• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched.h>
92 #ifdef CONFIG_SCHED_RTG
93 #include <linux/sched/rtg_ctrl.h>
94 #endif
95 #include <linux/sched/autogroup.h>
96 #include <linux/sched/mm.h>
97 #include <linux/sched/coredump.h>
98 #include <linux/sched/debug.h>
99 #include <linux/sched/stat.h>
100 #include <linux/posix-timers.h>
101 #include <linux/time_namespace.h>
102 #include <linux/resctrl.h>
103 #include <trace/events/oom.h>
104 #include "internal.h"
105 #include "fd.h"
106 
107 #include "../../lib/kstrtox.h"
108 
109 /* NOTE:
110  *	Implementing inode permission operations in /proc is almost
111  *	certainly an error.  Permission checks need to happen during
112  *	each system call not at open time.  The reason is that most of
113  *	what we wish to check for permissions in /proc varies at runtime.
114  *
115  *	The classic example of a problem is opening file descriptors
116  *	in /proc for a task before it execs a suid executable.
117  */
118 
119 static u8 nlink_tid __ro_after_init;
120 static u8 nlink_tgid __ro_after_init;
121 
122 struct pid_entry {
123 	const char *name;
124 	unsigned int len;
125 	umode_t mode;
126 	const struct inode_operations *iop;
127 	const struct file_operations *fop;
128 	union proc_op op;
129 };
130 
131 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
132 	.name = (NAME),					\
133 	.len  = sizeof(NAME) - 1,			\
134 	.mode = MODE,					\
135 	.iop  = IOP,					\
136 	.fop  = FOP,					\
137 	.op   = OP,					\
138 }
139 
140 #define DIR(NAME, MODE, iops, fops)	\
141 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
142 #define LNK(NAME, get_link)					\
143 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
144 		&proc_pid_link_inode_operations, NULL,		\
145 		{ .proc_get_link = get_link } )
146 #define REG(NAME, MODE, fops)				\
147 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
148 #define ONE(NAME, MODE, show)				\
149 	NOD(NAME, (S_IFREG|(MODE)),			\
150 		NULL, &proc_single_file_operations,	\
151 		{ .proc_show = show } )
152 #define ATTR(LSM, NAME, MODE)				\
153 	NOD(NAME, (S_IFREG|(MODE)),			\
154 		NULL, &proc_pid_attr_operations,	\
155 		{ .lsm = LSM })
156 
157 /*
158  * Count the number of hardlinks for the pid_entry table, excluding the .
159  * and .. links.
160  */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)161 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
162 	unsigned int n)
163 {
164 	unsigned int i;
165 	unsigned int count;
166 
167 	count = 2;
168 	for (i = 0; i < n; ++i) {
169 		if (S_ISDIR(entries[i].mode))
170 			++count;
171 	}
172 
173 	return count;
174 }
175 
get_task_root(struct task_struct * task,struct path * root)176 static int get_task_root(struct task_struct *task, struct path *root)
177 {
178 	int result = -ENOENT;
179 
180 	task_lock(task);
181 	if (task->fs) {
182 		get_fs_root(task->fs, root);
183 		result = 0;
184 	}
185 	task_unlock(task);
186 	return result;
187 }
188 
proc_cwd_link(struct dentry * dentry,struct path * path)189 static int proc_cwd_link(struct dentry *dentry, struct path *path)
190 {
191 	struct task_struct *task = get_proc_task(d_inode(dentry));
192 	int result = -ENOENT;
193 
194 	if (task) {
195 		task_lock(task);
196 		if (task->fs) {
197 			get_fs_pwd(task->fs, path);
198 			result = 0;
199 		}
200 		task_unlock(task);
201 		put_task_struct(task);
202 	}
203 	return result;
204 }
205 
proc_root_link(struct dentry * dentry,struct path * path)206 static int proc_root_link(struct dentry *dentry, struct path *path)
207 {
208 	struct task_struct *task = get_proc_task(d_inode(dentry));
209 	int result = -ENOENT;
210 
211 	if (task) {
212 		result = get_task_root(task, path);
213 		put_task_struct(task);
214 	}
215 	return result;
216 }
217 
218 /*
219  * If the user used setproctitle(), we just get the string from
220  * user space at arg_start, and limit it to a maximum of one page.
