• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * The regular allocator (using the buddy cache) supports a few tunables.
131  *
132  * /sys/fs/ext4/<partition>/mb_min_to_scan
133  * /sys/fs/ext4/<partition>/mb_max_to_scan
134  * /sys/fs/ext4/<partition>/mb_order2_req
135  *
136  * The regular allocator uses buddy scan only if the request len is power of
137  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138  * value of s_mb_order2_reqs can be tuned via
139  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
140  * stripe size (sbi->s_stripe), we try to search for contiguous block in
141  * stripe size. This should result in better allocation on RAID setups. If
142  * not, we search in the specific group using bitmap for best extents. The
143  * tunable min_to_scan and max_to_scan control the behaviour here.
144  * min_to_scan indicate how long the mballoc __must__ look for a best
145  * extent and max_to_scan indicates how long the mballoc __can__ look for a
146  * best extent in the found extents. Searching for the blocks starts with
147  * the group specified as the goal value in allocation context via
148  * ac_g_ex. Each group is first checked based on the criteria whether it
149  * can be used for allocation. ext4_mb_good_group explains how the groups are
150  * checked.
151  *
152  * Both the prealloc space are getting populated as above. So for the first
153  * request we will hit the buddy cache which will result in this prealloc
154  * space getting filled. The prealloc space is then later used for the
155  * subsequent request.
156  */
157 
158 /*
159  * mballoc operates on the following data:
160  *  - on-disk bitmap
161  *  - in-core buddy (actually includes buddy and bitmap)
162  *  - preallocation descriptors (PAs)
163  *
164  * there are two types of preallocations:
165  *  - inode
166  *    assiged to specific inode and can be used for this inode only.
167  *    it describes part of inode's space preallocated to specific
168  *    physical blocks. any block from that preallocated can be used
169  *    independent. the descriptor just tracks number of blocks left
170  *    unused. so, before taking some block from descriptor, one must
171  *    make sure corresponded logical block isn't allocated yet. this
172  *    also means that freeing any block within descriptor's range
173  *    must discard all preallocated blocks.
174  *  - locality group
175  *    assigned to specific locality group which does not translate to
176  *    permanent set of inodes: inode can join and leave group. space
177  *    from this type of preallocation can be used for any inode. thus
178  *    it's consumed from the beginning to the end.
179  *
180  * relation between them can be expressed as:
181  *    in-core buddy = on-disk bitmap + preallocation descriptors
182  *
183  * this mean blocks mballoc considers used are:
184  *  - allocated blocks (persistent)
185  *  - preallocated blocks (non-persistent)
186  *
187  * consistency in mballoc world means that at any time a block is either
188  * free or used in ALL structures. notice: "any time" should not be read
189  * literally -- time is discrete and delimited by locks.
190  *
191  *  to keep it simple, we don't use block numbers, instead we count number of
192  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
193  *
194  * all operations can be expressed as:
195  *  - init buddy:			buddy = on-disk + PAs
196  *  - new PA:				buddy += N; PA = N
197  *  - use inode PA:			on-disk += N; PA -= N
198  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
199  *  - use locality group PA		on-disk += N; PA -= N
200  *  - discard locality group PA		buddy -= PA; PA = 0
201  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202  *        is used in real operation because we can't know actual used
203  *        bits from PA, only from on-disk bitmap
204  *
205  * if we follow this strict logic, then all operations above should be atomic.
206  * given some of them can block, we'd have to use something like semaphores
207  * killing performance on high-end SMP hardware. let's try to relax it using
208  * the following knowledge:
209  *  1) if buddy is referenced, it's already initialized
210  *  2) while block is used in buddy and the buddy is referenced,
211  *     nobody can re-allocate that block
212  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
214  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215  *     block
216  *
217  * so, now we're building a concurrency table:
218  *  - init buddy vs.
219  *    - new PA
220  *      blocks for PA are allocated in the buddy, buddy must be referenced
221  *      until PA is linked to allocation group to avoid concurrent buddy init
222  *    - use inode PA
223  *      we need to make sure that either on-disk bitmap or PA has uptodate data
224  *      given (3) we care that PA-=N operation doesn't interfere with init
225  *    - discard inode PA
226  *      the simplest way would be to have buddy initialized by the discard
227  *    - use locality group PA
228  *      again PA-=N must be serialized with init
229  *    - discard locality group PA
230  *      the simplest way would be to have buddy initialized by the discard
231  *  - new PA vs.
232  *    - use inode PA
233  *      i_data_sem serializes them
234  *    - discard inode PA
235  *      discard process must wait until PA isn't used by another process
236  *    - use locality group PA
237  *      some mutex should serialize them
238  *    - discard locality group PA
239  *      discard process must wait until PA isn't used by another process
240  *  - use inode PA
241  *    - use inode PA
242  *      i_data_sem or another mutex should serializes them
243  *    - discard inode PA
244  *      discard process must wait until PA isn't used by another process
245  *    - use locality group PA
246  *      nothing wrong here -- they're different PAs covering different blocks
247  *    - discard locality group PA
248  *      discard process must wait until PA isn't used by another process
249  *
250  * now we're ready to make few consequences:
251  *  - PA is referenced and while it is no discard is possible
252  *  - PA is referenced until block isn't marked in on-disk bitmap
253  *  - PA changes only after on-disk bitmap
254  *  - discard must not compete with init. either init is done before
255  *    any discard or they're serialized somehow
256  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
257  *
258  * a special case when we've used PA to emptiness. no need to modify buddy
259  * in this case, but we should care about concurrent init
260  *
261  */
262 
263  /*
264  * Logic in few words:
265  *
266  *  - allocation:
267  *    load group
268  *    find blocks
269  *    mark bits in on-disk bitmap
270  *    release group
271  *
272  *  - use preallocation:
273  *    find proper PA (per-inode or group)
274  *    load group
275  *    mark bits in on-disk bitmap
276  *    release group
277  *    release PA
278  *
279  *  - free:
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *
284  *  - discard preallocations in group:
285  *    mark PAs deleted
286  *    move them onto local list
287  *    load on-disk bitmap
288  *    load group
289  *    remove PA from object (inode or locality group)
290  *    mark free blocks in-core
291  *
292  *  - discard inode's preallocations:
293  */
294 
295 /*
296  * Locking rules
297  *
298  * Locks:
299  *  - bitlock on a group	(group)
300  *  - object (inode/locality)	(object)
301  *  - per-pa lock		(pa)
302  *
303  * Paths:
304  *  - new pa
305  *    object
306  *    group
307  *
308  *  - find and use pa:
309  *    pa
310  *
311  *  - release consumed pa:
312  *    pa
313  *    group
314  *    object
315  *
316  *  - generate in-core bitmap:
317  *    group
318  *        pa
319  *
320  *  - discard all for given object (inode, locality group):
321  *    object
322  *        pa
323  *    group
324  *
325  *  - discard all for given group:
326  *    group
327  *        pa
328  *    group
329  *        object
330  *
331  */
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
335 
336 /* We create slab caches for groupinfo data structures based on the
337  * superblock block size.  There will be one per mounted filesystem for
338  * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
341 
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
346 };
347 
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 					ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 						ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
353 
354 /*
355  * The algorithm using this percpu seq counter goes below:
356  * 1. We sample the percpu discard_pa_seq counter before trying for block
357  *    allocation in ext4_mb_new_blocks().
358  * 2. We increment this percpu discard_pa_seq counter when we either allocate
359  *    or free these blocks i.e. while marking those blocks as used/free in
360  *    mb_mark_used()/mb_free_blocks().
361  * 3. We also increment this percpu seq counter when we successfully identify
362  *    that the bb_prealloc_list is not empty and hence proceed for discarding
363  *    of those PAs inside ext4_mb_discard_group_preallocations().
364  *
365  * Now to make sure that the regular fast path of block allocation is not
366  * affected, as a small optimization we only sample the percpu seq counter
367  * on that cpu. Only when the block allocation fails and when freed blocks
368  * found were 0, that is when we sample percpu seq counter for all cpus using
369  * below function ext4_get_discard_pa_seq_sum(). This happens after making
370  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
371  */
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)373 static inline u64 ext4_get_discard_pa_seq_sum(void)
374 {
375 	int __cpu;
376 	u64 __seq = 0;
377 
378 	for_each_possible_cpu(__cpu)
379 		__seq += per_cpu(discard_pa_seq, __cpu);
380 	return __seq;
381 }
382 
mb_correct_addr_and_bit(int * bit,void * addr)383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
384 {
385 #if BITS_PER_LONG == 64
386 	*bit += ((unsigned long) addr & 7UL) << 3;
387 	addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 	*bit += ((unsigned long) addr & 3UL) << 3;
390 	addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 	return addr;
395 }
396 
mb_test_bit(int bit,void * addr)397 static inline int mb_test_bit(int bit, void *addr)
398 {
399 	/*
400 	 * ext4_test_bit on architecture like powerpc
401 	 * needs unsigned long aligned address
402 	 */
403 	addr = mb_correct_addr_and_bit(&bit, addr);
404 	return ext4_test_bit(bit, addr);
405 }
406 
mb_set_bit(int bit,void * addr)407 static inline void mb_set_bit(int bit, void *addr)
408 {
409 	addr = mb_correct_addr_and_bit(&bit, addr);
410 	ext4_set_bit(bit, addr);
411 }
412 
mb_clear_bit(int bit,void * addr)413 static inline void mb_clear_bit(int bit, void *addr)
414 {
415 	addr = mb_correct_addr_and_bit(&bit, addr);
416 	ext4_clear_bit(bit, addr);
417 }
418 
mb_test_and_clear_bit(int bit,void * addr)419 static inline int mb_test_and_clear_bit(int bit, void *addr)
420 {
421 	addr = mb_correct_addr_and_bit(&bit, addr);
422 	return ext4_test_and_clear_bit(bit, addr);
423 }
424 
mb_find_next_zero_bit(void * addr,int max,int start)425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
426 {
427 	int fix = 0, ret, tmpmax;
428 	addr = mb_correct_addr_and_bit(&fix, addr);
429 	tmpmax = max + fix;
430 	start += fix;
431 
432 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 	if (ret > max)
434 		return max;
435 	return ret;
436 }
437 
mb_find_next_bit(void * addr,int max,int start)438 static inline int mb_find_next_bit(void *addr, int max, int start)
439 {
440 	int fix = 0, ret, tmpmax;
441 	addr = mb_correct_addr_and_bit(&fix, addr);
442 	tmpmax = max + fix;
443 	start += fix;
444 
445 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 	if (ret > max)
447 		return max;
448 	return ret;
449 }
450 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
452 {
453 	char *bb;
454 
455 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 	BUG_ON(max == NULL);
457 
458 	if (order > e4b->bd_blkbits + 1) {
459 		*max = 0;
460 		return NULL;
461 	}
462 
463 	/* at order 0 we see each particular block */
464 	if (order == 0) {
465 		*max = 1 << (e4b->bd_blkbits + 3);
466 		return e4b->bd_bitmap;
467 	}
468 
469 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
471 
472 	return bb;
473 }
474 
475 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 			   int first, int count)
478 {
479 	int i;
480 	struct super_block *sb = e4b->bd_sb;
481 
482 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 		return;
484 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 	for (i = 0; i < count; i++) {
486 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 			ext4_fsblk_t blocknr;
488 
489 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 			ext4_grp_locked_error(sb, e4b->bd_group,
492 					      inode ? inode->i_ino : 0,
493 					      blocknr,
494 					      "freeing block already freed "
495 					      "(bit %u)",
496 					      first + i);
497 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
499 		}
500 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
505 {
506 	int i;
507 
508 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 		return;
510 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 	for (i = 0; i < count; i++) {
512 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
514 	}
515 }
516 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
518 {
519 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 		return;
521 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 		unsigned char *b1, *b2;
523 		int i;
524 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 		b2 = (unsigned char *) bitmap;
526 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 			if (b1[i] != b2[i]) {
528 				ext4_msg(e4b->bd_sb, KERN_ERR,
529 					 "corruption in group %u "
530 					 "at byte %u(%u): %x in copy != %x "
531 					 "on disk/prealloc",
532 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 				BUG();
534 			}
535 		}
536 	}
537 }
538 
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 			struct ext4_group_info *grp, ext4_group_t group)
541 {
542 	struct buffer_head *bh;
543 
544 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 	if (!grp->bb_bitmap)
546 		return;
547 
548 	bh = ext4_read_block_bitmap(sb, group);
549 	if (IS_ERR_OR_NULL(bh)) {
550 		kfree(grp->bb_bitmap);
551 		grp->bb_bitmap = NULL;
552 		return;
553 	}
554 
555 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 	put_bh(bh);
557 }
558 
mb_group_bb_bitmap_free(struct ext4_group_info * grp)559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
560 {
561 	kfree(grp->bb_bitmap);
562 }
563 
564 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)565 static inline void mb_free_blocks_double(struct inode *inode,
566 				struct ext4_buddy *e4b, int first, int count)
567 {
568 	return;
569 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 						int first, int count)
572 {
573 	return;
574 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
576 {
577 	return;
578 }
579 
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 			struct ext4_group_info *grp, ext4_group_t group)
582 {
583 	return;
584 }
585 
mb_group_bb_bitmap_free(struct ext4_group_info * grp)586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
587 {
588 	return;
589 }
590 #endif
591 
592 #ifdef AGGRESSIVE_CHECK
593 
594 #define MB_CHECK_ASSERT(assert)						\
595 do {									\
596 	if (!(assert)) {						\
597 		printk(KERN_EMERG					\
598 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
599 			function, file, line, # assert);		\
600 		BUG();							\
601 	}								\
602 } while (0)
603 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 				const char *function, int line)
606 {
607 	struct super_block *sb = e4b->bd_sb;
608 	int order = e4b->bd_blkbits + 1;
609 	int max;
610 	int max2;
611 	int i;
612 	int j;
613 	int k;
614 	int count;
615 	struct ext4_group_info *grp;
616 	int fragments = 0;
617 	int fstart;
618 	struct list_head *cur;
619 	void *buddy;
620 	void *buddy2;
621 
622 	if (e4b->bd_info->bb_check_counter++ % 10)
623 		return 0;
624 
625 	while (order > 1) {
626 		buddy = mb_find_buddy(e4b, order, &max);
627 		MB_CHECK_ASSERT(buddy);
628 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
629 		MB_CHECK_ASSERT(buddy2);
630 		MB_CHECK_ASSERT(buddy != buddy2);
631 		MB_CHECK_ASSERT(max * 2 == max2);
632 
633 		count = 0;
634 		for (i = 0; i < max; i++) {
635 
636 			if (mb_test_bit(i, buddy)) {
637 				/* only single bit in buddy2 may be 1 */
638 				if (!mb_test_bit(i << 1, buddy2)) {
639 					MB_CHECK_ASSERT(
640 						mb_test_bit((i<<1)+1, buddy2));
641 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
642 					MB_CHECK_ASSERT(
643 						mb_test_bit(i << 1, buddy2));
644 				}
645 				continue;
646 			}
647 
648 			/* both bits in buddy2 must be 1 */
649 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
650 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
651 
652 			for (j = 0; j < (1 << order); j++) {
653 				k = (i * (1 << order)) + j;
654 				MB_CHECK_ASSERT(
655 					!mb_test_bit(k, e4b->bd_bitmap));
656 			}
657 			count++;
658 		}
659 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
660 		order--;
661 	}
662 
663 	fstart = -1;
664 	buddy = mb_find_buddy(e4b, 0, &max);
665 	for (i = 0; i < max; i++) {
666 		if (!mb_test_bit(i, buddy)) {
667 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
668 			if (fstart == -1) {
669 				fragments++;
670 				fstart = i;
671 			}
672 			continue;
673 		}
674 		fstart = -1;
675 		/* check used bits only */
676 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
677 			buddy2 = mb_find_buddy(e4b, j, &max2);
678 			k = i >> j;
679 			MB_CHECK_ASSERT(k < max2);
680 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
681 		}
682 	}
683 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
684 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
685 
686 	grp = ext4_get_group_info(sb, e4b->bd_group);
687 	list_for_each(cur, &grp->bb_prealloc_list) {
688 		ext4_group_t groupnr;
689 		struct ext4_prealloc_space *pa;
690 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
691 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
692 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
693 		for (i = 0; i < pa->pa_len; i++)
694 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
695 	}
696 	return 0;
697 }
698 #undef MB_CHECK_ASSERT
699 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
700 					__FILE__, __func__, __LINE__)
701 #else
702 #define mb_check_buddy(e4b)
703 #endif
704 
705 /*
706  * Divide blocks started from @first with length @len into
707  * smaller chunks with power of 2 blocks.
708  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
709  * then increase bb_counters[] for corresponded chunk size.
710  */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)711 static void ext4_mb_mark_free_simple(struct super_block *sb,
712 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
713 					struct ext4_group_info *grp)
714 {
715 	struct ext4_sb_info *sbi = EXT4_SB(sb);
716 	ext4_grpblk_t min;
717 	ext4_grpblk_t max;
718 	ext4_grpblk_t chunk;
719 	unsigned int border;
720 
721 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
722 
723 	border = 2 << sb->s_blocksize_bits;
724 
725 	while (len > 0) {
726 		/* find how many blocks can be covered since this position */
727 		max = ffs(first | border) - 1;
728 
729 		/* find how many blocks of power 2 we need to mark */
730 		min = fls(len) - 1;
731 
732 		if (max < min)
733 			min = max;
734 		chunk = 1 << min;
735 
736 		/* mark multiblock chunks only */
737 		grp->bb_counters[min]++;
738 		if (min > 0)
739 			mb_clear_bit(first >> min,
740 				     buddy + sbi->s_mb_offsets[min]);
741 
742 		len -= chunk;
743 		first += chunk;
744 	}
745 }
746 
747 /*
748  * Cache the order of the largest free extent we have available in this block
749  * group.
750  */
751 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)752 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
753 {
754 	int i;
755 	int bits;
756 
757 	grp->bb_largest_free_order = -1; /* uninit */
758 
759 	bits = sb->s_blocksize_bits + 1;
760 	for (i = bits; i >= 0; i--) {
761 		if (grp->bb_counters[i] > 0) {
762 			grp->bb_largest_free_order = i;
763 			break;
764 		}
765 	}
766 }
767 
768 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)769 void ext4_mb_generate_buddy(struct super_block *sb,
770 				void *buddy, void *bitmap, ext4_group_t group)
771 {
772 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
774 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
775 	ext4_grpblk_t i = 0;
776 	ext4_grpblk_t first;
777 	ext4_grpblk_t len;
778 	unsigned free = 0;
779 	unsigned fragments = 0;
780 	unsigned long long period = get_cycles();
781 
782 	/* initialize buddy from bitmap which is aggregation
783 	 * of on-disk bitmap and preallocations */
784 	i = mb_find_next_zero_bit(bitmap, max, 0);
785 	grp->bb_first_free = i;
786 	while (i < max) {
787 		fragments++;
788 		first = i;
789 		i = mb_find_next_bit(bitmap, max, i);
790 		len = i - first;
791 		free += len;
792 		if (len > 1)
793 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
794 		else
795 			grp->bb_counters[0]++;
796 		if (i < max)
797 			i = mb_find_next_zero_bit(bitmap, max, i);
798 	}
799 	grp->bb_fragments = fragments;
800 
801 	if (free != grp->bb_free) {
802 		ext4_grp_locked_error(sb, group, 0, 0,
803 				      "block bitmap and bg descriptor "
804 				      "inconsistent: %u vs %u free clusters",
805 				      free, grp->bb_free);
806 		/*
807 		 * If we intend to continue, we consider group descriptor
808 		 * corrupt and update bb_free using bitmap value
809 		 */
810 		grp->bb_free = free;
811 		ext4_mark_group_bitmap_corrupted(sb, group,
812 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
813 	}
814 	mb_set_largest_free_order(sb, grp);
815 
816 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
817 
818 	period = get_cycles() - period;
819 	spin_lock(&sbi->s_bal_lock);
820 	sbi->s_mb_buddies_generated++;
821 	sbi->s_mb_generation_time += period;
822 	spin_unlock(&sbi->s_bal_lock);
823 }
824 
mb_regenerate_buddy(struct ext4_buddy * e4b)825 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
826 {
827 	int count;
828 	int order = 1;
829 	void *buddy;
830 
831 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
832 		ext4_set_bits(buddy, 0, count);
833 	}
834 	e4b->bd_info->bb_fragments = 0;
835 	memset(e4b->bd_info->bb_counters, 0,
836 		sizeof(*e4b->bd_info->bb_counters) *
837 		(e4b->bd_sb->s_blocksize_bits + 2));
838 
839 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
840 		e4b->bd_bitmap, e4b->bd_group);
841 }
842 
843 /* The buddy information is attached the buddy cache inode
844  * for convenience. The information regarding each group
845  * is loaded via ext4_mb_load_buddy. The information involve
846  * block bitmap and buddy information. The information are
847  * stored in the inode as
848  *
849  * {                        page                        }
850  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
851  *
852  *
853  * one block each for bitmap and buddy information.
854  * So for each group we take up 2 blocks. A page can
855  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
856  * So it can have information regarding groups_per_page which
857  * is blocks_per_page/2
858  *
859  * Locking note:  This routine takes the block group lock of all groups
860  * for this page; do not hold this lock when calling this routine!
861  */
862 
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)863 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
864 {
865 	ext4_group_t ngroups;
866 	int blocksize;
867 	int blocks_per_page;
868 	int groups_per_page;
869 	int err = 0;
870 	int i;
871 	ext4_group_t first_group, group;
872 	int first_block;
873 	struct super_block *sb;
874 	struct buffer_head *bhs;
875 	struct buffer_head **bh = NULL;
876 	struct inode *inode;
877 	char *data;
878 	char *bitmap;
879 	struct ext4_group_info *grinfo;
880 
881 	inode = page->mapping->host;
882 	sb = inode->i_sb;
883 	ngroups = ext4_get_groups_count(sb);
884 	blocksize = i_blocksize(inode);
885 	blocks_per_page = PAGE_SIZE / blocksize;
886 
887 	mb_debug(sb, "init page %lu\n", page->index);
888 
889 	groups_per_page = blocks_per_page >> 1;
890 	if (groups_per_page == 0)
891 		groups_per_page = 1;
892 
893 	/* allocate buffer_heads to read bitmaps */
894 	if (groups_per_page > 1) {
895 		i = sizeof(struct buffer_head *) * groups_per_page;
896 		bh = kzalloc(i, gfp);
897 		if (bh == NULL) {
898 			err = -ENOMEM;
899 			goto out;
900 		}
901 	} else
902 		bh = &bhs;
903 
904 	first_group = page->index * blocks_per_page / 2;
905 
906 	/* read all groups the page covers into the cache */
907 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
908 		if (group >= ngroups)
909 			break;
910 
911 		grinfo = ext4_get_group_info(sb, group);
912 		/*
913 		 * If page is uptodate then we came here after online resize
914 		 * which added some new uninitialized group info structs, so
915 		 * we must skip all initialized uptodate buddies on the page,
916 		 * which may be currently in use by an allocating task.
