• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/*
183 	 * This mutex is used to ensure that files are not removed
184 	 * while epoll is using them. This is held during the event
185 	 * collection loop, the file cleanup path, the epoll file exit
186 	 * code and the ctl operations.
187 	 */
188 	struct mutex mtx;
189 
190 	/* Wait queue used by sys_epoll_wait() */
191 	wait_queue_head_t wq;
192 
193 	/* Wait queue used by file->poll() */
194 	wait_queue_head_t poll_wait;
195 
196 	/* List of ready file descriptors */
197 	struct list_head rdllist;
198 
199 	/* Lock which protects rdllist and ovflist */
200 	rwlock_t lock;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root_cached rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	u64 gen;
222 
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 	/* used to track busy poll napi_id */
225 	unsigned int napi_id;
226 #endif
227 
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 	/* tracks wakeup nests for lockdep validation */
230 	u8 nests;
231 #endif
232 };
233 
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 	/* List header used to link this structure to the "struct epitem" */
237 	struct list_head llink;
238 
239 	/* The "base" pointer is set to the container "struct epitem" */
240 	struct epitem *base;
241 
242 	/*
243 	 * Wait queue item that will be linked to the target file wait
244 	 * queue head.
245 	 */
246 	wait_queue_entry_t wait;
247 
248 	/* The wait queue head that linked the "wait" wait queue item */
249 	wait_queue_head_t *whead;
250 };
251 
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 	poll_table pt;
255 	struct epitem *epi;
256 };
257 
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 	int maxevents;
261 	struct epoll_event __user *events;
262 	int res;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 static u64 loop_check_gen = 0;
277 
278 /* Used to check for epoll file descriptor inclusion loops */
279 static struct nested_calls poll_loop_ncalls;
280 
281 /* Slab cache used to allocate "struct epitem" */
282 static struct kmem_cache *epi_cache __read_mostly;
283 
284 /* Slab cache used to allocate "struct eppoll_entry" */
285 static struct kmem_cache *pwq_cache __read_mostly;
286 
287 /*
288  * List of files with newly added links, where we may need to limit the number
289  * of emanating paths. Protected by the epmutex.
290  */
291 static LIST_HEAD(tfile_check_list);
292 
293 #ifdef CONFIG_SYSCTL
294 
295 #include <linux/sysctl.h>
296 
297 static long long_zero;
298 static long long_max = LONG_MAX;
299 
300 struct ctl_table epoll_table[] = {
301 	{
302 		.procname	= "max_user_watches",
303 		.data		= &max_user_watches,
304 		.maxlen		= sizeof(max_user_watches),
305 		.mode		= 0644,
306 		.proc_handler	= proc_doulongvec_minmax,
307 		.extra1		= &long_zero,
308 		.extra2		= &long_max,
309 	},
310 	{ }
311 };
312 #endif /* CONFIG_SYSCTL */
313 
314 static const struct file_operations eventpoll_fops;
315 
is_file_epoll(struct file * f)316 static inline int is_file_epoll(struct file *f)
317 {
318 	return f->f_op == &eventpoll_fops;
319 }
320 
321 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 			      struct file *file, int fd)
324 {
325 	ffd->file = file;
326 	ffd->fd = fd;
327 }
328 
329 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 			     struct epoll_filefd *p2)
332 {
333 	return (p1->file > p2->file ? +1:
334 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336 
337 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)338 static inline int ep_is_linked(struct epitem *epi)
339 {
340 	return !list_empty(&epi->rdllink);
341 }
342 
ep_pwq_from_wait(wait_queue_entry_t * p)343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
344 {
345 	return container_of(p, struct eppoll_entry, wait);
346 }
347 
348 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
350 {
351 	return container_of(p, struct eppoll_entry, wait)->base;
352 }
353 
354 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)355 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
356 {
357 	return container_of(p, struct ep_pqueue, pt)->epi;
358 }
359 
360 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)361 static void ep_nested_calls_init(struct nested_calls *ncalls)
362 {
363 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
364 	spin_lock_init(&ncalls->lock);
365 }
366 
367 /**
368  * ep_events_available - Checks if ready events might be available.
369  *
370  * @ep: Pointer to the eventpoll context.
371  *
372  * Returns: Returns a value different than zero if ready events are available,
373  *          or zero otherwise.
374  */
ep_events_available(struct eventpoll * ep)375 static inline int ep_events_available(struct eventpoll *ep)
376 {
377 	return !list_empty_careful(&ep->rdllist) ||
378 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
379 }
380 
381 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)382 static bool ep_busy_loop_end(void *p, unsigned long start_time)
383 {
384 	struct eventpoll *ep = p;
385 
386 	return ep_events_available(ep) || busy_loop_timeout(start_time);
387 }
388 
389 /*
390  * Busy poll if globally on and supporting sockets found && no events,
391  * busy loop will return if need_resched or ep_events_available.
392  *
393  * we must do our busy polling with irqs enabled
394  */
ep_busy_loop(struct eventpoll * ep,int nonblock)395 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
396 {
397 	unsigned int napi_id = READ_ONCE(ep->napi_id);
398 
399 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
400 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
401 }
402 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)403 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
404 {
405 	if (ep->napi_id)
406 		ep->napi_id = 0;
407 }
408 
409 /*
410  * Set epoll busy poll NAPI ID from sk.
411  */
ep_set_busy_poll_napi_id(struct epitem * epi)412 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
413 {
414 	struct eventpoll *ep;
415 	unsigned int napi_id;
416 	struct socket *sock;
417 	struct sock *sk;
418 	int err;
419 
420 	if (!net_busy_loop_on())
421 		return;
422 
423 	sock = sock_from_file(epi->ffd.file, &err);
424 	if (!sock)
425 		return;
426 
427 	sk = sock->sk;
428 	if (!sk)
429 		return;
430 
431 	napi_id = READ_ONCE(sk->sk_napi_id);
432 	ep = epi->ep;
433 
434 	/* Non-NAPI IDs can be rejected
435 	 *	or
436 	 * Nothing to do if we already have this ID
437 	 */
438 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
439 		return;
440 
441 	/* record NAPI ID for use in next busy poll */
442 	ep->napi_id = napi_id;
443 }
444 
445 #else
446 
ep_busy_loop(struct eventpoll * ep,int nonblock)447 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
448 {
449 }
450 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)451 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
452 {
453 }
454 
ep_set_busy_poll_napi_id(struct epitem * epi)455 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
456 {
457 }
458 
459 #endif /* CONFIG_NET_RX_BUSY_POLL */
460 
461 /**
462  * ep_call_nested - Perform a bound (possibly) nested call, by checking
463  *                  that the recursion limit is not exceeded, and that
464  *                  the same nested call (by the meaning of same cookie) is
465  *                  no re-entered.
466  *
467  * @ncalls: Pointer to the nested_calls structure to be used for this call.
468  * @nproc: Nested call core function pointer.
469  * @priv: Opaque data to be passed to the @nproc callback.
470  * @cookie: Cookie to be used to identify this nested call.
471  * @ctx: This instance context.
472  *
473  * Returns: Returns the code returned by the @nproc callback, or -1 if
474  *          the maximum recursion limit has been exceeded.
475  */
ep_call_nested(struct nested_calls * ncalls,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)476 static int ep_call_nested(struct nested_calls *ncalls,
477 			  int (*nproc)(void *, void *, int), void *priv,
478 			  void *cookie, void *ctx)
479 {
480 	int error, call_nests = 0;
481 	unsigned long flags;
482 	struct list_head *lsthead = &ncalls->tasks_call_list;
483 	struct nested_call_node *tncur;
484 	struct nested_call_node tnode;
485 
486 	spin_lock_irqsave(&ncalls->lock, flags);
487 
488 	/*
489 	 * Try to see if the current task is already inside this wakeup call.
490 	 * We use a list here, since the population inside this set is always
491 	 * very much limited.
492 	 */
493 	list_for_each_entry(tncur, lsthead, llink) {
494 		if (tncur->ctx == ctx &&
495 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
496 			/*
497 			 * Ops ... loop detected or maximum nest level reached.
498 			 * We abort this wake by breaking the cycle itself.
499 			 */
500 			error = -1;
501 			goto out_unlock;
502 		}
503 	}
504 
505 	/* Add the current task and cookie to the list */
506 	tnode.ctx = ctx;
507 	tnode.cookie = cookie;
508 	list_add(&tnode.llink, lsthead);
509 
510 	spin_unlock_irqrestore(&ncalls->lock, flags);
511 
512 	/* Call the nested function */
513 	error = (*nproc)(priv, cookie, call_nests);
514 
515 	/* Remove the current task from the list */
516 	spin_lock_irqsave(&ncalls->lock, flags);
517 	list_del(&tnode.llink);
518 out_unlock:
519 	spin_unlock_irqrestore(&ncalls->lock, flags);
520 
521 	return error;
522 }
523 
524 /*
525  * As described in commit 0ccf831cb lockdep: annotate epoll
526  * the use of wait queues used by epoll is done in a very controlled
527  * manner. Wake ups can nest inside each other, but are never done
528  * with the same locking. For example:
529  *
530  *   dfd = socket(...);
531  *   efd1 = epoll_create();
532  *   efd2 = epoll_create();
533  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
534  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
535  *
536  * When a packet arrives to the device underneath "dfd", the net code will
537  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
538  * callback wakeup entry on that queue, and the wake_up() performed by the
539  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
540  * (efd1) notices that it may have some event ready, so it needs to wake up
541  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
542  * that ends up in another wake_up(), after having checked about the
543  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
544  * avoid stack blasting.
