1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52 struct hstate *hstate;
53 unsigned long long max_size_opt;
54 unsigned long long min_size_opt;
55 long max_hpages;
56 long nr_inodes;
57 long min_hpages;
58 enum hugetlbfs_size_type max_val_type;
59 enum hugetlbfs_size_type min_val_type;
60 kuid_t uid;
61 kgid_t gid;
62 umode_t mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68 Opt_gid,
69 Opt_min_size,
70 Opt_mode,
71 Opt_nr_inodes,
72 Opt_pagesize,
73 Opt_size,
74 Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 fsparam_u32 ("gid", Opt_gid),
79 fsparam_string("min_size", Opt_min_size),
80 fsparam_u32oct("mode", Opt_mode),
81 fsparam_string("nr_inodes", Opt_nr_inodes),
82 fsparam_string("pagesize", Opt_pagesize),
83 fsparam_string("size", Opt_size),
84 fsparam_u32 ("uid", Opt_uid),
85 {}
86 };
87
88 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
hugetlb_drop_vma_policy(struct vm_area_struct * vma)96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
hugetlb_drop_vma_policy(struct vm_area_struct * vma)106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
huge_pagevec_release(struct pagevec * pvec)111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
121 /*
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
127 */
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 struct inode *inode = file_inode(file);
134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 loff_t len, vma_len;
136 int ret;
137 struct hstate *h = hstate_file(file);
138
139 /*
140 * vma address alignment (but not the pgoff alignment) has
141 * already been checked by prepare_hugepage_range. If you add
142 * any error returns here, do so after setting VM_HUGETLB, so
143 * is_vm_hugetlb_page tests below unmap_region go the right
144 * way when do_mmap unwinds (may be important on powerpc
145 * and ia64).
146 */
147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 vma->vm_ops = &hugetlb_vm_ops;
149
150 ret = seal_check_future_write(info->seals, vma);
151 if (ret)
152 return ret;
153
154 /*
155 * page based offset in vm_pgoff could be sufficiently large to
156 * overflow a loff_t when converted to byte offset. This can
157 * only happen on architectures where sizeof(loff_t) ==
158 * sizeof(unsigned long). So, only check in those instances.
159 */
160 if (sizeof(unsigned long) == sizeof(loff_t)) {
161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 return -EINVAL;
163 }
164
165 /* must be huge page aligned */
166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 return -EINVAL;
168
169 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 /* check for overflow */
172 if (len < vma_len)
173 return -EINVAL;
174
175 inode_lock(inode);
176 file_accessed(file);
177
178 ret = -ENOMEM;
179 if (hugetlb_reserve_pages(inode,
180 vma->vm_pgoff >> huge_page_order(h),
181 len >> huge_page_shift(h), vma,
182 vma->vm_flags))
183 goto out;
184
185 ret = 0;
186 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 i_size_write(inode, len);
188 out:
189 inode_unlock(inode);
190
191 return ret;
192 }
193
194 /*
195 * Called under mmap_write_lock(mm).
196 */
197
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 struct hstate *h = hstate_file(file);
204 struct vm_unmapped_area_info info;
205
206 info.flags = 0;
207 info.length = len;
208 info.low_limit = current->mm->mmap_base;
209 info.high_limit = TASK_SIZE;
210 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 info.align_offset = 0;
212 return vm_unmapped_area(&info);
213 }
214
215 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 struct hstate *h = hstate_file(file);
220 struct vm_unmapped_area_info info;
221
222 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 info.length = len;
224 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 info.high_limit = current->mm->mmap_base;
226 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 info.align_offset = 0;
228 addr = vm_unmapped_area(&info);
229
230 /*
231 * A failed mmap() very likely causes application failure,
232 * so fall back to the bottom-up function here. This scenario
233 * can happen with large stack limits and large mmap()
234 * allocations.
235 */
236 if (unlikely(offset_in_page(addr))) {
237 VM_BUG_ON(addr != -ENOMEM);
238 info.flags = 0;
239 info.low_limit = current->mm->mmap_base;
240 info.high_limit = TASK_SIZE;
241 addr = vm_unmapped_area(&info);
242 }
243
244 return addr;
245 }
246
247 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 struct mm_struct *mm = current->mm;
252 struct vm_area_struct *vma;
253 struct hstate *h = hstate_file(file);
254
255 if (len & ~huge_page_mask(h))
256 return -EINVAL;
257 if (len > TASK_SIZE)
258 return -ENOMEM;
259
260 if (flags & MAP_FIXED) {
261 if (prepare_hugepage_range(file, addr, len))
262 return -EINVAL;
263 return addr;
264 }
265
266 if (addr) {
267 addr = ALIGN(addr, huge_page_size(h));
268 vma = find_vma(mm, addr);
269 if (TASK_SIZE - len >= addr &&
270 (!vma || addr + len <= vm_start_gap(vma)))
271 return addr;
272 }
273
274 /*
275 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 * If architectures have special needs, they should define their own
277 * version of hugetlb_get_unmapped_area.
278 */
279 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 pgoff, flags);
282 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 pgoff, flags);
284 }
285 #endif
286
287 static size_t
hugetlbfs_read_actor(struct page * page,unsigned long offset,struct iov_iter * to,unsigned long size)288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 struct iov_iter *to, unsigned long size)
290 {
291 size_t copied = 0;
292 int i, chunksize;
293
294 /* Find which 4k chunk and offset with in that chunk */
295 i = offset >> PAGE_SHIFT;
296 offset = offset & ~PAGE_MASK;
297
298 while (size) {
299 size_t n;
300 chunksize = PAGE_SIZE;
301 if (offset)
302 chunksize -= offset;
303 if (chunksize > size)
304 chunksize = size;
305 n = copy_page_to_iter(&page[i], offset, chunksize, to);
306 copied += n;
307 if (n != chunksize)
308 return copied;
309 offset = 0;
310 size -= chunksize;
311 i++;
312 }
313 return copied;
314 }
315
316 /*
317 * Support for read() - Find the page attached to f_mapping and copy out the
318 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
319 * since it has PAGE_SIZE assumptions.
