)
645 			for (i = 0; i < table->nr; i++)
646 				if (!rcu_access_pointer(table->table[i])) {
647 					ctx->id = i;
648 					rcu_assign_pointer(table->table[i], ctx);
649 					spin_unlock(&mm->ioctx_lock);
650 
651 					/* While kioctx setup is in progress,
652 					 * we are protected from page migration
653 					 * changes ring_pages by ->ring_lock.
654 					 */
655 					ring = kmap_atomic(ctx->ring_pages[0]);
656 					ring->id = ctx->id;
657 					kunmap_atomic(ring);
658 					return 0;
659 				}
660 
661 		new_nr = (table ? table->nr : 1) * 4;
662 		spin_unlock(&mm->ioctx_lock);
663 
664 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
665 				new_nr, GFP_KERNEL);
666 		if (!table)
667 			return -ENOMEM;
668 
669 		table->nr = new_nr;
670 
671 		spin_lock(&mm->ioctx_lock);
672 		old = rcu_dereference_raw(mm->ioctx_table);
673 
674 		if (!old) {
675 			rcu_assign_pointer(mm->ioctx_table, table);
676 		} else if (table->nr > old->nr) {
677 			memcpy(table->table, old->table,
678 			       old->nr * sizeof(struct kioctx *));
679 
680 			rcu_assign_pointer(mm->ioctx_table, table);
681 			kfree_rcu(old, rcu);
682 		} else {
683 			kfree(table);
684 			table = old;
685 		}
686 	}
687 }
688 
aio_nr_sub(unsigned nr)689 static void aio_nr_sub(unsigned nr)
690 {
691 	spin_lock(&aio_nr_lock);
692 	if (WARN_ON(aio_nr - nr > aio_nr))
693 		aio_nr = 0;
694 	else
695 		aio_nr -= nr;
696 	spin_unlock(&aio_nr_lock);
697 }
698 
699 /* ioctx_alloc
700  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
701  */
ioctx_alloc(unsigned nr_events)702 static struct kioctx *ioctx_alloc(unsigned nr_events)
703 {
704 	struct mm_struct *mm = current->mm;
705 	struct kioctx *ctx;
706 	int err = -ENOMEM;
707 
708 	/*
709 	 * Store the original nr_events -- what userspace passed to io_setup(),
710 	 * for counting against the global limit -- before it changes.
711 	 */
712 	unsigned int max_reqs = nr_events;
713 
714 	/*
715 	 * We keep track of the number of available ringbuffer slots, to prevent
716 	 * overflow (reqs_available), and we also use percpu counters for this.
717 	 *
718 	 * So since up to half the slots might be on other cpu's percpu counters
719 	 * and unavailable, double nr_events so userspace sees what they
720 	 * expected: additionally, we move req_batch slots to/from percpu
721 	 * counters at a time, so make sure that isn't 0:
722 	 */
723 	nr_events = max(nr_events, num_possible_cpus() * 4);
724 	nr_events *= 2;
725 
726 	/* Prevent overflows */
727 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
728 		pr_debug("ENOMEM: nr_events too high\n");
729 		return ERR_PTR(-EINVAL);
730 	}
731 
732 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
733 		return ERR_PTR(-EAGAIN);
734 
735 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
736 	if (!ctx)
737 		return ERR_PTR(-ENOMEM);
738 
739 	ctx->max_reqs = max_reqs;
740 
741 	spin_lock_init(&ctx->ctx_lock);
742 	spin_lock_init(&ctx->completion_lock);
743 	mutex_init(&ctx->ring_lock);
744 	/* Protect against page migration throughout kiotx setup by keeping
745 	 * the ring_lock mutex held until setup is complete. */
746 	mutex_lock(&ctx->ring_lock);
747 	init_waitqueue_head(&ctx->wait);
748 
749 	INIT_LIST_HEAD(&ctx->active_reqs);
750 
751 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
752 		goto err;
753 
754 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
755 		goto err;
756 
757 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
758 	if (!ctx->cpu)
759 		goto err;
760 
761 	err = aio_setup_ring(ctx, nr_events);
762 	if (err < 0)
763 		goto err;
764 
765 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
766 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
767 	if (ctx->req_batch < 1)
768 		ctx->req_batch = 1;
769 
770 	/* limit the number of system wide aios */
771 	spin_lock(&aio_nr_lock);
772 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
773 	    aio_nr + ctx->max_reqs < aio_nr) {
774 		spin_unlock(&aio_nr_lock);
775 		err = -EAGAIN;
776 		goto err_ctx;
777 	}
778 	aio_nr += ctx->max_reqs;
779 	spin_unlock(&aio_nr_lock);
780 
781 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
782 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
783 
784 	err = ioctx_add_table(ctx, mm);
785 	if (err)
786 		goto err_cleanup;
787 
788 	/* Release the ring_lock mutex now that all setup is complete. */
789 	mutex_unlock(&ctx->ring_lock);
790 
791 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
792 		 ctx, ctx->user_id, mm, ctx->nr_events);
793 	return ctx;
794 
795 err_cleanup:
796 	aio_nr_sub(ctx->max_reqs);
797 err_ctx:
798 	atomic_set(&ctx->dead, 1);
799 	if (ctx->mmap_size)
800 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
801 	aio_free_ring(ctx);
802 err:
803 	mutex_unlock(&ctx->ring_lock);
804 	free_percpu(ctx->cpu);
805 	percpu_ref_exit(&ctx->reqs);
806 	percpu_ref_exit(&ctx->users);
807 	kmem_cache_free(kioctx_cachep, ctx);
808 	pr_debug("error allocating ioctx %d\n", err);
809 	return ERR_PTR(err);
810 }
811 
812 /* kill_ioctx
813  *	Cancels all outstanding aio requests on an aio context.  Used
814  *	when the processes owning a context have all exited to encourage
815  *	the rapid destruction of the kioctx.
816  */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)817 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
818 		      struct ctx_rq_wait *wait)
819 {
820 	struct kioctx_table *table;
821 
822 	spin_lock(&mm->ioctx_lock);
823 	if (atomic_xchg(&ctx->dead, 1)) {
824 		spin_unlock(&mm->ioctx_lock);
825 		return -EINVAL;
826 	}
827 
828 	table = rcu_dereference_raw(mm->ioctx_table);
829 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
830 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
831 	spin_unlock(&mm->ioctx_lock);
832 
833 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
834 	wake_up_all(&ctx->wait);
835 
836 	/*
837 	 * It'd be more correct to do this in free_ioctx(), after all
838 	 * the outstanding kiocbs have finished - but by then io_destroy
839 	 * has already returned, so io_setup() could potentially return
840 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
841 	 *  could tell).
842 	 */
843 	aio_nr_sub(ctx->max_reqs);
844 
845 	if (ctx->mmap_size)
846 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
847 
848 	ctx->rq_wait = wait;
849 	percpu_ref_kill(&ctx->users);
850 	return 0;
851 }
852 
853 /*
854  * exit_aio: called when the last user of mm goes away.  At this point, there is
855  * no way for any new requests to be submited or any of the io_* syscalls to be
856  * called on the context.
857  *
858  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
859  * them.