545  *
546  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
547  * this special case of epoll.
548  */
549 #ifdef CONFIG_DEBUG_LOCK_ALLOC
550 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi)551 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
552 {
553 	struct eventpoll *ep_src;
554 	unsigned long flags;
555 	u8 nests = 0;
556 
557 	/*
558 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
559 	 * it might be natural to create a per-cpu nest count. However, since
560 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
561 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
562 	 * protected. Thus, we are introducing a per eventpoll nest field.
563 	 * If we are not being call from ep_poll_callback(), epi is NULL and
564 	 * we are at the first level of nesting, 0. Otherwise, we are being
565 	 * called from ep_poll_callback() and if a previous wakeup source is
566 	 * not an epoll file itself, we are at depth 1 since the wakeup source
567 	 * is depth 0. If the wakeup source is a previous epoll file in the
568 	 * wakeup chain then we use its nests value and record ours as
569 	 * nests + 1. The previous epoll file nests value is stable since its
570 	 * already holding its own poll_wait.lock.
571 	 */
572 	if (epi) {
573 		if ((is_file_epoll(epi->ffd.file))) {
574 			ep_src = epi->ffd.file->private_data;
575 			nests = ep_src->nests;
576 		} else {
577 			nests = 1;
578 		}
579 	}
580 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
581 	ep->nests = nests + 1;
582 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
583 	ep->nests = 0;
584 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
585 }
586 
587 #else
588 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi)589 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
590 {
591 	wake_up_poll(&ep->poll_wait, EPOLLIN);
592 }
593 
594 #endif
595 
ep_remove_wait_queue(struct eppoll_entry * pwq)596 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
597 {
598 	wait_queue_head_t *whead;
599 
600 	rcu_read_lock();
601 	/*
602 	 * If it is cleared by POLLFREE, it should be rcu-safe.
603 	 * If we read NULL we need a barrier paired with
604 	 * smp_store_release() in ep_poll_callback(), otherwise
605 	 * we rely on whead->lock.
606 	 */
607 	whead = smp_load_acquire(&pwq->whead);
608 	if (whead)
609 		remove_wait_queue(whead, &pwq->wait);
610 	rcu_read_unlock();
611 }
612 
613 /*
614  * This function unregisters poll callbacks from the associated file
615  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
616  * ep_free).
617  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)618 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
619 {
620 	struct list_head *lsthead = &epi->pwqlist;
621 	struct eppoll_entry *pwq;
622 
623 	while (!list_empty(lsthead)) {
624 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
625 
626 		list_del(&pwq->llink);
627 		ep_remove_wait_queue(pwq);
628 		kmem_cache_free(pwq_cache, pwq);
629 	}
630 }
631 
632 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)633 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
634 {
635 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
636 }
637 
638 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)639 static inline void ep_pm_stay_awake(struct epitem *epi)
640 {
641 	struct wakeup_source *ws = ep_wakeup_source(epi);
642 
643 	if (ws)
644 		__pm_stay_awake(ws);
645 }
646 
ep_has_wakeup_source(struct epitem * epi)647 static inline bool ep_has_wakeup_source(struct epitem *epi)
648 {
649 	return rcu_access_pointer(epi->ws) ? true : false;
650 }
651 
652 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)653 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
654 {
655 	struct wakeup_source *ws;
656 
657 	rcu_read_lock();
658 	ws = rcu_dereference(epi->ws);
659 	if (ws)
660 		__pm_stay_awake(ws);
661 	rcu_read_unlock();
662 }
663 
664 /**
665  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
666  *                      the scan code, to call f_op->poll(). Also allows for
667  *                      O(NumReady) performance.
668  *
669  * @ep: Pointer to the epoll private data structure.
670  * @sproc: Pointer to the scan callback.
671  * @priv: Private opaque data passed to the @sproc callback.
672  * @depth: The current depth of recursive f_op->poll calls.
673  * @ep_locked: caller already holds ep->mtx
674  *
675  * Returns: The same integer error code returned by the @sproc callback.
676  */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)677 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
678 			      __poll_t (*sproc)(struct eventpoll *,
679 					   struct list_head *, void *),
680 			      void *priv, int depth, bool ep_locked)
681 {
682 	__poll_t res;
683 	struct epitem *epi, *nepi;
684 	LIST_HEAD(txlist);
685 
686 	lockdep_assert_irqs_enabled();
687 
688 	/*
689 	 * We need to lock this because we could be hit by
690 	 * eventpoll_release_file() and epoll_ctl().
691 	 */
692 
693 	if (!ep_locked)
694 		mutex_lock_nested(&ep->mtx, depth);
695 
696 	/*
697 	 * Steal the ready list, and re-init the original one to the
698 	 * empty list. Also, set ep->ovflist to NULL so that events
699 	 * happening while looping w/out locks, are not lost. We cannot
700 	 * have the poll callback to queue directly on ep->rdllist,
701 	 * because we want the "sproc" callback to be able to do it
702 	 * in a lockless way.
703 	 */
704 	write_lock_irq(&ep->lock);
705 	list_splice_init(&ep->rdllist, &txlist);
706 	WRITE_ONCE(ep->ovflist, NULL);
707 	write_unlock_irq(&ep->lock);
708 
709 	/*
710 	 * Now call the callback function.
711 	 */
712 	res = (*sproc)(ep, &txlist, priv);
713 
714 	write_lock_irq(&ep->lock);
715 	/*
716 	 * During the time we spent inside the "sproc" callback, some
717 	 * other events might have been queued by the poll callback.
718 	 * We re-insert them inside the main ready-list here.
719 	 */
720 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
721 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
722 		/*
723 		 * We need to check if the item is already in the list.
724 		 * During the "sproc" callback execution time, items are
725 		 * queued into ->ovflist but the "txlist" might already
726 		 * contain them, and the list_splice() below takes care of them.
727 		 */
728 		if (!ep_is_linked(epi)) {
729 			/*
730 			 * ->ovflist is LIFO, so we have to reverse it in order
731 			 * to keep in FIFO.
732 			 */
733 			list_add(&epi->rdllink, &ep->rdllist);
734 			ep_pm_stay_awake(epi);
735 		}
736 	}
737 	/*
738 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
739 	 * releasing the lock, events will be queued in the normal way inside
740 	 * ep->rdllist.
741 	 */
742 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
743 
744 	/*
745 	 * Quickly re-inject items left on "txlist".
746 	 */
747 	list_splice(&txlist, &ep->rdllist);
748 	__pm_relax(ep->ws);
749 
750 	if (!list_empty(&ep->rdllist)) {
751 		if (waitqueue_active(&ep->wq))
752 			wake_up(&ep->wq);
753 	}
754 
755 	write_unlock_irq(&ep->lock);
756 
757 	if (!ep_locked)
758 		mutex_unlock(&ep->mtx);
759 
760 	return res;
761 }
762 
epi_rcu_free(struct rcu_head * head)763 static void epi_rcu_free(struct rcu_head *head)
764 {
765 	struct epitem *epi = container_of(head, struct epitem, rcu);
766 	kmem_cache_free(epi_cache, epi);
767 }
768 
769 /*
770  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
771  * all the associated resources. Must be called with "mtx" held.
772  */
ep_remove(struct eventpoll * ep,struct epitem * epi)773 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
774 {
775 	struct file *file = epi->ffd.file;
776 
777 	lockdep_assert_irqs_enabled();
778 
779 	/*
780 	 * Removes poll wait queue hooks.
781 	 */
782 	ep_unregister_pollwait(ep, epi);
783 
784 	/* Remove the current item from the list of epoll hooks */
785 	spin_lock(&file->f_lock);
786 	list_del_rcu(&epi->fllink);
787 	spin_unlock(&file->f_lock);
788 
789 	rb_erase_cached(&epi->rbn, &ep->rbr);
790 
791 	write_lock_irq(&ep->lock);
792 	if (ep_is_linked(epi))
793 		list_del_init(&epi->rdllink);
794 	write_unlock_irq(&ep->lock);
795 
796 	wakeup_source_unregister(ep_wakeup_source(epi));
797 	/*
798 	 * At this point it is safe to free the eventpoll item. Use the union
799 	 * field epi->rcu, since we are trying to minimize the size of
800 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
801 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
802 	 * use of the rbn field.