917 		 */
918 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
919 			bh[i] = NULL;
920 			continue;
921 		}
922 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
923 		if (IS_ERR(bh[i])) {
924 			err = PTR_ERR(bh[i]);
925 			bh[i] = NULL;
926 			goto out;
927 		}
928 		mb_debug(sb, "read bitmap for group %u\n", group);
929 	}
930 
931 	/* wait for I/O completion */
932 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
933 		int err2;
934 
935 		if (!bh[i])
936 			continue;
937 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
938 		if (!err)
939 			err = err2;
940 	}
941 
942 	first_block = page->index * blocks_per_page;
943 	for (i = 0; i < blocks_per_page; i++) {
944 		group = (first_block + i) >> 1;
945 		if (group >= ngroups)
946 			break;
947 
948 		if (!bh[group - first_group])
949 			/* skip initialized uptodate buddy */
950 			continue;
951 
952 		if (!buffer_verified(bh[group - first_group]))
953 			/* Skip faulty bitmaps */
954 			continue;
955 		err = 0;
956 
957 		/*
958 		 * data carry information regarding this
959 		 * particular group in the format specified
960 		 * above
961 		 *
962 		 */
963 		data = page_address(page) + (i * blocksize);
964 		bitmap = bh[group - first_group]->b_data;
965 
966 		/*
967 		 * We place the buddy block and bitmap block
968 		 * close together
969 		 */
970 		if ((first_block + i) & 1) {
971 			/* this is block of buddy */
972 			BUG_ON(incore == NULL);
973 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
974 				group, page->index, i * blocksize);
975 			trace_ext4_mb_buddy_bitmap_load(sb, group);
976 			grinfo = ext4_get_group_info(sb, group);
977 			grinfo->bb_fragments = 0;
978 			memset(grinfo->bb_counters, 0,
979 			       sizeof(*grinfo->bb_counters) *
980 				(sb->s_blocksize_bits+2));
981 			/*
982 			 * incore got set to the group block bitmap below
983 			 */
984 			ext4_lock_group(sb, group);
985 			/* init the buddy */
986 			memset(data, 0xff, blocksize);
987 			ext4_mb_generate_buddy(sb, data, incore, group);
988 			ext4_unlock_group(sb, group);
989 			incore = NULL;
990 		} else {
991 			/* this is block of bitmap */
992 			BUG_ON(incore != NULL);
993 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
994 				group, page->index, i * blocksize);
995 			trace_ext4_mb_bitmap_load(sb, group);
996 
997 			/* see comments in ext4_mb_put_pa() */
998 			ext4_lock_group(sb, group);
999 			memcpy(data, bitmap, blocksize);
1000 
1001 			/* mark all preallocated blks used in in-core bitmap */
1002 			ext4_mb_generate_from_pa(sb, data, group);
1003 			ext4_mb_generate_from_freelist(sb, data, group);
1004 			ext4_unlock_group(sb, group);
1005 
1006 			/* set incore so that the buddy information can be
1007 			 * generated using this
1008 			 */
1009 			incore = data;
1010 		}
1011 	}
1012 	SetPageUptodate(page);
1013 
1014 out:
1015 	if (bh) {
1016 		for (i = 0; i < groups_per_page; i++)
1017 			brelse(bh[i]);
1018 		if (bh != &bhs)
1019 			kfree(bh);
1020 	}
1021 	return err;
1022 }
1023 
1024 /*
1025  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1026  * on the same buddy page doesn't happen whild holding the buddy page lock.
1027  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1028  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1029  */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1030 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1031 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1032 {
1033 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1034 	int block, pnum, poff;
1035 	int blocks_per_page;
1036 	struct page *page;
1037 
1038 	e4b->bd_buddy_page = NULL;
1039 	e4b->bd_bitmap_page = NULL;
1040 
1041 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1042 	/*
1043 	 * the buddy cache inode stores the block bitmap
1044 	 * and buddy information in consecutive blocks.
1045 	 * So for each group we need two blocks.
1046 	 */
1047 	block = group * 2;
1048 	pnum = block / blocks_per_page;
1049 	poff = block % blocks_per_page;
1050 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1051 	if (!page)
1052 		return -ENOMEM;
1053 	BUG_ON(page->mapping != inode->i_mapping);
1054 	e4b->bd_bitmap_page = page;
1055 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1056 
1057 	if (blocks_per_page >= 2) {
1058 		/* buddy and bitmap are on the same page */
1059 		return 0;
1060 	}
1061 
1062 	block++;
1063 	pnum = block / blocks_per_page;
1064 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1065 	if (!page)
1066 		return -ENOMEM;
1067 	BUG_ON(page->mapping != inode->i_mapping);
1068 	e4b->bd_buddy_page = page;
1069 	return 0;
1070 }
1071 
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1072 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1073 {
1074 	if (e4b->bd_bitmap_page) {
1075 		unlock_page(e4b->bd_bitmap_page);
1076 		put_page(e4b->bd_bitmap_page);
1077 	}
1078 	if (e4b->bd_buddy_page) {
1079 		unlock_page(e4b->bd_buddy_page);
1080 		put_page(e4b->bd_buddy_page);
1081 	}
1082 }
1083 
1084 /*
1085  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1086  * block group lock of all groups for this page; do not hold the BG lock when
1087  * calling this routine!
1088  */
1089 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1090 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1091 {
1092 
1093 	struct ext4_group_info *this_grp;
1094 	struct ext4_buddy e4b;
1095 	struct page *page;
1096 	int ret = 0;
1097 
1098 	might_sleep();
1099 	mb_debug(sb, "init group %u\n", group);
1100 	this_grp = ext4_get_group_info(sb, group);
1101 	/*
1102 	 * This ensures that we don't reinit the buddy cache
1103 	 * page which map to the group from which we are already
1104 	 * allocating. If we are looking at the buddy cache we would
1105 	 * have taken a reference using ext4_mb_load_buddy and that
1106 	 * would have pinned buddy page to page cache.
1107 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1108 	 * page accessed.
1109 	 */
1110 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1111 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1112 		/*
1113 		 * somebody initialized the group
1114 		 * return without doing anything
1115 		 */
1116 		goto err;
1117 	}
1118 
1119 	page = e4b.bd_bitmap_page;
1120 	ret = ext4_mb_init_cache(page, NULL, gfp);
1121 	if (ret)
1122 		goto err;
1123 	if (!PageUptodate(page)) {
1124 		ret = -EIO;
1125 		goto err;
1126 	}
1127 
1128 	if (e4b.bd_buddy_page == NULL) {
1129 		/*
1130 		 * If both the bitmap and buddy are in
1131 		 * the same page we don't need to force
1132 		 * init the buddy
1133 		 */
1134 		ret = 0;
1135 		goto err;
1136 	}
1137 	/* init buddy cache */
1138 	page = e4b.bd_buddy_page;
1139 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1140 	if (ret)
1141 		goto err;
1142 	if (!PageUptodate(page)) {
1143 		ret = -EIO;
1144 		goto err;
1145 	}
1146 err:
1147 	ext4_mb_put_buddy_page_lock(&e4b);
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1153  * block group lock of all groups for this page; do not hold the BG lock when
1154  * calling this routine!
1155  */
1156 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1157 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1158 		       struct ext4_buddy *e4b, gfp_t gfp)
1159 {
1160 	int blocks_per_page;
1161 	int block;
1162 	int pnum;
1163 	int poff;
1164 	struct page *page;
1165 	int ret;
1166 	struct ext4_group_info *grp;
1167 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1168 	struct inode *inode = sbi->s_buddy_cache;
1169 
1170 	might_sleep();
1171 	mb_debug(sb, "load group %u\n", group);
1172 
1173 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1174 	grp = ext4_get_group_info(sb, group);
1175 
1176 	e4b->bd_blkbits = sb->s_blocksize_bits;
1177 	e4b->bd_info = grp;
1178 	e4b->bd_sb = sb;
1179 	e4b->bd_group = group;
1180 	e4b->bd_buddy_page = NULL;
1181 	e4b->bd_bitmap_page = NULL;
1182 
1183 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1184 		/*
1185 		 * we need full data about the group
1186 		 * to make a good selection
1187 		 */
1188 		ret = ext4_mb_init_group(sb, group, gfp);
1189 		if (ret)
1190 			return ret;
1191 	}
1192 
1193 	/*
1194 	 * the buddy cache inode stores the block bitmap
1195 	 * and buddy information in consecutive blocks.
1196 	 * So for each group we need two blocks.
1197 	 */
1198 	block = group * 2;
1199 	pnum = block / blocks_per_page;
1200 	poff = block % blocks_per_page;
1201 
1202 	/* we could use find_or_create_page(), but it locks page
1203 	 * what we'd like to avoid in fast path ... */
1204 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1205 	if (page == NULL || !PageUptodate(page)) {
1206 		if (page)
1207 			/*
1208 			 * drop the page reference and try
1209 			 * to get the page with lock. If we
1210 			 * are not uptodate that implies
1211 			 * somebody just created the page but
1212 			 * is yet to initialize the same. So
1213 			 * wait for it to initialize.
1214 			 */
1215 			put_page(page);
1216 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1217 		if (page) {
1218 			BUG_ON(page->mapping != inode->i_mapping);
1219 			if (!PageUptodate(page)) {
1220 				ret = ext4_mb_init_cache(page, NULL, gfp);
1221 				if (ret) {
1222 					unlock_page(page);
1223 					goto err;
1224 				}
1225 				mb_cmp_bitmaps(e4b, page_address(page) +
1226 					       (poff * sb->s_blocksize));
1227 			}
1228 			unlock_page(page);
1229 		}
1230 	}
1231 	if (page == NULL) {
1232 		ret = -ENOMEM;
1233 		goto err;
1234 	}
1235 	if (!PageUptodate(page)) {
1236 		ret = -EIO;
1237 		goto err;
1238 	}
1239 
1240 	/* Pages marked accessed already */
1241 	e4b->bd_bitmap_page = page;
1242 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1243 
1244 	block++;
1245 	pnum = block / blocks_per_page;
1246 	poff = block % blocks_per_page;
1247 
1248 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1249 	if (page == NULL || !PageUptodate(page)) {
1250 		if (page)
1251 			put_page(page);
1252 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1253 		if (page) {
1254 			BUG_ON(page->mapping != inode->i_mapping);
1255 			if (!PageUptodate(page)) {
1256 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1257 							 gfp);
1258 				if (ret) {
1259 					unlock_page(page);
1260 					goto err;
1261 				}
1262 			}
1263 			unlock_page(page);
1264 		}
1265 	}
1266 	if (page == NULL) {
1267 		ret = -ENOMEM;
1268 		goto err;
1269 	}
1270 	if (!PageUptodate(page)) {
1271 		ret = -EIO;
1272 		goto err;
1273 	}
1274 
1275 	/* Pages marked accessed already */
1276 	e4b->bd_buddy_page = page;
1277 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1278 
1279 	return 0;
1280 
1281 err:
1282 	if (page)
1283 		put_page(page);
1284 	if (e4b->bd_bitmap_page)
1285 		put_page(e4b->bd_bitmap_page);
1286 	if (e4b->bd_buddy_page)
1287 		put_page(e4b->bd_buddy_page);
1288 	e4b->bd_buddy = NULL;
1289 	e4b->bd_bitmap = NULL;
1290 	return ret;
1291 }
1292 
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1293 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1294 			      struct ext4_buddy *e4b)
1295 {
1296 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1297 }
1298 
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1299 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1300 {
1301 	if (e4b->bd_bitmap_page)
1302 		put_page(e4b->bd_bitmap_page);
1303 	if (e4b->bd_buddy_page)
1304 		put_page(e4b->bd_buddy_page);
1305 }
1306 
1307 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1308 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1309 {
1310 	int order = 1;
1311 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1312 	void *bb;
1313 
1314 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1315 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1316 
1317 	bb = e4b->bd_buddy;
1318 	while (order <= e4b->bd_blkbits + 1) {
1319 		block = block >> 1;
1320 		if (!mb_test_bit(block, bb)) {
1321 			/* this block is part of buddy of order 'order' */
1322 			return order;
1323 		}
1324 		bb += bb_incr;
1325 		bb_incr >>= 1;
1326 		order++;
1327 	}
1328 	return 0;
1329 }
1330 
mb_clear_bits(void * bm,int cur,int len)1331 static void mb_clear_bits(void *bm, int cur, int len)
1332 {
1333 	__u32 *addr;
1334 
1335 	len = cur + len;
1336 	while (cur < len) {
1337 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1338 			/* fast path: clear whole word at once */
1339 			addr = bm + (cur >> 3);
1340 			*addr = 0;
1341 			cur += 32;
1342 			continue;
1343 		}
1344 		mb_clear_bit(cur, bm);
1345 		cur++;
1346 	}
1347 }
1348 
1349 /* clear bits in given range
1350  * will return first found zero bit if any, -1 otherwise
1351  */
mb_test_and_clear_bits(void * bm,int cur,int len)1352 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1353 {
1354 	__u32 *addr;
1355 	int zero_bit = -1;
1356 
1357 	len = cur + len;
1358 	while (cur < len) {
1359 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1360 			/* fast path: clear whole word at once */
1361 			addr = bm + (cur >> 3);
1362 			if (*addr != (__u32)(-1) && zero_bit == -1)
1363 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1364 			*addr = 0;
1365 			cur += 32;
1366 			continue;
1367 		}
1368 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1369 			zero_bit = cur;
1370 		cur++;
1371 	}
1372 
1373 	return zero_bit;
1374 }
1375 
ext4_set_bits(void * bm,int cur,int len)1376 void ext4_set_bits(void *bm, int cur, int len)
1377 {
1378 	__u32 *addr;
1379 
1380 	len = cur + len;
1381 	while (cur < len) {
1382 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1383 			/* fast path: set whole word at once */
1384 			addr = bm + (cur >> 3);
1385 			*addr = 0xffffffff;
1386 			cur += 32;
1387 			continue;
1388 		}
1389 		mb_set_bit(cur, bm);
1390 		cur++;
1391 	}
1392 }
1393 
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1394 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1395 {
1396 	if (mb_test_bit(*bit + side, bitmap)) {
1397 		mb_clear_bit(*bit, bitmap);
1398 		(*bit) -= side;
1399 		return 1;
1400 	}
1401 	else {
1402 		(*bit) += side;
1403 		mb_set_bit(*bit, bitmap);
1404 		return -1;
1405 	}
1406 }
1407 
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1408 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1409 {
1410 	int max;
1411 	int order = 1;
1412 	void *buddy = mb_find_buddy(e4b, order, &max);
1413 
1414 	while (buddy) {
1415 		void *buddy2;
1416 
1417 		/* Bits in range [first; last] are known to be set since
1418 		 * corresponding blocks were allocated. Bits in range
1419 		 * (first; last) will stay set because they form buddies on
1420 		 * upper layer. We just deal with borders if they don't
1421 		 * align with upper layer and then go up.
1422 		 * Releasing entire group is all about clearing
1423 		 * single bit of highest order buddy.
1424 		 */
1425 
1426 		/* Example:
1427 		 * ---------------------------------
1428 		 * |   1   |   1   |   1   |   1   |
1429 		 * ---------------------------------
1430 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1431 		 * ---------------------------------
1432 		 *   0   1   2   3   4   5   6   7
1433 		 *      \_____________________/
1434 		 *
1435 		 * Neither [1] nor [6] is aligned to above layer.
1436 		 * Left neighbour [0] is free, so mark it busy,
1437 		 * decrease bb_counters and extend range to
1438 		 * [0; 6]
1439 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1440 		 * mark [6] free, increase bb_counters and shrink range to
1441 		 * [0; 5].
1442 		 * Then shift range to [0; 2], go up and do the same.
1443 		 */
1444 
1445 
1446 		if (first & 1)
1447 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1448 		if (!(last & 1))
1449 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1450 		if (first > last)
1451 			break;
1452 		order++;
1453 
1454 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1455 			mb_clear_bits(buddy, first, last - first + 1);
1456 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1457 			break;
1458 		}
1459 		first >>= 1;
1460 		last >>= 1;
1461 		buddy = buddy2;
1462 	}
1463 }
1464 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1465 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1466 			   int first, int count)
1467 {
1468 	int left_is_free = 0;
1469 	int right_is_free = 0;
1470 	int block;
1471 	int last = first + count - 1;
1472 	struct super_block *sb = e4b->bd_sb;
1473 
1474 	if (WARN_ON(count == 0))
1475 		return;
1476 	BUG_ON(last >= (sb->s_blocksize << 3));
1477 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1478 	/* Don't bother if the block group is corrupt. */
1479 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1480 		return;
1481 
1482 	mb_check_buddy(e4b);
1483 	mb_free_blocks_double(inode, e4b, first, count);
1484 
1485 	this_cpu_inc(discard_pa_seq);
1486 	e4b->bd_info->bb_free += count;
1487 	if (first < e4b->bd_info->bb_first_free)
1488 		e4b->bd_info->bb_first_free = first;
1489 
1490 	/* access memory sequentially: check left neighbour,
1491 	 * clear range and then check right neighbour
1492 	 */
1493 	if (first != 0)
1494 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1495 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1496 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1497 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1498 
1499 	if (unlikely(block != -1)) {
1500 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1501 		ext4_fsblk_t blocknr;
1502 
1503 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1504 		blocknr += EXT4_C2B(sbi, block);
1505 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1506 			ext4_grp_locked_error(sb, e4b->bd_group,
1507 					      inode ? inode->i_ino : 0,
1508 					      blocknr,
1509 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1510 					      block);
1511 			ext4_mark_group_bitmap_corrupted(
1512 				sb, e4b->bd_group,
1513 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1514 		}
1515 		mb_regenerate_buddy(e4b);
1516 		goto done;
1517 	}
1518 
1519 	/* let's maintain fragments counter */
1520 	if (left_is_free && right_is_free)
1521 		e4b->bd_info->bb_fragments--;
1522 	else if (!left_is_free && !right_is_free)
1523 		e4b->bd_info->bb_fragments++;
1524 
1525 	/* buddy[0] == bd_bitmap is a special case, so handle
1526 	 * it right away and let mb_buddy_mark_free stay free of
1527 	 * zero order checks.
1528 	 * Check if neighbours are to be coaleasced,
1529 	 * adjust bitmap bb_counters and borders appropriately.
1530 	 */
1531 	if (first & 1) {
1532 		first += !left_is_free;
1533 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1534 	}
1535 	if (!(last & 1)) {
1536 		last -= !right_is_free;
1537 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1538 	}
1539 
1540 	if (first <= last)
1541 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1542 
1543 done:
1544 	mb_set_largest_free_order(sb, e4b->bd_info);
1545 	mb_check_buddy(e4b);
1546 }
1547 
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1548 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1549 				int needed, struct ext4_free_extent *ex)
1550 {
1551 	int next = block;
1552 	int max, order;
1553 	void *buddy;
1554 
1555 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1556 	BUG_ON(ex == NULL);
1557 
1558 	buddy = mb_find_buddy(e4b, 0, &max);
1559 	BUG_ON(buddy == NULL);
1560 	BUG_ON(block >= max);
1561 	if (mb_test_bit(block, buddy)) {
1562 		ex->fe_len = 0;
1563 		ex->fe_start = 0;
1564 		ex->fe_group = 0;
1565 		return 0;
1566 	}
1567 
1568 	/* find actual order */
1569 	order = mb_find_order_for_block(e4b, block);
1570 	block = block >> order;
1571 
1572 	ex->fe_len = 1 << order;
1573 	ex->fe_start = block << order;
1574 	ex->fe_group = e4b->bd_group;
1575 
1576 	/* calc difference from given start */
1577 	next = next - ex->fe_start;
1578 	ex->fe_len -= next;
1579 	ex->fe_start += next;
1580 
1581 	while (needed > ex->fe_len &&
1582 	       mb_find_buddy(e4b, order, &max)) {
1583 
1584 		if (block + 1 >= max)
1585 			break;
1586 
1587 		next = (block + 1) * (1 << order);
1588 		if (mb_test_bit(next, e4b->bd_bitmap))
1589 			break;
1590 
1591 		order = mb_find_order_for_block(e4b, next);
1592 
1593 		block = next >> order;
1594 		ex->fe_len += 1 << order;
1595 	}
1596 
1597 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1598 		/* Should never happen! (but apparently sometimes does?!?) */
1599 		WARN_ON(1);
1600 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1601 			"corruption or bug in mb_find_extent "
1602 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1603 			block, order, needed, ex->fe_group, ex->fe_start,
1604 			ex->fe_len, ex->fe_logical);
1605 		ex->fe_len = 0;
1606 		ex->fe_start = 0;
1607 		ex->fe_group = 0;
1608 	}
1609 	return ex->fe_len;
1610 }
1611 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1612 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1613 {
1614 	int ord;
1615 	int mlen = 0;
1616 	int max = 0;
1617 	int cur;
1618 	int start = ex->fe_start;
1619 	int len = ex->fe_len;
1620 	unsigned ret = 0;
1621 	int len0 = len;
1622 	void *buddy;
1623 
1624 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1625 	BUG_ON(e4b->bd_group != ex->fe_group);
1626 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1627 	mb_check_buddy(e4b);
1628 	mb_mark_used_double(e4b, start, len);
1629 
1630 	this_cpu_inc(discard_pa_seq);
1631 	e4b->bd_info->bb_free -= len;
1632 	if (e4b->bd_info->bb_first_free == start)
1633 		e4b->bd_info->bb_first_free += len;
1634 
1635 	/* let's maintain fragments counter */
1636 	if (start != 0)
1637 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1638 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1639 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1640 	if (mlen && max)
1641 		e4b->bd_info->bb_fragments++;
1642 	else if (!mlen && !max)
1643 		e4b->bd_info->bb_fragments--;
1644 
1645 	/* let's maintain buddy itself */
1646 	while (len) {
1647 		ord = mb_find_order_for_block(e4b, start);
1648 
1649 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1650 			/* the whole chunk may be allocated at once! */
1651 			mlen = 1 << ord;
1652 			buddy = mb_find_buddy(e4b, ord, &max);
1653 			BUG_ON((start >> ord) >= max);
1654 			mb_set_bit(start >> ord, buddy);
1655 			e4b->bd_info->bb_counters[ord]--;
1656 			start += mlen;
1657 			len -= mlen;
1658 			BUG_ON(len < 0);
1659 			continue;
1660 		}
1661 
1662 		/* store for history */
1663 		if (ret == 0)
1664 			ret = len | (ord << 16);
1665 
1666 		/* we have to split large buddy */
1667 		BUG_ON(ord <= 0);
1668 		buddy = mb_find_buddy(e4b, ord, &max);
1669 		mb_set_bit(start >> ord, buddy);
1670 		e4b->bd_info->bb_counters[ord]--;
1671 
1672 		ord--;
1673 		cur = (start >> ord) & ~1U;
1674 		buddy = mb_find_buddy(e4b, ord, &max);
1675 		mb_clear_bit(cur, buddy);
1676 		mb_clear_bit(cur + 1, buddy);
1677 		e4b->bd_info->bb_counters[ord]++;
1678 		e4b->bd_info->bb_counters[ord]++;
1679 	}
1680 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1681 
1682 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1683 	mb_check_buddy(e4b);
1684 
1685 	return ret;
1686 }
1687 
1688 /*
1689  * Must be called under group lock!