860  */
exit_aio(struct mm_struct * mm)861 void exit_aio(struct mm_struct *mm)
862 {
863 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
864 	struct ctx_rq_wait wait;
865 	int i, skipped;
866 
867 	if (!table)
868 		return;
869 
870 	atomic_set(&wait.count, table->nr);
871 	init_completion(&wait.comp);
872 
873 	skipped = 0;
874 	for (i = 0; i < table->nr; ++i) {
875 		struct kioctx *ctx =
876 			rcu_dereference_protected(table->table[i], true);
877 
878 		if (!ctx) {
879 			skipped++;
880 			continue;
881 		}
882 
883 		/*
884 		 * We don't need to bother with munmap() here - exit_mmap(mm)
885 		 * is coming and it'll unmap everything. And we simply can't,
886 		 * this is not necessarily our ->mm.
887 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
888 		 * that it needs to unmap the area, just set it to 0.
889 		 */
890 		ctx->mmap_size = 0;
891 		kill_ioctx(mm, ctx, &wait);
892 	}
893 
894 	if (!atomic_sub_and_test(skipped, &wait.count)) {
895 		/* Wait until all IO for the context are done. */
896 		wait_for_completion(&wait.comp);
897 	}
898 
899 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
900 	kfree(table);
901 }
902 
put_reqs_available(struct kioctx * ctx,unsigned nr)903 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
904 {
905 	struct kioctx_cpu *kcpu;
906 	unsigned long flags;
907 
908 	local_irq_save(flags);
909 	kcpu = this_cpu_ptr(ctx->cpu);
910 	kcpu->reqs_available += nr;
911 
912 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
913 		kcpu->reqs_available -= ctx->req_batch;
914 		atomic_add(ctx->req_batch, &ctx->reqs_available);
915 	}
916 
917 	local_irq_restore(flags);
918 }
919 
__get_reqs_available(struct kioctx * ctx)920 static bool __get_reqs_available(struct kioctx *ctx)
921 {
922 	struct kioctx_cpu *kcpu;
923 	bool ret = false;
924 	unsigned long flags;
925 
926 	local_irq_save(flags);
927 	kcpu = this_cpu_ptr(ctx->cpu);
928 	if (!kcpu->reqs_available) {
929 		int old, avail = atomic_read(&ctx->reqs_available);
930 
931 		do {
932 			if (avail < ctx->req_batch)
933 				goto out;
934 
935 			old = avail;
936 			avail = atomic_cmpxchg(&ctx->reqs_available,
937 					       avail, avail - ctx->req_batch);
938 		} while (avail != old);
939 
940 		kcpu->reqs_available += ctx->req_batch;
941 	}
942 
943 	ret = true;
944 	kcpu->reqs_available--;
945 out:
946 	local_irq_restore(flags);
947 	return ret;
948 }
949 
950 /* refill_reqs_available
951  *	Updates the reqs_available reference counts used for tracking the
952  *	number of free slots in the completion ring.  This can be called
953  *	from aio_complete() (to optimistically update reqs_available) or
954  *	from aio_get_req() (the we're out of events case).  It must be
955  *	called holding ctx->completion_lock.
956  */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)957 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
958                                   unsigned tail)
959 {
960 	unsigned events_in_ring, completed;
961 
962 	/* Clamp head since userland can write to it. */
963 	head %= ctx->nr_events;
964 	if (head <= tail)
965 		events_in_ring = tail - head;
966 	else
967 		events_in_ring = ctx->nr_events - (head - tail);
968 
969 	completed = ctx->completed_events;
970 	if (events_in_ring < completed)
971 		completed -= events_in_ring;
972 	else
973 		completed = 0;
974 
975 	if (!completed)
976 		return;
977 
978 	ctx->completed_events -= completed;
979 	put_reqs_available(ctx, completed);
980 }
981 
982 /* user_refill_reqs_available
983  *	Called to refill reqs_available when aio_get_req() encounters an
984  *	out of space in the completion ring.
985  */
user_refill_reqs_available(struct kioctx * ctx)986 static void user_refill_reqs_available(struct kioctx *ctx)
987 {
988 	spin_lock_irq(&ctx->completion_lock);
989 	if (ctx->completed_events) {
990 		struct aio_ring *ring;
991 		unsigned head;
992 
993 		/* Access of ring->head may race with aio_read_events_ring()
994 		 * here, but that's okay since whether we read the old version
995 		 * or the new version, and either will be valid.  The important
996 		 * part is that head cannot pass tail since we prevent
997 		 * aio_complete() from updating tail by holding
998 		 * ctx->completion_lock.  Even if head is invalid, the check
999 		 * against ctx->completed_events below will make sure we do the
1000 		 * safe/right thing.
1001 		 */
1002 		ring = kmap_atomic(ctx->ring_pages[0]);
1003 		head = ring->head;
1004 		kunmap_atomic(ring);
1005 
1006 		refill_reqs_available(ctx, head, ctx->tail);
1007 	}
1008 
1009 	spin_unlock_irq(&ctx->completion_lock);
1010 }
1011 
get_reqs_available(struct kioctx * ctx)1012 static bool get_reqs_available(struct kioctx *ctx)
1013 {
1014 	if (__get_reqs_available(ctx))
1015 		return true;
1016 	user_refill_reqs_available(ctx);
1017 	return __get_reqs_available(ctx);
1018 }
1019 
1020 /* aio_get_req
1021  *	Allocate a slot for an aio request.
1022  * Returns NULL if no requests are free.
1023  *
1024  * The refcount is initialized to 2 - one for the async op completion,
1025  * one for the synchronous code that does this.
1026  */
aio_get_req(struct kioctx * ctx)1027 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1028 {
1029 	struct aio_kiocb *req;
1030 
1031 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1032 	if (unlikely(!req))
1033 		return NULL;
1034 
1035 	if (unlikely(!get_reqs_available(ctx))) {
1036 		kmem_cache_free(kiocb_cachep, req);
1037 		return NULL;
1038 	}
1039 
1040 	percpu_ref_get(&ctx->reqs);
1041 	req->ki_ctx = ctx;
1042 	INIT_LIST_HEAD(&req->ki_list);
1043 	refcount_set(&req->ki_refcnt, 2);
1044 	req->ki_eventfd = NULL;
1045 	return req;
1046 }
1047 
lookup_ioctx(unsigned long ctx_id)1048 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1049 {
1050 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1051 	struct mm_struct *mm = current->mm;
1052 	struct kioctx *ctx, *ret = NULL;
1053 	struct kioctx_table *table;
1054 	unsigned id;
1055 
1056 	if (get_user(id, &ring->id))
1057 		return NULL;
1058 
1059 	rcu_read_lock();
1060 	table = rcu_dereference(mm->ioctx_table);
1061 
1062 	if (!table || id >= table->nr)
1063 		goto out;
1064 
1065 	id = array_index_nospec(id, table->nr);
1066 	ctx = rcu_dereference(table->table[id]);
1067 	if (ctx && ctx->user_id == ctx_id) {
1068 		if (percpu_ref_tryget_live(&ctx->users))
1069 			ret = ctx;
1070 	}
1071 out:
1072 	rcu_read_unlock();
1073 	return ret;
1074 }
1075 
iocb_destroy(struct aio_kiocb * iocb)1076 static inline void iocb_destroy(struct aio_kiocb *iocb)
1077 {
1078 	if (iocb->ki_eventfd)
1079 		eventfd_ctx_put(iocb->ki_eventfd);
1080 	if (iocb->ki_filp)
1081 		fput(iocb->ki_filp);
1082 	percpu_ref_put(&iocb->ki_ctx->reqs);
1083 	kmem_cache_free(kiocb_cachep, iocb);
1084 }
1085 
1086 /* aio_complete
1087  *	Called when the io request on the given iocb is complete.