803 	 */
804 	call_rcu(&epi->rcu, epi_rcu_free);
805 
806 	atomic_long_dec(&ep->user->epoll_watches);
807 
808 	return 0;
809 }
810 
ep_free(struct eventpoll * ep)811 static void ep_free(struct eventpoll *ep)
812 {
813 	struct rb_node *rbp;
814 	struct epitem *epi;
815 
816 	/* We need to release all tasks waiting for these file */
817 	if (waitqueue_active(&ep->poll_wait))
818 		ep_poll_safewake(ep, NULL);
819 
820 	/*
821 	 * We need to lock this because we could be hit by
822 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
823 	 * We do not need to hold "ep->mtx" here because the epoll file
824 	 * is on the way to be removed and no one has references to it
825 	 * anymore. The only hit might come from eventpoll_release_file() but
826 	 * holding "epmutex" is sufficient here.
827 	 */
828 	mutex_lock(&epmutex);
829 
830 	/*
831 	 * Walks through the whole tree by unregistering poll callbacks.
832 	 */
833 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
834 		epi = rb_entry(rbp, struct epitem, rbn);
835 
836 		ep_unregister_pollwait(ep, epi);
837 		cond_resched();
838 	}
839 
840 	/*
841 	 * Walks through the whole tree by freeing each "struct epitem". At this
842 	 * point we are sure no poll callbacks will be lingering around, and also by
843 	 * holding "epmutex" we can be sure that no file cleanup code will hit
844 	 * us during this operation. So we can avoid the lock on "ep->lock".
845 	 * We do not need to lock ep->mtx, either, we only do it to prevent
846 	 * a lockdep warning.
847 	 */
848 	mutex_lock(&ep->mtx);
849 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
850 		epi = rb_entry(rbp, struct epitem, rbn);
851 		ep_remove(ep, epi);
852 		cond_resched();
853 	}
854 	mutex_unlock(&ep->mtx);
855 
856 	mutex_unlock(&epmutex);
857 	mutex_destroy(&ep->mtx);
858 	free_uid(ep->user);
859 	wakeup_source_unregister(ep->ws);
860 	kfree(ep);
861 }
862 
ep_eventpoll_release(struct inode * inode,struct file * file)863 static int ep_eventpoll_release(struct inode *inode, struct file *file)
864 {
865 	struct eventpoll *ep = file->private_data;
866 
867 	if (ep)
868 		ep_free(ep);
869 
870 	return 0;
871 }
872 
873 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
874 			       void *priv);
875 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
876 				 poll_table *pt);
877 
878 /*
879  * Differs from ep_eventpoll_poll() in that internal callers already have
880  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
881  * is correctly annotated.
882  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)883 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
884 				 int depth)
885 {
886 	struct eventpoll *ep;
887 	bool locked;
888 
889 	pt->_key = epi->event.events;
890 	if (!is_file_epoll(epi->ffd.file))
891 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
892 
893 	ep = epi->ffd.file->private_data;
894 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
895 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
896 
897 	return ep_scan_ready_list(epi->ffd.file->private_data,
898 				  ep_read_events_proc, &depth, depth,
899 				  locked) & epi->event.events;
900 }
901 
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)902 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
903 			       void *priv)
904 {
905 	struct epitem *epi, *tmp;
906 	poll_table pt;
907 	int depth = *(int *)priv;
908 
909 	init_poll_funcptr(&pt, NULL);
910 	depth++;
911 
912 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
913 		if (ep_item_poll(epi, &pt, depth)) {
914 			return EPOLLIN | EPOLLRDNORM;
915 		} else {
916 			/*
917 			 * Item has been dropped into the ready list by the poll
918 			 * callback, but it's not actually ready, as far as
919 			 * caller requested events goes. We can remove it here.
920 			 */
921 			__pm_relax(ep_wakeup_source(epi));
922 			list_del_init(&epi->rdllink);
923 		}
924 	}
925 
926 	return 0;
927 }
928 
ep_eventpoll_poll(struct file * file,poll_table * wait)929 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
930 {
931 	struct eventpoll *ep = file->private_data;
932 	int depth = 0;
933 
934 	/* Insert inside our poll wait queue */
935 	poll_wait(file, &ep->poll_wait, wait);
936 
937 	/*
938 	 * Proceed to find out if wanted events are really available inside
939 	 * the ready list.
940 	 */
941 	return ep_scan_ready_list(ep, ep_read_events_proc,
942 				  &depth, depth, false);
943 }
944 
945 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)946 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
947 {
948 	struct eventpoll *ep = f->private_data;
949 	struct rb_node *rbp;
950 
951 	mutex_lock(&ep->mtx);
952 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
953 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
954 		struct inode *inode = file_inode(epi->ffd.file);
955 
956 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
957 			   " pos:%lli ino:%lx sdev:%x\n",
958 			   epi->ffd.fd, epi->event.events,
959 			   (long long)epi->event.data,
960 			   (long long)epi->ffd.file->f_pos,
961 			   inode->i_ino, inode->i_sb->s_dev);
962 		if (seq_has_overflowed(m))
963 			break;
964 	}
965 	mutex_unlock(&ep->mtx);
966 }
967 #endif
968 
969 /* File callbacks that implement the eventpoll file behaviour */
970 static const struct file_operations eventpoll_fops = {
971 #ifdef CONFIG_PROC_FS
972 	.show_fdinfo	= ep_show_fdinfo,
973 #endif
974 	.release	= ep_eventpoll_release,
975 	.poll		= ep_eventpoll_poll,
976 	.llseek		= noop_llseek,
977 };
978 
979 /*
980  * This is called from eventpoll_release() to unlink files from the eventpoll
981  * interface. We need to have this facility to cleanup correctly files that are
982  * closed without being removed from the eventpoll interface.
983  */
eventpoll_release_file(struct file * file)984 void eventpoll_release_file(struct file *file)
985 {
986 	struct eventpoll *ep;
987 	struct epitem *epi, *next;
988 
989 	/*
990 	 * We don't want to get "file->f_lock" because it is not
991 	 * necessary. It is not necessary because we're in the "struct file"
992 	 * cleanup path, and this means that no one is using this file anymore.
993 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
994 	 * point, the file counter already went to zero and fget() would fail.
995 	 * The only hit might come from ep_free() but by holding the mutex
996 	 * will correctly serialize the operation. We do need to acquire
997 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
998 	 * from anywhere but ep_free().
999 	 *
1000 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1001 	 */
1002 	mutex_lock(&epmutex);
1003 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1004 		ep = epi->ep;
1005 		mutex_lock_nested(&ep->mtx, 0);
1006 		ep_remove(ep, epi);
1007 		mutex_unlock(&ep->mtx);
1008 	}
1009 	mutex_unlock(&epmutex);
1010 }
1011 
ep_alloc(struct eventpoll ** pep)1012 static int ep_alloc(struct eventpoll **pep)
1013 {
1014 	int error;
1015 	struct user_struct *user;
1016 	struct eventpoll *ep;
1017 
1018 	user = get_current_user();
1019 	error = -ENOMEM;
1020 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1021 	if (unlikely(!ep))
1022 		goto free_uid;
1023 
1024 	mutex_init(&ep->mtx);
1025 	rwlock_init(&ep->lock);
1026 	init_waitqueue_head(&ep->wq);
1027 	init_waitqueue_head(&ep->poll_wait);
1028 	INIT_LIST_HEAD(&ep->rdllist);
1029 	ep->rbr = RB_ROOT_CACHED;
1030 	ep->ovflist = EP_UNACTIVE_PTR;
1031 	ep->user = user;
1032 
1033 	*pep = ep;
1034 
1035 	return 0;
1036 
1037 free_uid:
1038 	free_uid(user);
1039 	return error;
1040 }
1041 
1042 /*
1043  * Search the file inside the eventpoll tree. The RB tree operations
1044  * are protected by the "mtx" mutex, and ep_find() must be called with
1045  * "mtx" held.
1046  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1047 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1048 {
1049 	int kcmp;
1050 	struct rb_node *rbp;
1051 	struct epitem *epi, *epir = NULL;
1052 	struct epoll_filefd ffd;
1053 
1054 	ep_set_ffd(&ffd, file, fd);
1055 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1056 		epi = rb_entry(rbp, struct epitem, rbn);
1057 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1058 		if (kcmp > 0)
1059 			rbp = rbp->rb_right;
1060 		else if (kcmp < 0)
1061 			rbp = rbp->rb_left;
1062 		else {
1063 			epir = epi;
1064 			break;
1065 		}
1066 	}
1067 
1068 	return epir;
1069 }
1070 
1071 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1072 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1073 {
1074 	struct rb_node *rbp;
1075 	struct epitem *epi;
1076 
1077 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1078 		epi = rb_entry(rbp, struct epitem, rbn);
1079 		if (epi->ffd.fd == tfd) {
1080 			if (toff == 0)
1081 				return epi;
1082 			else
1083 				toff--;
1084 		}
1085 		cond_resched();
1086 	}
1087 
1088 	return NULL;
1089 }
1090 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1091 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1092 				     unsigned long toff)
1093 {
1094 	struct file *file_raw;
1095 	struct eventpoll *ep;
1096 	struct epitem *epi;
1097 
1098 	if (!is_file_epoll(file))
1099 		return ERR_PTR(-EINVAL);
1100 
1101 	ep = file->private_data;
1102 
1103 	mutex_lock(&ep->mtx);
1104 	epi = ep_find_tfd(ep, tfd, toff);
1105 	if (epi)
1106 		file_raw = epi->ffd.file;
1107 	else
1108 		file_raw = ERR_PTR(-ENOENT);
1109 	mutex_unlock(&ep->mtx);
1110 
1111 	return file_raw;
1112 }
1113 #endif /* CONFIG_KCMP */
1114 
1115 /**
1116  * Adds a new entry to the tail of the list in a lockless way, i.e.