221  */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)222 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
223 				size_t count, unsigned long pos,
224 				unsigned long arg_start)
225 {
226 	char *page;
227 	int ret, got;
228 
229 	if (pos >= PAGE_SIZE)
230 		return 0;
231 
232 	page = (char *)__get_free_page(GFP_KERNEL);
233 	if (!page)
234 		return -ENOMEM;
235 
236 	ret = 0;
237 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
238 	if (got > 0) {
239 		int len = strnlen(page, got);
240 
241 		/* Include the NUL character if it was found */
242 		if (len < got)
243 			len++;
244 
245 		if (len > pos) {
246 			len -= pos;
247 			if (len > count)
248 				len = count;
249 			len -= copy_to_user(buf, page+pos, len);
250 			if (!len)
251 				len = -EFAULT;
252 			ret = len;
253 		}
254 	}
255 	free_page((unsigned long)page);
256 	return ret;
257 }
258 
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)259 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
260 			      size_t count, loff_t *ppos)
261 {
262 	unsigned long arg_start, arg_end, env_start, env_end;
263 	unsigned long pos, len;
264 	char *page, c;
265 
266 	/* Check if process spawned far enough to have cmdline. */
267 	if (!mm->env_end)
268 		return 0;
269 
270 	spin_lock(&mm->arg_lock);
271 	arg_start = mm->arg_start;
272 	arg_end = mm->arg_end;
273 	env_start = mm->env_start;
274 	env_end = mm->env_end;
275 	spin_unlock(&mm->arg_lock);
276 
277 	if (arg_start >= arg_end)
278 		return 0;
279 
280 	/*
281 	 * We allow setproctitle() to overwrite the argument
282 	 * strings, and overflow past the original end. But
283 	 * only when it overflows into the environment area.
284 	 */
285 	if (env_start != arg_end || env_end < env_start)
286 		env_start = env_end = arg_end;
287 	len = env_end - arg_start;
288 
289 	/* We're not going to care if "*ppos" has high bits set */
290 	pos = *ppos;
291 	if (pos >= len)
292 		return 0;
293 	if (count > len - pos)
294 		count = len - pos;
295 	if (!count)
296 		return 0;
297 
298 	/*
299 	 * Magical special case: if the argv[] end byte is not
300 	 * zero, the user has overwritten it with setproctitle(3).
301 	 *
302 	 * Possible future enhancement: do this only once when
303 	 * pos is 0, and set a flag in the 'struct file'.
304 	 */
305 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
306 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
307 
308 	/*
309 	 * For the non-setproctitle() case we limit things strictly
310 	 * to the [arg_start, arg_end[ range.
311 	 */
312 	pos += arg_start;
313 	if (pos < arg_start || pos >= arg_end)
314 		return 0;
315 	if (count > arg_end - pos)
316 		count = arg_end - pos;
317 
318 	page = (char *)__get_free_page(GFP_KERNEL);
319 	if (!page)
320 		return -ENOMEM;
321 
322 	len = 0;
323 	while (count) {
324 		int got;
325 		size_t size = min_t(size_t, PAGE_SIZE, count);
326 
327 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
328 		if (got <= 0)
329 			break;
330 		got -= copy_to_user(buf, page, got);
331 		if (unlikely(!got)) {
332 			if (!len)
333 				len = -EFAULT;
334 			break;
335 		}
336 		pos += got;
337 		buf += got;
338 		len += got;
339 		count -= got;
340 	}
341 
342 	free_page((unsigned long)page);
343 	return len;
344 }
345 
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)346 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
347 				size_t count, loff_t *pos)
348 {
349 	struct mm_struct *mm;
350 	ssize_t ret;
351 
352 	mm = get_task_mm(tsk);
353 	if (!mm)
354 		return 0;
355 
356 	ret = get_mm_cmdline(mm, buf, count, pos);
357 	mmput(mm);
358 	return ret;
359 }
360 
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)361 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
362 				     size_t count, loff_t *pos)
363 {
364 	struct task_struct *tsk;
365 	ssize_t ret;
366 
367 	BUG_ON(*pos < 0);
368 
369 	tsk = get_proc_task(file_inode(file));
370 	if (!tsk)
371 		return -ESRCH;
372 	ret = get_task_cmdline(tsk, buf, count, pos);
373 	put_task_struct(tsk);
374 	if (ret > 0)
375 		*pos += ret;
376 	return ret;
377 }
378 
379 static const struct file_operations proc_pid_cmdline_ops = {
380 	.read	= proc_pid_cmdline_read,
381 	.llseek	= generic_file_llseek,
382 };
383 
384 #ifdef CONFIG_KALLSYMS
385 /*
386  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
387  * Returns the resolved symbol.  If that fails, simply return the address.