320 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
322 {
323 struct file *file = iocb->ki_filp;
324 struct hstate *h = hstate_file(file);
325 struct address_space *mapping = file->f_mapping;
326 struct inode *inode = mapping->host;
327 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 unsigned long end_index;
330 loff_t isize;
331 ssize_t retval = 0;
332
333 while (iov_iter_count(to)) {
334 struct page *page;
335 size_t nr, copied;
336
337 /* nr is the maximum number of bytes to copy from this page */
338 nr = huge_page_size(h);
339 isize = i_size_read(inode);
340 if (!isize)
341 break;
342 end_index = (isize - 1) >> huge_page_shift(h);
343 if (index > end_index)
344 break;
345 if (index == end_index) {
346 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
347 if (nr <= offset)
348 break;
349 }
350 nr = nr - offset;
351
352 /* Find the page */
353 page = find_lock_page(mapping, index);
354 if (unlikely(page == NULL)) {
355 /*
356 * We have a HOLE, zero out the user-buffer for the
357 * length of the hole or request.
358 */
359 copied = iov_iter_zero(nr, to);
360 } else {
361 unlock_page(page);
362
363 /*
364 * We have the page, copy it to user space buffer.
365 */
366 copied = hugetlbfs_read_actor(page, offset, to, nr);
367 put_page(page);
368 }
369 offset += copied;
370 retval += copied;
371 if (copied != nr && iov_iter_count(to)) {
372 if (!retval)
373 retval = -EFAULT;
374 break;
375 }
376 index += offset >> huge_page_shift(h);
377 offset &= ~huge_page_mask(h);
378 }
379 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
380 return retval;
381 }
382
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)383 static int hugetlbfs_write_begin(struct file *file,
384 struct address_space *mapping,
385 loff_t pos, unsigned len, unsigned flags,
386 struct page **pagep, void **fsdata)
387 {
388 return -EINVAL;
389 }
390
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 loff_t pos, unsigned len, unsigned copied,
393 struct page *page, void *fsdata)
394 {
395 BUG();
396 return -EINVAL;
397 }
398
remove_huge_page(struct page * page)399 static void remove_huge_page(struct page *page)
400 {
401 ClearPageDirty(page);
402 ClearPageUptodate(page);
403 delete_from_page_cache(page);
404 }
405
406 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end)407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
408 {
409 struct vm_area_struct *vma;
410
411 /*
412 * end == 0 indicates that the entire range after
413 * start should be unmapped.
414 */
415 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
416 unsigned long v_offset;
417 unsigned long v_end;
418
419 /*
420 * Can the expression below overflow on 32-bit arches?
421 * No, because the interval tree returns us only those vmas
422 * which overlap the truncated area starting at pgoff,
423 * and no vma on a 32-bit arch can span beyond the 4GB.
424 */
425 if (vma->vm_pgoff < start)
426 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
427 else
428 v_offset = 0;
429
430 if (!end)
431 v_end = vma->vm_end;
432 else {
433 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
434 + vma->vm_start;
435 if (v_end > vma->vm_end)
436 v_end = vma->vm_end;
437 }
438
439 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
440 NULL);
441 }
442 }
443
444 /*
445 * remove_inode_hugepages handles two distinct cases: truncation and hole
446 * punch. There are subtle differences in operation for each case.
447 *
448 * truncation is indicated by end of range being LLONG_MAX
449 * In this case, we first scan the range and release found pages.
450 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
451 * maps and global counts. Page faults can not race with truncation
452 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
453 * page faults in the truncated range by checking i_size. i_size is
454 * modified while holding i_mmap_rwsem.
455 * hole punch is indicated if end is not LLONG_MAX
456 * In the hole punch case we scan the range and release found pages.
457 * Only when releasing a page is the associated region/reserv map
458 * deleted. The region/reserv map for ranges without associated
459 * pages are not modified. Page faults can race with hole punch.
460 * This is indicated if we find a mapped page.
461 * Note: If the passed end of range value is beyond the end of file, but
462 * not LLONG_MAX this routine still performs a hole punch operation.
463 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)464 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
465 loff_t lend)
466 {
467 struct hstate *h = hstate_inode(inode);
468 struct address_space *mapping = &inode->i_data;
469 const pgoff_t start = lstart >> huge_page_shift(h);
470 const pgoff_t end = lend >> huge_page_shift(h);
471 struct vm_area_struct pseudo_vma;
472 struct pagevec pvec;
473 pgoff_t next, index;
474 int i, freed = 0;
475 bool truncate_op = (lend == LLONG_MAX);
476
477 vma_init(&pseudo_vma, current->mm);
478 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
479 pagevec_init(&pvec);
480 next = start;
481 while (next < end) {
482 /*
483 * When no more pages are found, we are done.
484 */
485 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
486 break;
487
488 for (i = 0; i < pagevec_count(&pvec); ++i) {
489 struct page *page = pvec.pages[i];
490 u32 hash;
491
492 index = page->index;
493 hash = hugetlb_fault_mutex_hash(mapping, index);
494 if (!truncate_op) {
495 /*
496 * Only need to hold the fault mutex in the
497 * hole punch case. This prevents races with
498 * page faults. Races are not possible in the
499 * case of truncation.