1690  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1691 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1692 					struct ext4_buddy *e4b)
1693 {
1694 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1695 	int ret;
1696 
1697 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1698 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1699 
1700 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1701 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1702 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1703 
1704 	/* preallocation can change ac_b_ex, thus we store actually
1705 	 * allocated blocks for history */
1706 	ac->ac_f_ex = ac->ac_b_ex;
1707 
1708 	ac->ac_status = AC_STATUS_FOUND;
1709 	ac->ac_tail = ret & 0xffff;
1710 	ac->ac_buddy = ret >> 16;
1711 
1712 	/*
1713 	 * take the page reference. We want the page to be pinned
1714 	 * so that we don't get a ext4_mb_init_cache_call for this
1715 	 * group until we update the bitmap. That would mean we
1716 	 * double allocate blocks. The reference is dropped
1717 	 * in ext4_mb_release_context
1718 	 */
1719 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1720 	get_page(ac->ac_bitmap_page);
1721 	ac->ac_buddy_page = e4b->bd_buddy_page;
1722 	get_page(ac->ac_buddy_page);
1723 	/* store last allocated for subsequent stream allocation */
1724 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1725 		spin_lock(&sbi->s_md_lock);
1726 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1727 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1728 		spin_unlock(&sbi->s_md_lock);
1729 	}
1730 	/*
1731 	 * As we've just preallocated more space than
1732 	 * user requested originally, we store allocated
1733 	 * space in a special descriptor.
1734 	 */
1735 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1736 		ext4_mb_new_preallocation(ac);
1737 
1738 }
1739 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1740 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1741 					struct ext4_buddy *e4b,
1742 					int finish_group)
1743 {
1744 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1745 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1746 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1747 	struct ext4_free_extent ex;
1748 	int max;
1749 
1750 	if (ac->ac_status == AC_STATUS_FOUND)
1751 		return;
1752 	/*
1753 	 * We don't want to scan for a whole year
1754 	 */
1755 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1756 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1757 		ac->ac_status = AC_STATUS_BREAK;
1758 		return;
1759 	}
1760 
1761 	/*
1762 	 * Haven't found good chunk so far, let's continue
1763 	 */
1764 	if (bex->fe_len < gex->fe_len)
1765 		return;
1766 
1767 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1768 			&& bex->fe_group == e4b->bd_group) {
1769 		/* recheck chunk's availability - we don't know
1770 		 * when it was found (within this lock-unlock
1771 		 * period or not) */
1772 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1773 		if (max >= gex->fe_len) {
1774 			ext4_mb_use_best_found(ac, e4b);
1775 			return;
1776 		}
1777 	}
1778 }
1779 
1780 /*
1781  * The routine checks whether found extent is good enough. If it is,
1782  * then the extent gets marked used and flag is set to the context
1783  * to stop scanning. Otherwise, the extent is compared with the
1784  * previous found extent and if new one is better, then it's stored
1785  * in the context. Later, the best found extent will be used, if
1786  * mballoc can't find good enough extent.
1787  *
1788  * FIXME: real allocation policy is to be designed yet!
1789  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1790 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1791 					struct ext4_free_extent *ex,
1792 					struct ext4_buddy *e4b)
1793 {
1794 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1795 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1796 
1797 	BUG_ON(ex->fe_len <= 0);
1798 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1799 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1800 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1801 
1802 	ac->ac_found++;
1803 
1804 	/*
1805 	 * The special case - take what you catch first
1806 	 */
1807 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1808 		*bex = *ex;
1809 		ext4_mb_use_best_found(ac, e4b);
1810 		return;
1811 	}
1812 
1813 	/*
1814 	 * Let's check whether the chuck is good enough
1815 	 */
1816 	if (ex->fe_len == gex->fe_len) {
1817 		*bex = *ex;
1818 		ext4_mb_use_best_found(ac, e4b);
1819 		return;
1820 	}
1821 
1822 	/*
1823 	 * If this is first found extent, just store it in the context
1824 	 */
1825 	if (bex->fe_len == 0) {
1826 		*bex = *ex;
1827 		return;
1828 	}
1829 
1830 	/*
1831 	 * If new found extent is better, store it in the context
1832 	 */
1833 	if (bex->fe_len < gex->fe_len) {
1834 		/* if the request isn't satisfied, any found extent
1835 		 * larger than previous best one is better */
1836 		if (ex->fe_len > bex->fe_len)
1837 			*bex = *ex;
1838 	} else if (ex->fe_len > gex->fe_len) {
1839 		/* if the request is satisfied, then we try to find
1840 		 * an extent that still satisfy the request, but is
1841 		 * smaller than previous one */
1842 		if (ex->fe_len < bex->fe_len)
1843 			*bex = *ex;
1844 	}
1845 
1846 	ext4_mb_check_limits(ac, e4b, 0);
1847 }
1848 
1849 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1850 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1851 					struct ext4_buddy *e4b)
1852 {
1853 	struct ext4_free_extent ex = ac->ac_b_ex;
1854 	ext4_group_t group = ex.fe_group;
1855 	int max;
1856 	int err;
1857 
1858 	BUG_ON(ex.fe_len <= 0);
1859 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1860 	if (err)
1861 		return err;
1862 
1863 	ext4_lock_group(ac->ac_sb, group);
1864 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1865 
1866 	if (max > 0) {
1867 		ac->ac_b_ex = ex;
1868 		ext4_mb_use_best_found(ac, e4b);
1869 	}
1870 
1871 	ext4_unlock_group(ac->ac_sb, group);
1872 	ext4_mb_unload_buddy(e4b);
1873 
1874 	return 0;
1875 }
1876 
1877 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1878 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1879 				struct ext4_buddy *e4b)
1880 {
1881 	ext4_group_t group = ac->ac_g_ex.fe_group;
1882 	int max;
1883 	int err;
1884 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1885 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1886 	struct ext4_free_extent ex;
1887 
1888 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1889 		return 0;
1890 	if (grp->bb_free == 0)
1891 		return 0;
1892 
1893 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1894 	if (err)
1895 		return err;
1896 
1897 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1898 		ext4_mb_unload_buddy(e4b);
1899 		return 0;
1900 	}
1901 
1902 	ext4_lock_group(ac->ac_sb, group);
1903 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1904 			     ac->ac_g_ex.fe_len, &ex);
1905 	ex.fe_logical = 0xDEADFA11; /* debug value */
1906 
1907 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1908 		ext4_fsblk_t start;
1909 
1910 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1911 			ex.fe_start;
1912 		/* use do_div to get remainder (would be 64-bit modulo) */
1913 		if (do_div(start, sbi->s_stripe) == 0) {
1914 			ac->ac_found++;
1915 			ac->ac_b_ex = ex;
1916 			ext4_mb_use_best_found(ac, e4b);
1917 		}
1918 	} else if (max >= ac->ac_g_ex.fe_len) {
1919 		BUG_ON(ex.fe_len <= 0);
1920 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1921 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1922 		ac->ac_found++;
1923 		ac->ac_b_ex = ex;
1924 		ext4_mb_use_best_found(ac, e4b);
1925 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1926 		/* Sometimes, caller may want to merge even small
1927 		 * number of blocks to an existing extent */
1928 		BUG_ON(ex.fe_len <= 0);
1929 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1930 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1931 		ac->ac_found++;
1932 		ac->ac_b_ex = ex;
1933 		ext4_mb_use_best_found(ac, e4b);
1934 	}
1935 	ext4_unlock_group(ac->ac_sb, group);
1936 	ext4_mb_unload_buddy(e4b);
1937 
1938 	return 0;
1939 }
1940 
1941 /*
1942  * The routine scans buddy structures (not bitmap!) from given order
1943  * to max order and tries to find big enough chunk to satisfy the req
1944  */
1945 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1946 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1947 					struct ext4_buddy *e4b)
1948 {
1949 	struct super_block *sb = ac->ac_sb;
1950 	struct ext4_group_info *grp = e4b->bd_info;
1951 	void *buddy;
1952 	int i;
1953 	int k;
1954 	int max;
1955 
1956 	BUG_ON(ac->ac_2order <= 0);
1957 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1958 		if (grp->bb_counters[i] == 0)
1959 			continue;
1960 
1961 		buddy = mb_find_buddy(e4b, i, &max);
1962 		BUG_ON(buddy == NULL);
1963 
1964 		k = mb_find_next_zero_bit(buddy, max, 0);
1965 		if (k >= max) {
1966 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1967 				"%d free clusters of order %d. But found 0",
1968 				grp->bb_counters[i], i);
1969 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1970 					 e4b->bd_group,
1971 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1972 			break;
1973 		}
1974 		ac->ac_found++;
1975 
1976 		ac->ac_b_ex.fe_len = 1 << i;
1977 		ac->ac_b_ex.fe_start = k << i;
1978 		ac->ac_b_ex.fe_group = e4b->bd_group;
1979 
1980 		ext4_mb_use_best_found(ac, e4b);
1981 
1982 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1983 
1984 		if (EXT4_SB(sb)->s_mb_stats)
1985 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1986 
1987 		break;
1988 	}
1989 }
1990 
1991 /*
1992  * The routine scans the group and measures all found extents.
1993  * In order to optimize scanning, caller must pass number of
1994  * free blocks in the group, so the routine can know upper limit.
1995  */
1996 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1997 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1998 					struct ext4_buddy *e4b)
1999 {
2000 	struct super_block *sb = ac->ac_sb;
2001 	void *bitmap = e4b->bd_bitmap;
2002 	struct ext4_free_extent ex;
2003 	int i;
2004 	int free;
2005 
2006 	free = e4b->bd_info->bb_free;
2007 	if (WARN_ON(free <= 0))
2008 		return;
2009 
2010 	i = e4b->bd_info->bb_first_free;
2011 
2012 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2013 		i = mb_find_next_zero_bit(bitmap,
2014 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2015 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2016 			/*
2017 			 * IF we have corrupt bitmap, we won't find any
2018 			 * free blocks even though group info says we
2019 			 * have free blocks
2020 			 */
2021 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2022 					"%d free clusters as per "
2023 					"group info. But bitmap says 0",
2024 					free);
2025 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2026 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2027 			break;
2028 		}
2029 
2030 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2031 		if (WARN_ON(ex.fe_len <= 0))
2032 			break;
2033 		if (free < ex.fe_len) {
2034 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2035 					"%d free clusters as per "
2036 					"group info. But got %d blocks",
2037 					free, ex.fe_len);
2038 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2039 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2040 			/*
2041 			 * The number of free blocks differs. This mostly
2042 			 * indicate that the bitmap is corrupt. So exit
2043 			 * without claiming the space.
2044 			 */
2045 			break;
2046 		}
2047 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2048 		ext4_mb_measure_extent(ac, &ex, e4b);
2049 
2050 		i += ex.fe_len;
2051 		free -= ex.fe_len;
2052 	}
2053 
2054 	ext4_mb_check_limits(ac, e4b, 1);
2055 }
2056 
2057 /*
2058  * This is a special case for storages like raid5
2059  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2060  */
2061 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2062 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2063 				 struct ext4_buddy *e4b)
2064 {
2065 	struct super_block *sb = ac->ac_sb;
2066 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2067 	void *bitmap = e4b->bd_bitmap;
2068 	struct ext4_free_extent ex;
2069 	ext4_fsblk_t first_group_block;
2070 	ext4_fsblk_t a;
2071 	ext4_grpblk_t i;
2072 	int max;
2073 
2074 	BUG_ON(sbi->s_stripe == 0);
2075 
2076 	/* find first stripe-aligned block in group */
2077 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2078 
2079 	a = first_group_block + sbi->s_stripe - 1;
2080 	do_div(a, sbi->s_stripe);
2081 	i = (a * sbi->s_stripe) - first_group_block;
2082 
2083 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2084 		if (!mb_test_bit(i, bitmap)) {
2085 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2086 			if (max >= sbi->s_stripe) {
2087 				ac->ac_found++;
2088 				ex.fe_logical = 0xDEADF00D; /* debug value */
2089 				ac->ac_b_ex = ex;
2090 				ext4_mb_use_best_found(ac, e4b);
2091 				break;
2092 			}
2093 		}
2094 		i += sbi->s_stripe;
2095 	}
2096 }
2097 
2098 /*
2099  * This is also called BEFORE we load the buddy bitmap.
2100  * Returns either 1 or 0 indicating that the group is either suitable
2101  * for the allocation or not.
2102  */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2103 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2104 				ext4_group_t group, int cr)
2105 {
2106 	ext4_grpblk_t free, fragments;
2107 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2108 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2109 
2110 	BUG_ON(cr < 0 || cr >= 4);
2111 
2112 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2113 		return false;
2114 
2115 	free = grp->bb_free;
2116 	if (free == 0)
2117 		return false;
2118 
2119 	fragments = grp->bb_fragments;
2120 	if (fragments == 0)
2121 		return false;
2122 
2123 	switch (cr) {
2124 	case 0:
2125 		BUG_ON(ac->ac_2order == 0);
2126 
2127 		/* Avoid using the first bg of a flexgroup for data files */
2128 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2129 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2130 		    ((group % flex_size) == 0))
2131 			return false;
2132 
2133 		if (free < ac->ac_g_ex.fe_len)
2134 			return false;
2135 
2136 		if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
2137 			return true;
2138 
2139 		if (grp->bb_largest_free_order < ac->ac_2order)
2140 			return false;
2141 
2142 		return true;
2143 	case 1:
2144 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2145 			return true;
2146 		break;
2147 	case 2:
2148 		if (free >= ac->ac_g_ex.fe_len)
2149 			return true;
2150 		break;
2151 	case 3:
2152 		return true;
2153 	default:
2154 		BUG();
2155 	}
2156 
2157 	return false;
2158 }
2159 
2160 /*
2161  * This could return negative error code if something goes wrong
2162  * during ext4_mb_init_group(). This should not be called with
2163  * ext4_lock_group() held.
2164  */
ext4_mb_good_group_nolock(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2165 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2166 				     ext4_group_t group, int cr)
2167 {
2168 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2169 	struct super_block *sb = ac->ac_sb;
2170 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2171 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2172 	ext4_grpblk_t free;
2173 	int ret = 0;
2174 
2175 	if (should_lock)
2176 		ext4_lock_group(sb, group);
2177 	free = grp->bb_free;
2178 	if (free == 0)
2179 		goto out;
2180 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2181 		goto out;
2182 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2183 		goto out;
2184 	if (should_lock)
2185 		ext4_unlock_group(sb, group);
2186 
2187 	/* We only do this if the grp has never been initialized */
2188 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2189 		struct ext4_group_desc *gdp =
2190 			ext4_get_group_desc(sb, group, NULL);
2191 		int ret;
2192 
2193 		/* cr=0/1 is a very optimistic search to find large
2194 		 * good chunks almost for free.  If buddy data is not
2195 		 * ready, then this optimization makes no sense.  But
2196 		 * we never skip the first block group in a flex_bg,
2197 		 * since this gets used for metadata block allocation,
2198 		 * and we want to make sure we locate metadata blocks
2199 		 * in the first block group in the flex_bg if possible.
2200 		 */
2201 		if (cr < 2 &&
2202 		    (!sbi->s_log_groups_per_flex ||
2203 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2204 		    !(ext4_has_group_desc_csum(sb) &&
2205 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2206 			return 0;
2207 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2208 		if (ret)
2209 			return ret;
2210 	}
2211 
2212 	if (should_lock)
2213 		ext4_lock_group(sb, group);
2214 	ret = ext4_mb_good_group(ac, group, cr);
2215 out:
2216 	if (should_lock)
2217 		ext4_unlock_group(sb, group);
2218 	return ret;
2219 }
2220 
2221 /*
2222  * Start prefetching @nr block bitmaps starting at @group.
2223  * Return the next group which needs to be prefetched.
2224  */
ext4_mb_prefetch(struct super_block * sb,ext4_group_t group,unsigned int nr,int * cnt)2225 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2226 			      unsigned int nr, int *cnt)
2227 {
2228 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2229 	struct buffer_head *bh;
2230 	struct blk_plug plug;
2231 
2232 	blk_start_plug(&plug);
2233 	while (nr-- > 0) {
2234 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2235 								  NULL);
2236 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2237 
2238 		/*
2239 		 * Prefetch block groups with free blocks; but don't
2240 		 * bother if it is marked uninitialized on disk, since
2241 		 * it won't require I/O to read.  Also only try to
2242 		 * prefetch once, so we avoid getblk() call, which can
2243 		 * be expensive.
2244 		 */
2245 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2246 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2247 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2248 		    !(ext4_has_group_desc_csum(sb) &&
2249 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2250 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2251 			if (bh && !IS_ERR(bh)) {
2252 				if (!buffer_uptodate(bh) && cnt)
2253 					(*cnt)++;
2254 				brelse(bh);
2255 			}
2256 		}
2257 		if (++group >= ngroups)
2258 			group = 0;
2259 	}
2260 	blk_finish_plug(&plug);
2261 	return group;
2262 }
2263 
2264 /*
2265  * Prefetching reads the block bitmap into the buffer cache; but we
2266  * need to make sure that the buddy bitmap in the page cache has been
2267  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2268  * is not yet completed, or indeed if it was not initiated by
2269  * ext4_mb_prefetch did not start the I/O.
2270  *
2271  * TODO: We should actually kick off the buddy bitmap setup in a work
2272  * queue when the buffer I/O is completed, so that we don't block
2273  * waiting for the block allocation bitmap read to finish when
2274  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2275  */
ext4_mb_prefetch_fini(struct super_block * sb,ext4_group_t group,unsigned int nr)2276 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2277 			   unsigned int nr)
2278 {
2279 	while (nr-- > 0) {
2280 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2281 								  NULL);
2282 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2283 
2284 		if (!group)
2285 			group = ext4_get_groups_count(sb);
2286 		group--;
2287 		grp = ext4_get_group_info(sb, group);
2288 
2289 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2290 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2291 		    !(ext4_has_group_desc_csum(sb) &&
2292 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2293 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2294 				break;
2295 		}
2296 	}
2297 }
2298 
2299 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2300 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2301 {
2302 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2303 	int cr = -1;
2304 	int err = 0, first_err = 0;
2305 	unsigned int nr = 0, prefetch_ios = 0;
2306 	struct ext4_sb_info *sbi;
2307 	struct super_block *sb;
2308 	struct ext4_buddy e4b;
2309 	int lost;
2310 
2311 	sb = ac->ac_sb;
2312 	sbi = EXT4_SB(sb);
2313 	ngroups = ext4_get_groups_count(sb);
2314 	/* non-extent files are limited to low blocks/groups */
2315 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2316 		ngroups = sbi->s_blockfile_groups;
2317 
2318 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2319 
2320 	/* first, try the goal */
2321 	err = ext4_mb_find_by_goal(ac, &e4b);
2322 	if (err || ac->ac_status == AC_STATUS_FOUND)
2323 		goto out;
2324 
2325 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2326 		goto out;
2327 
2328 	/*
2329 	 * ac->ac_2order is set only if the fe_len is a power of 2
2330 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2331 	 * try exact allocation using buddy.
2332 	 */
2333 	i = fls(ac->ac_g_ex.fe_len);
2334 	ac->ac_2order = 0;
2335 	/*
2336 	 * We search using buddy data only if the order of the request
2337 	 * is greater than equal to the sbi_s_mb_order2_reqs
2338 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2339 	 * We also support searching for power-of-two requests only for
2340 	 * requests upto maximum buddy size we have constructed.
2341 	 */
2342 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2343 		/*
2344 		 * This should tell if fe_len is exactly power of 2
2345 		 */
2346 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2347 			ac->ac_2order = array_index_nospec(i - 1,
2348 							   sb->s_blocksize_bits + 2);
2349 	}
2350 
2351 	/* if stream allocation is enabled, use global goal */
2352 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2353 		/* TBD: may be hot point */
2354 		spin_lock(&sbi->s_md_lock);
2355 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2356 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2357 		spin_unlock(&sbi->s_md_lock);
2358 	}
2359 
2360 	/* Let's just scan groups to find more-less suitable blocks */
2361 	cr = ac->ac_2order ? 0 : 1;
2362 	/*
2363 	 * cr == 0 try to get exact allocation,
2364 	 * cr == 3  try to get anything
2365 	 */
2366 repeat:
2367 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2368 		ac->ac_criteria = cr;
2369 		/*
2370 		 * searching for the right group start
2371 		 * from the goal value specified
2372 		 */
2373 		group = ac->ac_g_ex.fe_group;
2374 		prefetch_grp = group;
2375 
2376 		for (i = 0; i < ngroups; group++, i++) {
2377 			int ret = 0;
2378 			cond_resched();
2379 			/*
2380 			 * Artificially restricted ngroups for non-extent
2381 			 * files makes group > ngroups possible on first loop.