388  */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)389 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
390 			  struct pid *pid, struct task_struct *task)
391 {
392 	unsigned long wchan;
393 	char symname[KSYM_NAME_LEN];
394 
395 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
396 		goto print0;
397 
398 	wchan = get_wchan(task);
399 	if (wchan && !lookup_symbol_name(wchan, symname)) {
400 		seq_puts(m, symname);
401 		return 0;
402 	}
403 
404 print0:
405 	seq_putc(m, '0');
406 	return 0;
407 }
408 #endif /* CONFIG_KALLSYMS */
409 
lock_trace(struct task_struct * task)410 static int lock_trace(struct task_struct *task)
411 {
412 	int err = down_read_killable(&task->signal->exec_update_lock);
413 	if (err)
414 		return err;
415 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
416 		up_read(&task->signal->exec_update_lock);
417 		return -EPERM;
418 	}
419 	return 0;
420 }
421 
unlock_trace(struct task_struct * task)422 static void unlock_trace(struct task_struct *task)
423 {
424 	up_read(&task->signal->exec_update_lock);
425 }
426 
427 #ifdef CONFIG_STACKTRACE
428 
429 #define MAX_STACK_TRACE_DEPTH	64
430 
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)431 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
432 			  struct pid *pid, struct task_struct *task)
433 {
434 	unsigned long *entries;
435 	int err;
436 
437 	/*
438 	 * The ability to racily run the kernel stack unwinder on a running task
439 	 * and then observe the unwinder output is scary; while it is useful for
440 	 * debugging kernel issues, it can also allow an attacker to leak kernel
441 	 * stack contents.
442 	 * Doing this in a manner that is at least safe from races would require
443 	 * some work to ensure that the remote task can not be scheduled; and
444 	 * even then, this would still expose the unwinder as local attack
445 	 * surface.
446 	 * Therefore, this interface is restricted to root.
447 	 */
448 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
449 		return -EACCES;
450 
451 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
452 				GFP_KERNEL);
453 	if (!entries)
454 		return -ENOMEM;
455 
456 	err = lock_trace(task);
457 	if (!err) {
458 		unsigned int i, nr_entries;
459 
460 		nr_entries = stack_trace_save_tsk(task, entries,
461 						  MAX_STACK_TRACE_DEPTH, 0);
462 
463 		for (i = 0; i < nr_entries; i++) {
464 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
465 		}
466 
467 		unlock_trace(task);
468 	}
469 	kfree(entries);
470 
471 	return err;
472 }
473 #endif
474 
475 #ifdef CONFIG_SCHED_INFO
476 /*
477  * Provides /proc/PID/schedstat
478  */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)479 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
480 			      struct pid *pid, struct task_struct *task)
481 {
482 	if (unlikely(!sched_info_on()))
483 		seq_puts(m, "0 0 0\n");
484 	else
485 		seq_printf(m, "%llu %llu %lu\n",
486 		   (unsigned long long)task->se.sum_exec_runtime,
487 		   (unsigned long long)task->sched_info.run_delay,
488 		   task->sched_info.pcount);
489 
490 	return 0;
491 }
492 #endif
493 
494 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)495 static int lstats_show_proc(struct seq_file *m, void *v)
496 {
497 	int i;
498 	struct inode *inode = m->private;
499 	struct task_struct *task = get_proc_task(inode);
500 
501 	if (!task)
502 		return -ESRCH;
503 	seq_puts(m, "Latency Top version : v0.1\n");
504 	for (i = 0; i < LT_SAVECOUNT; i++) {
505 		struct latency_record *lr = &task->latency_record[i];
506 		if (lr->backtrace[0]) {
507 			int q;
508 			seq_printf(m, "%i %li %li",
509 				   lr->count, lr->time, lr->max);
510 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
511 				unsigned long bt = lr->backtrace[q];
512 
513 				if (!bt)
514 					break;
515 				seq_printf(m, " %ps", (void *)bt);
516 			}
517 			seq_putc(m, '\n');
518 		}
519 
520 	}
521 	put_task_struct(task);
522 	return 0;
523 }
524 
lstats_open(struct inode * inode,struct file * file)525 static int lstats_open(struct inode *inode, struct file *file)
526 {
527 	return single_open(file, lstats_show_proc, inode);
528 }
529 
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)530 static ssize_t lstats_write(struct file *file, const char __user *buf,
531 			    size_t count, loff_t *offs)
532 {
533 	struct task_struct *task = get_proc_task(file_inode(file));
534 
535 	if (!task)
536 		return -ESRCH;
537 	clear_tsk_latency_tracing(task);
538 	put_task_struct(task);
539 
540 	return count;
541 }
542 
543 static const struct file_operations proc_lstats_operations = {