500 */
501 mutex_lock(&hugetlb_fault_mutex_table[hash]);
502 }
503
504 /*
505 * If page is mapped, it was faulted in after being
506 * unmapped in caller. Unmap (again) now after taking
507 * the fault mutex. The mutex will prevent faults
508 * until we finish removing the page.
509 *
510 * This race can only happen in the hole punch case.
511 * Getting here in a truncate operation is a bug.
512 */
513 if (unlikely(page_mapped(page))) {
514 BUG_ON(truncate_op);
515
516 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
517 i_mmap_lock_write(mapping);
518 mutex_lock(&hugetlb_fault_mutex_table[hash]);
519 hugetlb_vmdelete_list(&mapping->i_mmap,
520 index * pages_per_huge_page(h),
521 (index + 1) * pages_per_huge_page(h));
522 i_mmap_unlock_write(mapping);
523 }
524
525 lock_page(page);
526 /*
527 * We must free the huge page and remove from page
528 * cache (remove_huge_page) BEFORE removing the
529 * region/reserve map (hugetlb_unreserve_pages). In
530 * rare out of memory conditions, removal of the
531 * region/reserve map could fail. Correspondingly,
532 * the subpool and global reserve usage count can need
533 * to be adjusted.
534 */
535 VM_BUG_ON(PagePrivate(page));
536 remove_huge_page(page);
537 freed++;
538 if (!truncate_op) {
539 if (unlikely(hugetlb_unreserve_pages(inode,
540 index, index + 1, 1)))
541 hugetlb_fix_reserve_counts(inode);
542 }
543
544 unlock_page(page);
545 if (!truncate_op)
546 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
547 }
548 huge_pagevec_release(&pvec);
549 cond_resched();
550 }
551
552 if (truncate_op)
553 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
554 }
555
hugetlbfs_evict_inode(struct inode * inode)556 static void hugetlbfs_evict_inode(struct inode *inode)
557 {
558 struct resv_map *resv_map;
559
560 remove_inode_hugepages(inode, 0, LLONG_MAX);
561
562 /*
563 * Get the resv_map from the address space embedded in the inode.
564 * This is the address space which points to any resv_map allocated
565 * at inode creation time. If this is a device special inode,
566 * i_mapping may not point to the original address space.
567 */
568 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
569 /* Only regular and link inodes have associated reserve maps */
570 if (resv_map)
571 resv_map_release(&resv_map->refs);
572 clear_inode(inode);
573 }
574
hugetlb_vmtruncate(struct inode * inode,loff_t offset)575 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
576 {
577 pgoff_t pgoff;
578 struct address_space *mapping = inode->i_mapping;
579 struct hstate *h = hstate_inode(inode);
580
581 BUG_ON(offset & ~huge_page_mask(h));
582 pgoff = offset >> PAGE_SHIFT;
583
584 i_mmap_lock_write(mapping);
585 i_size_write(inode, offset);
586 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
587 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
588 i_mmap_unlock_write(mapping);
589 remove_inode_hugepages(inode, offset, LLONG_MAX);
590 return 0;
591 }
592
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)593 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
594 {
595 struct hstate *h = hstate_inode(inode);
596 loff_t hpage_size = huge_page_size(h);
597 loff_t hole_start, hole_end;
598
599 /*
600 * For hole punch round up the beginning offset of the hole and
601 * round down the end.
602 */
603 hole_start = round_up(offset, hpage_size);
604 hole_end = round_down(offset + len, hpage_size);
605
606 if (hole_end > hole_start) {
607 struct address_space *mapping = inode->i_mapping;
608 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
609
610 inode_lock(inode);
611
612 /* protected by i_mutex */
613 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
614 inode_unlock(inode);
615 return -EPERM;
616 }
617
618 i_mmap_lock_write(mapping);
619 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
620 hugetlb_vmdelete_list(&mapping->i_mmap,
621 hole_start >> PAGE_SHIFT,
622 hole_end >> PAGE_SHIFT);
623 i_mmap_unlock_write(mapping);
624 remove_inode_hugepages(inode, hole_start, hole_end);
625 inode_unlock(inode);
626 }
627
628 return 0;
629 }
630
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)631 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
632 loff_t len)
633 {
634 struct inode *inode = file_inode(file);
635 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
636 struct address_space *mapping = inode->i_mapping;
637 struct hstate *h = hstate_inode(inode);
638 struct vm_area_struct pseudo_vma;
639 struct mm_struct *mm = current->mm;
640 loff_t hpage_size = huge_page_size(h);
641 unsigned long hpage_shift = huge_page_shift(h);
642 pgoff_t start, index, end;
643 int error;
644 u32 hash;
645
646 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
647 return -EOPNOTSUPP;
648
649 if (mode & FALLOC_FL_PUNCH_HOLE)
650 return hugetlbfs_punch_hole(inode, offset, len);
651
652 /*
653 * Default preallocate case.
654 * For this range, start is rounded down and end is rounded up
655 * as well as being converted to page offsets.
656 */
657 start = offset >> hpage_shift;
658 end = DIV_ROUND_UP_ULL(offset + len, hpage_size);
659
660 inode_lock(inode);
661
662 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
663 error = inode_newsize_ok(inode, offset + len);
664 if (error)
665 goto out;
666
667 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
668 error = -EPERM;
669 goto out;
670 }
671
672 /*
673 * Initialize a pseudo vma as this is required by the huge page
674 * allocation routines. If NUMA is configured, use page index
675 * as input to create an allocation policy.
676 */
677 vma_init(&pseudo_vma, mm);
678 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
679 pseudo_vma.vm_file = file;
680
681 for (index = start; index < end; index++) {
682 /*
683 * This is supposed to be the vaddr where the page is being
684 * faulted in, but we have no vaddr here.