1088  */
aio_complete(struct aio_kiocb * iocb)1089 static void aio_complete(struct aio_kiocb *iocb)
1090 {
1091 	struct kioctx	*ctx = iocb->ki_ctx;
1092 	struct aio_ring	*ring;
1093 	struct io_event	*ev_page, *event;
1094 	unsigned tail, pos, head;
1095 	unsigned long	flags;
1096 
1097 	/*
1098 	 * Add a completion event to the ring buffer. Must be done holding
1099 	 * ctx->completion_lock to prevent other code from messing with the tail
1100 	 * pointer since we might be called from irq context.
1101 	 */
1102 	spin_lock_irqsave(&ctx->completion_lock, flags);
1103 
1104 	tail = ctx->tail;
1105 	pos = tail + AIO_EVENTS_OFFSET;
1106 
1107 	if (++tail >= ctx->nr_events)
1108 		tail = 0;
1109 
1110 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1111 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1112 
1113 	*event = iocb->ki_res;
1114 
1115 	kunmap_atomic(ev_page);
1116 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1117 
1118 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1119 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1120 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1121 
1122 	/* after flagging the request as done, we
1123 	 * must never even look at it again
1124 	 */
1125 	smp_wmb();	/* make event visible before updating tail */
1126 
1127 	ctx->tail = tail;
1128 
1129 	ring = kmap_atomic(ctx->ring_pages[0]);
1130 	head = ring->head;
1131 	ring->tail = tail;
1132 	kunmap_atomic(ring);
1133 	flush_dcache_page(ctx->ring_pages[0]);
1134 
1135 	ctx->completed_events++;
1136 	if (ctx->completed_events > 1)
1137 		refill_reqs_available(ctx, head, tail);
1138 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1139 
1140 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1141 
1142 	/*
1143 	 * Check if the user asked us to deliver the result through an
1144 	 * eventfd. The eventfd_signal() function is safe to be called
1145 	 * from IRQ context.
1146 	 */
1147 	if (iocb->ki_eventfd)
1148 		eventfd_signal(iocb->ki_eventfd, 1);
1149 
1150 	/*
1151 	 * We have to order our ring_info tail store above and test
1152 	 * of the wait list below outside the wait lock.  This is
1153 	 * like in wake_up_bit() where clearing a bit has to be
1154 	 * ordered with the unlocked test.
1155 	 */
1156 	smp_mb();
1157 
1158 	if (waitqueue_active(&ctx->wait))
1159 		wake_up(&ctx->wait);
1160 }
1161 
iocb_put(struct aio_kiocb * iocb)1162 static inline void iocb_put(struct aio_kiocb *iocb)
1163 {
1164 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1165 		aio_complete(iocb);
1166 		iocb_destroy(iocb);
1167 	}
1168 }
1169 
1170 /* aio_read_events_ring
1171  *	Pull an event off of the ioctx's event ring.  Returns the number of
1172  *	events fetched
1173  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1174 static long aio_read_events_ring(struct kioctx *ctx,
1175 				 struct io_event __user *event, long nr)
1176 {
1177 	struct aio_ring *ring;
1178 	unsigned head, tail, pos;
1179 	long ret = 0;
1180 	int copy_ret;
1181 
1182 	/*
1183 	 * The mutex can block and wake us up and that will cause
1184 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1185 	 * and repeat. This should be rare enough that it doesn't cause
1186 	 * peformance issues. See the comment in read_events() for more detail.
1187 	 */
1188 	sched_annotate_sleep();
1189 	mutex_lock(&ctx->ring_lock);
1190 
1191 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1192 	ring = kmap_atomic(ctx->ring_pages[0]);
1193 	head = ring->head;
1194 	tail = ring->tail;
1195 	kunmap_atomic(ring);
1196 
1197 	/*
1198 	 * Ensure that once we've read the current tail pointer, that
1199 	 * we also see the events that were stored up to the tail.
1200 	 */
1201 	smp_rmb();
1202 
1203 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1204 
1205 	if (head == tail)
1206 		goto out;
1207 
1208 	head %= ctx->nr_events;
1209 	tail %= ctx->nr_events;
1210 
1211 	while (ret < nr) {
1212 		long avail;
1213 		struct io_event *ev;
1214 		struct page *page;
1215 
1216 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1217 		if (head == tail)
1218 			break;
1219 
1220 		pos = head + AIO_EVENTS_OFFSET;
1221 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1222 		pos %= AIO_EVENTS_PER_PAGE;
1223 
1224 		avail = min(avail, nr - ret);
1225 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1226 
1227 		ev = kmap(page);
1228 		copy_ret = copy_to_user(event + ret, ev + pos,
1229 					sizeof(*ev) * avail);
1230 		kunmap(page);
1231 
1232 		if (unlikely(copy_ret)) {
1233 			ret = -EFAULT;
1234 			goto out;
1235 		}
1236 
1237 		ret += avail;
1238 		head += avail;
1239 		head %= ctx->nr_events;
1240 	}
1241 
1242 	ring = kmap_atomic(ctx->ring_pages[0]);
1243 	ring->head = head;
1244 	kunmap_atomic(ring);
1245 	flush_dcache_page(ctx->ring_pages[0]);
1246 
1247 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1248 out:
1249 	mutex_unlock(&ctx->ring_lock);
1250 
1251 	return ret;
1252 }
1253 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1254 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1255 			    struct io_event __user *event, long *i)
1256 {
1257 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1258 
1259 	if (ret > 0)
1260 		*i += ret;
1261 
1262 	if (unlikely(atomic_read(&ctx->dead)))
1263 		ret = -EINVAL;
1264 
1265 	if (!*i)
1266 		*i = ret;
1267 
1268 	return ret < 0 || *i >= min_nr;
1269 }
1270 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1271 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1272 			struct io_event __user *event,
1273 			ktime_t until)
1274 {
1275 	long ret = 0;
1276 
1277 	/*
1278 	 * Note that aio_read_events() is being called as the conditional - i.e.
1279 	 * we're calling it after prepare_to_wait() has set task state to
1280 	 * TASK_INTERRUPTIBLE.
1281 	 *
1282 	 * But aio_read_events() can block, and if it blocks it's going to flip
1283 	 * the task state back to TASK_RUNNING.
1284 	 *
1285 	 * This should be ok, provided it doesn't flip the state back to
1286 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1287 	 * will only happen if the mutex_lock() call blocks, and we then find
1288 	 * the ringbuffer empty. So in practice we should be ok, but it's
1289 	 * something to be aware of when touching this code.