2382 			 */
2383 			if (group >= ngroups)
2384 				group = 0;
2385 
2386 			/*
2387 			 * Batch reads of the block allocation bitmaps
2388 			 * to get multiple READs in flight; limit
2389 			 * prefetching at cr=0/1, otherwise mballoc can
2390 			 * spend a lot of time loading imperfect groups
2391 			 */
2392 			if ((prefetch_grp == group) &&
2393 			    (cr > 1 ||
2394 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2395 				unsigned int curr_ios = prefetch_ios;
2396 
2397 				nr = sbi->s_mb_prefetch;
2398 				if (ext4_has_feature_flex_bg(sb)) {
2399 					nr = 1 << sbi->s_log_groups_per_flex;
2400 					nr -= group & (nr - 1);
2401 					nr = min(nr, sbi->s_mb_prefetch);
2402 				}
2403 				prefetch_grp = ext4_mb_prefetch(sb, group,
2404 							nr, &prefetch_ios);
2405 				if (prefetch_ios == curr_ios)
2406 					nr = 0;
2407 			}
2408 
2409 			/* This now checks without needing the buddy page */
2410 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2411 			if (ret <= 0) {
2412 				if (!first_err)
2413 					first_err = ret;
2414 				continue;
2415 			}
2416 
2417 			err = ext4_mb_load_buddy(sb, group, &e4b);
2418 			if (err)
2419 				goto out;
2420 
2421 			ext4_lock_group(sb, group);
2422 
2423 			/*
2424 			 * We need to check again after locking the
2425 			 * block group
2426 			 */
2427 			ret = ext4_mb_good_group(ac, group, cr);
2428 			if (ret == 0) {
2429 				ext4_unlock_group(sb, group);
2430 				ext4_mb_unload_buddy(&e4b);
2431 				continue;
2432 			}
2433 
2434 			ac->ac_groups_scanned++;
2435 			if (cr == 0)
2436 				ext4_mb_simple_scan_group(ac, &e4b);
2437 			else if (cr == 1 && sbi->s_stripe &&
2438 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2439 				ext4_mb_scan_aligned(ac, &e4b);
2440 			else
2441 				ext4_mb_complex_scan_group(ac, &e4b);
2442 
2443 			ext4_unlock_group(sb, group);
2444 			ext4_mb_unload_buddy(&e4b);
2445 
2446 			if (ac->ac_status != AC_STATUS_CONTINUE)
2447 				break;
2448 		}
2449 	}
2450 
2451 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2452 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2453 		/*
2454 		 * We've been searching too long. Let's try to allocate
2455 		 * the best chunk we've found so far
2456 		 */
2457 		ext4_mb_try_best_found(ac, &e4b);
2458 		if (ac->ac_status != AC_STATUS_FOUND) {
2459 			/*
2460 			 * Someone more lucky has already allocated it.
2461 			 * The only thing we can do is just take first
2462 			 * found block(s)
2463 			 */
2464 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2465 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2466 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2467 				 ac->ac_b_ex.fe_len, lost);
2468 
2469 			ac->ac_b_ex.fe_group = 0;
2470 			ac->ac_b_ex.fe_start = 0;
2471 			ac->ac_b_ex.fe_len = 0;
2472 			ac->ac_status = AC_STATUS_CONTINUE;
2473 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2474 			cr = 3;
2475 			goto repeat;
2476 		}
2477 	}
2478 out:
2479 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2480 		err = first_err;
2481 
2482 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2483 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2484 		 ac->ac_flags, cr, err);
2485 
2486 	if (nr)
2487 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2488 
2489 	return err;
2490 }
2491 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2492 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2493 {
2494 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2495 	ext4_group_t group;
2496 
2497 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2498 		return NULL;
2499 	group = *pos + 1;
2500 	return (void *) ((unsigned long) group);
2501 }
2502 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2503 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2504 {
2505 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2506 	ext4_group_t group;
2507 
2508 	++*pos;
2509 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2510 		return NULL;
2511 	group = *pos + 1;
2512 	return (void *) ((unsigned long) group);
2513 }
2514 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2515 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2516 {
2517 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2518 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2519 	int i;
2520 	int err, buddy_loaded = 0;
2521 	struct ext4_buddy e4b;
2522 	struct ext4_group_info *grinfo;
2523 	unsigned char blocksize_bits = min_t(unsigned char,
2524 					     sb->s_blocksize_bits,
2525 					     EXT4_MAX_BLOCK_LOG_SIZE);
2526 	struct sg {
2527 		struct ext4_group_info info;
2528 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2529 	} sg;
2530 
2531 	group--;
2532 	if (group == 0)
2533 		seq_puts(seq, "#group: free  frags first ["
2534 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2535 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2536 
2537 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2538 		sizeof(struct ext4_group_info);
2539 
2540 	grinfo = ext4_get_group_info(sb, group);
2541 	/* Load the group info in memory only if not already loaded. */
2542 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2543 		err = ext4_mb_load_buddy(sb, group, &e4b);
2544 		if (err) {
2545 			seq_printf(seq, "#%-5u: I/O error\n", group);
2546 			return 0;
2547 		}
2548 		buddy_loaded = 1;
2549 	}
2550 
2551 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2552 
2553 	if (buddy_loaded)
2554 		ext4_mb_unload_buddy(&e4b);
2555 
2556 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2557 			sg.info.bb_fragments, sg.info.bb_first_free);
2558 	for (i = 0; i <= 13; i++)
2559 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2560 				sg.info.bb_counters[i] : 0);
2561 	seq_puts(seq, " ]\n");
2562 
2563 	return 0;
2564 }
2565 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2566 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2567 {
2568 }
2569 
2570 const struct seq_operations ext4_mb_seq_groups_ops = {
2571 	.start  = ext4_mb_seq_groups_start,
2572 	.next   = ext4_mb_seq_groups_next,
2573 	.stop   = ext4_mb_seq_groups_stop,
2574 	.show   = ext4_mb_seq_groups_show,
2575 };
2576 
get_groupinfo_cache(int blocksize_bits)2577 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2578 {
2579 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2580 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2581 
2582 	BUG_ON(!cachep);
2583 	return cachep;
2584 }
2585 
2586 /*
2587  * Allocate the top-level s_group_info array for the specified number
2588  * of groups
2589  */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2590 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2591 {
2592 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2593 	unsigned size;
2594 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2595 
2596 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2597 		EXT4_DESC_PER_BLOCK_BITS(sb);
2598 	if (size <= sbi->s_group_info_size)
2599 		return 0;
2600 
2601 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2602 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2603 	if (!new_groupinfo) {
2604 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2605 		return -ENOMEM;
2606 	}
2607 	rcu_read_lock();
2608 	old_groupinfo = rcu_dereference(sbi->s_group_info);
2609 	if (old_groupinfo)
2610 		memcpy(new_groupinfo, old_groupinfo,
2611 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2612 	rcu_read_unlock();
2613 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2614 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2615 	if (old_groupinfo)
2616 		ext4_kvfree_array_rcu(old_groupinfo);
2617 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2618 		   sbi->s_group_info_size);
2619 	return 0;
2620 }
2621 
2622 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2623 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2624 			  struct ext4_group_desc *desc)
2625 {
2626 	int i;
2627 	int metalen = 0;
2628 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2629 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2630 	struct ext4_group_info **meta_group_info;
2631 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2632 
2633 	/*
2634 	 * First check if this group is the first of a reserved block.
2635 	 * If it's true, we have to allocate a new table of pointers
2636 	 * to ext4_group_info structures
2637 	 */
2638 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2639 		metalen = sizeof(*meta_group_info) <<
2640 			EXT4_DESC_PER_BLOCK_BITS(sb);
2641 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2642 		if (meta_group_info == NULL) {
2643 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2644 				 "for a buddy group");
2645 			goto exit_meta_group_info;
2646 		}
2647 		rcu_read_lock();
2648 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2649 		rcu_read_unlock();
2650 	}
2651 
2652 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2653 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2654 
2655 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2656 	if (meta_group_info[i] == NULL) {
2657 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2658 		goto exit_group_info;
2659 	}
2660 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2661 		&(meta_group_info[i]->bb_state));
2662 
2663 	/*
2664 	 * initialize bb_free to be able to skip
2665 	 * empty groups without initialization
2666 	 */
2667 	if (ext4_has_group_desc_csum(sb) &&
2668 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2669 		meta_group_info[i]->bb_free =
2670 			ext4_free_clusters_after_init(sb, group, desc);
2671 	} else {
2672 		meta_group_info[i]->bb_free =
2673 			ext4_free_group_clusters(sb, desc);
2674 	}
2675 
2676 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2677 	init_rwsem(&meta_group_info[i]->alloc_sem);
2678 	meta_group_info[i]->bb_free_root = RB_ROOT;
2679 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2680 
2681 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2682 	return 0;
2683 
2684 exit_group_info:
2685 	/* If a meta_group_info table has been allocated, release it now */
2686 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2687 		struct ext4_group_info ***group_info;
2688 
2689 		rcu_read_lock();
2690 		group_info = rcu_dereference(sbi->s_group_info);
2691 		kfree(group_info[idx]);
2692 		group_info[idx] = NULL;
2693 		rcu_read_unlock();
2694 	}
2695 exit_meta_group_info:
2696 	return -ENOMEM;
2697 } /* ext4_mb_add_groupinfo */
2698 
ext4_mb_init_backend(struct super_block * sb)2699 static int ext4_mb_init_backend(struct super_block *sb)
2700 {
2701 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2702 	ext4_group_t i;
2703 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2704 	int err;
2705 	struct ext4_group_desc *desc;
2706 	struct ext4_group_info ***group_info;
2707 	struct kmem_cache *cachep;
2708 
2709 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2710 	if (err)
2711 		return err;
2712 
2713 	sbi->s_buddy_cache = new_inode(sb);
2714 	if (sbi->s_buddy_cache == NULL) {
2715 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2716 		goto err_freesgi;
2717 	}
2718 	/* To avoid potentially colliding with an valid on-disk inode number,
2719 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2720 	 * not in the inode hash, so it should never be found by iget(), but
2721 	 * this will avoid confusion if it ever shows up during debugging. */
2722 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2723 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2724 	for (i = 0; i < ngroups; i++) {
2725 		cond_resched();
2726 		desc = ext4_get_group_desc(sb, i, NULL);
2727 		if (desc == NULL) {
2728 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2729 			goto err_freebuddy;
2730 		}
2731 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2732 			goto err_freebuddy;
2733 	}
2734 
2735 	if (ext4_has_feature_flex_bg(sb)) {
2736 		/* a single flex group is supposed to be read by a single IO.
2737 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
2738 		 * unsigned integer, so the maximum shift is 32.
2739 		 */
2740 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
2741 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
2742 			goto err_freebuddy;
2743 		}
2744 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
2745 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
2746 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
2747 	} else {
2748 		sbi->s_mb_prefetch = 32;
2749 	}
2750 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
2751 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
2752 	/* now many real IOs to prefetch within a single allocation at cr=0
2753 	 * given cr=0 is an CPU-related optimization we shouldn't try to
2754 	 * load too many groups, at some point we should start to use what
2755 	 * we've got in memory.
2756 	 * with an average random access time 5ms, it'd take a second to get
2757 	 * 200 groups (* N with flex_bg), so let's make this limit 4
2758 	 */
2759 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
2760 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
2761 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
2762 
2763 	return 0;
2764 
2765 err_freebuddy:
2766 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2767 	while (i-- > 0)
2768 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2769 	i = sbi->s_group_info_size;
2770 	rcu_read_lock();
2771 	group_info = rcu_dereference(sbi->s_group_info);
2772 	while (i-- > 0)
2773 		kfree(group_info[i]);
2774 	rcu_read_unlock();
2775 	iput(sbi->s_buddy_cache);
2776 err_freesgi:
2777 	rcu_read_lock();
2778 	kvfree(rcu_dereference(sbi->s_group_info));
2779 	rcu_read_unlock();
2780 	return -ENOMEM;
2781 }
2782 
ext4_groupinfo_destroy_slabs(void)2783 static void ext4_groupinfo_destroy_slabs(void)
2784 {
2785 	int i;
2786 
2787 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2788 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2789 		ext4_groupinfo_caches[i] = NULL;
2790 	}
2791 }
2792 
ext4_groupinfo_create_slab(size_t size)2793 static int ext4_groupinfo_create_slab(size_t size)
2794 {
2795 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2796 	int slab_size;
2797 	int blocksize_bits = order_base_2(size);
2798 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2799 	struct kmem_cache *cachep;
2800 
2801 	if (cache_index >= NR_GRPINFO_CACHES)
2802 		return -EINVAL;
2803 
2804 	if (unlikely(cache_index < 0))
2805 		cache_index = 0;
2806 
2807 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2808 	if (ext4_groupinfo_caches[cache_index]) {
2809 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2810 		return 0;	/* Already created */
2811 	}
2812 
2813 	slab_size = offsetof(struct ext4_group_info,
2814 				bb_counters[blocksize_bits + 2]);
2815 
2816 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2817 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2818 					NULL);
2819 
2820 	ext4_groupinfo_caches[cache_index] = cachep;
2821 
2822 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2823 	if (!cachep) {
2824 		printk(KERN_EMERG
2825 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2826 		return -ENOMEM;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
ext4_mb_init(struct super_block * sb)2832 int ext4_mb_init(struct super_block *sb)
2833 {
2834 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2835 	unsigned i, j;
2836 	unsigned offset, offset_incr;
2837 	unsigned max;
2838 	int ret;
2839 
2840 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2841 
2842 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2843 	if (sbi->s_mb_offsets == NULL) {
2844 		ret = -ENOMEM;
2845 		goto out;
2846 	}
2847 
2848 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2849 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2850 	if (sbi->s_mb_maxs == NULL) {
2851 		ret = -ENOMEM;
2852 		goto out;
2853 	}
2854 
2855 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2856 	if (ret < 0)
2857 		goto out;
2858 
2859 	/* order 0 is regular bitmap */
2860 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2861 	sbi->s_mb_offsets[0] = 0;
2862 
2863 	i = 1;
2864 	offset = 0;
2865 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2866 	max = sb->s_blocksize << 2;
2867 	do {
2868 		sbi->s_mb_offsets[i] = offset;
2869 		sbi->s_mb_maxs[i] = max;
2870 		offset += offset_incr;
2871 		offset_incr = offset_incr >> 1;
2872 		max = max >> 1;
2873 		i++;
2874 	} while (i <= sb->s_blocksize_bits + 1);
2875 
2876 	spin_lock_init(&sbi->s_md_lock);
2877 	spin_lock_init(&sbi->s_bal_lock);
2878 	sbi->s_mb_free_pending = 0;
2879 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2880 
2881 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2882 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2883 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2884 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2885 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2886 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
2887 	/*
2888 	 * The default group preallocation is 512, which for 4k block
2889 	 * sizes translates to 2 megabytes.  However for bigalloc file
2890 	 * systems, this is probably too big (i.e, if the cluster size
2891 	 * is 1 megabyte, then group preallocation size becomes half a
2892 	 * gigabyte!).  As a default, we will keep a two megabyte
2893 	 * group pralloc size for cluster sizes up to 64k, and after
2894 	 * that, we will force a minimum group preallocation size of
2895 	 * 32 clusters.  This translates to 8 megs when the cluster
2896 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2897 	 * which seems reasonable as a default.
2898 	 */
2899 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2900 				       sbi->s_cluster_bits, 32);
2901 	/*
2902 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2903 	 * to the lowest multiple of s_stripe which is bigger than
2904 	 * the s_mb_group_prealloc as determined above. We want
2905 	 * the preallocation size to be an exact multiple of the
2906 	 * RAID stripe size so that preallocations don't fragment
2907 	 * the stripes.
2908 	 */
2909 	if (sbi->s_stripe > 1) {
2910 		sbi->s_mb_group_prealloc = roundup(
2911 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2912 	}
2913 
2914 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2915 	if (sbi->s_locality_groups == NULL) {
2916 		ret = -ENOMEM;
2917 		goto out;
2918 	}
2919 	for_each_possible_cpu(i) {
2920 		struct ext4_locality_group *lg;
2921 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2922 		mutex_init(&lg->lg_mutex);
2923 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2924 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2925 		spin_lock_init(&lg->lg_prealloc_lock);
2926 	}
2927 
2928 	/* init file for buddy data */
2929 	ret = ext4_mb_init_backend(sb);
2930 	if (ret != 0)
2931 		goto out_free_locality_groups;
2932 
2933 	return 0;
2934 
2935 out_free_locality_groups:
2936 	free_percpu(sbi->s_locality_groups);
2937 	sbi->s_locality_groups = NULL;
2938 out:
2939 	kfree(sbi->s_mb_offsets);
2940 	sbi->s_mb_offsets = NULL;
2941 	kfree(sbi->s_mb_maxs);
2942 	sbi->s_mb_maxs = NULL;
2943 	return ret;
2944 }
2945 
2946 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2947 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2948 {
2949 	struct ext4_prealloc_space *pa;
2950 	struct list_head *cur, *tmp;
2951 	int count = 0;
2952 
2953 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2954 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2955 		list_del(&pa->pa_group_list);
2956 		count++;
2957 		kmem_cache_free(ext4_pspace_cachep, pa);
2958 	}
2959 	return count;
2960 }
2961 
ext4_mb_release(struct super_block * sb)2962 int ext4_mb_release(struct super_block *sb)
2963 {
2964 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2965 	ext4_group_t i;
2966 	int num_meta_group_infos;
2967 	struct ext4_group_info *grinfo, ***group_info;
2968 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2969 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2970 	int count;
2971 
2972 	if (sbi->s_group_info) {
2973 		for (i = 0; i < ngroups; i++) {
2974 			cond_resched();
2975 			grinfo = ext4_get_group_info(sb, i);
2976 			mb_group_bb_bitmap_free(grinfo);
2977 			ext4_lock_group(sb, i);
2978 			count = ext4_mb_cleanup_pa(grinfo);
2979 			if (count)
2980 				mb_debug(sb, "mballoc: %d PAs left\n",
2981 					 count);
2982 			ext4_unlock_group(sb, i);
2983 			kmem_cache_free(cachep, grinfo);
2984 		}
2985 		num_meta_group_infos = (ngroups +
2986 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2987 			EXT4_DESC_PER_BLOCK_BITS(sb);
2988 		rcu_read_lock();
2989 		group_info = rcu_dereference(sbi->s_group_info);
2990 		for (i = 0; i < num_meta_group_infos; i++)
2991 			kfree(group_info[i]);
2992 		kvfree(group_info);
2993 		rcu_read_unlock();
2994 	}
2995 	kfree(sbi->s_mb_offsets);
2996 	kfree(sbi->s_mb_maxs);
2997 	iput(sbi->s_buddy_cache);
2998 	if (sbi->s_mb_stats) {
2999 		ext4_msg(sb, KERN_INFO,
3000 		       "mballoc: %u blocks %u reqs (%u success)",
3001 				atomic_read(&sbi->s_bal_allocated),
3002 				atomic_read(&sbi->s_bal_reqs),
3003 				atomic_read(&sbi->s_bal_success));
3004 		ext4_msg(sb, KERN_INFO,
3005 		      "mballoc: %u extents scanned, %u goal hits, "
3006 				"%u 2^N hits, %u breaks, %u lost",
3007 				atomic_read(&sbi->s_bal_ex_scanned),
3008 				atomic_read(&sbi->s_bal_goals),
3009 				atomic_read(&sbi->s_bal_2orders),
3010 				atomic_read(&sbi->s_bal_breaks),
3011 				atomic_read(&sbi->s_mb_lost_chunks));
3012 		ext4_msg(sb, KERN_INFO,
3013 		       "mballoc: %lu generated and it took %Lu",
3014 				sbi->s_mb_buddies_generated,
3015 				sbi->s_mb_generation_time);
3016 		ext4_msg(sb, KERN_INFO,
3017 		       "mballoc: %u preallocated, %u discarded",
3018 				atomic_read(&sbi->s_mb_preallocated),
3019 				atomic_read(&sbi->s_mb_discarded));
3020 	}
3021 
3022 	free_percpu(sbi->s_locality_groups);
3023 
3024 	return 0;
3025 }
3026 
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)3027 static inline int ext4_issue_discard(struct super_block *sb,
3028 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3029 		struct bio **biop)
3030 {
3031 	ext4_fsblk_t discard_block;
3032 
3033 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3034 			 ext4_group_first_block_no(sb, block_group));
3035 	count = EXT4_C2B(EXT4_SB(sb), count);
3036 	trace_ext4_discard_blocks(sb,
3037 			(unsigned long long) discard_block, count);
3038 	if (biop) {
3039 		return __blkdev_issue_discard(sb->s_bdev,
3040 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3041 			(sector_t)count << (sb->s_blocksize_bits - 9),
3042 			GFP_NOFS, 0, biop);
3043 	} else
3044 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3045 }
3046 
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)3047 static void ext4_free_data_in_buddy(struct super_block *sb,
3048 				    struct ext4_free_data *entry)
3049 {
3050 	struct ext4_buddy e4b;
3051 	struct ext4_group_info *db;
3052 	int err, count = 0, count2 = 0;
3053 
3054 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3055 		 entry->efd_count, entry->efd_group, entry);
3056 
3057 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3058 	/* we expect to find existing buddy because it's pinned */
3059 	BUG_ON(err != 0);
3060 
3061 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3062 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3063 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3064 
3065 	db = e4b.bd_info;
3066 	/* there are blocks to put in buddy to make them really free */
3067 	count += entry->efd_count;
3068 	count2++;
3069 	ext4_lock_group(sb, entry->efd_group);
3070 	/* Take it out of per group rb tree */
3071 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3072 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3073 
3074 	/*
3075 	 * Clear the trimmed flag for the group so that the next
3076 	 * ext4_trim_fs can trim it.
3077 	 * If the volume is mounted with -o discard, online discard
3078 	 * is supported and the free blocks will be trimmed online.
3079 	 */
3080 	if (!test_opt(sb, DISCARD))
3081 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3082 
3083 	if (!db->bb_free_root.rb_node) {
3084 		/* No more items in the per group rb tree
3085 		 * balance refcounts from ext4_mb_free_metadata()
3086 		 */
3087 		put_page(e4b.bd_buddy_page);
3088 		put_page(e4b.bd_bitmap_page);
3089 	}
3090 	ext4_unlock_group(sb, entry->efd_group);
3091 	kmem_cache_free(ext4_free_data_cachep, entry);
3092 	ext4_mb_unload_buddy(&e4b);
3093 
3094 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3095 		 count2);
3096 }
3097 
3098 /*
3099  * This function is called by the jbd2 layer once the commit has finished,
3100  * so we know we can free the blocks that were released with that commit.