685 */
686 struct page *page;
687 unsigned long addr;
688 int avoid_reserve = 0;
689
690 cond_resched();
691
692 /*
693 * fallocate(2) manpage permits EINTR; we may have been
694 * interrupted because we are using up too much memory.
695 */
696 if (signal_pending(current)) {
697 error = -EINTR;
698 break;
699 }
700
701 /* Set numa allocation policy based on index */
702 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
703
704 /* addr is the offset within the file (zero based) */
705 addr = index * hpage_size;
706
707 /*
708 * fault mutex taken here, protects against fault path
709 * and hole punch. inode_lock previously taken protects
710 * against truncation.
711 */
712 hash = hugetlb_fault_mutex_hash(mapping, index);
713 mutex_lock(&hugetlb_fault_mutex_table[hash]);
714
715 /* See if already present in mapping to avoid alloc/free */
716 page = find_get_page(mapping, index);
717 if (page) {
718 put_page(page);
719 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
720 hugetlb_drop_vma_policy(&pseudo_vma);
721 continue;
722 }
723
724 /* Allocate page and add to page cache */
725 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
726 hugetlb_drop_vma_policy(&pseudo_vma);
727 if (IS_ERR(page)) {
728 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
729 error = PTR_ERR(page);
730 goto out;
731 }
732 clear_huge_page(page, addr, pages_per_huge_page(h));
733 __SetPageUptodate(page);
734 error = huge_add_to_page_cache(page, mapping, index);
735 if (unlikely(error)) {
736 put_page(page);
737 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
738 goto out;
739 }
740
741 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
742
743 set_page_huge_active(page);
744 /*
745 * unlock_page because locked by add_to_page_cache()
746 * put_page() due to reference from alloc_huge_page()
747 */
748 unlock_page(page);
749 put_page(page);
750 }
751
752 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
753 i_size_write(inode, offset + len);
754 inode->i_ctime = current_time(inode);
755 out:
756 inode_unlock(inode);
757 return error;
758 }
759
hugetlbfs_setattr(struct dentry * dentry,struct iattr * attr)760 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
761 {
762 struct inode *inode = d_inode(dentry);
763 struct hstate *h = hstate_inode(inode);
764 int error;
765 unsigned int ia_valid = attr->ia_valid;
766 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
767
768 BUG_ON(!inode);
769
770 error = setattr_prepare(dentry, attr);
771 if (error)
772 return error;
773
774 if (ia_valid & ATTR_SIZE) {
775 loff_t oldsize = inode->i_size;
776 loff_t newsize = attr->ia_size;
777
778 if (newsize & ~huge_page_mask(h))
779 return -EINVAL;
780 /* protected by i_mutex */
781 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
782 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
783 return -EPERM;
784 error = hugetlb_vmtruncate(inode, newsize);
785 if (error)
786 return error;
787 }
788
789 setattr_copy(inode, attr);
790 mark_inode_dirty(inode);
791 return 0;
792 }
793
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)794 static struct inode *hugetlbfs_get_root(struct super_block *sb,
795 struct hugetlbfs_fs_context *ctx)
796 {
797 struct inode *inode;
798
799 inode = new_inode(sb);
800 if (inode) {
801 inode->i_ino = get_next_ino();
802 inode->i_mode = S_IFDIR | ctx->mode;
803 inode->i_uid = ctx->uid;
804 inode->i_gid = ctx->gid;
805 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
806 inode->i_op = &hugetlbfs_dir_inode_operations;
807 inode->i_fop = &simple_dir_operations;
808 /* directory inodes start off with i_nlink == 2 (for "." entry) */
809 inc_nlink(inode);
810 lockdep_annotate_inode_mutex_key(inode);
811 }
812 return inode;
813 }
814
815 /*
816 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
817 * be taken from reclaim -- unlike regular filesystems. This needs an
818 * annotation because huge_pmd_share() does an allocation under hugetlb's
819 * i_mmap_rwsem.
820 */
821 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
822
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)823 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
824 struct inode *dir,
825 umode_t mode, dev_t dev)
826 {
827 struct inode *inode;
828 struct resv_map *resv_map = NULL;
829
830 /*
831 * Reserve maps are only needed for inodes that can have associated
832 * page allocations.
833 */
834 if (S_ISREG(mode) || S_ISLNK(mode)) {
835 resv_map = resv_map_alloc();
836 if (!resv_map)
837 return NULL;
838 }
839
840 inode = new_inode(sb);
841 if (inode) {
842 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
843
844 inode->i_ino = get_next_ino();
845 inode_init_owner(inode, dir, mode);
846 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
847 &hugetlbfs_i_mmap_rwsem_key);
848 inode->i_mapping->a_ops = &hugetlbfs_aops;
849 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
850 inode->i_mapping->private_data = resv_map;
851 info->seals = F_SEAL_SEAL;
852 switch (mode & S_IFMT) {
853 default:
854 init_special_inode(inode, mode, dev);
855 break;
856 case S_IFREG:
857 inode->i_op = &hugetlbfs_inode_operations;
858 inode->i_fop = &hugetlbfs_file_operations;
859 break;
860 case S_IFDIR:
861 inode->i_op = &hugetlbfs_dir_inode_operations;
862 inode->i_fop = &simple_dir_operations;
863
864 /* directory inodes start off with i_nlink == 2 (for "." entry) */
865 inc_nlink(inode);
866 break;
867 case S_IFLNK:
868 inode->i_op = &page_symlink_inode_operations;
869 inode_nohighmem(inode);
870 break;
871 }
872 lockdep_annotate_inode_mutex_key(inode);
873 } else {
874 if (resv_map)
875 kref_put(&resv_map->refs, resv_map_release);
876 }
877
878 return inode;
879 }
880
881 /*
882 * File creation. Allocate an inode, and we're done..