544 	.open		= lstats_open,
545 	.read		= seq_read,
546 	.write		= lstats_write,
547 	.llseek		= seq_lseek,
548 	.release	= single_release,
549 };
550 
551 #endif
552 
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)553 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
554 			  struct pid *pid, struct task_struct *task)
555 {
556 	unsigned long totalpages = totalram_pages() + total_swap_pages;
557 	unsigned long points = 0;
558 	long badness;
559 
560 	badness = oom_badness(task, totalpages);
561 	/*
562 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
563 	 * badness value into [0, 2000] range which we have been
564 	 * exporting for a long time so userspace might depend on it.
565 	 */
566 	if (badness != LONG_MIN)
567 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
568 
569 	seq_printf(m, "%lu\n", points);
570 
571 	return 0;
572 }
573 
574 struct limit_names {
575 	const char *name;
576 	const char *unit;
577 };
578 
579 static const struct limit_names lnames[RLIM_NLIMITS] = {
580 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
581 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
582 	[RLIMIT_DATA] = {"Max data size", "bytes"},
583 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
584 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
585 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
586 	[RLIMIT_NPROC] = {"Max processes", "processes"},
587 	[RLIMIT_NOFILE] = {"Max open files", "files"},
588 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
589 	[RLIMIT_AS] = {"Max address space", "bytes"},
590 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
591 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
592 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
593 	[RLIMIT_NICE] = {"Max nice priority", NULL},
594 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
595 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
596 };
597 
598 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)599 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
600 			   struct pid *pid, struct task_struct *task)
601 {
602 	unsigned int i;
603 	unsigned long flags;
604 
605 	struct rlimit rlim[RLIM_NLIMITS];
606 
607 	if (!lock_task_sighand(task, &flags))
608 		return 0;
609 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
610 	unlock_task_sighand(task, &flags);
611 
612 	/*
613 	 * print the file header
614 	 */
615 	seq_puts(m, "Limit                     "
616 		"Soft Limit           "
617 		"Hard Limit           "
618 		"Units     \n");
619 
620 	for (i = 0; i < RLIM_NLIMITS; i++) {
621 		if (rlim[i].rlim_cur == RLIM_INFINITY)
622 			seq_printf(m, "%-25s %-20s ",
623 				   lnames[i].name, "unlimited");
624 		else
625 			seq_printf(m, "%-25s %-20lu ",
626 				   lnames[i].name, rlim[i].rlim_cur);
627 
628 		if (rlim[i].rlim_max == RLIM_INFINITY)
629 			seq_printf(m, "%-20s ", "unlimited");
630 		else
631 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
632 
633 		if (lnames[i].unit)
634 			seq_printf(m, "%-10s\n", lnames[i].unit);
635 		else
636 			seq_putc(m, '\n');
637 	}
638 
639 	return 0;
640 }
641 
642 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)643 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
644 			    struct pid *pid, struct task_struct *task)
645 {
646 	struct syscall_info info;
647 	u64 *args = &info.data.args[0];
648 	int res;
649 
650 	res = lock_trace(task);
651 	if (res)
652 		return res;
653 
654 	if (task_current_syscall(task, &info))
655 		seq_puts(m, "running\n");
656 	else if (info.data.nr < 0)
657 		seq_printf(m, "%d 0x%llx 0x%llx\n",
658 			   info.data.nr, info.sp, info.data.instruction_pointer);
659 	else
660 		seq_printf(m,
661 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
662 		       info.data.nr,
663 		       args[0], args[1], args[2], args[3], args[4], args[5],
664 		       info.sp, info.data.instruction_pointer);
665 	unlock_trace(task);
666 
667 	return 0;
668 }
669 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
670 
671 /************************************************************************/
672 /*                       Here the fs part begins                        */
673 /************************************************************************/
674 
675 /* permission checks */
proc_fd_access_allowed(struct inode * inode)676 static int proc_fd_access_allowed(struct inode *inode)
677 {
678 	struct task_struct *task;
679 	int allowed = 0;
680 	/* Allow access to a task's file descriptors if it is us or we
681 	 * may use ptrace attach to the process and find out that
682 	 * information.