1290 	 */
1291 	if (until == 0)
1292 		aio_read_events(ctx, min_nr, nr, event, &ret);
1293 	else
1294 		wait_event_interruptible_hrtimeout(ctx->wait,
1295 				aio_read_events(ctx, min_nr, nr, event, &ret),
1296 				until);
1297 	return ret;
1298 }
1299 
1300 /* sys_io_setup:
1301  *	Create an aio_context capable of receiving at least nr_events.
1302  *	ctxp must not point to an aio_context that already exists, and
1303  *	must be initialized to 0 prior to the call.  On successful
1304  *	creation of the aio_context, *ctxp is filled in with the resulting
1305  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1306  *	if the specified nr_events exceeds internal limits.  May fail
1307  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1308  *	of available events.  May fail with -ENOMEM if insufficient kernel
1309  *	resources are available.  May fail with -EFAULT if an invalid
1310  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1311  *	implemented.
1312  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1313 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1314 {
1315 	struct kioctx *ioctx = NULL;
1316 	unsigned long ctx;
1317 	long ret;
1318 
1319 	ret = get_user(ctx, ctxp);
1320 	if (unlikely(ret))
1321 		goto out;
1322 
1323 	ret = -EINVAL;
1324 	if (unlikely(ctx || nr_events == 0)) {
1325 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1326 		         ctx, nr_events);
1327 		goto out;
1328 	}
1329 
1330 	ioctx = ioctx_alloc(nr_events);
1331 	ret = PTR_ERR(ioctx);
1332 	if (!IS_ERR(ioctx)) {
1333 		ret = put_user(ioctx->user_id, ctxp);
1334 		if (ret)
1335 			kill_ioctx(current->mm, ioctx, NULL);
1336 		percpu_ref_put(&ioctx->users);
1337 	}
1338 
1339 out:
1340 	return ret;
1341 }
1342 
1343 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1344 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1345 {
1346 	struct kioctx *ioctx = NULL;
1347 	unsigned long ctx;
1348 	long ret;
1349 
1350 	ret = get_user(ctx, ctx32p);
1351 	if (unlikely(ret))
1352 		goto out;
1353 
1354 	ret = -EINVAL;
1355 	if (unlikely(ctx || nr_events == 0)) {
1356 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1357 		         ctx, nr_events);
1358 		goto out;
1359 	}
1360 
1361 	ioctx = ioctx_alloc(nr_events);
1362 	ret = PTR_ERR(ioctx);
1363 	if (!IS_ERR(ioctx)) {
1364 		/* truncating is ok because it's a user address */
1365 		ret = put_user((u32)ioctx->user_id, ctx32p);
1366 		if (ret)
1367 			kill_ioctx(current->mm, ioctx, NULL);
1368 		percpu_ref_put(&ioctx->users);
1369 	}
1370 
1371 out:
1372 	return ret;
1373 }
1374 #endif
1375 
1376 /* sys_io_destroy:
1377  *	Destroy the aio_context specified.  May cancel any outstanding
1378  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1379  *	implemented.  May fail with -EINVAL if the context pointed to
1380  *	is invalid.
1381  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1382 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1383 {
1384 	struct kioctx *ioctx = lookup_ioctx(ctx);
1385 	if (likely(NULL != ioctx)) {
1386 		struct ctx_rq_wait wait;
1387 		int ret;
1388 
1389 		init_completion(&wait.comp);
1390 		atomic_set(&wait.count, 1);
1391 
1392 		/* Pass requests_done to kill_ioctx() where it can be set
1393 		 * in a thread-safe way. If we try to set it here then we have
1394 		 * a race condition if two io_destroy() called simultaneously.
1395 		 */
1396 		ret = kill_ioctx(current->mm, ioctx, &wait);
1397 		percpu_ref_put(&ioctx->users);
1398 
1399 		/* Wait until all IO for the context are done. Otherwise kernel
1400 		 * keep using user-space buffers even if user thinks the context
1401 		 * is destroyed.
1402 		 */
1403 		if (!ret)
1404 			wait_for_completion(&wait.comp);
1405 
1406 		return ret;
1407 	}
1408 	pr_debug("EINVAL: invalid context id\n");
1409 	return -EINVAL;
1410 }
1411 
aio_remove_iocb(struct aio_kiocb * iocb)1412 static void aio_remove_iocb(struct aio_kiocb *iocb)
1413 {
1414 	struct kioctx *ctx = iocb->ki_ctx;
1415 	unsigned long flags;
1416 
1417 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1418 	list_del(&iocb->ki_list);
1419 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1420 }
1421 
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1422 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1423 {
1424 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1425 
1426 	if (!list_empty_careful(&iocb->ki_list))
1427 		aio_remove_iocb(iocb);
1428 
1429 	if (kiocb->ki_flags & IOCB_WRITE) {
1430 		struct inode *inode = file_inode(kiocb->ki_filp);
1431 
1432 		/*
1433 		 * Tell lockdep we inherited freeze protection from submission
1434 		 * thread.
1435 		 */
1436 		if (S_ISREG(inode->i_mode))
1437 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1438 		file_end_write(kiocb->ki_filp);
1439 	}
1440 
1441 	iocb->ki_res.res = res;
1442 	iocb->ki_res.res2 = res2;
1443 	iocb_put(iocb);
1444 }
1445 
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1446 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1447 {
1448 	int ret;
1449 
1450 	req->ki_complete = aio_complete_rw;
1451 	req->private = NULL;
1452 	req->ki_pos = iocb->aio_offset;
1453 	req->ki_flags = iocb_flags(req->ki_filp);
1454 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1455 		req->ki_flags |= IOCB_EVENTFD;
1456 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1457 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1458 		/*
1459 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1460 		 * aio_reqprio is interpreted as an I/O scheduling
1461 		 * class and priority.
1462 		 */
1463 		ret = ioprio_check_cap(iocb->aio_reqprio);
1464 		if (ret) {
1465 			pr_debug("aio ioprio check cap error: %d\n", ret);
1466 			return ret;
1467 		}
1468 
1469 		req->ki_ioprio = iocb->aio_reqprio;
1470 	} else
1471 		req->ki_ioprio = get_current_ioprio();
1472 
1473 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1474 	if (unlikely(ret))
1475 		return ret;
1476 
1477 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1478 	return 0;
1479 }
1480 
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1481 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1482 		struct iovec **iovec, bool vectored, bool compat,
1483 		struct iov_iter *iter)
1484 {
1485 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1486 	size_t len = iocb->aio_nbytes;
1487 
1488 	if (!vectored) {
1489 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1490 		*iovec = NULL;
1491 		return ret;
1492 	}
1493 
1494 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1495 }
1496 
aio_rw_done(struct kiocb * req,ssize_t ret)1497 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1498 {
1499 	switch (ret) {
1500 	case -EIOCBQUEUED:
1501 		break;
1502 	case -ERESTARTSYS:
1503 	case -ERESTARTNOINTR:
1504 	case -ERESTARTNOHAND:
1505 	case -ERESTART_RESTARTBLOCK:
1506 		/*
1507 		 * There's no easy way to restart the syscall since other AIO's
1508 		 * may be already running. Just fail this IO with EINTR.