883 */
do_hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev,bool tmpfile)884 static int do_hugetlbfs_mknod(struct inode *dir,
885 struct dentry *dentry,
886 umode_t mode,
887 dev_t dev,
888 bool tmpfile)
889 {
890 struct inode *inode;
891 int error = -ENOSPC;
892
893 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
894 if (inode) {
895 dir->i_ctime = dir->i_mtime = current_time(dir);
896 if (tmpfile) {
897 d_tmpfile(dentry, inode);
898 } else {
899 d_instantiate(dentry, inode);
900 dget(dentry);/* Extra count - pin the dentry in core */
901 }
902 error = 0;
903 }
904 return error;
905 }
906
hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)907 static int hugetlbfs_mknod(struct inode *dir,
908 struct dentry *dentry, umode_t mode, dev_t dev)
909 {
910 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
911 }
912
hugetlbfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)913 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
914 {
915 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
916 if (!retval)
917 inc_nlink(dir);
918 return retval;
919 }
920
hugetlbfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)921 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
922 {
923 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
924 }
925
hugetlbfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)926 static int hugetlbfs_tmpfile(struct inode *dir,
927 struct dentry *dentry, umode_t mode)
928 {
929 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
930 }
931
hugetlbfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)932 static int hugetlbfs_symlink(struct inode *dir,
933 struct dentry *dentry, const char *symname)
934 {
935 struct inode *inode;
936 int error = -ENOSPC;
937
938 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
939 if (inode) {
940 int l = strlen(symname)+1;
941 error = page_symlink(inode, symname, l);
942 if (!error) {
943 d_instantiate(dentry, inode);
944 dget(dentry);
945 } else
946 iput(inode);
947 }
948 dir->i_ctime = dir->i_mtime = current_time(dir);
949
950 return error;
951 }
952
953 /*
954 * mark the head page dirty
955 */
hugetlbfs_set_page_dirty(struct page * page)956 static int hugetlbfs_set_page_dirty(struct page *page)
957 {
958 struct page *head = compound_head(page);
959
960 SetPageDirty(head);
961 return 0;
962 }
963
hugetlbfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)964 static int hugetlbfs_migrate_page(struct address_space *mapping,
965 struct page *newpage, struct page *page,
966 enum migrate_mode mode)
967 {
968 int rc;
969
970 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
971 if (rc != MIGRATEPAGE_SUCCESS)
972 return rc;
973
974 /*
975 * page_private is subpool pointer in hugetlb pages. Transfer to
976 * new page. PagePrivate is not associated with page_private for
977 * hugetlb pages and can not be set here as only page_huge_active
978 * pages can be migrated.
979 */
980 if (page_private(page)) {
981 set_page_private(newpage, page_private(page));
982 set_page_private(page, 0);
983 }
984
985 if (mode != MIGRATE_SYNC_NO_COPY)
986 migrate_page_copy(newpage, page);
987 else
988 migrate_page_states(newpage, page);
989
990 return MIGRATEPAGE_SUCCESS;
991 }
992
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)993 static int hugetlbfs_error_remove_page(struct address_space *mapping,
994 struct page *page)
995 {
996 struct inode *inode = mapping->host;
997 pgoff_t index = page->index;
998
999 remove_huge_page(page);
1000 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1001 hugetlb_fix_reserve_counts(inode);
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * Display the mount options in /proc/mounts.
1008 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1009 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1010 {
1011 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1012 struct hugepage_subpool *spool = sbinfo->spool;
1013 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1014 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1015 char mod;
1016
1017 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1018 seq_printf(m, ",uid=%u",
1019 from_kuid_munged(&init_user_ns, sbinfo->uid));
1020 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1021 seq_printf(m, ",gid=%u",
1022 from_kgid_munged(&init_user_ns, sbinfo->gid));
1023 if (sbinfo->mode != 0755)
1024 seq_printf(m, ",mode=%o", sbinfo->mode);
1025 if (sbinfo->max_inodes != -1)
1026 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1027
1028 hpage_size /= 1024;
1029 mod = 'K';
1030 if (hpage_size >= 1024) {
1031 hpage_size /= 1024;
1032 mod = 'M';
1033 }
1034 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1035 if (spool) {
1036 if (spool->max_hpages != -1)
1037 seq_printf(m, ",size=%llu",
1038 (unsigned long long)spool->max_hpages << hpage_shift);
1039 if (spool->min_hpages != -1)
1040 seq_printf(m, ",min_size=%llu",
1041 (unsigned long long)spool->min_hpages << hpage_shift);
1042 }
1043 return 0;
1044 }
1045
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1046 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1047 {
1048 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1049 struct hstate *h = hstate_inode(d_inode(dentry));
1050
1051 buf->f_type = HUGETLBFS_MAGIC;
1052 buf->f_bsize = huge_page_size(h);
1053 if (sbinfo) {
1054 spin_lock(&sbinfo->stat_lock);
1055 /* If no limits set, just report 0 for max/free/used