683 	 */
684 	task = get_proc_task(inode);
685 	if (task) {
686 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
687 		put_task_struct(task);
688 	}
689 	return allowed;
690 }
691 
proc_setattr(struct dentry * dentry,struct iattr * attr)692 int proc_setattr(struct dentry *dentry, struct iattr *attr)
693 {
694 	int error;
695 	struct inode *inode = d_inode(dentry);
696 
697 	if (attr->ia_valid & ATTR_MODE)
698 		return -EPERM;
699 
700 	error = setattr_prepare(dentry, attr);
701 	if (error)
702 		return error;
703 
704 	setattr_copy(inode, attr);
705 	mark_inode_dirty(inode);
706 	return 0;
707 }
708 
709 /*
710  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
711  * or euid/egid (for hide_pid_min=2)?
712  */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)713 static bool has_pid_permissions(struct proc_fs_info *fs_info,
714 				 struct task_struct *task,
715 				 enum proc_hidepid hide_pid_min)
716 {
717 	/*
718 	 * If 'hidpid' mount option is set force a ptrace check,
719 	 * we indicate that we are using a filesystem syscall
720 	 * by passing PTRACE_MODE_READ_FSCREDS
721 	 */
722 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
723 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
724 
725 	if (fs_info->hide_pid < hide_pid_min)
726 		return true;
727 	if (in_group_p(fs_info->pid_gid))
728 		return true;
729 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
730 }
731 
732 
proc_pid_permission(struct inode * inode,int mask)733 static int proc_pid_permission(struct inode *inode, int mask)
734 {
735 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
736 	struct task_struct *task;
737 	bool has_perms;
738 
739 	task = get_proc_task(inode);
740 	if (!task)
741 		return -ESRCH;
742 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
743 	put_task_struct(task);
744 
745 	if (!has_perms) {
746 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
747 			/*
748 			 * Let's make getdents(), stat(), and open()
749 			 * consistent with each other.  If a process
750 			 * may not stat() a file, it shouldn't be seen
751 			 * in procfs at all.