3101  */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)3102 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3103 {
3104 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 	struct ext4_free_data *entry, *tmp;
3106 	struct bio *discard_bio = NULL;
3107 	struct list_head freed_data_list;
3108 	struct list_head *cut_pos = NULL;
3109 	int err;
3110 
3111 	INIT_LIST_HEAD(&freed_data_list);
3112 
3113 	spin_lock(&sbi->s_md_lock);
3114 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3115 		if (entry->efd_tid != commit_tid)
3116 			break;
3117 		cut_pos = &entry->efd_list;
3118 	}
3119 	if (cut_pos)
3120 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3121 				  cut_pos);
3122 	spin_unlock(&sbi->s_md_lock);
3123 
3124 	if (test_opt(sb, DISCARD)) {
3125 		list_for_each_entry(entry, &freed_data_list, efd_list) {
3126 			err = ext4_issue_discard(sb, entry->efd_group,
3127 						 entry->efd_start_cluster,
3128 						 entry->efd_count,
3129 						 &discard_bio);
3130 			if (err && err != -EOPNOTSUPP) {
3131 				ext4_msg(sb, KERN_WARNING, "discard request in"
3132 					 " group:%d block:%d count:%d failed"
3133 					 " with %d", entry->efd_group,
3134 					 entry->efd_start_cluster,
3135 					 entry->efd_count, err);
3136 			} else if (err == -EOPNOTSUPP)
3137 				break;
3138 		}
3139 
3140 		if (discard_bio) {
3141 			submit_bio_wait(discard_bio);
3142 			bio_put(discard_bio);
3143 		}
3144 	}
3145 
3146 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3147 		ext4_free_data_in_buddy(sb, entry);
3148 }
3149 
ext4_init_mballoc(void)3150 int __init ext4_init_mballoc(void)
3151 {
3152 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3153 					SLAB_RECLAIM_ACCOUNT);
3154 	if (ext4_pspace_cachep == NULL)
3155 		goto out;
3156 
3157 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3158 				    SLAB_RECLAIM_ACCOUNT);
3159 	if (ext4_ac_cachep == NULL)
3160 		goto out_pa_free;
3161 
3162 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3163 					   SLAB_RECLAIM_ACCOUNT);
3164 	if (ext4_free_data_cachep == NULL)
3165 		goto out_ac_free;
3166 
3167 	return 0;
3168 
3169 out_ac_free:
3170 	kmem_cache_destroy(ext4_ac_cachep);
3171 out_pa_free:
3172 	kmem_cache_destroy(ext4_pspace_cachep);
3173 out:
3174 	return -ENOMEM;
3175 }
3176 
ext4_exit_mballoc(void)3177 void ext4_exit_mballoc(void)
3178 {
3179 	/*
3180 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3181 	 * before destroying the slab cache.
3182 	 */
3183 	rcu_barrier();
3184 	kmem_cache_destroy(ext4_pspace_cachep);
3185 	kmem_cache_destroy(ext4_ac_cachep);
3186 	kmem_cache_destroy(ext4_free_data_cachep);
3187 	ext4_groupinfo_destroy_slabs();
3188 }
3189 
3190 
3191 /*
3192  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3193  * Returns 0 if success or error code
3194  */
3195 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)3196 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3197 				handle_t *handle, unsigned int reserv_clstrs)
3198 {
3199 	struct buffer_head *bitmap_bh = NULL;
3200 	struct ext4_group_desc *gdp;
3201 	struct buffer_head *gdp_bh;
3202 	struct ext4_sb_info *sbi;
3203 	struct super_block *sb;
3204 	ext4_fsblk_t block;
3205 	int err, len;
3206 
3207 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3208 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3209 
3210 	sb = ac->ac_sb;
3211 	sbi = EXT4_SB(sb);
3212 
3213 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3214 	if (IS_ERR(bitmap_bh)) {
3215 		err = PTR_ERR(bitmap_bh);
3216 		bitmap_bh = NULL;
3217 		goto out_err;
3218 	}
3219 
3220 	BUFFER_TRACE(bitmap_bh, "getting write access");
3221 	err = ext4_journal_get_write_access(handle, bitmap_bh);
3222 	if (err)
3223 		goto out_err;
3224 
3225 	err = -EIO;
3226 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3227 	if (!gdp)
3228 		goto out_err;
3229 
3230 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3231 			ext4_free_group_clusters(sb, gdp));
3232 
3233 	BUFFER_TRACE(gdp_bh, "get_write_access");
3234 	err = ext4_journal_get_write_access(handle, gdp_bh);
3235 	if (err)
3236 		goto out_err;
3237 
3238 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3239 
3240 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3241 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3242 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3243 			   "fs metadata", block, block+len);
3244 		/* File system mounted not to panic on error
3245 		 * Fix the bitmap and return EFSCORRUPTED
3246 		 * We leak some of the blocks here.
3247 		 */
3248 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3249 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3250 			      ac->ac_b_ex.fe_len);
3251 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3252 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3253 		if (!err)
3254 			err = -EFSCORRUPTED;
3255 		goto out_err;
3256 	}
3257 
3258 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3259 #ifdef AGGRESSIVE_CHECK
3260 	{
3261 		int i;
3262 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3263 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3264 						bitmap_bh->b_data));
3265 		}
3266 	}
3267 #endif
3268 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3269 		      ac->ac_b_ex.fe_len);
3270 	if (ext4_has_group_desc_csum(sb) &&
3271 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3272 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3273 		ext4_free_group_clusters_set(sb, gdp,
3274 					     ext4_free_clusters_after_init(sb,
3275 						ac->ac_b_ex.fe_group, gdp));
3276 	}
3277 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3278 	ext4_free_group_clusters_set(sb, gdp, len);
3279 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3280 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3281 
3282 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3283 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3284 	/*
3285 	 * Now reduce the dirty block count also. Should not go negative
3286 	 */
3287 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3288 		/* release all the reserved blocks if non delalloc */
3289 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3290 				   reserv_clstrs);
3291 
3292 	if (sbi->s_log_groups_per_flex) {
3293 		ext4_group_t flex_group = ext4_flex_group(sbi,
3294 							  ac->ac_b_ex.fe_group);
3295 		atomic64_sub(ac->ac_b_ex.fe_len,
3296 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3297 						  flex_group)->free_clusters);
3298 	}
3299 
3300 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3301 	if (err)
3302 		goto out_err;
3303 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3304 
3305 out_err:
3306 	brelse(bitmap_bh);
3307 	return err;
3308 }
3309 
3310 /*
3311  * Idempotent helper for Ext4 fast commit replay path to set the state of
3312  * blocks in bitmaps and update counters.
3313  */
ext4_mb_mark_bb(struct super_block * sb,ext4_fsblk_t block,int len,int state)3314 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3315 			int len, int state)
3316 {
3317 	struct buffer_head *bitmap_bh = NULL;
3318 	struct ext4_group_desc *gdp;
3319 	struct buffer_head *gdp_bh;
3320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3321 	ext4_group_t group;
3322 	ext4_grpblk_t blkoff;
3323 	int i, clen, err;
3324 	int already;
3325 
3326 	clen = EXT4_B2C(sbi, len);
3327 
3328 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3329 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3330 	if (IS_ERR(bitmap_bh)) {
3331 		err = PTR_ERR(bitmap_bh);
3332 		bitmap_bh = NULL;
3333 		goto out_err;
3334 	}
3335 
3336 	err = -EIO;
3337 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3338 	if (!gdp)
3339 		goto out_err;
3340 
3341 	ext4_lock_group(sb, group);
3342 	already = 0;
3343 	for (i = 0; i < clen; i++)
3344 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3345 			already++;
3346 
3347 	if (state)
3348 		ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3349 	else
3350 		mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3351 	if (ext4_has_group_desc_csum(sb) &&
3352 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3353 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3354 		ext4_free_group_clusters_set(sb, gdp,
3355 					     ext4_free_clusters_after_init(sb,
3356 						group, gdp));
3357 	}
3358 	if (state)
3359 		clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3360 	else
3361 		clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3362 
3363 	ext4_free_group_clusters_set(sb, gdp, clen);
3364 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3365 	ext4_group_desc_csum_set(sb, group, gdp);
3366 
3367 	ext4_unlock_group(sb, group);
3368 
3369 	if (sbi->s_log_groups_per_flex) {
3370 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
3371 
3372 		atomic64_sub(len,
3373 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3374 						  flex_group)->free_clusters);
3375 	}
3376 
3377 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3378 	if (err)
3379 		goto out_err;
3380 	sync_dirty_buffer(bitmap_bh);
3381 	err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3382 	sync_dirty_buffer(gdp_bh);
3383 
3384 out_err:
3385 	brelse(bitmap_bh);
3386 }
3387 
3388 /*
3389  * here we normalize request for locality group
3390  * Group request are normalized to s_mb_group_prealloc, which goes to
3391  * s_strip if we set the same via mount option.
3392  * s_mb_group_prealloc can be configured via
3393  * /sys/fs/ext4/<partition>/mb_group_prealloc
3394  *
3395  * XXX: should we try to preallocate more than the group has now?
3396  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3397 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3398 {
3399 	struct super_block *sb = ac->ac_sb;
3400 	struct ext4_locality_group *lg = ac->ac_lg;
3401 
3402 	BUG_ON(lg == NULL);
3403 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3404 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3405 }
3406 
3407 /*
3408  * Normalization means making request better in terms of
3409  * size and alignment
3410  */
3411 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3412 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3413 				struct ext4_allocation_request *ar)
3414 {
3415 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3416 	int bsbits, max;
3417 	ext4_lblk_t end;
3418 	loff_t size, start_off;
3419 	loff_t orig_size __maybe_unused;
3420 	ext4_lblk_t start;
3421 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3422 	struct ext4_prealloc_space *pa;
3423 
3424 	/* do normalize only data requests, metadata requests
3425 	   do not need preallocation */
3426 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3427 		return;
3428 
3429 	/* sometime caller may want exact blocks */
3430 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3431 		return;
3432 
3433 	/* caller may indicate that preallocation isn't
3434 	 * required (it's a tail, for example) */
3435 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3436 		return;
3437 
3438 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3439 		ext4_mb_normalize_group_request(ac);
3440 		return ;
3441 	}
3442 
3443 	bsbits = ac->ac_sb->s_blocksize_bits;
3444 
3445 	/* first, let's learn actual file size
3446 	 * given current request is allocated */
3447 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3448 	size = size << bsbits;
3449 	if (size < i_size_read(ac->ac_inode))
3450 		size = i_size_read(ac->ac_inode);
3451 	orig_size = size;
3452 
3453 	/* max size of free chunks */
3454 	max = 2 << bsbits;
3455 
3456 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3457 		(req <= (size) || max <= (chunk_size))
3458 
3459 	/* first, try to predict filesize */
3460 	/* XXX: should this table be tunable? */
3461 	start_off = 0;
3462 	if (size <= 16 * 1024) {
3463 		size = 16 * 1024;
3464 	} else if (size <= 32 * 1024) {
3465 		size = 32 * 1024;
3466 	} else if (size <= 64 * 1024) {
3467 		size = 64 * 1024;
3468 	} else if (size <= 128 * 1024) {
3469 		size = 128 * 1024;
3470 	} else if (size <= 256 * 1024) {
3471 		size = 256 * 1024;
3472 	} else if (size <= 512 * 1024) {
3473 		size = 512 * 1024;
3474 	} else if (size <= 1024 * 1024) {
3475 		size = 1024 * 1024;
3476 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3477 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3478 						(21 - bsbits)) << 21;
3479 		size = 2 * 1024 * 1024;
3480 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3481 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3482 							(22 - bsbits)) << 22;
3483 		size = 4 * 1024 * 1024;
3484 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3485 					(8<<20)>>bsbits, max, 8 * 1024)) {
3486 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3487 							(23 - bsbits)) << 23;
3488 		size = 8 * 1024 * 1024;
3489 	} else {
3490 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3491 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3492 					      ac->ac_o_ex.fe_len) << bsbits;
3493 	}
3494 	size = size >> bsbits;
3495 	start = start_off >> bsbits;
3496 
3497 	/* don't cover already allocated blocks in selected range */
3498 	if (ar->pleft && start <= ar->lleft) {
3499 		size -= ar->lleft + 1 - start;
3500 		start = ar->lleft + 1;
3501 	}
3502 	if (ar->pright && start + size - 1 >= ar->lright)
3503 		size -= start + size - ar->lright;
3504 
3505 	/*
3506 	 * Trim allocation request for filesystems with artificially small
3507 	 * groups.
3508 	 */
3509 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3510 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3511 
3512 	end = start + size;
3513 
3514 	/* check we don't cross already preallocated blocks */
3515 	rcu_read_lock();
3516 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3517 		ext4_lblk_t pa_end;
3518 
3519 		if (pa->pa_deleted)
3520 			continue;
3521 		spin_lock(&pa->pa_lock);
3522 		if (pa->pa_deleted) {
3523 			spin_unlock(&pa->pa_lock);
3524 			continue;
3525 		}
3526 
3527 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3528 						  pa->pa_len);
3529 
3530 		/* PA must not overlap original request */
3531 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3532 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3533 
3534 		/* skip PAs this normalized request doesn't overlap with */
3535 		if (pa->pa_lstart >= end || pa_end <= start) {
3536 			spin_unlock(&pa->pa_lock);
3537 			continue;
3538 		}
3539 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3540 
3541 		/* adjust start or end to be adjacent to this pa */
3542 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3543 			BUG_ON(pa_end < start);
3544 			start = pa_end;
3545 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3546 			BUG_ON(pa->pa_lstart > end);
3547 			end = pa->pa_lstart;
3548 		}
3549 		spin_unlock(&pa->pa_lock);
3550 	}
3551 	rcu_read_unlock();
3552 	size = end - start;
3553 
3554 	/* XXX: extra loop to check we really don't overlap preallocations */
3555 	rcu_read_lock();
3556 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3557 		ext4_lblk_t pa_end;
3558 
3559 		spin_lock(&pa->pa_lock);
3560 		if (pa->pa_deleted == 0) {
3561 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3562 							  pa->pa_len);
3563 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3564 		}
3565 		spin_unlock(&pa->pa_lock);
3566 	}
3567 	rcu_read_unlock();
3568 
3569 	if (start + size <= ac->ac_o_ex.fe_logical &&
3570 			start > ac->ac_o_ex.fe_logical) {
3571 		ext4_msg(ac->ac_sb, KERN_ERR,
3572 			 "start %lu, size %lu, fe_logical %lu",
3573 			 (unsigned long) start, (unsigned long) size,
3574 			 (unsigned long) ac->ac_o_ex.fe_logical);
3575 		BUG();
3576 	}
3577 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3578 
3579 	/* now prepare goal request */
3580 
3581 	/* XXX: is it better to align blocks WRT to logical
3582 	 * placement or satisfy big request as is */
3583 	ac->ac_g_ex.fe_logical = start;
3584 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3585 
3586 	/* define goal start in order to merge */
3587 	if (ar->pright && (ar->lright == (start + size))) {
3588 		/* merge to the right */
3589 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3590 						&ac->ac_f_ex.fe_group,
3591 						&ac->ac_f_ex.fe_start);
3592 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3593 	}
3594 	if (ar->pleft && (ar->lleft + 1 == start)) {
3595 		/* merge to the left */
3596 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3597 						&ac->ac_f_ex.fe_group,
3598 						&ac->ac_f_ex.fe_start);
3599 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3600 	}
3601 
3602 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3603 		 orig_size, start);
3604 }
3605 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3606 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3607 {
3608 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3609 
3610 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3611 		atomic_inc(&sbi->s_bal_reqs);
3612 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3613 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3614 			atomic_inc(&sbi->s_bal_success);
3615 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3616 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3617 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3618 			atomic_inc(&sbi->s_bal_goals);
3619 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3620 			atomic_inc(&sbi->s_bal_breaks);
3621 	}
3622 
3623 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3624 		trace_ext4_mballoc_alloc(ac);
3625 	else
3626 		trace_ext4_mballoc_prealloc(ac);
3627 }
3628 
3629 /*
3630  * Called on failure; free up any blocks from the inode PA for this
3631  * context.  We don't need this for MB_GROUP_PA because we only change
3632  * pa_free in ext4_mb_release_context(), but on failure, we've already
3633  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3634  */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3635 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3636 {
3637 	struct ext4_prealloc_space *pa = ac->ac_pa;
3638 	struct ext4_buddy e4b;
3639 	int err;
3640 
3641 	if (pa == NULL) {
3642 		if (ac->ac_f_ex.fe_len == 0)
3643 			return;
3644 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3645 		if (err) {
3646 			/*
3647 			 * This should never happen since we pin the
3648 			 * pages in the ext4_allocation_context so
3649 			 * ext4_mb_load_buddy() should never fail.
3650 			 */
3651 			WARN(1, "mb_load_buddy failed (%d)", err);
3652 			return;
3653 		}
3654 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3655 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3656 			       ac->ac_f_ex.fe_len);
3657 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3658 		ext4_mb_unload_buddy(&e4b);
3659 		return;
3660 	}
3661 	if (pa->pa_type == MB_INODE_PA)
3662 		pa->pa_free += ac->ac_b_ex.fe_len;
3663 }
3664 
3665 /*
3666  * use blocks preallocated to inode
3667  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3668 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3669 				struct ext4_prealloc_space *pa)
3670 {
3671 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3672 	ext4_fsblk_t start;
3673 	ext4_fsblk_t end;
3674 	int len;
3675 
3676 	/* found preallocated blocks, use them */
3677 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3678 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3679 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3680 	len = EXT4_NUM_B2C(sbi, end - start);
3681 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3682 					&ac->ac_b_ex.fe_start);
3683 	ac->ac_b_ex.fe_len = len;
3684 	ac->ac_status = AC_STATUS_FOUND;
3685 	ac->ac_pa = pa;
3686 
3687 	BUG_ON(start < pa->pa_pstart);
3688 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3689 	BUG_ON(pa->pa_free < len);
3690 	pa->pa_free -= len;
3691 
3692 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3693 }
3694 
3695 /*
3696  * use blocks preallocated to locality group
3697  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3698 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3699 				struct ext4_prealloc_space *pa)
3700 {
3701 	unsigned int len = ac->ac_o_ex.fe_len;
3702 
3703 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3704 					&ac->ac_b_ex.fe_group,
3705 					&ac->ac_b_ex.fe_start);
3706 	ac->ac_b_ex.fe_len = len;
3707 	ac->ac_status = AC_STATUS_FOUND;
3708 	ac->ac_pa = pa;
3709 
3710 	/* we don't correct pa_pstart or pa_plen here to avoid
3711 	 * possible race when the group is being loaded concurrently
3712 	 * instead we correct pa later, after blocks are marked
3713 	 * in on-disk bitmap -- see ext4_mb_release_context()
3714 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3715 	 */
3716 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3717 		 pa->pa_lstart-len, len, pa);
3718 }
3719 
3720 /*
3721  * Return the prealloc space that have minimal distance
3722  * from the goal block. @cpa is the prealloc
3723  * space that is having currently known minimal distance
3724  * from the goal block.
3725  */
3726 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3727 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3728 			struct ext4_prealloc_space *pa,
3729 			struct ext4_prealloc_space *cpa)
3730 {
3731 	ext4_fsblk_t cur_distance, new_distance;
3732 
3733 	if (cpa == NULL) {
3734 		atomic_inc(&pa->pa_count);
3735 		return pa;
3736 	}
3737 	cur_distance = abs(goal_block - cpa->pa_pstart);
3738 	new_distance = abs(goal_block - pa->pa_pstart);
3739 
3740 	if (cur_distance <= new_distance)
3741 		return cpa;
3742 
3743 	/* drop the previous reference */
3744 	atomic_dec(&cpa->pa_count);
3745 	atomic_inc(&pa->pa_count);
3746 	return pa;
3747 }
3748 
3749 /*
3750  * search goal blocks in preallocated space
3751  */
3752 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3753 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3754 {
3755 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3756 	int order, i;
3757 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3758 	struct ext4_locality_group *lg;
3759 	struct ext4_prealloc_space *pa, *cpa = NULL;
3760 	ext4_fsblk_t goal_block;
3761 
3762 	/* only data can be preallocated */
3763 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3764 		return false;
3765 
3766 	/* first, try per-file preallocation */
3767 	rcu_read_lock();
3768 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3769 
3770 		/* all fields in this condition don't change,
3771 		 * so we can skip locking for them */
3772 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3773 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3774 					       EXT4_C2B(sbi, pa->pa_len)))
3775 			continue;
3776 
3777 		/* non-extent files can't have physical blocks past 2^32 */
3778 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3779 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3780 		     EXT4_MAX_BLOCK_FILE_PHYS))
3781 			continue;
3782 
3783 		/* found preallocated blocks, use them */
3784 		spin_lock(&pa->pa_lock);
3785 		if (pa->pa_deleted == 0 && pa->pa_free) {
3786 			atomic_inc(&pa->pa_count);
3787 			ext4_mb_use_inode_pa(ac, pa);
3788 			spin_unlock(&pa->pa_lock);
3789 			ac->ac_criteria = 10;
3790 			rcu_read_unlock();
3791 			return true;
3792 		}
3793 		spin_unlock(&pa->pa_lock);
3794 	}
3795 	rcu_read_unlock();
3796 
3797 	/* can we use group allocation? */
3798 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3799 		return false;
3800 
3801 	/* inode may have no locality group for some reason */
3802 	lg = ac->ac_lg;
3803 	if (lg == NULL)
3804 		return false;
3805 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3806 	if (order > PREALLOC_TB_SIZE - 1)
3807 		/* The max size of hash table is PREALLOC_TB_SIZE */
3808 		order = PREALLOC_TB_SIZE - 1;
3809 
3810 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3811 	/*
3812 	 * search for the prealloc space that is having
3813 	 * minimal distance from the goal block.
3814 	 */
3815 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3816 		rcu_read_lock();
3817 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3818 					pa_inode_list) {
3819 			spin_lock(&pa->pa_lock);
3820 			if (pa->pa_deleted == 0 &&
3821 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3822 
3823 				cpa = ext4_mb_check_group_pa(goal_block,
3824 								pa, cpa);
3825 			}
3826 			spin_unlock(&pa->pa_lock);
3827 		}
3828 		rcu_read_unlock();
3829 	}
3830 	if (cpa) {
3831 		ext4_mb_use_group_pa(ac, cpa);
3832 		ac->ac_criteria = 20;
3833 		return true;
3834 	}
3835 	return false;
3836 }
3837 
3838 /*
3839  * the function goes through all block freed in the group
3840  * but not yet committed and marks them used in in-core bitmap.