1117  * multiple CPUs are allowed to call this function concurrently.
1118  *
1119  * Beware: it is necessary to prevent any other modifications of the
1120  *         existing list until all changes are completed, in other words
1121  *         concurrent list_add_tail_lockless() calls should be protected
1122  *         with a read lock, where write lock acts as a barrier which
1123  *         makes sure all list_add_tail_lockless() calls are fully
1124  *         completed.
1125  *
1126  *        Also an element can be locklessly added to the list only in one
1127  *        direction i.e. either to the tail either to the head, otherwise
1128  *        concurrent access will corrupt the list.
1129  *
1130  * Returns %false if element has been already added to the list, %true
1131  * otherwise.
1132  */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1133 static inline bool list_add_tail_lockless(struct list_head *new,
1134 					  struct list_head *head)
1135 {
1136 	struct list_head *prev;
1137 
1138 	/*
1139 	 * This is simple 'new->next = head' operation, but cmpxchg()
1140 	 * is used in order to detect that same element has been just
1141 	 * added to the list from another CPU: the winner observes
1142 	 * new->next == new.
1143 	 */
1144 	if (cmpxchg(&new->next, new, head) != new)
1145 		return false;
1146 
1147 	/*
1148 	 * Initially ->next of a new element must be updated with the head
1149 	 * (we are inserting to the tail) and only then pointers are atomically
1150 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1151 	 * updated before pointers are actually swapped and pointers are
1152 	 * swapped before prev->next is updated.
1153 	 */
1154 
1155 	prev = xchg(&head->prev, new);
1156 
1157 	/*
1158 	 * It is safe to modify prev->next and new->prev, because a new element
1159 	 * is added only to the tail and new->next is updated before XCHG.
1160 	 */
1161 
1162 	prev->next = new;
1163 	new->prev = prev;
1164 
1165 	return true;
1166 }
1167 
1168 /**
1169  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1170  * i.e. multiple CPUs are allowed to call this function concurrently.
1171  *
1172  * Returns %false if epi element has been already chained, %true otherwise.
1173  */
chain_epi_lockless(struct epitem * epi)1174 static inline bool chain_epi_lockless(struct epitem *epi)
1175 {
1176 	struct eventpoll *ep = epi->ep;
1177 
1178 	/* Fast preliminary check */
1179 	if (epi->next != EP_UNACTIVE_PTR)
1180 		return false;
1181 
1182 	/* Check that the same epi has not been just chained from another CPU */
1183 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1184 		return false;
1185 
1186 	/* Atomically exchange tail */
1187 	epi->next = xchg(&ep->ovflist, epi);
1188 
1189 	return true;
1190 }
1191 
1192 /*
1193  * This is the callback that is passed to the wait queue wakeup
1194  * mechanism. It is called by the stored file descriptors when they
1195  * have events to report.
1196  *
1197  * This callback takes a read lock in order not to content with concurrent
1198  * events from another file descriptors, thus all modifications to ->rdllist
1199  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1200  * ep_scan_ready_list(), which stops all list modifications and guarantees
1201  * that lists state is seen correctly.
1202  *
1203  * Another thing worth to mention is that ep_poll_callback() can be called
1204  * concurrently for the same @epi from different CPUs if poll table was inited
1205  * with several wait queues entries.  Plural wakeup from different CPUs of a
1206  * single wait queue is serialized by wq.lock, but the case when multiple wait
1207  * queues are used should be detected accordingly.  This is detected using
1208  * cmpxchg() operation.
1209  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1210 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1211 {
1212 	int pwake = 0;
1213 	struct epitem *epi = ep_item_from_wait(wait);
1214 	struct eventpoll *ep = epi->ep;
1215 	__poll_t pollflags = key_to_poll(key);
1216 	unsigned long flags;
1217 	int ewake = 0;
1218 
1219 	read_lock_irqsave(&ep->lock, flags);
1220 
1221 	ep_set_busy_poll_napi_id(epi);
1222 
1223 	/*
1224 	 * If the event mask does not contain any poll(2) event, we consider the
1225 	 * descriptor to be disabled. This condition is likely the effect of the
1226 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1227 	 * until the next EPOLL_CTL_MOD will be issued.
1228 	 */
1229 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1230 		goto out_unlock;
1231 
1232 	/*
1233 	 * Check the events coming with the callback. At this stage, not
1234 	 * every device reports the events in the "key" parameter of the
1235 	 * callback. We need to be able to handle both cases here, hence the
1236 	 * test for "key" != NULL before the event match test.
1237 	 */
1238 	if (pollflags && !(pollflags & epi->event.events))
1239 		goto out_unlock;
1240 
1241 	/*
1242 	 * If we are transferring events to userspace, we can hold no locks
1243 	 * (because we're accessing user memory, and because of linux f_op->poll()
1244 	 * semantics). All the events that happen during that period of time are
1245 	 * chained in ep->ovflist and requeued later on.
1246 	 */
1247 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1248 		if (chain_epi_lockless(epi))
1249 			ep_pm_stay_awake_rcu(epi);
1250 	} else if (!ep_is_linked(epi)) {
1251 		/* In the usual case, add event to ready list. */
1252 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1253 			ep_pm_stay_awake_rcu(epi);
1254 	}
1255 
1256 	/*
1257 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1258 	 * wait list.
1259 	 */
1260 	if (waitqueue_active(&ep->wq)) {
1261 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1262 					!(pollflags & POLLFREE)) {
1263 			switch (pollflags & EPOLLINOUT_BITS) {
1264 			case EPOLLIN:
1265 				if (epi->event.events & EPOLLIN)
1266 					ewake = 1;
1267 				break;
1268 			case EPOLLOUT:
1269 				if (epi->event.events & EPOLLOUT)
1270 					ewake = 1;
1271 				break;
1272 			case 0:
1273 				ewake = 1;
1274 				break;
1275 			}
1276 		}
1277 		wake_up(&ep->wq);
1278 	}
1279 	if (waitqueue_active(&ep->poll_wait))
1280 		pwake++;
1281 
1282 out_unlock:
1283 	read_unlock_irqrestore(&ep->lock, flags);
1284 
1285 	/* We have to call this outside the lock */
1286 	if (pwake)
1287 		ep_poll_safewake(ep, epi);
1288 
1289 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1290 		ewake = 1;
1291 
1292 	if (pollflags & POLLFREE) {
1293 		/*
1294 		 * If we race with ep_remove_wait_queue() it can miss
1295 		 * ->whead = NULL and do another remove_wait_queue() after
1296 		 * us, so we can't use __remove_wait_queue().
1297 		 */
1298 		list_del_init(&wait->entry);
1299 		/*
1300 		 * ->whead != NULL protects us from the race with ep_free()
1301 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1302 		 * held by the caller. Once we nullify it, nothing protects
1303 		 * ep/epi or even wait.
1304 		 */
1305 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1306 	}
1307 
1308 	return ewake;
1309 }
1310 
1311 /*
1312  * This is the callback that is used to add our wait queue to the
1313  * target file wakeup lists.
1314  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1315 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1316 				 poll_table *pt)
1317 {
1318 	struct epitem *epi = ep_item_from_epqueue(pt);
1319 	struct eppoll_entry *pwq;
1320 
1321 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1322 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1323 		pwq->whead = whead;
1324 		pwq->base = epi;
1325 		if (epi->event.events & EPOLLEXCLUSIVE)
1326 			add_wait_queue_exclusive(whead, &pwq->wait);
1327 		else
1328 			add_wait_queue(whead, &pwq->wait);
1329 		list_add_tail(&pwq->llink, &epi->pwqlist);
1330 		epi->nwait++;
1331 	} else {
1332 		/* We have to signal that an error occurred */
1333 		epi->nwait = -1;
1334 	}
1335 }
1336 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1337 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1338 {
1339 	int kcmp;
1340 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1341 	struct epitem *epic;
1342 	bool leftmost = true;
1343 
1344 	while (*p) {
1345 		parent = *p;
1346 		epic = rb_entry(parent, struct epitem, rbn);
1347 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1348 		if (kcmp > 0) {
1349 			p = &parent->rb_right;
1350 			leftmost = false;
1351 		} else
1352 			p = &parent->rb_left;
1353 	}
1354 	rb_link_node(&epi->rbn, parent, p);
1355 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1356 }
1357 
1358 
1359 
1360 #define PATH_ARR_SIZE 5
1361 /*
1362  * These are the number paths of length 1 to 5, that we are allowing to emanate
1363  * from a single file of interest. For example, we allow 1000 paths of length
1364  * 1, to emanate from each file of interest. This essentially represents the
1365  * potential wakeup paths, which need to be limited in order to avoid massive
1366  * uncontrolled wakeup storms. The common use case should be a single ep which
1367  * is connected to n file sources. In this case each file source has 1 path
1368  * of length 1. Thus, the numbers below should be more than sufficient. These
1369  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1370  * and delete can't add additional paths. Protected by the epmutex.