752 			 */
753 			return -ENOENT;
754 		}
755 
756 		return -EPERM;
757 	}
758 	return generic_permission(inode, mask);
759 }
760 
761 
762 
763 static const struct inode_operations proc_def_inode_operations = {
764 	.setattr	= proc_setattr,
765 };
766 
proc_single_show(struct seq_file * m,void * v)767 static int proc_single_show(struct seq_file *m, void *v)
768 {
769 	struct inode *inode = m->private;
770 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
771 	struct pid *pid = proc_pid(inode);
772 	struct task_struct *task;
773 	int ret;
774 
775 	task = get_pid_task(pid, PIDTYPE_PID);
776 	if (!task)
777 		return -ESRCH;
778 
779 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
780 
781 	put_task_struct(task);
782 	return ret;
783 }
784 
proc_single_open(struct inode * inode,struct file * filp)785 static int proc_single_open(struct inode *inode, struct file *filp)
786 {
787 	return single_open(filp, proc_single_show, inode);
788 }
789 
790 static const struct file_operations proc_single_file_operations = {
791 	.open		= proc_single_open,
792 	.read		= seq_read,
793 	.llseek		= seq_lseek,
794 	.release	= single_release,
795 };
796 
797 
proc_mem_open(struct inode * inode,unsigned int mode)798 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
799 {
800 	struct task_struct *task = get_proc_task(inode);
801 	struct mm_struct *mm = ERR_PTR(-ESRCH);
802 
803 	if (task) {
804 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
805 		put_task_struct(task);
806 
807 		if (!IS_ERR_OR_NULL(mm)) {
808 			/* ensure this mm_struct can't be freed */
809 			mmgrab(mm);
810 			/* but do not pin its memory */
811 			mmput(mm);
812 		}
813 	}
814 
815 	return mm;
816 }
817 
__mem_open(struct inode * inode,struct file * file,unsigned int mode)818 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
819 {
820 	struct mm_struct *mm = proc_mem_open(inode, mode);
821 
822 	if (IS_ERR(mm))
823 		return PTR_ERR(mm);
824 
825 	file->private_data = mm;
826 	return 0;
827 }
828 
mem_open(struct inode * inode,struct file * file)829 static int mem_open(struct inode *inode, struct file *file)
830 {
831 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
832 
833 	/* OK to pass negative loff_t, we can catch out-of-range */
834 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
835 
836 	return ret;
837 }
838 
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)839 static ssize_t mem_rw(struct file *file, char __user *buf,
840 			size_t count, loff_t *ppos, int write)
841 {
842 	struct mm_struct *mm = file->private_data;
843 	unsigned long addr = *ppos;
844 	ssize_t copied;
845 	char *page;
846 	unsigned int flags;
847 
848 	if (!mm)
849 		return 0;
850 
851 	page = (char *)__get_free_page(GFP_KERNEL);
852 	if (!page)
853 		return -ENOMEM;
854 
855 	copied = 0;
856 	if (!mmget_not_zero(mm))
857 		goto free;
858 
859 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
860 
861 	while (count > 0) {
862 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
863 
864 		if (write && copy_from_user(page, buf, this_len)) {
865 			copied = -EFAULT;
866 			break;
867 		}
868 
869 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
870 		if (!this_len) {
871 			if (!copied)
872 				copied = -EIO;
873 			break;
874 		}
875 
876 		if (!write && copy_to_user(buf, page, this_len)) {
877 			copied = -EFAULT;
878 			break;
879 		}
880 
881 		buf += this_len;
882 		addr += this_len;
883 		copied += this_len;
884 		count -= this_len;
885 	}
886 	*ppos = addr;
887 
888 	mmput(mm);
889 free:
890 	free_page((unsigned long) page);
891 	return copied;
892 }
893 
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)894 static ssize_t mem_read(struct file *file, char __user *buf,
895 			size_t count, loff_t *ppos)
896 {
897 	return mem_rw(file, buf, count, ppos, 0);
898 }
899 
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)900 static ssize_t mem_write(struct file *file, const char __user *buf,
901 			 size_t count, loff_t *ppos)
902 {
903 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
904 }
905 
mem_lseek(struct file * file,loff_t offset,int orig)906 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
907 {
908 	loff_t ret = 0;
909 
910 	spin_lock(&file->f_lock);
911 	switch (orig) {
912 	case SEEK_CUR:
913 		offset += file->f_pos;
914 		/* fall through */
915 	case SEEK_SET:
916 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
917 		if ((unsigned long long)offset >= -MAX_ERRNO)
918 			ret = -EOVERFLOW;
919 		break;
920 	default:
921 		ret = -EINVAL;
922 	}
923 
924 	if (!ret) {
925 		if (offset < 0 && !(unsigned_offsets(file))) {
926 			ret = -EINVAL;
927 		} else {
928 			file->f_pos = offset;
929 			ret = file->f_pos;