3841  * buddy must be generated from this bitmap
3842  * Need to be called with the ext4 group lock held
3843  */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3844 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3845 						ext4_group_t group)
3846 {
3847 	struct rb_node *n;
3848 	struct ext4_group_info *grp;
3849 	struct ext4_free_data *entry;
3850 
3851 	grp = ext4_get_group_info(sb, group);
3852 	n = rb_first(&(grp->bb_free_root));
3853 
3854 	while (n) {
3855 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3856 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3857 		n = rb_next(n);
3858 	}
3859 	return;
3860 }
3861 
3862 /*
3863  * the function goes through all preallocation in this group and marks them
3864  * used in in-core bitmap. buddy must be generated from this bitmap
3865  * Need to be called with ext4 group lock held
3866  */
3867 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3868 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3869 					ext4_group_t group)
3870 {
3871 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3872 	struct ext4_prealloc_space *pa;
3873 	struct list_head *cur;
3874 	ext4_group_t groupnr;
3875 	ext4_grpblk_t start;
3876 	int preallocated = 0;
3877 	int len;
3878 
3879 	/* all form of preallocation discards first load group,
3880 	 * so the only competing code is preallocation use.
3881 	 * we don't need any locking here
3882 	 * notice we do NOT ignore preallocations with pa_deleted
3883 	 * otherwise we could leave used blocks available for
3884 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3885 	 * is dropping preallocation
3886 	 */
3887 	list_for_each(cur, &grp->bb_prealloc_list) {
3888 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3889 		spin_lock(&pa->pa_lock);
3890 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3891 					     &groupnr, &start);
3892 		len = pa->pa_len;
3893 		spin_unlock(&pa->pa_lock);
3894 		if (unlikely(len == 0))
3895 			continue;
3896 		BUG_ON(groupnr != group);
3897 		ext4_set_bits(bitmap, start, len);
3898 		preallocated += len;
3899 	}
3900 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3901 }
3902 
ext4_mb_mark_pa_deleted(struct super_block * sb,struct ext4_prealloc_space * pa)3903 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
3904 				    struct ext4_prealloc_space *pa)
3905 {
3906 	struct ext4_inode_info *ei;
3907 
3908 	if (pa->pa_deleted) {
3909 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3910 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
3911 			     pa->pa_len);
3912 		return;
3913 	}
3914 
3915 	pa->pa_deleted = 1;
3916 
3917 	if (pa->pa_type == MB_INODE_PA) {
3918 		ei = EXT4_I(pa->pa_inode);
3919 		atomic_dec(&ei->i_prealloc_active);
3920 	}
3921 }
3922 
ext4_mb_pa_callback(struct rcu_head * head)3923 static void ext4_mb_pa_callback(struct rcu_head *head)
3924 {
3925 	struct ext4_prealloc_space *pa;
3926 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3927 
3928 	BUG_ON(atomic_read(&pa->pa_count));
3929 	BUG_ON(pa->pa_deleted == 0);
3930 	kmem_cache_free(ext4_pspace_cachep, pa);
3931 }
3932 
3933 /*
3934  * drops a reference to preallocated space descriptor
3935  * if this was the last reference and the space is consumed
3936  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3937 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3938 			struct super_block *sb, struct ext4_prealloc_space *pa)
3939 {
3940 	ext4_group_t grp;
3941 	ext4_fsblk_t grp_blk;
3942 
3943 	/* in this short window concurrent discard can set pa_deleted */
3944 	spin_lock(&pa->pa_lock);
3945 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3946 		spin_unlock(&pa->pa_lock);
3947 		return;
3948 	}
3949 
3950 	if (pa->pa_deleted == 1) {
3951 		spin_unlock(&pa->pa_lock);
3952 		return;
3953 	}
3954 
3955 	ext4_mb_mark_pa_deleted(sb, pa);
3956 	spin_unlock(&pa->pa_lock);
3957 
3958 	grp_blk = pa->pa_pstart;
3959 	/*
3960 	 * If doing group-based preallocation, pa_pstart may be in the
3961 	 * next group when pa is used up
3962 	 */
3963 	if (pa->pa_type == MB_GROUP_PA)
3964 		grp_blk--;
3965 
3966 	grp = ext4_get_group_number(sb, grp_blk);
3967 
3968 	/*
3969 	 * possible race:
3970 	 *
3971 	 *  P1 (buddy init)			P2 (regular allocation)
3972 	 *					find block B in PA
3973 	 *  copy on-disk bitmap to buddy
3974 	 *  					mark B in on-disk bitmap
3975 	 *					drop PA from group
3976 	 *  mark all PAs in buddy
3977 	 *
3978 	 * thus, P1 initializes buddy with B available. to prevent this
3979 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3980 	 * against that pair
3981 	 */
3982 	ext4_lock_group(sb, grp);
3983 	list_del(&pa->pa_group_list);
3984 	ext4_unlock_group(sb, grp);
3985 
3986 	spin_lock(pa->pa_obj_lock);
3987 	list_del_rcu(&pa->pa_inode_list);
3988 	spin_unlock(pa->pa_obj_lock);
3989 
3990 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3991 }
3992 
3993 /*
3994  * creates new preallocated space for given inode
3995  */
3996 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3997 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3998 {
3999 	struct super_block *sb = ac->ac_sb;
4000 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4001 	struct ext4_prealloc_space *pa;
4002 	struct ext4_group_info *grp;
4003 	struct ext4_inode_info *ei;
4004 
4005 	/* preallocate only when found space is larger then requested */
4006 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4007 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4008 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4009 	BUG_ON(ac->ac_pa == NULL);
4010 
4011 	pa = ac->ac_pa;
4012 
4013 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4014 		int winl;
4015 		int wins;
4016 		int win;
4017 		int offs;
4018 
4019 		/* we can't allocate as much as normalizer wants.
4020 		 * so, found space must get proper lstart
4021 		 * to cover original request */
4022 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4023 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4024 
4025 		/* we're limited by original request in that
4026 		 * logical block must be covered any way
4027 		 * winl is window we can move our chunk within */
4028 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4029 
4030 		/* also, we should cover whole original request */
4031 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4032 
4033 		/* the smallest one defines real window */
4034 		win = min(winl, wins);
4035 
4036 		offs = ac->ac_o_ex.fe_logical %
4037 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4038 		if (offs && offs < win)
4039 			win = offs;
4040 
4041 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4042 			EXT4_NUM_B2C(sbi, win);
4043 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4044 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4045 	}
4046 
4047 	/* preallocation can change ac_b_ex, thus we store actually
4048 	 * allocated blocks for history */
4049 	ac->ac_f_ex = ac->ac_b_ex;
4050 
4051 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4052 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4053 	pa->pa_len = ac->ac_b_ex.fe_len;
4054 	pa->pa_free = pa->pa_len;
4055 	spin_lock_init(&pa->pa_lock);
4056 	INIT_LIST_HEAD(&pa->pa_inode_list);
4057 	INIT_LIST_HEAD(&pa->pa_group_list);
4058 	pa->pa_deleted = 0;
4059 	pa->pa_type = MB_INODE_PA;
4060 
4061 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4062 		 pa->pa_len, pa->pa_lstart);
4063 	trace_ext4_mb_new_inode_pa(ac, pa);
4064 
4065 	ext4_mb_use_inode_pa(ac, pa);
4066 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4067 
4068 	ei = EXT4_I(ac->ac_inode);
4069 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4070 
4071 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4072 	pa->pa_inode = ac->ac_inode;
4073 
4074 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4075 
4076 	spin_lock(pa->pa_obj_lock);
4077 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4078 	spin_unlock(pa->pa_obj_lock);
4079 	atomic_inc(&ei->i_prealloc_active);
4080 }
4081 
4082 /*
4083  * creates new preallocated space for locality group inodes belongs to
4084  */
4085 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)4086 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4087 {
4088 	struct super_block *sb = ac->ac_sb;
4089 	struct ext4_locality_group *lg;
4090 	struct ext4_prealloc_space *pa;
4091 	struct ext4_group_info *grp;
4092 
4093 	/* preallocate only when found space is larger then requested */
4094 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4095 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4096 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4097 	BUG_ON(ac->ac_pa == NULL);
4098 
4099 	pa = ac->ac_pa;
4100 
4101 	/* preallocation can change ac_b_ex, thus we store actually
4102 	 * allocated blocks for history */
4103 	ac->ac_f_ex = ac->ac_b_ex;
4104 
4105 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4106 	pa->pa_lstart = pa->pa_pstart;
4107 	pa->pa_len = ac->ac_b_ex.fe_len;
4108 	pa->pa_free = pa->pa_len;
4109 	spin_lock_init(&pa->pa_lock);
4110 	INIT_LIST_HEAD(&pa->pa_inode_list);
4111 	INIT_LIST_HEAD(&pa->pa_group_list);
4112 	pa->pa_deleted = 0;
4113 	pa->pa_type = MB_GROUP_PA;
4114 
4115 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4116 		 pa->pa_len, pa->pa_lstart);
4117 	trace_ext4_mb_new_group_pa(ac, pa);
4118 
4119 	ext4_mb_use_group_pa(ac, pa);
4120 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4121 
4122 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4123 	lg = ac->ac_lg;
4124 	BUG_ON(lg == NULL);
4125 
4126 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4127 	pa->pa_inode = NULL;
4128 
4129 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4130 
4131 	/*
4132 	 * We will later add the new pa to the right bucket
4133 	 * after updating the pa_free in ext4_mb_release_context
4134 	 */
4135 }
4136 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)4137 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4138 {
4139 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4140 		ext4_mb_new_group_pa(ac);
4141 	else
4142 		ext4_mb_new_inode_pa(ac);
4143 }
4144 
4145 /*
4146  * finds all unused blocks in on-disk bitmap, frees them in
4147  * in-core bitmap and buddy.
4148  * @pa must be unlinked from inode and group lists, so that
4149  * nobody else can find/use it.
4150  * the caller MUST hold group/inode locks.
4151  * TODO: optimize the case when there are no in-core structures yet
4152  */
4153 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)4154 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4155 			struct ext4_prealloc_space *pa)
4156 {
4157 	struct super_block *sb = e4b->bd_sb;
4158 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4159 	unsigned int end;
4160 	unsigned int next;
4161 	ext4_group_t group;
4162 	ext4_grpblk_t bit;
4163 	unsigned long long grp_blk_start;
4164 	int free = 0;
4165 
4166 	BUG_ON(pa->pa_deleted == 0);
4167 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4168 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4169 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4170 	end = bit + pa->pa_len;
4171 
4172 	while (bit < end) {
4173 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4174 		if (bit >= end)
4175 			break;
4176 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4177 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4178 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4179 			 (unsigned) next - bit, (unsigned) group);
4180 		free += next - bit;
4181 
4182 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4183 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4184 						    EXT4_C2B(sbi, bit)),
4185 					       next - bit);
4186 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4187 		bit = next + 1;
4188 	}
4189 	if (free != pa->pa_free) {
4190 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4191 			 "pa %p: logic %lu, phys. %lu, len %d",
4192 			 pa, (unsigned long) pa->pa_lstart,
4193 			 (unsigned long) pa->pa_pstart,
4194 			 pa->pa_len);
4195 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4196 					free, pa->pa_free);
4197 		/*
4198 		 * pa is already deleted so we use the value obtained
4199 		 * from the bitmap and continue.
4200 		 */
4201 	}
4202 	atomic_add(free, &sbi->s_mb_discarded);
4203 
4204 	return 0;
4205 }
4206 
4207 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)4208 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4209 				struct ext4_prealloc_space *pa)
4210 {
4211 	struct super_block *sb = e4b->bd_sb;
4212 	ext4_group_t group;
4213 	ext4_grpblk_t bit;
4214 
4215 	trace_ext4_mb_release_group_pa(sb, pa);
4216 	BUG_ON(pa->pa_deleted == 0);
4217 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4218 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4219 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4220 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4221 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4222 
4223 	return 0;
4224 }
4225 
4226 /*
4227  * releases all preallocations in given group
4228  *
4229  * first, we need to decide discard policy:
4230  * - when do we discard
4231  *   1) ENOSPC
4232  * - how many do we discard
4233  *   1) how many requested
4234  */
4235 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int * busy)4236 ext4_mb_discard_group_preallocations(struct super_block *sb,
4237 				     ext4_group_t group, int *busy)
4238 {
4239 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4240 	struct buffer_head *bitmap_bh = NULL;
4241 	struct ext4_prealloc_space *pa, *tmp;
4242 	struct list_head list;
4243 	struct ext4_buddy e4b;
4244 	int err;
4245 	int free = 0;
4246 
4247 	mb_debug(sb, "discard preallocation for group %u\n", group);
4248 	if (list_empty(&grp->bb_prealloc_list))
4249 		goto out_dbg;
4250 
4251 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4252 	if (IS_ERR(bitmap_bh)) {
4253 		err = PTR_ERR(bitmap_bh);
4254 		ext4_error_err(sb, -err,
4255 			       "Error %d reading block bitmap for %u",
4256 			       err, group);
4257 		goto out_dbg;
4258 	}
4259 
4260 	err = ext4_mb_load_buddy(sb, group, &e4b);
4261 	if (err) {
4262 		ext4_warning(sb, "Error %d loading buddy information for %u",
4263 			     err, group);
4264 		put_bh(bitmap_bh);
4265 		goto out_dbg;
4266 	}
4267 
4268 	INIT_LIST_HEAD(&list);
4269 	ext4_lock_group(sb, group);
4270 	list_for_each_entry_safe(pa, tmp,
4271 				&grp->bb_prealloc_list, pa_group_list) {
4272 		spin_lock(&pa->pa_lock);
4273 		if (atomic_read(&pa->pa_count)) {
4274 			spin_unlock(&pa->pa_lock);
4275 			*busy = 1;
4276 			continue;
4277 		}
4278 		if (pa->pa_deleted) {
4279 			spin_unlock(&pa->pa_lock);
4280 			continue;
4281 		}
4282 
4283 		/* seems this one can be freed ... */
4284 		ext4_mb_mark_pa_deleted(sb, pa);
4285 
4286 		if (!free)
4287 			this_cpu_inc(discard_pa_seq);
4288 
4289 		/* we can trust pa_free ... */
4290 		free += pa->pa_free;
4291 
4292 		spin_unlock(&pa->pa_lock);
4293 
4294 		list_del(&pa->pa_group_list);
4295 		list_add(&pa->u.pa_tmp_list, &list);
4296 	}
4297 
4298 	/* now free all selected PAs */
4299 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4300 
4301 		/* remove from object (inode or locality group) */
4302 		spin_lock(pa->pa_obj_lock);
4303 		list_del_rcu(&pa->pa_inode_list);
4304 		spin_unlock(pa->pa_obj_lock);
4305 
4306 		if (pa->pa_type == MB_GROUP_PA)
4307 			ext4_mb_release_group_pa(&e4b, pa);
4308 		else
4309 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4310 
4311 		list_del(&pa->u.pa_tmp_list);
4312 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4313 	}
4314 
4315 	ext4_unlock_group(sb, group);
4316 	ext4_mb_unload_buddy(&e4b);
4317 	put_bh(bitmap_bh);
4318 out_dbg:
4319 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4320 		 free, group, grp->bb_free);
4321 	return free;
4322 }
4323 
4324 /*
4325  * releases all non-used preallocated blocks for given inode
4326  *
4327  * It's important to discard preallocations under i_data_sem
4328  * We don't want another block to be served from the prealloc
4329  * space when we are discarding the inode prealloc space.
4330  *
4331  * FIXME!! Make sure it is valid at all the call sites
4332  */
ext4_discard_preallocations(struct inode * inode,unsigned int needed)4333 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4334 {
4335 	struct ext4_inode_info *ei = EXT4_I(inode);
4336 	struct super_block *sb = inode->i_sb;
4337 	struct buffer_head *bitmap_bh = NULL;
4338 	struct ext4_prealloc_space *pa, *tmp;
4339 	ext4_group_t group = 0;
4340 	struct list_head list;
4341 	struct ext4_buddy e4b;
4342 	int err;
4343 
4344 	if (!S_ISREG(inode->i_mode)) {
4345 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4346 		return;
4347 	}
4348 
4349 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4350 		return;
4351 
4352 	mb_debug(sb, "discard preallocation for inode %lu\n",
4353 		 inode->i_ino);
4354 	trace_ext4_discard_preallocations(inode,
4355 			atomic_read(&ei->i_prealloc_active), needed);
4356 
4357 	INIT_LIST_HEAD(&list);
4358 
4359 	if (needed == 0)
4360 		needed = UINT_MAX;
4361 
4362 repeat:
4363 	/* first, collect all pa's in the inode */
4364 	spin_lock(&ei->i_prealloc_lock);
4365 	while (!list_empty(&ei->i_prealloc_list) && needed) {
4366 		pa = list_entry(ei->i_prealloc_list.prev,
4367 				struct ext4_prealloc_space, pa_inode_list);
4368 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4369 		spin_lock(&pa->pa_lock);
4370 		if (atomic_read(&pa->pa_count)) {
4371 			/* this shouldn't happen often - nobody should
4372 			 * use preallocation while we're discarding it */
4373 			spin_unlock(&pa->pa_lock);
4374 			spin_unlock(&ei->i_prealloc_lock);
4375 			ext4_msg(sb, KERN_ERR,
4376 				 "uh-oh! used pa while discarding");
4377 			WARN_ON(1);
4378 			schedule_timeout_uninterruptible(HZ);
4379 			goto repeat;
4380 
4381 		}
4382 		if (pa->pa_deleted == 0) {
4383 			ext4_mb_mark_pa_deleted(sb, pa);
4384 			spin_unlock(&pa->pa_lock);
4385 			list_del_rcu(&pa->pa_inode_list);
4386 			list_add(&pa->u.pa_tmp_list, &list);
4387 			needed--;
4388 			continue;
4389 		}
4390 
4391 		/* someone is deleting pa right now */
4392 		spin_unlock(&pa->pa_lock);
4393 		spin_unlock(&ei->i_prealloc_lock);
4394 
4395 		/* we have to wait here because pa_deleted
4396 		 * doesn't mean pa is already unlinked from
4397 		 * the list. as we might be called from
4398 		 * ->clear_inode() the inode will get freed
4399 		 * and concurrent thread which is unlinking
4400 		 * pa from inode's list may access already
4401 		 * freed memory, bad-bad-bad */
4402 
4403 		/* XXX: if this happens too often, we can
4404 		 * add a flag to force wait only in case
4405 		 * of ->clear_inode(), but not in case of
4406 		 * regular truncate */
4407 		schedule_timeout_uninterruptible(HZ);
4408 		goto repeat;
4409 	}
4410 	spin_unlock(&ei->i_prealloc_lock);
4411 
4412 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4413 		BUG_ON(pa->pa_type != MB_INODE_PA);
4414 		group = ext4_get_group_number(sb, pa->pa_pstart);
4415 
4416 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4417 					     GFP_NOFS|__GFP_NOFAIL);
4418 		if (err) {
4419 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4420 				       err, group);
4421 			continue;
4422 		}
4423 
4424 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4425 		if (IS_ERR(bitmap_bh)) {
4426 			err = PTR_ERR(bitmap_bh);
4427 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4428 				       err, group);
4429 			ext4_mb_unload_buddy(&e4b);
4430 			continue;
4431 		}
4432 
4433 		ext4_lock_group(sb, group);
4434 		list_del(&pa->pa_group_list);
4435 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4436 		ext4_unlock_group(sb, group);
4437 
4438 		ext4_mb_unload_buddy(&e4b);
4439 		put_bh(bitmap_bh);
4440 
4441 		list_del(&pa->u.pa_tmp_list);
4442 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4443 	}
4444 }
4445 
ext4_mb_pa_alloc(struct ext4_allocation_context * ac)4446 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4447 {
4448 	struct ext4_prealloc_space *pa;
4449 
4450 	BUG_ON(ext4_pspace_cachep == NULL);
4451 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4452 	if (!pa)
4453 		return -ENOMEM;
4454 	atomic_set(&pa->pa_count, 1);
4455 	ac->ac_pa = pa;
4456 	return 0;
4457 }
4458 
ext4_mb_pa_free(struct ext4_allocation_context * ac)4459 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4460 {
4461 	struct ext4_prealloc_space *pa = ac->ac_pa;
4462 
4463 	BUG_ON(!pa);
4464 	ac->ac_pa = NULL;
4465 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4466 	kmem_cache_free(ext4_pspace_cachep, pa);
4467 }
4468 
4469 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block * sb)4470 static inline void ext4_mb_show_pa(struct super_block *sb)
4471 {
4472 	ext4_group_t i, ngroups;
4473 
4474 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4475 		return;
4476 
4477 	ngroups = ext4_get_groups_count(sb);
4478 	mb_debug(sb, "groups: ");
4479 	for (i = 0; i < ngroups; i++) {
4480 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4481 		struct ext4_prealloc_space *pa;
4482 		ext4_grpblk_t start;
4483 		struct list_head *cur;
4484 		ext4_lock_group(sb, i);
4485 		list_for_each(cur, &grp->bb_prealloc_list) {
4486 			pa = list_entry(cur, struct ext4_prealloc_space,
4487 					pa_group_list);
4488 			spin_lock(&pa->pa_lock);
4489 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4490 						     NULL, &start);
4491 			spin_unlock(&pa->pa_lock);
4492 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4493 				 pa->pa_len);
4494 		}
4495 		ext4_unlock_group(sb, i);
4496 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4497 			 grp->bb_fragments);
4498 	}
4499 }
4500 
ext4_mb_show_ac(struct ext4_allocation_context * ac)4501 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4502 {
4503 	struct super_block *sb = ac->ac_sb;
4504 
4505 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4506 		return;
4507 
4508 	mb_debug(sb, "Can't allocate:"
4509 			" Allocation context details:");
4510 	mb_debug(sb, "status %u flags 0x%x",
4511 			ac->ac_status, ac->ac_flags);
4512 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4513 			"goal %lu/%lu/%lu@%lu, "
4514 			"best %lu/%lu/%lu@%lu cr %d",
4515 			(unsigned long)ac->ac_o_ex.fe_group,
4516 			(unsigned long)ac->ac_o_ex.fe_start,
4517 			(unsigned long)ac->ac_o_ex.fe_len,
4518 			(unsigned long)ac->ac_o_ex.fe_logical,
4519 			(unsigned long)ac->ac_g_ex.fe_group,
4520 			(unsigned long)ac->ac_g_ex.fe_start,
4521 			(unsigned long)ac->ac_g_ex.fe_len,
4522 			(unsigned long)ac->ac_g_ex.fe_logical,
4523 			(unsigned long)ac->ac_b_ex.fe_group,
4524 			(unsigned long)ac->ac_b_ex.fe_start,
4525 			(unsigned long)ac->ac_b_ex.fe_len,
4526 			(unsigned long)ac->ac_b_ex.fe_logical,
4527 			(int)ac->ac_criteria);
4528 	mb_debug(sb, "%u found", ac->ac_found);
4529 	ext4_mb_show_pa(sb);
4530 }
4531 #else
ext4_mb_show_pa(struct super_block * sb)4532 static inline void ext4_mb_show_pa(struct super_block *sb)
4533 {
4534 	return;
4535 }
ext4_mb_show_ac(struct ext4_allocation_context * ac)4536 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4537 {
4538 	ext4_mb_show_pa(ac->ac_sb);
4539 	return;
4540 }
4541 #endif
4542 
4543 /*
4544  * We use locality group preallocation for small size file. The size of the
4545  * file is determined by the current size or the resulting size after
4546  * allocation which ever is larger
4547  *
4548  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4549  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4550 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4551 {
4552 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4553 	int bsbits = ac->ac_sb->s_blocksize_bits;
4554 	loff_t size, isize;
4555 
4556 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4557 		return;
4558 
4559 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4560 		return;
4561 
4562 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4563 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4564 		>> bsbits;
4565 
4566 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4567 	    !inode_is_open_for_write(ac->ac_inode)) {
4568 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4569 		return;
4570 	}
4571 
4572 	if (sbi->s_mb_group_prealloc <= 0) {
4573 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4574 		return;
4575 	}
4576 
4577 	/* don't use group allocation for large files */
4578 	size = max(size, isize);
4579 	if (size > sbi->s_mb_stream_request) {
4580 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4581 		return;
4582 	}
4583 
4584 	BUG_ON(ac->ac_lg != NULL);
4585 	/*
4586 	 * locality group prealloc space are per cpu. The reason for having
4587 	 * per cpu locality group is to reduce the contention between block
4588 	 * request from multiple CPUs.