1509 		 */
1510 		ret = -EINTR;
1511 		fallthrough;
1512 	default:
1513 		req->ki_complete(req, ret, 0);
1514 	}
1515 }
1516 
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1517 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1518 			bool vectored, bool compat)
1519 {
1520 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1521 	struct iov_iter iter;
1522 	struct file *file;
1523 	int ret;
1524 
1525 	ret = aio_prep_rw(req, iocb);
1526 	if (ret)
1527 		return ret;
1528 	file = req->ki_filp;
1529 	if (unlikely(!(file->f_mode & FMODE_READ)))
1530 		return -EBADF;
1531 	ret = -EINVAL;
1532 	if (unlikely(!file->f_op->read_iter))
1533 		return -EINVAL;
1534 
1535 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1536 	if (ret < 0)
1537 		return ret;
1538 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1539 	if (!ret)
1540 		aio_rw_done(req, call_read_iter(file, req, &iter));
1541 	kfree(iovec);
1542 	return ret;
1543 }
1544 
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1545 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1546 			 bool vectored, bool compat)
1547 {
1548 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1549 	struct iov_iter iter;
1550 	struct file *file;
1551 	int ret;
1552 
1553 	ret = aio_prep_rw(req, iocb);
1554 	if (ret)
1555 		return ret;
1556 	file = req->ki_filp;
1557 
1558 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1559 		return -EBADF;
1560 	if (unlikely(!file->f_op->write_iter))
1561 		return -EINVAL;
1562 
1563 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1564 	if (ret < 0)
1565 		return ret;
1566 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1567 	if (!ret) {
1568 		/*
1569 		 * Open-code file_start_write here to grab freeze protection,
1570 		 * which will be released by another thread in
1571 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1572 		 * released so that it doesn't complain about the held lock when
1573 		 * we return to userspace.
1574 		 */
1575 		if (S_ISREG(file_inode(file)->i_mode)) {
1576 			sb_start_write(file_inode(file)->i_sb);
1577 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1578 		}
1579 		req->ki_flags |= IOCB_WRITE;
1580 		aio_rw_done(req, call_write_iter(file, req, &iter));
1581 	}
1582 	kfree(iovec);
1583 	return ret;
1584 }
1585 
aio_fsync_work(struct work_struct * work)1586 static void aio_fsync_work(struct work_struct *work)
1587 {
1588 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1589 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1590 
1591 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1592 	revert_creds(old_cred);
1593 	put_cred(iocb->fsync.creds);
1594 	iocb_put(iocb);
1595 }
1596 
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1597 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598 		     bool datasync)
1599 {
1600 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1601 			iocb->aio_rw_flags))
1602 		return -EINVAL;
1603 
1604 	if (unlikely(!req->file->f_op->fsync))
1605 		return -EINVAL;
1606 
1607 	req->creds = prepare_creds();
1608 	if (!req->creds)
1609 		return -ENOMEM;
1610 
1611 	req->datasync = datasync;
1612 	INIT_WORK(&req->work, aio_fsync_work);
1613 	schedule_work(&req->work);
1614 	return 0;
1615 }
1616 
aio_poll_put_work(struct work_struct * work)1617 static void aio_poll_put_work(struct work_struct *work)
1618 {
1619 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1620 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1621 
1622 	iocb_put(iocb);
1623 }
1624 
1625 /*
1626  * Safely lock the waitqueue which the request is on, synchronizing with the
1627  * case where the ->poll() provider decides to free its waitqueue early.
1628  *
1629  * Returns true on success, meaning that req->head->lock was locked, req->wait
1630  * is on req->head, and an RCU read lock was taken.  Returns false if the
1631  * request was already removed from its waitqueue (which might no longer exist).
1632  */
poll_iocb_lock_wq(struct poll_iocb * req)1633 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1634 {
1635 	wait_queue_head_t *head;
1636 
1637 	/*
1638 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1639 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1640 	 * lock in the first place can race with the waitqueue being freed.
1641 	 *
1642 	 * We solve this as eventpoll does: by taking advantage of the fact that
1643 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1644 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1645 	 * non-NULL, we can then lock it without the memory being freed out from
1646 	 * under us, then check whether the request is still on the queue.
1647 	 *
1648 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1649 	 * case the caller deletes the entry from the queue, leaving it empty.
1650 	 * In that case, only RCU prevents the queue memory from being freed.
1651 	 */
1652 	rcu_read_lock();
1653 	head = smp_load_acquire(&req->head);
1654 	if (head) {
1655 		spin_lock(&head->lock);
1656 		if (!list_empty(&req->wait.entry))
1657 			return true;
1658 		spin_unlock(&head->lock);
1659 	}
1660 	rcu_read_unlock();
1661 	return false;
1662 }
1663 
poll_iocb_unlock_wq(struct poll_iocb * req)1664 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1665 {
1666 	spin_unlock(&req->head->lock);
1667 	rcu_read_unlock();
1668 }
1669 
aio_poll_complete_work(struct work_struct * work)1670 static void aio_poll_complete_work(struct work_struct *work)
1671 {
1672 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1673 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1674 	struct poll_table_struct pt = { ._key = req->events };
1675 	struct kioctx *ctx = iocb->ki_ctx;
1676 	__poll_t mask = 0;
1677 
1678 	if (!READ_ONCE(req->cancelled))
1679 		mask = vfs_poll(req->file, &pt) & req->events;
1680 
1681 	/*
1682 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1683 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1684 	 * synchronize with them.  In the cancellation case the list_del_init
1685 	 * itself is not actually needed, but harmless so we keep it in to
1686 	 * avoid further branches in the fast path.
1687 	 */
1688 	spin_lock_irq(&ctx->ctx_lock);
1689 	if (poll_iocb_lock_wq(req)) {
1690 		if (!mask && !READ_ONCE(req->cancelled)) {
1691 			/*
1692 			 * The request isn't actually ready to be completed yet.
1693 			 * Reschedule completion if another wakeup came in.
1694 			 */
1695 			if (req->work_need_resched) {
1696 				schedule_work(&req->work);
1697 				req->work_need_resched = false;
1698 			} else {
1699 				req->work_scheduled = false;
1700 			}
1701 			poll_iocb_unlock_wq(req);
1702 			spin_unlock_irq(&ctx->ctx_lock);
1703 			return;
1704 		}
1705 		list_del_init(&req->wait.entry);
1706 		poll_iocb_unlock_wq(req);
1707 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1708 	list_del_init(&iocb->ki_list);
1709 	iocb->ki_res.res = mangle_poll(mask);
1710 	spin_unlock_irq(&ctx->ctx_lock);
1711 
1712 	iocb_put(iocb);
1713 }
1714 
1715 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1716 static int aio_poll_cancel(struct kiocb *iocb)
1717 {
1718 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1719 	struct poll_iocb *req = &aiocb->poll;
1720 
1721 	if (poll_iocb_lock_wq(req)) {
1722 		WRITE_ONCE(req->cancelled, true);
1723 		if (!req->work_scheduled) {
1724 			schedule_work(&aiocb->poll.work);
1725 			req->work_scheduled = true;
1726 		}
1727 		poll_iocb_unlock_wq(req);
1728 	} /* else, the request was force-cancelled by POLLFREE already */
1729 
1730 	return 0;
1731 }
1732 
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1733 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1734 		void *key)
1735 {
1736 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1737 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1738 	__poll_t mask = key_to_poll(key);
1739 	unsigned long flags;
1740 
1741 	/* for instances that support it check for an event match first: */
1742 	if (mask && !(mask & req->events))
1743 		return 0;
1744 
1745 	/*
1746 	 * Complete the request inline if possible.  This requires that three
1747 	 * conditions be met:
1748 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1749 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1750 	 *	the events, so inline completion isn't possible.