930 			force_successful_syscall_return();
931 		}
932 	}
933 
934 	spin_unlock(&file->f_lock);
935 	return ret;
936 }
937 
mem_release(struct inode * inode,struct file * file)938 static int mem_release(struct inode *inode, struct file *file)
939 {
940 	struct mm_struct *mm = file->private_data;
941 	if (mm)
942 		mmdrop(mm);
943 	return 0;
944 }
945 
946 static const struct file_operations proc_mem_operations = {
947 	.llseek		= mem_lseek,
948 	.read		= mem_read,
949 	.write		= mem_write,
950 	.open		= mem_open,
951 	.release	= mem_release,
952 };
953 
environ_open(struct inode * inode,struct file * file)954 static int environ_open(struct inode *inode, struct file *file)
955 {
956 	return __mem_open(inode, file, PTRACE_MODE_READ);
957 }
958 
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)959 static ssize_t environ_read(struct file *file, char __user *buf,
960 			size_t count, loff_t *ppos)
961 {
962 	char *page;
963 	unsigned long src = *ppos;
964 	int ret = 0;
965 	struct mm_struct *mm = file->private_data;
966 	unsigned long env_start, env_end;
967 
968 	/* Ensure the process spawned far enough to have an environment. */
969 	if (!mm || !mm->env_end)
970 		return 0;
971 
972 	page = (char *)__get_free_page(GFP_KERNEL);
973 	if (!page)
974 		return -ENOMEM;
975 
976 	ret = 0;
977 	if (!mmget_not_zero(mm))
978 		goto free;
979 
980 	spin_lock(&mm->arg_lock);
981 	env_start = mm->env_start;
982 	env_end = mm->env_end;
983 	spin_unlock(&mm->arg_lock);
984 
985 	while (count > 0) {
986 		size_t this_len, max_len;
987 		int retval;
988 
989 		if (src >= (env_end - env_start))
990 			break;
991 
992 		this_len = env_end - (env_start + src);
993 
994 		max_len = min_t(size_t, PAGE_SIZE, count);
995 		this_len = min(max_len, this_len);
996 
997 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
998 
999 		if (retval <= 0) {
1000 			ret = retval;
1001 			break;
1002 		}
1003 
1004 		if (copy_to_user(buf, page, retval)) {
1005 			ret = -EFAULT;
1006 			break;
1007 		}
1008 
1009 		ret += retval;
1010 		src += retval;
1011 		buf += retval;
1012 		count -= retval;
1013 	}
1014 	*ppos = src;
1015 	mmput(mm);
1016 
1017 free:
1018 	free_page((unsigned long) page);
1019 	return ret;
1020 }
1021 
1022 static const struct file_operations proc_environ_operations = {
1023 	.open		= environ_open,
1024 	.read		= environ_read,
1025 	.llseek		= generic_file_llseek,
1026 	.release	= mem_release,
1027 };
1028 
auxv_open(struct inode * inode,struct file * file)1029 static int auxv_open(struct inode *inode, struct file *file)
1030 {
1031 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1032 }
1033 
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1034 static ssize_t auxv_read(struct file *file, char __user *buf,
1035 			size_t count, loff_t *ppos)
1036 {
1037 	struct mm_struct *mm = file->private_data;
1038 	unsigned int nwords = 0;
1039 
1040 	if (!mm)
1041 		return 0;
1042 	do {
1043 		nwords += 2;
1044 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1045 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1046 				       nwords * sizeof(mm->saved_auxv[0]));
1047 }
1048 
1049 static const struct file_operations proc_auxv_operations = {
1050 	.open		= auxv_open,
1051 	.read		= auxv_read,
1052 	.llseek		= generic_file_llseek,
1053 	.release	= mem_release,
1054 };
1055 
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1056 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1057 			    loff_t *ppos)
1058 {
1059 	struct task_struct *task = get_proc_task(file_inode(file));
1060 	char buffer[PROC_NUMBUF];
1061 	int oom_adj = OOM_ADJUST_MIN;
1062 	size_t len;
1063 
1064 	if (!task)
1065 		return -ESRCH;
1066 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1067 		oom_adj = OOM_ADJUST_MAX;
1068 	else
1069 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1070 			  OOM_SCORE_ADJ_MAX;
1071 	put_task_struct(task);
1072 	if (oom_adj > OOM_ADJUST_MAX)
1073 		oom_adj = OOM_ADJUST_MAX;
1074 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1075 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1076 }
1077 
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1078 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1079 {
1080 	struct mm_struct *mm = NULL;
1081 	struct task_struct *task;
1082 	int err = 0;
1083 
1084 	task = get_proc_task(file_inode(file));
1085 	if (!task)
1086 		return -ESRCH;
1087 
1088 	mutex_lock(&oom_adj_mutex);
1089 	if (legacy) {
1090 		if (oom_adj < task->signal->oom_score_adj &&
1091 				!capable(CAP_SYS_RESOURCE)) {
1092 			err = -EACCES;
1093 			goto err_unlock;
1094 		}
1095 		/*
1096 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1097 		 * /proc/pid/oom_score_adj instead.