4589 	 */
4590 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4591 
4592 	/* we're going to use group allocation */
4593 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4594 
4595 	/* serialize all allocations in the group */
4596 	mutex_lock(&ac->ac_lg->lg_mutex);
4597 }
4598 
4599 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4600 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4601 				struct ext4_allocation_request *ar)
4602 {
4603 	struct super_block *sb = ar->inode->i_sb;
4604 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4605 	struct ext4_super_block *es = sbi->s_es;
4606 	ext4_group_t group;
4607 	unsigned int len;
4608 	ext4_fsblk_t goal;
4609 	ext4_grpblk_t block;
4610 
4611 	/* we can't allocate > group size */
4612 	len = ar->len;
4613 
4614 	/* just a dirty hack to filter too big requests  */
4615 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4616 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4617 
4618 	/* start searching from the goal */
4619 	goal = ar->goal;
4620 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4621 			goal >= ext4_blocks_count(es))
4622 		goal = le32_to_cpu(es->s_first_data_block);
4623 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4624 
4625 	/* set up allocation goals */
4626 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4627 	ac->ac_status = AC_STATUS_CONTINUE;
4628 	ac->ac_sb = sb;
4629 	ac->ac_inode = ar->inode;
4630 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4631 	ac->ac_o_ex.fe_group = group;
4632 	ac->ac_o_ex.fe_start = block;
4633 	ac->ac_o_ex.fe_len = len;
4634 	ac->ac_g_ex = ac->ac_o_ex;
4635 	ac->ac_flags = ar->flags;
4636 
4637 	/* we have to define context: we'll work with a file or
4638 	 * locality group. this is a policy, actually */
4639 	ext4_mb_group_or_file(ac);
4640 
4641 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4642 			"left: %u/%u, right %u/%u to %swritable\n",
4643 			(unsigned) ar->len, (unsigned) ar->logical,
4644 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4645 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4646 			(unsigned) ar->lright, (unsigned) ar->pright,
4647 			inode_is_open_for_write(ar->inode) ? "" : "non-");
4648 	return 0;
4649 
4650 }
4651 
4652 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4653 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4654 					struct ext4_locality_group *lg,
4655 					int order, int total_entries)
4656 {
4657 	ext4_group_t group = 0;
4658 	struct ext4_buddy e4b;
4659 	struct list_head discard_list;
4660 	struct ext4_prealloc_space *pa, *tmp;
4661 
4662 	mb_debug(sb, "discard locality group preallocation\n");
4663 
4664 	INIT_LIST_HEAD(&discard_list);
4665 
4666 	spin_lock(&lg->lg_prealloc_lock);
4667 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4668 				pa_inode_list,
4669 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4670 		spin_lock(&pa->pa_lock);
4671 		if (atomic_read(&pa->pa_count)) {
4672 			/*
4673 			 * This is the pa that we just used
4674 			 * for block allocation. So don't
4675 			 * free that
4676 			 */
4677 			spin_unlock(&pa->pa_lock);
4678 			continue;
4679 		}
4680 		if (pa->pa_deleted) {
4681 			spin_unlock(&pa->pa_lock);
4682 			continue;
4683 		}
4684 		/* only lg prealloc space */
4685 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4686 
4687 		/* seems this one can be freed ... */
4688 		ext4_mb_mark_pa_deleted(sb, pa);
4689 		spin_unlock(&pa->pa_lock);
4690 
4691 		list_del_rcu(&pa->pa_inode_list);
4692 		list_add(&pa->u.pa_tmp_list, &discard_list);
4693 
4694 		total_entries--;
4695 		if (total_entries <= 5) {
4696 			/*
4697 			 * we want to keep only 5 entries
4698 			 * allowing it to grow to 8. This
4699 			 * mak sure we don't call discard
4700 			 * soon for this list.
4701 			 */
4702 			break;
4703 		}
4704 	}
4705 	spin_unlock(&lg->lg_prealloc_lock);
4706 
4707 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4708 		int err;
4709 
4710 		group = ext4_get_group_number(sb, pa->pa_pstart);
4711 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4712 					     GFP_NOFS|__GFP_NOFAIL);
4713 		if (err) {
4714 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4715 				       err, group);
4716 			continue;
4717 		}
4718 		ext4_lock_group(sb, group);
4719 		list_del(&pa->pa_group_list);
4720 		ext4_mb_release_group_pa(&e4b, pa);
4721 		ext4_unlock_group(sb, group);
4722 
4723 		ext4_mb_unload_buddy(&e4b);
4724 		list_del(&pa->u.pa_tmp_list);
4725 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4726 	}
4727 }
4728 
4729 /*
4730  * We have incremented pa_count. So it cannot be freed at this
4731  * point. Also we hold lg_mutex. So no parallel allocation is
4732  * possible from this lg. That means pa_free cannot be updated.
4733  *
4734  * A parallel ext4_mb_discard_group_preallocations is possible.
4735  * which can cause the lg_prealloc_list to be updated.
4736  */
4737 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4738 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4739 {
4740 	int order, added = 0, lg_prealloc_count = 1;
4741 	struct super_block *sb = ac->ac_sb;
4742 	struct ext4_locality_group *lg = ac->ac_lg;
4743 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4744 
4745 	order = fls(pa->pa_free) - 1;
4746 	if (order > PREALLOC_TB_SIZE - 1)
4747 		/* The max size of hash table is PREALLOC_TB_SIZE */
4748 		order = PREALLOC_TB_SIZE - 1;
4749 	/* Add the prealloc space to lg */
4750 	spin_lock(&lg->lg_prealloc_lock);
4751 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4752 				pa_inode_list,
4753 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4754 		spin_lock(&tmp_pa->pa_lock);
4755 		if (tmp_pa->pa_deleted) {
4756 			spin_unlock(&tmp_pa->pa_lock);
4757 			continue;
4758 		}
4759 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4760 			/* Add to the tail of the previous entry */
4761 			list_add_tail_rcu(&pa->pa_inode_list,
4762 						&tmp_pa->pa_inode_list);
4763 			added = 1;
4764 			/*
4765 			 * we want to count the total
4766 			 * number of entries in the list
4767 			 */
4768 		}
4769 		spin_unlock(&tmp_pa->pa_lock);
4770 		lg_prealloc_count++;
4771 	}
4772 	if (!added)
4773 		list_add_tail_rcu(&pa->pa_inode_list,
4774 					&lg->lg_prealloc_list[order]);
4775 	spin_unlock(&lg->lg_prealloc_lock);
4776 
4777 	/* Now trim the list to be not more than 8 elements */
4778 	if (lg_prealloc_count > 8) {
4779 		ext4_mb_discard_lg_preallocations(sb, lg,
4780 						  order, lg_prealloc_count);
4781 		return;
4782 	}
4783 	return ;
4784 }
4785 
4786 /*
4787  * if per-inode prealloc list is too long, trim some PA
4788  */
ext4_mb_trim_inode_pa(struct inode * inode)4789 static void ext4_mb_trim_inode_pa(struct inode *inode)
4790 {
4791 	struct ext4_inode_info *ei = EXT4_I(inode);
4792 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4793 	int count, delta;
4794 
4795 	count = atomic_read(&ei->i_prealloc_active);
4796 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
4797 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
4798 		count -= sbi->s_mb_max_inode_prealloc;
4799 		ext4_discard_preallocations(inode, count);
4800 	}
4801 }
4802 
4803 /*
4804  * release all resource we used in allocation
4805  */
ext4_mb_release_context(struct ext4_allocation_context * ac)4806 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4807 {
4808 	struct inode *inode = ac->ac_inode;
4809 	struct ext4_inode_info *ei = EXT4_I(inode);
4810 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4811 	struct ext4_prealloc_space *pa = ac->ac_pa;
4812 	if (pa) {
4813 		if (pa->pa_type == MB_GROUP_PA) {
4814 			/* see comment in ext4_mb_use_group_pa() */
4815 			spin_lock(&pa->pa_lock);
4816 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4817 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4818 			pa->pa_free -= ac->ac_b_ex.fe_len;
4819 			pa->pa_len -= ac->ac_b_ex.fe_len;
4820 			spin_unlock(&pa->pa_lock);
4821 
4822 			/*
4823 			 * We want to add the pa to the right bucket.
4824 			 * Remove it from the list and while adding
4825 			 * make sure the list to which we are adding
4826 			 * doesn't grow big.
4827 			 */
4828 			if (likely(pa->pa_free)) {
4829 				spin_lock(pa->pa_obj_lock);
4830 				list_del_rcu(&pa->pa_inode_list);
4831 				spin_unlock(pa->pa_obj_lock);
4832 				ext4_mb_add_n_trim(ac);
4833 			}
4834 		}
4835 
4836 		if (pa->pa_type == MB_INODE_PA) {
4837 			/*
4838 			 * treat per-inode prealloc list as a lru list, then try
4839 			 * to trim the least recently used PA.
4840 			 */
4841 			spin_lock(pa->pa_obj_lock);
4842 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
4843 			spin_unlock(pa->pa_obj_lock);
4844 		}
4845 
4846 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4847 	}
4848 	if (ac->ac_bitmap_page)
4849 		put_page(ac->ac_bitmap_page);
4850 	if (ac->ac_buddy_page)
4851 		put_page(ac->ac_buddy_page);
4852 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4853 		mutex_unlock(&ac->ac_lg->lg_mutex);
4854 	ext4_mb_collect_stats(ac);
4855 	ext4_mb_trim_inode_pa(inode);
4856 	return 0;
4857 }
4858 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4859 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4860 {
4861 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4862 	int ret;
4863 	int freed = 0, busy = 0;
4864 	int retry = 0;
4865 
4866 	trace_ext4_mb_discard_preallocations(sb, needed);
4867 
4868 	if (needed == 0)
4869 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4870  repeat:
4871 	for (i = 0; i < ngroups && needed > 0; i++) {
4872 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
4873 		freed += ret;
4874 		needed -= ret;
4875 		cond_resched();
4876 	}
4877 
4878 	if (needed > 0 && busy && ++retry < 3) {
4879 		busy = 0;
4880 		goto repeat;
4881 	}
4882 
4883 	return freed;
4884 }
4885 
ext4_mb_discard_preallocations_should_retry(struct super_block * sb,struct ext4_allocation_context * ac,u64 * seq)4886 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4887 			struct ext4_allocation_context *ac, u64 *seq)
4888 {
4889 	int freed;
4890 	u64 seq_retry = 0;
4891 	bool ret = false;
4892 
4893 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4894 	if (freed) {
4895 		ret = true;
4896 		goto out_dbg;
4897 	}
4898 	seq_retry = ext4_get_discard_pa_seq_sum();
4899 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4900 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4901 		*seq = seq_retry;
4902 		ret = true;
4903 	}
4904 
4905 out_dbg:
4906 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4907 	return ret;
4908 }
4909 
4910 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
4911 				struct ext4_allocation_request *ar, int *errp);
4912 
4913 /*
4914  * Main entry point into mballoc to allocate blocks
4915  * it tries to use preallocation first, then falls back
4916  * to usual allocation
4917  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4918 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4919 				struct ext4_allocation_request *ar, int *errp)
4920 {
4921 	struct ext4_allocation_context *ac = NULL;
4922 	struct ext4_sb_info *sbi;
4923 	struct super_block *sb;
4924 	ext4_fsblk_t block = 0;
4925 	unsigned int inquota = 0;
4926 	unsigned int reserv_clstrs = 0;
4927 	u64 seq;
4928 
4929 	might_sleep();
4930 	sb = ar->inode->i_sb;
4931 	sbi = EXT4_SB(sb);
4932 
4933 	trace_ext4_request_blocks(ar);
4934 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
4935 		return ext4_mb_new_blocks_simple(handle, ar, errp);
4936 
4937 	/* Allow to use superuser reservation for quota file */
4938 	if (ext4_is_quota_file(ar->inode))
4939 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4940 
4941 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4942 		/* Without delayed allocation we need to verify
4943 		 * there is enough free blocks to do block allocation
4944 		 * and verify allocation doesn't exceed the quota limits.
4945 		 */
4946 		while (ar->len &&
4947 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4948 
4949 			/* let others to free the space */
4950 			cond_resched();
4951 			ar->len = ar->len >> 1;
4952 		}
4953 		if (!ar->len) {
4954 			ext4_mb_show_pa(sb);
4955 			*errp = -ENOSPC;
4956 			return 0;
4957 		}
4958 		reserv_clstrs = ar->len;
4959 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4960 			dquot_alloc_block_nofail(ar->inode,
4961 						 EXT4_C2B(sbi, ar->len));
4962 		} else {
4963 			while (ar->len &&
4964 				dquot_alloc_block(ar->inode,
4965 						  EXT4_C2B(sbi, ar->len))) {
4966 
4967 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4968 				ar->len--;
4969 			}
4970 		}
4971 		inquota = ar->len;
4972 		if (ar->len == 0) {
4973 			*errp = -EDQUOT;
4974 			goto out;
4975 		}
4976 	}
4977 
4978 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4979 	if (!ac) {
4980 		ar->len = 0;
4981 		*errp = -ENOMEM;
4982 		goto out;
4983 	}
4984 
4985 	*errp = ext4_mb_initialize_context(ac, ar);
4986 	if (*errp) {
4987 		ar->len = 0;
4988 		goto out;
4989 	}
4990 
4991 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4992 	seq = this_cpu_read(discard_pa_seq);
4993 	if (!ext4_mb_use_preallocated(ac)) {
4994 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4995 		ext4_mb_normalize_request(ac, ar);
4996 
4997 		*errp = ext4_mb_pa_alloc(ac);
4998 		if (*errp)
4999 			goto errout;
5000 repeat:
5001 		/* allocate space in core */
5002 		*errp = ext4_mb_regular_allocator(ac);
5003 		/*
5004 		 * pa allocated above is added to grp->bb_prealloc_list only
5005 		 * when we were able to allocate some block i.e. when
5006 		 * ac->ac_status == AC_STATUS_FOUND.
5007 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5008 		 * So we have to free this pa here itself.
5009 		 */
5010 		if (*errp) {
5011 			ext4_mb_pa_free(ac);
5012 			ext4_discard_allocated_blocks(ac);
5013 			goto errout;
5014 		}
5015 		if (ac->ac_status == AC_STATUS_FOUND &&
5016 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5017 			ext4_mb_pa_free(ac);
5018 	}
5019 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5020 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5021 		if (*errp) {
5022 			ext4_discard_allocated_blocks(ac);
5023 			goto errout;
5024 		} else {
5025 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5026 			ar->len = ac->ac_b_ex.fe_len;
5027 		}
5028 	} else {
5029 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5030 			goto repeat;
5031 		/*
5032 		 * If block allocation fails then the pa allocated above
5033 		 * needs to be freed here itself.
5034 		 */
5035 		ext4_mb_pa_free(ac);
5036 		*errp = -ENOSPC;
5037 	}
5038 
5039 errout:
5040 	if (*errp) {
5041 		ac->ac_b_ex.fe_len = 0;
5042 		ar->len = 0;
5043 		ext4_mb_show_ac(ac);
5044 	}
5045 	ext4_mb_release_context(ac);
5046 out:
5047 	if (ac)
5048 		kmem_cache_free(ext4_ac_cachep, ac);
5049 	if (inquota && ar->len < inquota)
5050 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5051 	if (!ar->len) {
5052 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5053 			/* release all the reserved blocks if non delalloc */
5054 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5055 						reserv_clstrs);
5056 	}
5057 
5058 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5059 
5060 	return block;
5061 }
5062 
5063 /*
5064  * We can merge two free data extents only if the physical blocks
5065  * are contiguous, AND the extents were freed by the same transaction,
5066  * AND the blocks are associated with the same group.
5067  */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)5068 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5069 					struct ext4_free_data *entry,
5070 					struct ext4_free_data *new_entry,
5071 					struct rb_root *entry_rb_root)
5072 {
5073 	if ((entry->efd_tid != new_entry->efd_tid) ||
5074 	    (entry->efd_group != new_entry->efd_group))
5075 		return;
5076 	if (entry->efd_start_cluster + entry->efd_count ==
5077 	    new_entry->efd_start_cluster) {
5078 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5079 		new_entry->efd_count += entry->efd_count;
5080 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5081 		   entry->efd_start_cluster) {
5082 		new_entry->efd_count += entry->efd_count;
5083 	} else
5084 		return;
5085 	spin_lock(&sbi->s_md_lock);
5086 	list_del(&entry->efd_list);
5087 	spin_unlock(&sbi->s_md_lock);
5088 	rb_erase(&entry->efd_node, entry_rb_root);
5089 	kmem_cache_free(ext4_free_data_cachep, entry);
5090 }
5091 
5092 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)5093 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5094 		      struct ext4_free_data *new_entry)
5095 {
5096 	ext4_group_t group = e4b->bd_group;
5097 	ext4_grpblk_t cluster;
5098 	ext4_grpblk_t clusters = new_entry->efd_count;
5099 	struct ext4_free_data *entry;
5100 	struct ext4_group_info *db = e4b->bd_info;
5101 	struct super_block *sb = e4b->bd_sb;
5102 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5103 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5104 	struct rb_node *parent = NULL, *new_node;
5105 
5106 	BUG_ON(!ext4_handle_valid(handle));
5107 	BUG_ON(e4b->bd_bitmap_page == NULL);
5108 	BUG_ON(e4b->bd_buddy_page == NULL);
5109 
5110 	new_node = &new_entry->efd_node;
5111 	cluster = new_entry->efd_start_cluster;
5112 
5113 	if (!*n) {
5114 		/* first free block exent. We need to
5115 		   protect buddy cache from being freed,
5116 		 * otherwise we'll refresh it from
5117 		 * on-disk bitmap and lose not-yet-available
5118 		 * blocks */
5119 		get_page(e4b->bd_buddy_page);
5120 		get_page(e4b->bd_bitmap_page);
5121 	}
5122 	while (*n) {
5123 		parent = *n;
5124 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5125 		if (cluster < entry->efd_start_cluster)
5126 			n = &(*n)->rb_left;
5127 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5128 			n = &(*n)->rb_right;
5129 		else {
5130 			ext4_grp_locked_error(sb, group, 0,
5131 				ext4_group_first_block_no(sb, group) +
5132 				EXT4_C2B(sbi, cluster),
5133 				"Block already on to-be-freed list");
5134 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5135 			return 0;
5136 		}
5137 	}
5138 
5139 	rb_link_node(new_node, parent, n);
5140 	rb_insert_color(new_node, &db->bb_free_root);
5141 
5142 	/* Now try to see the extent can be merged to left and right */
5143 	node = rb_prev(new_node);
5144 	if (node) {
5145 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5146 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5147 					    &(db->bb_free_root));
5148 	}
5149 
5150 	node = rb_next(new_node);
5151 	if (node) {
5152 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5153 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5154 					    &(db->bb_free_root));
5155 	}
5156 
5157 	spin_lock(&sbi->s_md_lock);
5158 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5159 	sbi->s_mb_free_pending += clusters;
5160 	spin_unlock(&sbi->s_md_lock);
5161 	return 0;
5162 }
5163 
5164 /*
5165  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5166  * linearly starting at the goal block and also excludes the blocks which
5167  * are going to be in use after fast commit replay.