1056 * blocks, like simple_statfs() */
1057 if (sbinfo->spool) {
1058 long free_pages;
1059
1060 spin_lock(&sbinfo->spool->lock);
1061 buf->f_blocks = sbinfo->spool->max_hpages;
1062 free_pages = sbinfo->spool->max_hpages
1063 - sbinfo->spool->used_hpages;
1064 buf->f_bavail = buf->f_bfree = free_pages;
1065 spin_unlock(&sbinfo->spool->lock);
1066 buf->f_files = sbinfo->max_inodes;
1067 buf->f_ffree = sbinfo->free_inodes;
1068 }
1069 spin_unlock(&sbinfo->stat_lock);
1070 }
1071 buf->f_namelen = NAME_MAX;
1072 return 0;
1073 }
1074
hugetlbfs_put_super(struct super_block * sb)1075 static void hugetlbfs_put_super(struct super_block *sb)
1076 {
1077 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1078
1079 if (sbi) {
1080 sb->s_fs_info = NULL;
1081
1082 if (sbi->spool)
1083 hugepage_put_subpool(sbi->spool);
1084
1085 kfree(sbi);
1086 }
1087 }
1088
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1089 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1090 {
1091 if (sbinfo->free_inodes >= 0) {
1092 spin_lock(&sbinfo->stat_lock);
1093 if (unlikely(!sbinfo->free_inodes)) {
1094 spin_unlock(&sbinfo->stat_lock);
1095 return 0;
1096 }
1097 sbinfo->free_inodes--;
1098 spin_unlock(&sbinfo->stat_lock);
1099 }
1100
1101 return 1;
1102 }
1103
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1104 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1105 {
1106 if (sbinfo->free_inodes >= 0) {
1107 spin_lock(&sbinfo->stat_lock);
1108 sbinfo->free_inodes++;
1109 spin_unlock(&sbinfo->stat_lock);
1110 }
1111 }
1112
1113
1114 static struct kmem_cache *hugetlbfs_inode_cachep;
1115
hugetlbfs_alloc_inode(struct super_block * sb)1116 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1117 {
1118 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1119 struct hugetlbfs_inode_info *p;
1120
1121 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1122 return NULL;
1123 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1124 if (unlikely(!p)) {
1125 hugetlbfs_inc_free_inodes(sbinfo);
1126 return NULL;
1127 }
1128
1129 /*
1130 * Any time after allocation, hugetlbfs_destroy_inode can be called
1131 * for the inode. mpol_free_shared_policy is unconditionally called
1132 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1133 * in case of a quick call to destroy.
1134 *
1135 * Note that the policy is initialized even if we are creating a
1136 * private inode. This simplifies hugetlbfs_destroy_inode.
1137 */
1138 mpol_shared_policy_init(&p->policy, NULL);
1139
1140 return &p->vfs_inode;
1141 }
1142
hugetlbfs_free_inode(struct inode * inode)1143 static void hugetlbfs_free_inode(struct inode *inode)
1144 {
1145 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1146 }
1147
hugetlbfs_destroy_inode(struct inode * inode)1148 static void hugetlbfs_destroy_inode(struct inode *inode)
1149 {
1150 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1151 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1152 }
1153
1154 static const struct address_space_operations hugetlbfs_aops = {
1155 .write_begin = hugetlbfs_write_begin,
1156 .write_end = hugetlbfs_write_end,
1157 .set_page_dirty = hugetlbfs_set_page_dirty,
1158 .migratepage = hugetlbfs_migrate_page,
1159 .error_remove_page = hugetlbfs_error_remove_page,
1160 };
1161
1162
init_once(void * foo)1163 static void init_once(void *foo)
1164 {
1165 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1166
1167 inode_init_once(&ei->vfs_inode);
1168 }
1169
1170 const struct file_operations hugetlbfs_file_operations = {
1171 .read_iter = hugetlbfs_read_iter,
1172 .mmap = hugetlbfs_file_mmap,
1173 .fsync = noop_fsync,
1174 .get_unmapped_area = hugetlb_get_unmapped_area,
1175 .llseek = default_llseek,
1176 .fallocate = hugetlbfs_fallocate,
1177 };
1178
1179 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1180 .create = hugetlbfs_create,
1181 .lookup = simple_lookup,
1182 .link = simple_link,
1183 .unlink = simple_unlink,
1184 .symlink = hugetlbfs_symlink,
1185 .mkdir = hugetlbfs_mkdir,
1186 .rmdir = simple_rmdir,
1187 .mknod = hugetlbfs_mknod,
1188 .rename = simple_rename,
1189 .setattr = hugetlbfs_setattr,
1190 .tmpfile = hugetlbfs_tmpfile,
1191 };
1192
1193 static const struct inode_operations hugetlbfs_inode_operations = {
1194 .setattr = hugetlbfs_setattr,
1195 };
1196
1197 static const struct super_operations hugetlbfs_ops = {
1198 .alloc_inode = hugetlbfs_alloc_inode,
1199 .free_inode = hugetlbfs_free_inode,
1200 .destroy_inode = hugetlbfs_destroy_inode,
1201 .evict_inode = hugetlbfs_evict_inode,
1202 .statfs = hugetlbfs_statfs,
1203 .put_super = hugetlbfs_put_super,
1204 .show_options = hugetlbfs_show_options,
1205 };
1206
1207 /*
1208 * Convert size option passed from command line to number of huge pages
1209 * in the pool specified by hstate. Size option could be in bytes
1210 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1211 */
1212 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1213 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1214 enum hugetlbfs_size_type val_type)
1215 {
1216 if (val_type == NO_SIZE)
1217 return -1;
1218
1219 if (val_type == SIZE_PERCENT) {
1220 size_opt <<= huge_page_shift(h);
1221 size_opt *= h->max_huge_pages;
1222 do_div(size_opt, 100);
1223 }
1224
1225 size_opt >>= huge_page_shift(h);
1226 return size_opt;
1227 }
1228
1229 /*
1230 * Parse one mount parameter.