1371  */
1372 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1373 static int path_count[PATH_ARR_SIZE];
1374 
path_count_inc(int nests)1375 static int path_count_inc(int nests)
1376 {
1377 	/* Allow an arbitrary number of depth 1 paths */
1378 	if (nests == 0)
1379 		return 0;
1380 
1381 	if (++path_count[nests] > path_limits[nests])
1382 		return -1;
1383 	return 0;
1384 }
1385 
path_count_init(void)1386 static void path_count_init(void)
1387 {
1388 	int i;
1389 
1390 	for (i = 0; i < PATH_ARR_SIZE; i++)
1391 		path_count[i] = 0;
1392 }
1393 
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1394 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1395 {
1396 	int error = 0;
1397 	struct file *file = priv;
1398 	struct file *child_file;
1399 	struct epitem *epi;
1400 
1401 	/* CTL_DEL can remove links here, but that can't increase our count */
1402 	rcu_read_lock();
1403 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1404 		child_file = epi->ep->file;
1405 		if (is_file_epoll(child_file)) {
1406 			if (list_empty(&child_file->f_ep_links)) {
1407 				if (path_count_inc(call_nests)) {
1408 					error = -1;
1409 					break;
1410 				}
1411 			} else {
1412 				error = ep_call_nested(&poll_loop_ncalls,
1413 							reverse_path_check_proc,
1414 							child_file, child_file,
1415 							current);
1416 			}
1417 			if (error != 0)
1418 				break;
1419 		} else {
1420 			printk(KERN_ERR "reverse_path_check_proc: "
1421 				"file is not an ep!\n");
1422 		}
1423 	}
1424 	rcu_read_unlock();
1425 	return error;
1426 }
1427 
1428 /**
1429  * reverse_path_check - The tfile_check_list is list of file *, which have
1430  *                      links that are proposed to be newly added. We need to
1431  *                      make sure that those added links don't add too many
1432  *                      paths such that we will spend all our time waking up
1433  *                      eventpoll objects.
1434  *
1435  * Returns: Returns zero if the proposed links don't create too many paths,
1436  *	    -1 otherwise.
1437  */
reverse_path_check(void)1438 static int reverse_path_check(void)
1439 {
1440 	int error = 0;
1441 	struct file *current_file;
1442 
1443 	/* let's call this for all tfiles */
1444 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1445 		path_count_init();
1446 		error = ep_call_nested(&poll_loop_ncalls,
1447 					reverse_path_check_proc, current_file,
1448 					current_file, current);
1449 		if (error)
1450 			break;
1451 	}
1452 	return error;
1453 }
1454 
ep_create_wakeup_source(struct epitem * epi)1455 static int ep_create_wakeup_source(struct epitem *epi)
1456 {
1457 	struct name_snapshot n;
1458 	struct wakeup_source *ws;
1459 
1460 	if (!epi->ep->ws) {
1461 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1462 		if (!epi->ep->ws)
1463 			return -ENOMEM;
1464 	}
1465 
1466 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1467 	ws = wakeup_source_register(NULL, n.name.name);
1468 	release_dentry_name_snapshot(&n);
1469 
1470 	if (!ws)
1471 		return -ENOMEM;
1472 	rcu_assign_pointer(epi->ws, ws);
1473 
1474 	return 0;
1475 }
1476 
1477 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1478 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1479 {
1480 	struct wakeup_source *ws = ep_wakeup_source(epi);
1481 
1482 	RCU_INIT_POINTER(epi->ws, NULL);
1483 
1484 	/*
1485 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1486 	 * used internally by wakeup_source_remove, too (called by
1487 	 * wakeup_source_unregister), so we cannot use call_rcu
1488 	 */
1489 	synchronize_rcu();
1490 	wakeup_source_unregister(ws);
1491 }
1492 
1493 /*
1494  * Must be called with "mtx" held.
1495  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1496 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1497 		     struct file *tfile, int fd, int full_check)
1498 {
1499 	int error, pwake = 0;
1500 	__poll_t revents;
1501 	long user_watches;
1502 	struct epitem *epi;
1503 	struct ep_pqueue epq;
1504 
1505 	lockdep_assert_irqs_enabled();
1506 
1507 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1508 	if (unlikely(user_watches >= max_user_watches))
1509 		return -ENOSPC;
1510 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1511 		return -ENOMEM;
1512 
1513 	/* Item initialization follow here ... */
1514 	INIT_LIST_HEAD(&epi->rdllink);
1515 	INIT_LIST_HEAD(&epi->fllink);
1516 	INIT_LIST_HEAD(&epi->pwqlist);
1517 	epi->ep = ep;
1518 	ep_set_ffd(&epi->ffd, tfile, fd);
1519 	epi->event = *event;
1520 	epi->nwait = 0;
1521 	epi->next = EP_UNACTIVE_PTR;
1522 	if (epi->event.events & EPOLLWAKEUP) {
1523 		error = ep_create_wakeup_source(epi);
1524 		if (error)
1525 			goto error_create_wakeup_source;
1526 	} else {
1527 		RCU_INIT_POINTER(epi->ws, NULL);
1528 	}
1529 
1530 	/* Add the current item to the list of active epoll hook for this file */
1531 	spin_lock(&tfile->f_lock);
1532 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1533 	spin_unlock(&tfile->f_lock);
1534 
1535 	/*
1536 	 * Add the current item to the RB tree. All RB tree operations are
1537 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1538 	 */
1539 	ep_rbtree_insert(ep, epi);
1540 
1541 	/* now check if we've created too many backpaths */
1542 	error = -EINVAL;
1543 	if (full_check && reverse_path_check())
1544 		goto error_remove_epi;
1545 
1546 	/* Initialize the poll table using the queue callback */
1547 	epq.epi = epi;
1548 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1549 
1550 	/*
1551 	 * Attach the item to the poll hooks and get current event bits.
1552 	 * We can safely use the file* here because its usage count has
1553 	 * been increased by the caller of this function. Note that after
1554 	 * this operation completes, the poll callback can start hitting
1555 	 * the new item.
1556 	 */
1557 	revents = ep_item_poll(epi, &epq.pt, 1);
1558 
1559 	/*
1560 	 * We have to check if something went wrong during the poll wait queue
1561 	 * install process. Namely an allocation for a wait queue failed due
1562 	 * high memory pressure.
1563 	 */
1564 	error = -ENOMEM;
1565 	if (epi->nwait < 0)
1566 		goto error_unregister;
1567 
1568 	/* We have to drop the new item inside our item list to keep track of it */
1569 	write_lock_irq(&ep->lock);
1570 
1571 	/* record NAPI ID of new item if present */
1572 	ep_set_busy_poll_napi_id(epi);
1573 
1574 	/* If the file is already "ready" we drop it inside the ready list */
1575 	if (revents && !ep_is_linked(epi)) {
1576 		list_add_tail(&epi->rdllink, &ep->rdllist);
1577 		ep_pm_stay_awake(epi);
1578 
1579 		/* Notify waiting tasks that events are available */
1580 		if (waitqueue_active(&ep->wq))
1581 			wake_up(&ep->wq);
1582 		if (waitqueue_active(&ep->poll_wait))
1583 			pwake++;
1584 	}
1585 
1586 	write_unlock_irq(&ep->lock);
1587 
1588 	atomic_long_inc(&ep->user->epoll_watches);
1589 
1590 	/* We have to call this outside the lock */
1591 	if (pwake)
1592 		ep_poll_safewake(ep, NULL);
1593 
1594 	return 0;
1595 
1596 error_unregister:
1597 	ep_unregister_pollwait(ep, epi);
1598 error_remove_epi:
1599 	spin_lock(&tfile->f_lock);
1600 	list_del_rcu(&epi->fllink);
1601 	spin_unlock(&tfile->f_lock);
1602 
1603 	rb_erase_cached(&epi->rbn, &ep->rbr);
1604 
1605 	/*
1606 	 * We need to do this because an event could have been arrived on some
1607 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1608 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1609 	 * And ep_insert() is called with "mtx" held.
1610 	 */
1611 	write_lock_irq(&ep->lock);
1612 	if (ep_is_linked(epi))
1613 		list_del_init(&epi->rdllink);
1614 	write_unlock_irq(&ep->lock);
1615 
1616 	wakeup_source_unregister(ep_wakeup_source(epi));
1617 
1618 error_create_wakeup_source:
1619 	kmem_cache_free(epi_cache, epi);
1620 
1621 	return error;
1622 }
1623 
1624 /*
1625  * Modify the interest event mask by dropping an event if the new mask
1626  * has a match in the current file status. Must be called with "mtx" held.