1751 	 *   2. The completion work must not have already been scheduled.
1752 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1753 	 *	already hold the waitqueue lock, so this inverts the normal
1754 	 *	locking order.  Use irqsave/irqrestore because not all
1755 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1756 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1757 	 */
1758 	if (mask && !req->work_scheduled &&
1759 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1760 		struct kioctx *ctx = iocb->ki_ctx;
1761 
1762 		list_del_init(&req->wait.entry);
1763 		list_del(&iocb->ki_list);
1764 		iocb->ki_res.res = mangle_poll(mask);
1765 		if (iocb->ki_eventfd && eventfd_signal_count()) {
1766 			iocb = NULL;
1767 			INIT_WORK(&req->work, aio_poll_put_work);
1768 			schedule_work(&req->work);
1769 		}
1770 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1771 		if (iocb)
1772 			iocb_put(iocb);
1773 	} else {
1774 		/*
1775 		 * Schedule the completion work if needed.  If it was already
1776 		 * scheduled, record that another wakeup came in.
1777 		 *
1778 		 * Don't remove the request from the waitqueue here, as it might
1779 		 * not actually be complete yet (we won't know until vfs_poll()
1780 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1781 		 * exception to this; see below.
1782 		 */
1783 		if (req->work_scheduled) {
1784 			req->work_need_resched = true;
1785 		} else {
1786 			schedule_work(&req->work);
1787 			req->work_scheduled = true;
1788 		}
1789 
1790 		/*
1791 		 * If the waitqueue is being freed early but we can't complete
1792 		 * the request inline, we have to tear down the request as best
1793 		 * we can.  That means immediately removing the request from its
1794 		 * waitqueue and preventing all further accesses to the
1795 		 * waitqueue via the request.  We also need to schedule the
1796 		 * completion work (done above).  Also mark the request as
1797 		 * cancelled, to potentially skip an unneeded call to ->poll().
1798 		 */
1799 		if (mask & POLLFREE) {
1800 			WRITE_ONCE(req->cancelled, true);
1801 			list_del_init(&req->wait.entry);
1802 
1803 			/*
1804 			 * Careful: this *must* be the last step, since as soon
1805 			 * as req->head is NULL'ed out, the request can be
1806 			 * completed and freed, since aio_poll_complete_work()
1807 			 * will no longer need to take the waitqueue lock.
1808 			 */
1809 			smp_store_release(&req->head, NULL);
1810 		}
1811 	}
1812 	return 1;
1813 }
1814 
1815 struct aio_poll_table {
1816 	struct poll_table_struct	pt;
1817 	struct aio_kiocb		*iocb;
1818 	bool				queued;
1819 	int				error;
1820 };
1821 
1822 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1823 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1824 		struct poll_table_struct *p)
1825 {
1826 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1827 
1828 	/* multiple wait queues per file are not supported */
1829 	if (unlikely(pt->queued)) {
1830 		pt->error = -EINVAL;
1831 		return;
1832 	}
1833 
1834 	pt->queued = true;
1835 	pt->error = 0;
1836 	pt->iocb->poll.head = head;
1837 	add_wait_queue(head, &pt->iocb->poll.wait);
1838 }
1839 
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1840 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1841 {
1842 	struct kioctx *ctx = aiocb->ki_ctx;
1843 	struct poll_iocb *req = &aiocb->poll;
1844 	struct aio_poll_table apt;
1845 	bool cancel = false;
1846 	__poll_t mask;
1847 
1848 	/* reject any unknown events outside the normal event mask. */
1849 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1850 		return -EINVAL;
1851 	/* reject fields that are not defined for poll */
1852 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1853 		return -EINVAL;
1854 
1855 	INIT_WORK(&req->work, aio_poll_complete_work);
1856 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1857 
1858 	req->head = NULL;
1859 	req->cancelled = false;
1860 	req->work_scheduled = false;
1861 	req->work_need_resched = false;
1862 
1863 	apt.pt._qproc = aio_poll_queue_proc;
1864 	apt.pt._key = req->events;
1865 	apt.iocb = aiocb;
1866 	apt.queued = false;
1867 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1868 
1869 	/* initialized the list so that we can do list_empty checks */
1870 	INIT_LIST_HEAD(&req->wait.entry);
1871 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1872 
1873 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1874 	spin_lock_irq(&ctx->ctx_lock);
1875 	if (likely(apt.queued)) {
1876 		bool on_queue = poll_iocb_lock_wq(req);
1877 
1878 		if (!on_queue || req->work_scheduled) {
1879 			/*
1880 			 * aio_poll_wake() already either scheduled the async
1881 			 * completion work, or completed the request inline.
1882 			 */
1883 			if (apt.error) /* unsupported case: multiple queues */
1884 				cancel = true;
1885 			apt.error = 0;
1886 			mask = 0;
1887 		}
1888 		if (mask || apt.error) {
1889 			/* Steal to complete synchronously. */
1890 			list_del_init(&req->wait.entry);
1891 		} else if (cancel) {
1892 			/* Cancel if possible (may be too late though). */
1893 			WRITE_ONCE(req->cancelled, true);
1894 		} else if (on_queue) {
1895 			/*
1896 			 * Actually waiting for an event, so add the request to
1897 			 * active_reqs so that it can be cancelled if needed.
1898 			 */
1899 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1900 			aiocb->ki_cancel = aio_poll_cancel;
1901 		}
1902 		if (on_queue)
1903 			poll_iocb_unlock_wq(req);
1904 	}
1905 	if (mask) { /* no async, we'd stolen it */
1906 		aiocb->ki_res.res = mangle_poll(mask);
1907 		apt.error = 0;
1908 	}
1909 	spin_unlock_irq(&ctx->ctx_lock);
1910 	if (mask)
1911 		iocb_put(aiocb);
1912 	return apt.error;
1913 }
1914 
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1915 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1916 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1917 			   bool compat)
1918 {
1919 	req->ki_filp = fget(iocb->aio_fildes);
1920 	if (unlikely(!req->ki_filp))
1921 		return -EBADF;
1922 
1923 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1924 		struct eventfd_ctx *eventfd;
1925 		/*
1926 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1927 		 * instance of the file* now. The file descriptor must be
1928 		 * an eventfd() fd, and will be signaled for each completed
1929 		 * event using the eventfd_signal() function.