1231 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1232 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1233 {
1234 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1235 struct fs_parse_result result;
1236 char *rest;
1237 unsigned long ps;
1238 int opt;
1239
1240 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1241 if (opt < 0)
1242 return opt;
1243
1244 switch (opt) {
1245 case Opt_uid:
1246 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1247 if (!uid_valid(ctx->uid))
1248 goto bad_val;
1249 return 0;
1250
1251 case Opt_gid:
1252 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1253 if (!gid_valid(ctx->gid))
1254 goto bad_val;
1255 return 0;
1256
1257 case Opt_mode:
1258 ctx->mode = result.uint_32 & 01777U;
1259 return 0;
1260
1261 case Opt_size:
1262 /* memparse() will accept a K/M/G without a digit */
1263 if (!isdigit(param->string[0]))
1264 goto bad_val;
1265 ctx->max_size_opt = memparse(param->string, &rest);
1266 ctx->max_val_type = SIZE_STD;
1267 if (*rest == '%')
1268 ctx->max_val_type = SIZE_PERCENT;
1269 return 0;
1270
1271 case Opt_nr_inodes:
1272 /* memparse() will accept a K/M/G without a digit */
1273 if (!isdigit(param->string[0]))
1274 goto bad_val;
1275 ctx->nr_inodes = memparse(param->string, &rest);
1276 return 0;
1277
1278 case Opt_pagesize:
1279 ps = memparse(param->string, &rest);
1280 ctx->hstate = size_to_hstate(ps);
1281 if (!ctx->hstate) {
1282 pr_err("Unsupported page size %lu MB\n", ps >> 20);
1283 return -EINVAL;
1284 }
1285 return 0;
1286
1287 case Opt_min_size:
1288 /* memparse() will accept a K/M/G without a digit */
1289 if (!isdigit(param->string[0]))
1290 goto bad_val;
1291 ctx->min_size_opt = memparse(param->string, &rest);
1292 ctx->min_val_type = SIZE_STD;
1293 if (*rest == '%')
1294 ctx->min_val_type = SIZE_PERCENT;
1295 return 0;
1296
1297 default:
1298 return -EINVAL;
1299 }
1300
1301 bad_val:
1302 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1303 param->string, param->key);
1304 }
1305
1306 /*
1307 * Validate the parsed options.
1308 */
hugetlbfs_validate(struct fs_context * fc)1309 static int hugetlbfs_validate(struct fs_context *fc)
1310 {
1311 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1312
1313 /*
1314 * Use huge page pool size (in hstate) to convert the size
1315 * options to number of huge pages. If NO_SIZE, -1 is returned.
1316 */
1317 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1318 ctx->max_size_opt,
1319 ctx->max_val_type);
1320 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1321 ctx->min_size_opt,
1322 ctx->min_val_type);
1323
1324 /*
1325 * If max_size was specified, then min_size must be smaller
1326 */
1327 if (ctx->max_val_type > NO_SIZE &&
1328 ctx->min_hpages > ctx->max_hpages) {
1329 pr_err("Minimum size can not be greater than maximum size\n");
1330 return -EINVAL;
1331 }
1332
1333 return 0;
1334 }
1335
1336 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1337 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1338 {
1339 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1340 struct hugetlbfs_sb_info *sbinfo;
1341
1342 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1343 if (!sbinfo)
1344 return -ENOMEM;
1345 sb->s_fs_info = sbinfo;
1346 spin_lock_init(&sbinfo->stat_lock);
1347 sbinfo->hstate = ctx->hstate;
1348 sbinfo->max_inodes = ctx->nr_inodes;
1349 sbinfo->free_inodes = ctx->nr_inodes;
1350 sbinfo->spool = NULL;
1351 sbinfo->uid = ctx->uid;
1352 sbinfo->gid = ctx->gid;
1353 sbinfo->mode = ctx->mode;
1354
1355 /*
1356 * Allocate and initialize subpool if maximum or minimum size is
1357 * specified. Any needed reservations (for minimim size) are taken
1358 * taken when the subpool is created.
1359 */
1360 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1361 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1362 ctx->max_hpages,
1363 ctx->min_hpages);
1364 if (!sbinfo->spool)
1365 goto out_free;
1366 }
1367 sb->s_maxbytes = MAX_LFS_FILESIZE;
1368 sb->s_blocksize = huge_page_size(ctx->hstate);
1369 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1370 sb->s_magic = HUGETLBFS_MAGIC;
1371 sb->s_op = &hugetlbfs_ops;
1372 sb->s_time_gran = 1;
1373
1374 /*
1375 * Due to the special and limited functionality of hugetlbfs, it does
1376 * not work well as a stacking filesystem.