5168  */
ext4_mb_new_blocks_simple(handle_t * handle,struct ext4_allocation_request * ar,int * errp)5169 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5170 				struct ext4_allocation_request *ar, int *errp)
5171 {
5172 	struct buffer_head *bitmap_bh;
5173 	struct super_block *sb = ar->inode->i_sb;
5174 	ext4_group_t group;
5175 	ext4_grpblk_t blkoff;
5176 	int i = sb->s_blocksize;
5177 	ext4_fsblk_t goal, block;
5178 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5179 
5180 	goal = ar->goal;
5181 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5182 			goal >= ext4_blocks_count(es))
5183 		goal = le32_to_cpu(es->s_first_data_block);
5184 
5185 	ar->len = 0;
5186 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5187 	for (; group < ext4_get_groups_count(sb); group++) {
5188 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5189 		if (IS_ERR(bitmap_bh)) {
5190 			*errp = PTR_ERR(bitmap_bh);
5191 			pr_warn("Failed to read block bitmap\n");
5192 			return 0;
5193 		}
5194 
5195 		ext4_get_group_no_and_offset(sb,
5196 			max(ext4_group_first_block_no(sb, group), goal),
5197 			NULL, &blkoff);
5198 		i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
5199 						blkoff);
5200 		brelse(bitmap_bh);
5201 		if (i >= sb->s_blocksize)
5202 			continue;
5203 		if (ext4_fc_replay_check_excluded(sb,
5204 			ext4_group_first_block_no(sb, group) + i))
5205 			continue;
5206 		break;
5207 	}
5208 
5209 	if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
5210 		return 0;
5211 
5212 	block = ext4_group_first_block_no(sb, group) + i;
5213 	ext4_mb_mark_bb(sb, block, 1, 1);
5214 	ar->len = 1;
5215 
5216 	return block;
5217 }
5218 
ext4_free_blocks_simple(struct inode * inode,ext4_fsblk_t block,unsigned long count)5219 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5220 					unsigned long count)
5221 {
5222 	struct buffer_head *bitmap_bh;
5223 	struct super_block *sb = inode->i_sb;
5224 	struct ext4_group_desc *gdp;
5225 	struct buffer_head *gdp_bh;
5226 	ext4_group_t group;
5227 	ext4_grpblk_t blkoff;
5228 	int already_freed = 0, err, i;
5229 
5230 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5231 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5232 	if (IS_ERR(bitmap_bh)) {
5233 		err = PTR_ERR(bitmap_bh);
5234 		pr_warn("Failed to read block bitmap\n");
5235 		return;
5236 	}
5237 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5238 	if (!gdp)
5239 		return;
5240 
5241 	for (i = 0; i < count; i++) {
5242 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5243 			already_freed++;
5244 	}
5245 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5246 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5247 	if (err)
5248 		return;
5249 	ext4_free_group_clusters_set(
5250 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5251 		count - already_freed);
5252 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5253 	ext4_group_desc_csum_set(sb, group, gdp);
5254 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5255 	sync_dirty_buffer(bitmap_bh);
5256 	sync_dirty_buffer(gdp_bh);
5257 	brelse(bitmap_bh);
5258 }
5259 
5260 /**
5261  * ext4_free_blocks() -- Free given blocks and update quota
5262  * @handle:		handle for this transaction
5263  * @inode:		inode
5264  * @bh:			optional buffer of the block to be freed
5265  * @block:		starting physical block to be freed
5266  * @count:		number of blocks to be freed
5267  * @flags:		flags used by ext4_free_blocks
5268  */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)5269 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5270 		      struct buffer_head *bh, ext4_fsblk_t block,
5271 		      unsigned long count, int flags)
5272 {
5273 	struct buffer_head *bitmap_bh = NULL;
5274 	struct super_block *sb = inode->i_sb;
5275 	struct ext4_group_desc *gdp;
5276 	unsigned int overflow;
5277 	ext4_grpblk_t bit;
5278 	struct buffer_head *gd_bh;
5279 	ext4_group_t block_group;
5280 	struct ext4_sb_info *sbi;
5281 	struct ext4_buddy e4b;
5282 	unsigned int count_clusters;
5283 	int err = 0;
5284 	int ret;
5285 
5286 	sbi = EXT4_SB(sb);
5287 
5288 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5289 		ext4_free_blocks_simple(inode, block, count);
5290 		return;
5291 	}
5292 
5293 	might_sleep();
5294 	if (bh) {
5295 		if (block)
5296 			BUG_ON(block != bh->b_blocknr);
5297 		else
5298 			block = bh->b_blocknr;
5299 	}
5300 
5301 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5302 	    !ext4_inode_block_valid(inode, block, count)) {
5303 		ext4_error(sb, "Freeing blocks not in datazone - "
5304 			   "block = %llu, count = %lu", block, count);
5305 		goto error_return;
5306 	}
5307 
5308 	ext4_debug("freeing block %llu\n", block);
5309 	trace_ext4_free_blocks(inode, block, count, flags);
5310 
5311 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5312 		BUG_ON(count > 1);
5313 
5314 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5315 			    inode, bh, block);
5316 	}
5317 
5318 	/*
5319 	 * If the extent to be freed does not begin on a cluster
5320 	 * boundary, we need to deal with partial clusters at the
5321 	 * beginning and end of the extent.  Normally we will free
5322 	 * blocks at the beginning or the end unless we are explicitly
5323 	 * requested to avoid doing so.
5324 	 */
5325 	overflow = EXT4_PBLK_COFF(sbi, block);
5326 	if (overflow) {
5327 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5328 			overflow = sbi->s_cluster_ratio - overflow;
5329 			block += overflow;
5330 			if (count > overflow)
5331 				count -= overflow;
5332 			else
5333 				return;
5334 		} else {
5335 			block -= overflow;
5336 			count += overflow;
5337 		}
5338 	}
5339 	overflow = EXT4_LBLK_COFF(sbi, count);
5340 	if (overflow) {
5341 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5342 			if (count > overflow)
5343 				count -= overflow;
5344 			else
5345 				return;
5346 		} else
5347 			count += sbi->s_cluster_ratio - overflow;
5348 	}
5349 
5350 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5351 		int i;
5352 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5353 
5354 		for (i = 0; i < count; i++) {
5355 			cond_resched();
5356 			if (is_metadata)
5357 				bh = sb_find_get_block(inode->i_sb, block + i);
5358 			ext4_forget(handle, is_metadata, inode, bh, block + i);
5359 		}
5360 	}
5361 
5362 do_more:
5363 	overflow = 0;
5364 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5365 
5366 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5367 			ext4_get_group_info(sb, block_group))))
5368 		return;
5369 
5370 	/*
5371 	 * Check to see if we are freeing blocks across a group
5372 	 * boundary.
5373 	 */
5374 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5375 		overflow = EXT4_C2B(sbi, bit) + count -
5376 			EXT4_BLOCKS_PER_GROUP(sb);
5377 		count -= overflow;
5378 	}
5379 	count_clusters = EXT4_NUM_B2C(sbi, count);
5380 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5381 	if (IS_ERR(bitmap_bh)) {
5382 		err = PTR_ERR(bitmap_bh);
5383 		bitmap_bh = NULL;
5384 		goto error_return;
5385 	}
5386 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5387 	if (!gdp) {
5388 		err = -EIO;
5389 		goto error_return;
5390 	}
5391 
5392 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5393 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5394 	    in_range(block, ext4_inode_table(sb, gdp),
5395 		     sbi->s_itb_per_group) ||
5396 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
5397 		     sbi->s_itb_per_group)) {
5398 
5399 		ext4_error(sb, "Freeing blocks in system zone - "
5400 			   "Block = %llu, count = %lu", block, count);
5401 		/* err = 0. ext4_std_error should be a no op */
5402 		goto error_return;
5403 	}
5404 
5405 	BUFFER_TRACE(bitmap_bh, "getting write access");
5406 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5407 	if (err)
5408 		goto error_return;
5409 
5410 	/*
5411 	 * We are about to modify some metadata.  Call the journal APIs
5412 	 * to unshare ->b_data if a currently-committing transaction is
5413 	 * using it
5414 	 */
5415 	BUFFER_TRACE(gd_bh, "get_write_access");
5416 	err = ext4_journal_get_write_access(handle, gd_bh);
5417 	if (err)
5418 		goto error_return;
5419 #ifdef AGGRESSIVE_CHECK
5420 	{
5421 		int i;
5422 		for (i = 0; i < count_clusters; i++)
5423 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5424 	}
5425 #endif
5426 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5427 
5428 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5429 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5430 				     GFP_NOFS|__GFP_NOFAIL);
5431 	if (err)
5432 		goto error_return;
5433 
5434 	/*
5435 	 * We need to make sure we don't reuse the freed block until after the
5436 	 * transaction is committed. We make an exception if the inode is to be
5437 	 * written in writeback mode since writeback mode has weak data
5438 	 * consistency guarantees.
5439 	 */
5440 	if (ext4_handle_valid(handle) &&
5441 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5442 	     !ext4_should_writeback_data(inode))) {
5443 		struct ext4_free_data *new_entry;
5444 		/*
5445 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5446 		 * to fail.
5447 		 */
5448 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5449 				GFP_NOFS|__GFP_NOFAIL);
5450 		new_entry->efd_start_cluster = bit;
5451 		new_entry->efd_group = block_group;
5452 		new_entry->efd_count = count_clusters;
5453 		new_entry->efd_tid = handle->h_transaction->t_tid;
5454 
5455 		ext4_lock_group(sb, block_group);
5456 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5457 		ext4_mb_free_metadata(handle, &e4b, new_entry);
5458 	} else {
5459 		/* need to update group_info->bb_free and bitmap
5460 		 * with group lock held. generate_buddy look at
5461 		 * them with group lock_held
5462 		 */
5463 		if (test_opt(sb, DISCARD)) {
5464 			err = ext4_issue_discard(sb, block_group, bit, count,
5465 						 NULL);
5466 			if (err && err != -EOPNOTSUPP)
5467 				ext4_msg(sb, KERN_WARNING, "discard request in"
5468 					 " group:%d block:%d count:%lu failed"
5469 					 " with %d", block_group, bit, count,
5470 					 err);
5471 		} else
5472 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5473 
5474 		ext4_lock_group(sb, block_group);
5475 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5476 		mb_free_blocks(inode, &e4b, bit, count_clusters);
5477 	}
5478 
5479 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5480 	ext4_free_group_clusters_set(sb, gdp, ret);
5481 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5482 	ext4_group_desc_csum_set(sb, block_group, gdp);
5483 	ext4_unlock_group(sb, block_group);
5484 
5485 	if (sbi->s_log_groups_per_flex) {
5486 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5487 		atomic64_add(count_clusters,
5488 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5489 						  flex_group)->free_clusters);
5490 	}
5491 
5492 	/*
5493 	 * on a bigalloc file system, defer the s_freeclusters_counter
5494 	 * update to the caller (ext4_remove_space and friends) so they
5495 	 * can determine if a cluster freed here should be rereserved
5496 	 */
5497 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5498 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5499 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5500 		percpu_counter_add(&sbi->s_freeclusters_counter,
5501 				   count_clusters);
5502 	}
5503 
5504 	ext4_mb_unload_buddy(&e4b);
5505 
5506 	/* We dirtied the bitmap block */
5507 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5508 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5509 
5510 	/* And the group descriptor block */
5511 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5512 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5513 	if (!err)
5514 		err = ret;
5515 
5516 	if (overflow && !err) {
5517 		block += count;
5518 		count = overflow;
5519 		put_bh(bitmap_bh);
5520 		goto do_more;
5521 	}
5522 error_return:
5523 	brelse(bitmap_bh);
5524 	ext4_std_error(sb, err);
5525 	return;
5526 }
5527 
5528 /**
5529  * ext4_group_add_blocks() -- Add given blocks to an existing group
5530  * @handle:			handle to this transaction
5531  * @sb:				super block
5532  * @block:			start physical block to add to the block group
5533  * @count:			number of blocks to free
5534  *
5535  * This marks the blocks as free in the bitmap and buddy.
5536  */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)5537 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5538 			 ext4_fsblk_t block, unsigned long count)
5539 {
5540 	struct buffer_head *bitmap_bh = NULL;
5541 	struct buffer_head *gd_bh;
5542 	ext4_group_t block_group;
5543 	ext4_grpblk_t bit;
5544 	unsigned int i;
5545 	struct ext4_group_desc *desc;
5546 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5547 	struct ext4_buddy e4b;
5548 	int err = 0, ret, free_clusters_count;
5549 	ext4_grpblk_t clusters_freed;
5550 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5551 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5552 	unsigned long cluster_count = last_cluster - first_cluster + 1;
5553 
5554 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5555 
5556 	if (count == 0)
5557 		return 0;
5558 
5559 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5560 	/*
5561 	 * Check to see if we are freeing blocks across a group
5562 	 * boundary.
5563 	 */
5564 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5565 		ext4_warning(sb, "too many blocks added to group %u",
5566 			     block_group);
5567 		err = -EINVAL;
5568 		goto error_return;
5569 	}
5570 
5571 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5572 	if (IS_ERR(bitmap_bh)) {
5573 		err = PTR_ERR(bitmap_bh);
5574 		bitmap_bh = NULL;
5575 		goto error_return;
5576 	}
5577 
5578 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5579 	if (!desc) {
5580 		err = -EIO;
5581 		goto error_return;
5582 	}
5583 
5584 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5585 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5586 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5587 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5588 		     sbi->s_itb_per_group)) {
5589 		ext4_error(sb, "Adding blocks in system zones - "
5590 			   "Block = %llu, count = %lu",
5591 			   block, count);
5592 		err = -EINVAL;
5593 		goto error_return;
5594 	}
5595 
5596 	BUFFER_TRACE(bitmap_bh, "getting write access");
5597 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5598 	if (err)
5599 		goto error_return;
5600 
5601 	/*
5602 	 * We are about to modify some metadata.  Call the journal APIs
5603 	 * to unshare ->b_data if a currently-committing transaction is
5604 	 * using it
5605 	 */
5606 	BUFFER_TRACE(gd_bh, "get_write_access");
5607 	err = ext4_journal_get_write_access(handle, gd_bh);
5608 	if (err)
5609 		goto error_return;
5610 
5611 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5612 		BUFFER_TRACE(bitmap_bh, "clear bit");
5613 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5614 			ext4_error(sb, "bit already cleared for block %llu",
5615 				   (ext4_fsblk_t)(block + i));
5616 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5617 		} else {
5618 			clusters_freed++;
5619 		}
5620 	}
5621 
5622 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5623 	if (err)
5624 		goto error_return;
5625 
5626 	/*
5627 	 * need to update group_info->bb_free and bitmap
5628 	 * with group lock held. generate_buddy look at
5629 	 * them with group lock_held
5630 	 */
5631 	ext4_lock_group(sb, block_group);
5632 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5633 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5634 	free_clusters_count = clusters_freed +
5635 		ext4_free_group_clusters(sb, desc);
5636 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5637 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5638 	ext4_group_desc_csum_set(sb, block_group, desc);
5639 	ext4_unlock_group(sb, block_group);
5640 	percpu_counter_add(&sbi->s_freeclusters_counter,
5641 			   clusters_freed);
5642 
5643 	if (sbi->s_log_groups_per_flex) {
5644 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5645 		atomic64_add(clusters_freed,
5646 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5647 						  flex_group)->free_clusters);
5648 	}
5649 
5650 	ext4_mb_unload_buddy(&e4b);
5651 
5652 	/* We dirtied the bitmap block */
5653 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5654 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5655 
5656 	/* And the group descriptor block */
5657 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5658 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5659 	if (!err)
5660 		err = ret;
5661 
5662 error_return:
5663 	brelse(bitmap_bh);
5664 	ext4_std_error(sb, err);
5665 	return err;
5666 }
5667 
5668 /**
5669  * ext4_trim_extent -- function to TRIM one single free extent in the group
5670  * @sb:		super block for the file system
5671  * @start:	starting block of the free extent in the alloc. group
5672  * @count:	number of blocks to TRIM
5673  * @group:	alloc. group we are working with
5674  * @e4b:	ext4 buddy for the group
5675  *
5676  * Trim "count" blocks starting at "start" in the "group". To assure that no
5677  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5678  * be called with under the group lock.
5679  */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b)5680 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5681 			     ext4_group_t group, struct ext4_buddy *e4b)
5682 __releases(bitlock)
5683 __acquires(bitlock)
5684 {
5685 	struct ext4_free_extent ex;
5686 	int ret = 0;
5687 
5688 	trace_ext4_trim_extent(sb, group, start, count);
5689 
5690 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5691 
5692 	ex.fe_start = start;
5693 	ex.fe_group = group;
5694 	ex.fe_len = count;
5695 
5696 	/*
5697 	 * Mark blocks used, so no one can reuse them while
5698 	 * being trimmed.
5699 	 */
5700 	mb_mark_used(e4b, &ex);
5701 	ext4_unlock_group(sb, group);
5702 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5703 	ext4_lock_group(sb, group);
5704 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5705 	return ret;
5706 }
5707 
5708 /**
5709  * ext4_trim_all_free -- function to trim all free space in alloc. group
5710  * @sb:			super block for file system
5711  * @group:		group to be trimmed
5712  * @start:		first group block to examine
5713  * @max:		last group block to examine
5714  * @minblocks:		minimum extent block count
5715  *
5716  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5717  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5718  * the extent.
5719  *
5720  *
5721  * ext4_trim_all_free walks through group's block bitmap searching for free
5722  * extents. When the free extent is found, mark it as used in group buddy
5723  * bitmap. Then issue a TRIM command on this extent and free the extent in
5724  * the group buddy bitmap. This is done until whole group is scanned.
5725  */
5726 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5727 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5728 		   ext4_grpblk_t start, ext4_grpblk_t max,
5729 		   ext4_grpblk_t minblocks)
5730 {
5731 	void *bitmap;
5732 	ext4_grpblk_t next, count = 0, free_count = 0;
5733 	struct ext4_buddy e4b;
5734 	int ret = 0;
5735 
5736 	trace_ext4_trim_all_free(sb, group, start, max);
5737 
5738 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5739 	if (ret) {
5740 		ext4_warning(sb, "Error %d loading buddy information for %u",
5741 			     ret, group);
5742 		return ret;
5743 	}
5744 	bitmap = e4b.bd_bitmap;
5745 
5746 	ext4_lock_group(sb, group);
5747 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5748 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5749 		goto out;
5750 
5751 	start = (e4b.bd_info->bb_first_free > start) ?
5752 		e4b.bd_info->bb_first_free : start;
5753 
5754 	while (start <= max) {
5755 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5756 		if (start > max)
5757 			break;
5758 		next = mb_find_next_bit(bitmap, max + 1, start);
5759 
5760 		if ((next - start) >= minblocks) {
5761 			ret = ext4_trim_extent(sb, start,
5762 					       next - start, group, &e4b);
5763 			if (ret && ret != -EOPNOTSUPP)
5764 				break;
5765 			ret = 0;
5766 			count += next - start;
5767 		}
5768 		free_count += next - start;
5769 		start = next + 1;
5770 
5771 		if (fatal_signal_pending(current)) {
5772 			count = -ERESTARTSYS;
5773 			break;
5774 		}
5775 
5776 		if (need_resched()) {
5777 			ext4_unlock_group(sb, group);
5778 			cond_resched();
5779 			ext4_lock_group(sb, group);
5780 		}
5781 
5782 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5783 			break;
5784 	}
5785 
5786 	if (!ret) {
5787 		ret = count;
5788 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5789 	}
5790 out:
5791 	ext4_unlock_group(sb, group);
5792 	ext4_mb_unload_buddy(&e4b);
5793 
5794 	ext4_debug("trimmed %d blocks in the group %d\n",
5795 		count, group);
5796 
5797 	return ret;
5798 }
5799 
5800 /**
5801  * ext4_trim_fs() -- trim ioctl handle function
5802  * @sb:			superblock for filesystem
5803  * @range:		fstrim_range structure
5804  *
5805  * start:	First Byte to trim
5806  * len:		number of Bytes to trim from start
5807  * minlen:	minimum extent length in Bytes
5808  * ext4_trim_fs goes through all allocation groups containing Bytes from
5809  * start to start+len. For each such a group ext4_trim_all_free function
5810  * is invoked to trim all free space.
5811  */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5812 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5813 {
5814 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
5815 	struct ext4_group_info *grp;
5816 	ext4_group_t group, first_group, last_group;
5817 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5818 	uint64_t start, end, minlen, trimmed = 0;
5819 	ext4_fsblk_t first_data_blk =
5820 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5821 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5822 	int ret = 0;
5823 
5824 	start = range->start >> sb->s_blocksize_bits;
5825 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5826 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5827 			      range->minlen >> sb->s_blocksize_bits);
5828 
5829 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5830 	    start >= max_blks ||
5831 	    range->len < sb->s_blocksize)
5832 		return -EINVAL;
5833 	/* No point to try to trim less than discard granularity */
5834 	if (range->minlen < q->limits.discard_granularity) {
5835 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5836 			q->limits.discard_granularity >> sb->s_blocksize_bits);
5837 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
5838 			goto out;
5839 	}
5840 	if (end >= max_blks)
5841 		end = max_blks - 1;
5842 	if (end <= first_data_blk)
5843 		goto out;
5844 	if (start < first_data_blk)
5845 		start = first_data_blk;
5846 
5847 	/* Determine first and last group to examine based on start and end */
5848 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5849 				     &first_group, &first_cluster);
5850 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5851 				     &last_group, &last_cluster);
5852 
5853 	/* end now represents the last cluster to discard in this group */
5854 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5855 
5856 	for (group = first_group; group <= last_group; group++) {
5857 		grp = ext4_get_group_info(sb, group);
5858 		/* We only do this if the grp has never been initialized */
5859 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5860 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5861 			if (ret)
5862 				break;
5863 		}
5864 
5865 		/*
5866 		 * For all the groups except the last one, last cluster will
5867 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5868 		 * change it for the last group, note that last_cluster is
5869 		 * already computed earlier by ext4_get_group_no_and_offset()
5870 		 */
5871 		if (group == last_group)
5872 			end = last_cluster;
5873 
5874 		if (grp->bb_free >= minlen) {
5875 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5876 						end, minlen);
5877 			if (cnt < 0) {
5878 				ret = cnt;
5879 				break;
5880 			}
5881 			trimmed += cnt;
5882 		}
5883 
5884 		/*
5885 		 * For every group except the first one, we are sure
5886 		 * that the first cluster to discard will be cluster #0.
5887 		 */
5888 		first_cluster = 0;
5889 	}
5890 
5891 	if (!ret)
5892 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5893 
5894 out:
5895 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5896 	return ret;
5897 }
5898 
5899 /* Iterate all the free extents in the group. */
5900 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)5901 ext4_mballoc_query_range(
5902 	struct super_block		*sb,
5903 	ext4_group_t			group,
5904 	ext4_grpblk_t			start,
5905 	ext4_grpblk_t			end,
5906 	ext4_mballoc_query_range_fn	formatter,
5907 	void				*priv)
5908 {
5909 	void				*bitmap;
5910 	ext4_grpblk_t			next;
5911 	struct ext4_buddy		e4b;
5912 	int				error;
5913 
5914 	error = ext4_mb_load_buddy(sb, group, &e4b);
5915 	if (error)
5916 		return error;
5917 	bitmap = e4b.bd_bitmap;
5918 
5919 	ext4_lock_group(sb, group);
5920 
5921 	start = (e4b.bd_info->bb_first_free > start) ?
5922 		e4b.bd_info->bb_first_free : start;
5923 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5924 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5925 
5926 	while (start <= end) {
5927 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5928 		if (start > end)
5929 			break;
5930 		next = mb_find_next_bit(bitmap, end + 1, start);
5931 
5932 		ext4_unlock_group(sb, group);
5933 		error = formatter(sb, group, start, next - start, priv);
5934 		if (error)
5935 			goto out_unload;
5936 		ext4_lock_group(sb, group);
5937 
5938 		start = next + 1;
5939 	}
5940 
5941 	ext4_unlock_group(sb, group);
5942 out_unload:
5943 	ext4_mb_unload_buddy(&e4b);
5944 
5945 	return error;
5946 }
5947