1930 		 */
1931 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1932 		if (IS_ERR(eventfd))
1933 			return PTR_ERR(eventfd);
1934 
1935 		req->ki_eventfd = eventfd;
1936 	}
1937 
1938 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1939 		pr_debug("EFAULT: aio_key\n");
1940 		return -EFAULT;
1941 	}
1942 
1943 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1944 	req->ki_res.data = iocb->aio_data;
1945 	req->ki_res.res = 0;
1946 	req->ki_res.res2 = 0;
1947 
1948 	switch (iocb->aio_lio_opcode) {
1949 	case IOCB_CMD_PREAD:
1950 		return aio_read(&req->rw, iocb, false, compat);
1951 	case IOCB_CMD_PWRITE:
1952 		return aio_write(&req->rw, iocb, false, compat);
1953 	case IOCB_CMD_PREADV:
1954 		return aio_read(&req->rw, iocb, true, compat);
1955 	case IOCB_CMD_PWRITEV:
1956 		return aio_write(&req->rw, iocb, true, compat);
1957 	case IOCB_CMD_FSYNC:
1958 		return aio_fsync(&req->fsync, iocb, false);
1959 	case IOCB_CMD_FDSYNC:
1960 		return aio_fsync(&req->fsync, iocb, true);
1961 	case IOCB_CMD_POLL:
1962 		return aio_poll(req, iocb);
1963 	default:
1964 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1965 		return -EINVAL;
1966 	}
1967 }
1968 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1969 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1970 			 bool compat)
1971 {
1972 	struct aio_kiocb *req;
1973 	struct iocb iocb;
1974 	int err;
1975 
1976 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1977 		return -EFAULT;
1978 
1979 	/* enforce forwards compatibility on users */
1980 	if (unlikely(iocb.aio_reserved2)) {
1981 		pr_debug("EINVAL: reserve field set\n");
1982 		return -EINVAL;
1983 	}
1984 
1985 	/* prevent overflows */
1986 	if (unlikely(
1987 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1988 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1989 	    ((ssize_t)iocb.aio_nbytes < 0)
1990 	   )) {
1991 		pr_debug("EINVAL: overflow check\n");
1992 		return -EINVAL;
1993 	}
1994 
1995 	req = aio_get_req(ctx);
1996 	if (unlikely(!req))
1997 		return -EAGAIN;
1998 
1999 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2000 
2001 	/* Done with the synchronous reference */
2002 	iocb_put(req);
2003 
2004 	/*
2005 	 * If err is 0, we'd either done aio_complete() ourselves or have
2006 	 * arranged for that to be done asynchronously.  Anything non-zero
2007 	 * means that we need to destroy req ourselves.
2008 	 */
2009 	if (unlikely(err)) {
2010 		iocb_destroy(req);
2011 		put_reqs_available(ctx, 1);
2012 	}
2013 	return err;
2014 }
2015 
2016 /* sys_io_submit:
2017  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2018  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2019  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2020  *	*iocbpp[0] is not properly initialized, if the operation specified
2021  *	is invalid for the file descriptor in the iocb.  May fail with
2022  *	-EFAULT if any of the data structures point to invalid data.  May
2023  *	fail with -EBADF if the file descriptor specified in the first
2024  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2025  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2026  *	fail with -ENOSYS if not implemented.
2027  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2028 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2029 		struct iocb __user * __user *, iocbpp)
2030 {
2031 	struct kioctx *ctx;
2032 	long ret = 0;
2033 	int i = 0;
2034 	struct blk_plug plug;
2035 
2036 	if (unlikely(nr < 0))
2037 		return -EINVAL;
2038 
2039 	ctx = lookup_ioctx(ctx_id);
2040 	if (unlikely(!ctx)) {
2041 		pr_debug("EINVAL: invalid context id\n");
2042 		return -EINVAL;
2043 	}
2044 
2045 	if (nr > ctx->nr_events)
2046 		nr = ctx->nr_events;
2047 
2048 	if (nr > AIO_PLUG_THRESHOLD)
2049 		blk_start_plug(&plug);
2050 	for (i = 0; i < nr; i++) {
2051 		struct iocb __user *user_iocb;
2052 
2053 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2054 			ret = -EFAULT;
2055 			break;
2056 		}
2057 
2058 		ret = io_submit_one(ctx, user_iocb, false);
2059 		if (ret)
2060 			break;
2061 	}
2062 	if (nr > AIO_PLUG_THRESHOLD)
2063 		blk_finish_plug(&plug);
2064 
2065 	percpu_ref_put(&ctx->users);
2066 	return i ? i : ret;
2067 }
2068 
2069 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2070 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2071 		       int, nr, compat_uptr_t __user *, iocbpp)
2072 {
2073 	struct kioctx *ctx;
2074 	long ret = 0;
2075 	int i = 0;
2076 	struct blk_plug plug;
2077 
2078 	if (unlikely(nr < 0))
2079 		return -EINVAL;
2080 
2081 	ctx = lookup_ioctx(ctx_id);
2082 	if (unlikely(!ctx)) {
2083 		pr_debug("EINVAL: invalid context id\n");
2084 		return -EINVAL;
2085 	}
2086 
2087 	if (nr > ctx->nr_events)
2088 		nr = ctx->nr_events;
2089 
2090 	if (nr > AIO_PLUG_THRESHOLD)
2091 		blk_start_plug(&plug);
2092 	for (i = 0; i < nr; i++) {
2093 		compat_uptr_t user_iocb;
2094 
2095 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2096 			ret = -EFAULT;
2097 			break;
2098 		}
2099 
2100 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2101 		if (ret)
2102 			break;
2103 	}
2104 	if (nr > AIO_PLUG_THRESHOLD)
2105 		blk_finish_plug(&plug);
2106 
2107 	percpu_ref_put(&ctx->users);
2108 	return i ? i : ret;
2109 }
2110 #endif
2111 
2112 /* sys_io_cancel:
2113  *	Attempts to cancel an iocb previously passed to io_submit.  If
2114  *	the operation is successfully cancelled, the resulting event is
2115  *	copied into the memory pointed to by result without being placed
2116  *	into the completion queue and 0 is returned.  May fail with
2117  *	-EFAULT if any of the data structures pointed to are invalid.
2118  *	May fail with -EINVAL if aio_context specified by ctx_id is
2119  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2120  *	cancelled.  Will fail with -ENOSYS if not implemented.