1627  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1628 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1629 		     const struct epoll_event *event)
1630 {
1631 	int pwake = 0;
1632 	poll_table pt;
1633 
1634 	lockdep_assert_irqs_enabled();
1635 
1636 	init_poll_funcptr(&pt, NULL);
1637 
1638 	/*
1639 	 * Set the new event interest mask before calling f_op->poll();
1640 	 * otherwise we might miss an event that happens between the
1641 	 * f_op->poll() call and the new event set registering.
1642 	 */
1643 	epi->event.events = event->events; /* need barrier below */
1644 	epi->event.data = event->data; /* protected by mtx */
1645 	if (epi->event.events & EPOLLWAKEUP) {
1646 		if (!ep_has_wakeup_source(epi))
1647 			ep_create_wakeup_source(epi);
1648 	} else if (ep_has_wakeup_source(epi)) {
1649 		ep_destroy_wakeup_source(epi);
1650 	}
1651 
1652 	/*
1653 	 * The following barrier has two effects:
1654 	 *
1655 	 * 1) Flush epi changes above to other CPUs.  This ensures
1656 	 *    we do not miss events from ep_poll_callback if an
1657 	 *    event occurs immediately after we call f_op->poll().
1658 	 *    We need this because we did not take ep->lock while
1659 	 *    changing epi above (but ep_poll_callback does take
1660 	 *    ep->lock).
1661 	 *
1662 	 * 2) We also need to ensure we do not miss _past_ events
1663 	 *    when calling f_op->poll().  This barrier also
1664 	 *    pairs with the barrier in wq_has_sleeper (see
1665 	 *    comments for wq_has_sleeper).
1666 	 *
1667 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1668 	 * (or both) will notice the readiness of an item.
1669 	 */
1670 	smp_mb();
1671 
1672 	/*
1673 	 * Get current event bits. We can safely use the file* here because
1674 	 * its usage count has been increased by the caller of this function.
1675 	 * If the item is "hot" and it is not registered inside the ready
1676 	 * list, push it inside.
1677 	 */
1678 	if (ep_item_poll(epi, &pt, 1)) {
1679 		write_lock_irq(&ep->lock);
1680 		if (!ep_is_linked(epi)) {
1681 			list_add_tail(&epi->rdllink, &ep->rdllist);
1682 			ep_pm_stay_awake(epi);
1683 
1684 			/* Notify waiting tasks that events are available */
1685 			if (waitqueue_active(&ep->wq))
1686 				wake_up(&ep->wq);
1687 			if (waitqueue_active(&ep->poll_wait))
1688 				pwake++;
1689 		}
1690 		write_unlock_irq(&ep->lock);
1691 	}
1692 
1693 	/* We have to call this outside the lock */
1694 	if (pwake)
1695 		ep_poll_safewake(ep, NULL);
1696 
1697 	return 0;
1698 }
1699 
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1700 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1701 			       void *priv)
1702 {
1703 	struct ep_send_events_data *esed = priv;
1704 	__poll_t revents;
1705 	struct epitem *epi, *tmp;
1706 	struct epoll_event __user *uevent = esed->events;
1707 	struct wakeup_source *ws;
1708 	poll_table pt;
1709 
1710 	init_poll_funcptr(&pt, NULL);
1711 	esed->res = 0;
1712 
1713 	/*
1714 	 * We can loop without lock because we are passed a task private list.
1715 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1716 	 * holding "mtx" during this call.
1717 	 */
1718 	lockdep_assert_held(&ep->mtx);
1719 
1720 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1721 		if (esed->res >= esed->maxevents)
1722 			break;
1723 
1724 		/*
1725 		 * Activate ep->ws before deactivating epi->ws to prevent
1726 		 * triggering auto-suspend here (in case we reactive epi->ws
1727 		 * below).
1728 		 *
1729 		 * This could be rearranged to delay the deactivation of epi->ws
1730 		 * instead, but then epi->ws would temporarily be out of sync
1731 		 * with ep_is_linked().
1732 		 */
1733 		ws = ep_wakeup_source(epi);
1734 		if (ws) {
1735 			if (ws->active)
1736 				__pm_stay_awake(ep->ws);
1737 			__pm_relax(ws);
1738 		}
1739 
1740 		list_del_init(&epi->rdllink);
1741 
1742 		/*
1743 		 * If the event mask intersect the caller-requested one,
1744 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1745 		 * is holding ep->mtx, so no operations coming from userspace
1746 		 * can change the item.
1747 		 */
1748 		revents = ep_item_poll(epi, &pt, 1);
1749 		if (!revents)
1750 			continue;
1751 
1752 		if (__put_user(revents, &uevent->events) ||
1753 		    __put_user(epi->event.data, &uevent->data)) {
1754 			list_add(&epi->rdllink, head);
1755 			ep_pm_stay_awake(epi);
1756 			if (!esed->res)
1757 				esed->res = -EFAULT;
1758 			return 0;
1759 		}
1760 		esed->res++;
1761 		uevent++;
1762 		if (epi->event.events & EPOLLONESHOT)
1763 			epi->event.events &= EP_PRIVATE_BITS;
1764 		else if (!(epi->event.events & EPOLLET)) {
1765 			/*
1766 			 * If this file has been added with Level
1767 			 * Trigger mode, we need to insert back inside
1768 			 * the ready list, so that the next call to
1769 			 * epoll_wait() will check again the events
1770 			 * availability. At this point, no one can insert
1771 			 * into ep->rdllist besides us. The epoll_ctl()
1772 			 * callers are locked out by
1773 			 * ep_scan_ready_list() holding "mtx" and the
1774 			 * poll callback will queue them in ep->ovflist.
1775 			 */
1776 			list_add_tail(&epi->rdllink, &ep->rdllist);
1777 			ep_pm_stay_awake(epi);
1778 		}
1779 	}
1780 
1781 	return 0;
1782 }
1783 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1784 static int ep_send_events(struct eventpoll *ep,
1785 			  struct epoll_event __user *events, int maxevents)
1786 {
1787 	struct ep_send_events_data esed;
1788 
1789 	esed.maxevents = maxevents;
1790 	esed.events = events;
1791 
1792 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1793 	return esed.res;
1794 }
1795 
ep_set_mstimeout(long ms)1796 static inline struct timespec64 ep_set_mstimeout(long ms)
1797 {
1798 	struct timespec64 now, ts = {
1799 		.tv_sec = ms / MSEC_PER_SEC,
1800 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1801 	};
1802 
1803 	ktime_get_ts64(&now);
1804 	return timespec64_add_safe(now, ts);
1805 }
1806 
1807 /**
1808  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1809  *           event buffer.
1810  *
1811  * @ep: Pointer to the eventpoll context.
1812  * @events: Pointer to the userspace buffer where the ready events should be
1813  *          stored.
1814  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1815  * @timeout: Maximum timeout for the ready events fetch operation, in
1816  *           milliseconds. If the @timeout is zero, the function will not block,
1817  *           while if the @timeout is less than zero, the function will block
1818  *           until at least one event has been retrieved (or an error
1819  *           occurred).
1820  *
1821  * Returns: Returns the number of ready events which have been fetched, or an
1822  *          error code, in case of error.
1823  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1824 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1825 		   int maxevents, long timeout)
1826 {
1827 	int res = 0, eavail, timed_out = 0;
1828 	u64 slack = 0;
1829 	wait_queue_entry_t wait;
1830 	ktime_t expires, *to = NULL;
1831 
1832 	lockdep_assert_irqs_enabled();
1833 
1834 	if (timeout > 0) {
1835 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1836 
1837 		slack = select_estimate_accuracy(&end_time);
1838 		to = &expires;
1839 		*to = timespec64_to_ktime(end_time);
1840 	} else if (timeout == 0) {
1841 		/*
1842 		 * Avoid the unnecessary trip to the wait queue loop, if the
1843 		 * caller specified a non blocking operation. We still need
1844 		 * lock because we could race and not see an epi being added
1845 		 * to the ready list while in irq callback. Thus incorrectly
1846 		 * returning 0 back to userspace.
1847 		 */
1848 		timed_out = 1;
1849 
1850 		write_lock_irq(&ep->lock);
1851 		eavail = ep_events_available(ep);
1852 		write_unlock_irq(&ep->lock);
1853 
1854 		goto send_events;
1855 	}
1856 
1857 fetch_events:
1858 
1859 	if (!ep_events_available(ep))
1860 		ep_busy_loop(ep, timed_out);
1861 
1862 	eavail = ep_events_available(ep);
1863 	if (eavail)
1864 		goto send_events;
1865 
1866 	/*
1867 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1868 	 * it back in when we have moved a socket with a valid NAPI
1869 	 * ID onto the ready list.