1377 */
1378 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1379 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1380 if (!sb->s_root)
1381 goto out_free;
1382 return 0;
1383 out_free:
1384 kfree(sbinfo->spool);
1385 kfree(sbinfo);
1386 return -ENOMEM;
1387 }
1388
hugetlbfs_get_tree(struct fs_context * fc)1389 static int hugetlbfs_get_tree(struct fs_context *fc)
1390 {
1391 int err = hugetlbfs_validate(fc);
1392 if (err)
1393 return err;
1394 return get_tree_nodev(fc, hugetlbfs_fill_super);
1395 }
1396
hugetlbfs_fs_context_free(struct fs_context * fc)1397 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1398 {
1399 kfree(fc->fs_private);
1400 }
1401
1402 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1403 .free = hugetlbfs_fs_context_free,
1404 .parse_param = hugetlbfs_parse_param,
1405 .get_tree = hugetlbfs_get_tree,
1406 };
1407
hugetlbfs_init_fs_context(struct fs_context * fc)1408 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1409 {
1410 struct hugetlbfs_fs_context *ctx;
1411
1412 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1413 if (!ctx)
1414 return -ENOMEM;
1415
1416 ctx->max_hpages = -1; /* No limit on size by default */
1417 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1418 ctx->uid = current_fsuid();
1419 ctx->gid = current_fsgid();
1420 ctx->mode = 0755;
1421 ctx->hstate = &default_hstate;
1422 ctx->min_hpages = -1; /* No default minimum size */
1423 ctx->max_val_type = NO_SIZE;
1424 ctx->min_val_type = NO_SIZE;
1425 fc->fs_private = ctx;
1426 fc->ops = &hugetlbfs_fs_context_ops;
1427 return 0;
1428 }
1429
1430 static struct file_system_type hugetlbfs_fs_type = {
1431 .name = "hugetlbfs",
1432 .init_fs_context = hugetlbfs_init_fs_context,
1433 .parameters = hugetlb_fs_parameters,
1434 .kill_sb = kill_litter_super,
1435 };
1436
1437 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1438
can_do_hugetlb_shm(void)1439 static int can_do_hugetlb_shm(void)
1440 {
1441 kgid_t shm_group;
1442 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1443 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1444 }
1445
get_hstate_idx(int page_size_log)1446 static int get_hstate_idx(int page_size_log)
1447 {
1448 struct hstate *h = hstate_sizelog(page_size_log);
1449
1450 if (!h)
1451 return -1;
1452 return h - hstates;
1453 }
1454
1455 /*
1456 * Note that size should be aligned to proper hugepage size in caller side,
1457 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1458 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,struct user_struct ** user,int creat_flags,int page_size_log)1459 struct file *hugetlb_file_setup(const char *name, size_t size,
1460 vm_flags_t acctflag, struct user_struct **user,
1461 int creat_flags, int page_size_log)
1462 {
1463 struct inode *inode;
1464 struct vfsmount *mnt;
1465 int hstate_idx;
1466 struct file *file;
1467
1468 hstate_idx = get_hstate_idx(page_size_log);
1469 if (hstate_idx < 0)
1470 return ERR_PTR(-ENODEV);
1471
1472 *user = NULL;
1473 mnt = hugetlbfs_vfsmount[hstate_idx];
1474 if (!mnt)
1475 return ERR_PTR(-ENOENT);
1476
1477 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1478 *user = current_user();
1479 if (user_shm_lock(size, *user)) {
1480 task_lock(current);
1481 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1482 current->comm, current->pid);
1483 task_unlock(current);
1484 } else {
1485 *user = NULL;
1486 return ERR_PTR(-EPERM);
1487 }
1488 }
1489
1490 file = ERR_PTR(-ENOSPC);
1491 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1492 if (!inode)
1493 goto out;
1494 if (creat_flags == HUGETLB_SHMFS_INODE)
1495 inode->i_flags |= S_PRIVATE;
1496
1497 inode->i_size = size;
1498 clear_nlink(inode);
1499
1500 if (hugetlb_reserve_pages(inode, 0,
1501 size >> huge_page_shift(hstate_inode(inode)), NULL,
1502 acctflag))
1503 file = ERR_PTR(-ENOMEM);
1504 else
1505 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1506 &hugetlbfs_file_operations);
1507 if (!IS_ERR(file))
1508 return file;
1509
1510 iput(inode);
1511 out:
1512 if (*user) {
1513 user_shm_unlock(size, *user);
1514 *user = NULL;
1515 }
1516 return file;
1517 }
1518
mount_one_hugetlbfs(struct hstate * h)1519 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1520 {
1521 struct fs_context *fc;
1522 struct vfsmount *mnt;
1523
1524 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1525 if (IS_ERR(fc)) {
1526 mnt = ERR_CAST(fc);
1527 } else {
1528 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1529 ctx->hstate = h;
1530 mnt = fc_mount(fc);
1531 put_fs_context(fc);
1532 }
1533 if (IS_ERR(mnt))
1534 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1535 1U << (h->order + PAGE_SHIFT - 10));
1536 return mnt;
1537 }
1538
init_hugetlbfs_fs(void)1539 static int __init init_hugetlbfs_fs(void)
1540 {
1541 struct vfsmount *mnt;
1542 struct hstate *h;
1543 int error;
1544 int i;
1545
1546 if (!hugepages_supported()) {
1547 pr_info("disabling because there are no supported hugepage sizes\n");
1548 return -ENOTSUPP;
1549 }
1550
1551 error = -ENOMEM;
1552 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1553 sizeof(struct hugetlbfs_inode_info),
1554 0, SLAB_ACCOUNT, init_once);
1555 if (hugetlbfs_inode_cachep == NULL)
1556 goto out;
1557
1558 error = register_filesystem(&hugetlbfs_fs_type);
1559 if (error)
1560 goto out_free;
1561
1562 /* default hstate mount is required */
1563 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1564 if (IS_ERR(mnt)) {
1565 error = PTR_ERR(mnt);
1566 goto out_unreg;
1567 }
1568 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1569
1570 /* other hstates are optional */
1571 i = 0;
1572 for_each_hstate(h) {
1573 if (i == default_hstate_idx) {
1574 i++;
1575 continue;
1576 }
1577
1578 mnt = mount_one_hugetlbfs(h);
1579 if (IS_ERR(mnt))
1580 hugetlbfs_vfsmount[i] = NULL;
1581 else
1582 hugetlbfs_vfsmount[i] = mnt;
1583 i++;
1584 }
1585
1586 return 0;
1587
1588 out_unreg:
1589 (void)unregister_filesystem(&hugetlbfs_fs_type);
1590 out_free:
1591 kmem_cache_destroy(hugetlbfs_inode_cachep);
1592 out:
1593 return error;
1594 }
1595 fs_initcall(init_hugetlbfs_fs)
1596