2121  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2122 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2123 		struct io_event __user *, result)
2124 {
2125 	struct kioctx *ctx;
2126 	struct aio_kiocb *kiocb;
2127 	int ret = -EINVAL;
2128 	u32 key;
2129 	u64 obj = (u64)(unsigned long)iocb;
2130 
2131 	if (unlikely(get_user(key, &iocb->aio_key)))
2132 		return -EFAULT;
2133 	if (unlikely(key != KIOCB_KEY))
2134 		return -EINVAL;
2135 
2136 	ctx = lookup_ioctx(ctx_id);
2137 	if (unlikely(!ctx))
2138 		return -EINVAL;
2139 
2140 	spin_lock_irq(&ctx->ctx_lock);
2141 	/* TODO: use a hash or array, this sucks. */
2142 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2143 		if (kiocb->ki_res.obj == obj) {
2144 			ret = kiocb->ki_cancel(&kiocb->rw);
2145 			list_del_init(&kiocb->ki_list);
2146 			break;
2147 		}
2148 	}
2149 	spin_unlock_irq(&ctx->ctx_lock);
2150 
2151 	if (!ret) {
2152 		/*
2153 		 * The result argument is no longer used - the io_event is
2154 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2155 		 * cancellation is progress:
2156 		 */
2157 		ret = -EINPROGRESS;
2158 	}
2159 
2160 	percpu_ref_put(&ctx->users);
2161 
2162 	return ret;
2163 }
2164 
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2165 static long do_io_getevents(aio_context_t ctx_id,
2166 		long min_nr,
2167 		long nr,
2168 		struct io_event __user *events,
2169 		struct timespec64 *ts)
2170 {
2171 	ktime_t until = KTIME_MAX;
2172 	struct kioctx *ioctx = NULL;
2173 	long ret = -EINVAL;
2174 
2175 	if (ts) {
2176 		if (!timespec64_valid(ts))
2177 			return ret;
2178 		until = timespec64_to_ktime(*ts);
2179 	}
2180 
2181 	ioctx = lookup_ioctx(ctx_id);
2182 	if (likely(ioctx)) {
2183 		if (likely(min_nr <= nr && min_nr >= 0))
2184 			ret = read_events(ioctx, min_nr, nr, events, until);
2185 		percpu_ref_put(&ioctx->users);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 /* io_getevents:
2192  *	Attempts to read at least min_nr events and up to nr events from
2193  *	the completion queue for the aio_context specified by ctx_id. If
2194  *	it succeeds, the number of read events is returned. May fail with
2195  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2196  *	out of range, if timeout is out of range.  May fail with -EFAULT
2197  *	if any of the memory specified is invalid.  May return 0 or
2198  *	< min_nr if the timeout specified by timeout has elapsed
2199  *	before sufficient events are available, where timeout == NULL
2200  *	specifies an infinite timeout. Note that the timeout pointed to by
2201  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2202  */
2203 #ifdef CONFIG_64BIT
2204 
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2205 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2206 		long, min_nr,
2207 		long, nr,
2208 		struct io_event __user *, events,
2209 		struct __kernel_timespec __user *, timeout)
2210 {
2211 	struct timespec64	ts;
2212 	int			ret;
2213 
2214 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2215 		return -EFAULT;
2216 
2217 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2218 	if (!ret && signal_pending(current))
2219 		ret = -EINTR;
2220 	return ret;
2221 }
2222 
2223 #endif
2224 
2225 struct __aio_sigset {
2226 	const sigset_t __user	*sigmask;
2227 	size_t		sigsetsize;
2228 };
2229 
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2230 SYSCALL_DEFINE6(io_pgetevents,
2231 		aio_context_t, ctx_id,
2232 		long, min_nr,
2233 		long, nr,
2234 		struct io_event __user *, events,
2235 		struct __kernel_timespec __user *, timeout,
2236 		const struct __aio_sigset __user *, usig)
2237 {
2238 	struct __aio_sigset	ksig = { NULL, };
2239 	struct timespec64	ts;
2240 	bool interrupted;
2241 	int ret;
2242 
2243 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2244 		return -EFAULT;
2245 
2246 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2247 		return -EFAULT;
2248 
2249 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2250 	if (ret)
2251 		return ret;
2252 
2253 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2254 
2255 	interrupted = signal_pending(current);
2256 	restore_saved_sigmask_unless(interrupted);
2257 	if (interrupted && !ret)
2258 		ret = -ERESTARTNOHAND;
2259 
2260 	return ret;
2261 }
2262 
2263 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2264 
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2265 SYSCALL_DEFINE6(io_pgetevents_time32,
2266 		aio_context_t, ctx_id,
2267 		long, min_nr,
2268 		long, nr,
2269 		struct io_event __user *, events,
2270 		struct old_timespec32 __user *, timeout,
2271 		const struct __aio_sigset __user *, usig)
2272 {
2273 	struct __aio_sigset	ksig = { NULL, };
2274 	struct timespec64	ts;
2275 	bool interrupted;
2276 	int ret;
2277 
2278 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2279 		return -EFAULT;
2280 
2281 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2282 		return -EFAULT;
2283 
2284 
2285 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2286 	if (ret)
2287 		return ret;
2288 
2289 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2290 
2291 	interrupted = signal_pending(current);
2292 	restore_saved_sigmask_unless(interrupted);
2293 	if (interrupted && !ret)
2294 		ret = -ERESTARTNOHAND;
2295 
2296 	return ret;
2297 }
2298 
2299 #endif
2300 
2301 #if defined(CONFIG_COMPAT_32BIT_TIME)
2302 
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2303 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2304 		__s32, min_nr,
2305 		__s32, nr,
2306 		struct io_event __user *, events,
2307 		struct old_timespec32 __user *, timeout)
2308 {
2309 	struct timespec64 t;
2310 	int ret;
2311 
2312 	if (timeout && get_old_timespec32(&t, timeout))
2313 		return -EFAULT;
2314 
2315 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2316 	if (!ret && signal_pending(current))
2317 		ret = -EINTR;
2318 	return ret;
2319 }
2320 
2321 #endif
2322 
2323 #ifdef CONFIG_COMPAT
2324 
2325 struct __compat_aio_sigset {
2326 	compat_uptr_t		sigmask;
2327 	compat_size_t		sigsetsize;
2328 };
2329 
2330 #if defined(CONFIG_COMPAT_32BIT_TIME)
2331 
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2332 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2333 		compat_aio_context_t, ctx_id,
2334 		compat_long_t, min_nr,
2335 		compat_long_t, nr,
2336 		struct io_event __user *, events,
2337 		struct old_timespec32 __user *, timeout,
2338 		const struct __compat_aio_sigset __user *, usig)
2339 {
2340 	struct __compat_aio_sigset ksig = { 0, };
2341 	struct timespec64 t;
2342 	bool interrupted;
2343 	int ret;
2344 
2345 	if (timeout && get_old_timespec32(&t, timeout))
2346 		return -EFAULT;
2347 
2348 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2349 		return -EFAULT;
2350 
2351 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2352 	if (ret)
2353 		return ret;
2354 
2355 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2356 
2357 	interrupted = signal_pending(current);
2358 	restore_saved_sigmask_unless(interrupted);
2359 	if (interrupted && !ret)
2360 		ret = -ERESTARTNOHAND;
2361 
2362 	return ret;
2363 }
2364 
2365 #endif
2366 
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2367 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2368 		compat_aio_context_t, ctx_id,
2369 		compat_long_t, min_nr,
2370 		compat_long_t, nr,
2371 		struct io_event __user *, events,
2372 		struct __kernel_timespec __user *, timeout,
2373 		const struct __compat_aio_sigset __user *, usig)
2374 {
2375 	struct __compat_aio_sigset ksig = { 0, };
2376 	struct timespec64 t;
2377 	bool interrupted;
2378 	int ret;
2379 
2380 	if (timeout && get_timespec64(&t, timeout))
2381 		return -EFAULT;
2382 
2383 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2384 		return -EFAULT;
2385 
2386 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2387 	if (ret)
2388 		return ret;
2389 
2390 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2391 
2392 	interrupted = signal_pending(current);
2393 	restore_saved_sigmask_unless(interrupted);
2394 	if (interrupted && !ret)
2395 		ret = -ERESTARTNOHAND;
2396 
2397 	return ret;
2398 }
2399 #endif
2400