1870 	 */
1871 	ep_reset_busy_poll_napi_id(ep);
1872 
1873 	do {
1874 		/*
1875 		 * Internally init_wait() uses autoremove_wake_function(),
1876 		 * thus wait entry is removed from the wait queue on each
1877 		 * wakeup. Why it is important? In case of several waiters
1878 		 * each new wakeup will hit the next waiter, giving it the
1879 		 * chance to harvest new event. Otherwise wakeup can be
1880 		 * lost. This is also good performance-wise, because on
1881 		 * normal wakeup path no need to call __remove_wait_queue()
1882 		 * explicitly, thus ep->lock is not taken, which halts the
1883 		 * event delivery.
1884 		 */
1885 		init_wait(&wait);
1886 
1887 		write_lock_irq(&ep->lock);
1888 		/*
1889 		 * Barrierless variant, waitqueue_active() is called under
1890 		 * the same lock on wakeup ep_poll_callback() side, so it
1891 		 * is safe to avoid an explicit barrier.
1892 		 */
1893 		__set_current_state(TASK_INTERRUPTIBLE);
1894 
1895 		/*
1896 		 * Do the final check under the lock. ep_scan_ready_list()
1897 		 * plays with two lists (->rdllist and ->ovflist) and there
1898 		 * is always a race when both lists are empty for short
1899 		 * period of time although events are pending, so lock is
1900 		 * important.
1901 		 */
1902 		eavail = ep_events_available(ep);
1903 		if (!eavail) {
1904 			if (signal_pending(current))
1905 				res = -EINTR;
1906 			else
1907 				__add_wait_queue_exclusive(&ep->wq, &wait);
1908 		}
1909 		write_unlock_irq(&ep->lock);
1910 
1911 		if (!eavail && !res)
1912 			timed_out = !schedule_hrtimeout_range(to, slack,
1913 							      HRTIMER_MODE_ABS);
1914 
1915 		/*
1916 		 * We were woken up, thus go and try to harvest some events.
1917 		 * If timed out and still on the wait queue, recheck eavail
1918 		 * carefully under lock, below.
1919 		 */
1920 		eavail = 1;
1921 	} while (0);
1922 
1923 	__set_current_state(TASK_RUNNING);
1924 
1925 	if (!list_empty_careful(&wait.entry)) {
1926 		write_lock_irq(&ep->lock);
1927 		/*
1928 		 * If the thread timed out and is not on the wait queue, it
1929 		 * means that the thread was woken up after its timeout expired
1930 		 * before it could reacquire the lock. Thus, when wait.entry is
1931 		 * empty, it needs to harvest events.
1932 		 */
1933 		if (timed_out)
1934 			eavail = list_empty(&wait.entry);
1935 		__remove_wait_queue(&ep->wq, &wait);
1936 		write_unlock_irq(&ep->lock);
1937 	}
1938 
1939 send_events:
1940 	if (fatal_signal_pending(current)) {
1941 		/*
1942 		 * Always short-circuit for fatal signals to allow
1943 		 * threads to make a timely exit without the chance of
1944 		 * finding more events available and fetching
1945 		 * repeatedly.
1946 		 */
1947 		res = -EINTR;
1948 	}
1949 	/*
1950 	 * Try to transfer events to user space. In case we get 0 events and
1951 	 * there's still timeout left over, we go trying again in search of
1952 	 * more luck.
1953 	 */
1954 	if (!res && eavail &&
1955 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1956 		goto fetch_events;
1957 
1958 	return res;
1959 }
1960 
1961 /**
1962  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1963  *                      API, to verify that adding an epoll file inside another
1964  *                      epoll structure, does not violate the constraints, in
1965  *                      terms of closed loops, or too deep chains (which can
1966  *                      result in excessive stack usage).
1967  *
1968  * @priv: Pointer to the epoll file to be currently checked.
1969  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1970  *          data structure pointer.
1971  * @call_nests: Current dept of the @ep_call_nested() call stack.
1972  *
1973  * Returns: Returns zero if adding the epoll @file inside current epoll
1974  *          structure @ep does not violate the constraints, or -1 otherwise.
1975  */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)1976 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1977 {
1978 	int error = 0;
1979 	struct file *file = priv;
1980 	struct eventpoll *ep = file->private_data;
1981 	struct eventpoll *ep_tovisit;
1982 	struct rb_node *rbp;
1983 	struct epitem *epi;
1984 
1985 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1986 	ep->gen = loop_check_gen;
1987 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1988 		epi = rb_entry(rbp, struct epitem, rbn);
1989 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1990 			ep_tovisit = epi->ffd.file->private_data;
1991 			if (ep_tovisit->gen == loop_check_gen)
1992 				continue;
1993 			error = ep_call_nested(&poll_loop_ncalls,
1994 					ep_loop_check_proc, epi->ffd.file,
1995 					ep_tovisit, current);
1996 			if (error != 0)
1997 				break;
1998 		} else {
1999 			/*
2000 			 * If we've reached a file that is not associated with
2001 			 * an ep, then we need to check if the newly added
2002 			 * links are going to add too many wakeup paths. We do
2003 			 * this by adding it to the tfile_check_list, if it's
2004 			 * not already there, and calling reverse_path_check()
2005 			 * during ep_insert().
2006 			 */
2007 			if (list_empty(&epi->ffd.file->f_tfile_llink)) {
2008 				if (get_file_rcu(epi->ffd.file))
2009 					list_add(&epi->ffd.file->f_tfile_llink,
2010 						 &tfile_check_list);
2011 			}
2012 		}
2013 	}
2014 	mutex_unlock(&ep->mtx);
2015 
2016 	return error;
2017 }
2018 
2019 /**
2020  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2021  *                 another epoll file (represented by @ep) does not create
2022  *                 closed loops or too deep chains.
2023  *
2024  * @ep: Pointer to the epoll private data structure.
2025  * @file: Pointer to the epoll file to be checked.
2026  *
2027  * Returns: Returns zero if adding the epoll @file inside current epoll
2028  *          structure @ep does not violate the constraints, or -1 otherwise.
2029  */
ep_loop_check(struct eventpoll * ep,struct file * file)2030 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2031 {
2032 	return ep_call_nested(&poll_loop_ncalls,
2033 			      ep_loop_check_proc, file, ep, current);
2034 }
2035 
clear_tfile_check_list(void)2036 static void clear_tfile_check_list(void)
2037 {
2038 	struct file *file;
2039 
2040 	/* first clear the tfile_check_list */
2041 	while (!list_empty(&tfile_check_list)) {
2042 		file = list_first_entry(&tfile_check_list, struct file,
2043 					f_tfile_llink);
2044 		list_del_init(&file->f_tfile_llink);
2045 		fput(file);
2046 	}
2047 	INIT_LIST_HEAD(&tfile_check_list);
2048 }
2049 
2050 /*
2051  * Open an eventpoll file descriptor.
2052  */
do_epoll_create(int flags)2053 static int do_epoll_create(int flags)
2054 {
2055 	int error, fd;
2056 	struct eventpoll *ep = NULL;
2057 	struct file *file;
2058 
2059 	/* Check the EPOLL_* constant for consistency.  */
2060 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2061 
2062 	if (flags & ~EPOLL_CLOEXEC)
2063 		return -EINVAL;
2064 	/*
2065 	 * Create the internal data structure ("struct eventpoll").
2066 	 */
2067 	error = ep_alloc(&ep);
2068 	if (error < 0)
2069 		return error;
2070 	/*
2071 	 * Creates all the items needed to setup an eventpoll file. That is,
2072 	 * a file structure and a free file descriptor.
2073 	 */
2074 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2075 	if (fd < 0) {
2076 		error = fd;
2077 		goto out_free_ep;
2078 	}
2079 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2080 				 O_RDWR | (flags & O_CLOEXEC));
2081 	if (IS_ERR(file)) {
2082 		error = PTR_ERR(file);
2083 		goto out_free_fd;
2084 	}
2085 	ep->file = file;
2086 	fd_install(fd, file);
2087 	return fd;
2088 
2089 out_free_fd:
2090 	put_unused_fd(fd);
2091 out_free_ep:
2092 	ep_free(ep);
2093 	return error;
2094 }
2095 
SYSCALL_DEFINE1(epoll_create1,int,flags)2096 SYSCALL_DEFINE1(epoll_create1, int, flags)
2097 {
2098 	return do_epoll_create(flags);
2099 }
2100 
SYSCALL_DEFINE1(epoll_create,int,size)2101 SYSCALL_DEFINE1(epoll_create, int, size)
2102 {
2103 	if (size <= 0)
2104 		return -EINVAL;
2105 
2106 	return do_epoll_create(0);
2107 }
2108 
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2109 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2110 				   bool nonblock)
2111 {
2112 	if (!nonblock) {
2113 		mutex_lock_nested(mutex, depth);
2114 		return 0;
2115 	}
2116 	if (mutex_trylock(mutex))
2117 		return 0;
2118 	return -EAGAIN;
2119 }
2120 
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2121 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2122 		 bool nonblock)
2123 {
2124 	int error;
2125 	int full_check = 0;
2126 	struct fd f, tf;
2127 	struct eventpoll *ep;
2128 	struct epitem *epi;
2129 	struct eventpoll *tep = NULL;
2130 
2131 	error = -EBADF;
2132 	f = fdget(epfd);
2133 	if (!f.file)
2134 		goto error_return;
2135 
2136 	/* Get the "struct file *" for the target file */
2137 	tf = fdget(fd);
2138 	if (!tf.file)
2139 		goto error_fput;
2140 
2141 	/* The target file descriptor must support poll */
2142 	error = -EPERM;
2143 	if (!file_can_poll(tf.file))
2144 		goto error_tgt_fput;
2145 
2146 	/* Check if EPOLLWAKEUP is allowed */
2147 	if (ep_op_has_event(op))
2148 		ep_take_care_of_epollwakeup(epds);
2149 
2150 	/*
2151 	 * We have to check that the file structure underneath the file descriptor
2152 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2153 	 * adding an epoll file descriptor inside itself.
2154 	 */
2155 	error = -EINVAL;
2156 	if (f.file == tf.file || !is_file_epoll(f.file))
2157 		goto error_tgt_fput;
2158 
2159 	/*
2160 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2161 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2162 	 * Also, we do not currently supported nested exclusive wakeups.
2163 	 */
2164 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2165 		if (op == EPOLL_CTL_MOD)
2166 			goto error_tgt_fput;
2167 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2168 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2169 			goto error_tgt_fput;
2170 	}
2171 
2172 	/*
2173 	 * At this point it is safe to assume that the "private_data" contains
2174 	 * our own data structure.
2175 	 */
2176 	ep = f.file->private_data;
2177 
2178 	/*
2179 	 * When we insert an epoll file descriptor, inside another epoll file
2180 	 * descriptor, there is the change of creating closed loops, which are
2181 	 * better be handled here, than in more critical paths. While we are
2182 	 * checking for loops we also determine the list of files reachable
2183 	 * and hang them on the tfile_check_list, so we can check that we
2184 	 * haven't created too many possible wakeup paths.
2185 	 *
2186 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2187 	 * the epoll file descriptor is attaching directly to a wakeup source,
2188 	 * unless the epoll file descriptor is nested. The purpose of taking the
2189 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2190 	 * deep wakeup paths from forming in parallel through multiple
2191 	 * EPOLL_CTL_ADD operations.
2192 	 */
2193 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2194 	if (error)
2195 		goto error_tgt_fput;
2196 	if (op == EPOLL_CTL_ADD) {
2197 		if (!list_empty(&f.file->f_ep_links) ||
2198 				ep->gen == loop_check_gen ||
2199 						is_file_epoll(tf.file)) {
2200 			mutex_unlock(&ep->mtx);
2201 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2202 			if (error)
2203 				goto error_tgt_fput;
2204 			loop_check_gen++;
2205 			full_check = 1;
2206 			if (is_file_epoll(tf.file)) {
2207 				error = -ELOOP;
2208 				if (ep_loop_check(ep, tf.file) != 0)
2209 					goto error_tgt_fput;
2210 			} else {
2211 				get_file(tf.file);
2212 				list_add(&tf.file->f_tfile_llink,
2213 							&tfile_check_list);
2214 			}
2215 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2216 			if (error)
2217 				goto error_tgt_fput;
2218 			if (is_file_epoll(tf.file)) {
2219 				tep = tf.file->private_data;
2220 				error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2221 				if (error) {
2222 					mutex_unlock(&ep->mtx);
2223 					goto error_tgt_fput;
2224 				}
2225 			}
2226 		}
2227 	}
2228 
2229 	/*
2230 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2231 	 * above, we can be sure to be able to use the item looked up by
2232 	 * ep_find() till we release the mutex.
2233 	 */
2234 	epi = ep_find(ep, tf.file, fd);
2235 
2236 	error = -EINVAL;
2237 	switch (op) {
2238 	case EPOLL_CTL_ADD:
2239 		if (!epi) {
2240 			epds->events |= EPOLLERR | EPOLLHUP;
2241 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2242 		} else
2243 			error = -EEXIST;
2244 		break;
2245 	case EPOLL_CTL_DEL:
2246 		if (epi)
2247 			error = ep_remove(ep, epi);
2248 		else
2249 			error = -ENOENT;
2250 		break;
2251 	case EPOLL_CTL_MOD:
2252 		if (epi) {
2253 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2254 				epds->events |= EPOLLERR | EPOLLHUP;
2255 				error = ep_modify(ep, epi, epds);
2256 			}
2257 		} else
2258 			error = -ENOENT;
2259 		break;
2260 	}
2261 	if (tep != NULL)
2262 		mutex_unlock(&tep->mtx);
2263 	mutex_unlock(&ep->mtx);
2264 
2265 error_tgt_fput:
2266 	if (full_check) {
2267 		clear_tfile_check_list();
2268 		loop_check_gen++;
2269 		mutex_unlock(&epmutex);
2270 	}
2271 
2272 	fdput(tf);
2273 error_fput:
2274 	fdput(f);
2275 error_return:
2276 
2277 	return error;
2278 }
2279 
2280 /*
2281  * The following function implements the controller interface for
2282  * the eventpoll file that enables the insertion/removal/change of
2283  * file descriptors inside the interest set.
2284  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2285 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2286 		struct epoll_event __user *, event)
2287 {
2288 	struct epoll_event epds;
2289 
2290 	if (ep_op_has_event(op) &&
2291 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2292 		return -EFAULT;
2293 
2294 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2295 }
2296 
2297 /*
2298  * Implement the event wait interface for the eventpoll file. It is the kernel
2299  * part of the user space epoll_wait(2).
2300  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2301 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2302 			 int maxevents, int timeout)
2303 {
2304 	int error;
2305 	struct fd f;
2306 	struct eventpoll *ep;
2307 
2308 	/* The maximum number of event must be greater than zero */
2309 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2310 		return -EINVAL;
2311 
2312 	/* Verify that the area passed by the user is writeable */
2313 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2314 		return -EFAULT;
2315 
2316 	/* Get the "struct file *" for the eventpoll file */
2317 	f = fdget(epfd);
2318 	if (!f.file)
2319 		return -EBADF;
2320 
2321 	/*
2322 	 * We have to check that the file structure underneath the fd
2323 	 * the user passed to us _is_ an eventpoll file.
2324 	 */
2325 	error = -EINVAL;
2326 	if (!is_file_epoll(f.file))
2327 		goto error_fput;
2328 
2329 	/*
2330 	 * At this point it is safe to assume that the "private_data" contains
2331 	 * our own data structure.
2332 	 */
2333 	ep = f.file->private_data;
2334 
2335 	/* Time to fish for events ... */
2336 	error = ep_poll(ep, events, maxevents, timeout);
2337 
2338 error_fput:
2339 	fdput(f);
2340 	return error;
2341 }
2342 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2343 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2344 		int, maxevents, int, timeout)
2345 {
2346 	return do_epoll_wait(epfd, events, maxevents, timeout);
2347 }
2348 
2349 /*
2350  * Implement the event wait interface for the eventpoll file. It is the kernel
2351  * part of the user space epoll_pwait(2).
2352  */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2353 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2354 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2355 		size_t, sigsetsize)
2356 {
2357 	int error;
2358 
2359 	/*
2360 	 * If the caller wants a certain signal mask to be set during the wait,
2361 	 * we apply it here.
2362 	 */
2363 	error = set_user_sigmask(sigmask, sigsetsize);
2364 	if (error)
2365 		return error;
2366 
2367 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2368 	restore_saved_sigmask_unless(error == -EINTR);
2369 
2370 	return error;
2371 }
2372 
2373 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2374 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2375 			struct epoll_event __user *, events,
2376 			int, maxevents, int, timeout,
2377 			const compat_sigset_t __user *, sigmask,
2378 			compat_size_t, sigsetsize)
2379 {
2380 	long err;
2381 
2382 	/*
2383 	 * If the caller wants a certain signal mask to be set during the wait,
2384 	 * we apply it here.
2385 	 */
2386 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2387 	if (err)
2388 		return err;
2389 
2390 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2391 	restore_saved_sigmask_unless(err == -EINTR);
2392 
2393 	return err;
2394 }
2395 #endif
2396 
eventpoll_init(void)2397 static int __init eventpoll_init(void)
2398 {
2399 	struct sysinfo si;
2400 
2401 	si_meminfo(&si);
2402 	/*
2403 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2404 	 */
2405 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2406 		EP_ITEM_COST;
2407 	BUG_ON(max_user_watches < 0);
2408 
2409 	/*
2410 	 * Initialize the structure used to perform epoll file descriptor
2411 	 * inclusion loops checks.
2412 	 */
2413 	ep_nested_calls_init(&poll_loop_ncalls);
2414 
2415 	/*
2416 	 * We can have many thousands of epitems, so prevent this from
2417 	 * using an extra cache line on 64-bit (and smaller) CPUs
2418 	 */
2419 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2420 
2421 	/* Allocates slab cache used to allocate "struct epitem" items */
2422 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2423 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2424 
2425 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2426 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2427 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2428 
2429 	return 0;
2430 }
2431 fs_initcall(eventpoll_init);
2432