1098 		 */
1099 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1100 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1101 			  task_pid_nr(task));
1102 	} else {
1103 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1104 				!capable(CAP_SYS_RESOURCE)) {
1105 			err = -EACCES;
1106 			goto err_unlock;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Make sure we will check other processes sharing the mm if this is
1112 	 * not vfrok which wants its own oom_score_adj.
1113 	 * pin the mm so it doesn't go away and get reused after task_unlock
1114 	 */
1115 	if (!task->vfork_done) {
1116 		struct task_struct *p = find_lock_task_mm(task);
1117 
1118 		if (p) {
1119 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1120 				mm = p->mm;
1121 				mmgrab(mm);
1122 			}
1123 			task_unlock(p);
1124 		}
1125 	}
1126 
1127 	task->signal->oom_score_adj = oom_adj;
1128 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1129 		task->signal->oom_score_adj_min = (short)oom_adj;
1130 	trace_oom_score_adj_update(task);
1131 
1132 	if (mm) {
1133 		struct task_struct *p;
1134 
1135 		rcu_read_lock();
1136 		for_each_process(p) {
1137 			if (same_thread_group(task, p))
1138 				continue;
1139 
1140 			/* do not touch kernel threads or the global init */
1141 			if (p->flags & PF_KTHREAD || is_global_init(p))
1142 				continue;
1143 
1144 			task_lock(p);
1145 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1146 				p->signal->oom_score_adj = oom_adj;
1147 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1148 					p->signal->oom_score_adj_min = (short)oom_adj;
1149 			}
1150 			task_unlock(p);
1151 		}
1152 		rcu_read_unlock();
1153 		mmdrop(mm);
1154 	}
1155 err_unlock:
1156 	mutex_unlock(&oom_adj_mutex);
1157 	put_task_struct(task);
1158 	return err;
1159 }
1160 
1161 /*
1162  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1163  * kernels.  The effective policy is defined by oom_score_adj, which has a
1164  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1165  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1166  * Processes that become oom disabled via oom_adj will still be oom disabled
1167  * with this implementation.
1168  *
1169  * oom_adj cannot be removed since existing userspace binaries use it.
1170  */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1171 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1172 			     size_t count, loff_t *ppos)
1173 {
1174 	char buffer[PROC_NUMBUF];
1175 	int oom_adj;
1176 	int err;
1177 
1178 	memset(buffer, 0, sizeof(buffer));
1179 	if (count > sizeof(buffer) - 1)
1180 		count = sizeof(buffer) - 1;
1181 	if (copy_from_user(buffer, buf, count)) {
1182 		err = -EFAULT;
1183 		goto out;
1184 	}
1185 
1186 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1187 	if (err)
1188 		goto out;
1189 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1190 	     oom_adj != OOM_DISABLE) {
1191 		err = -EINVAL;
1192 		goto out;
1193 	}
1194 
1195 	/*
1196 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1197 	 * value is always attainable.
1198 	 */
1199 	if (oom_adj == OOM_ADJUST_MAX)
1200 		oom_adj = OOM_SCORE_ADJ_MAX;
1201 	else
1202 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1203 
1204 	err = __set_oom_adj(file, oom_adj, true);
1205 out:
1206 	return err < 0 ? err : count;
1207 }
1208 
1209 static const struct file_operations proc_oom_adj_operations = {
1210 	.read		= oom_adj_read,
1211 	.write		= oom_adj_write,
1212 	.llseek		= generic_file_llseek,
1213 };
1214 
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1215 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1216 					size_t count, loff_t *ppos)
1217 {
1218 	struct task_struct *task = get_proc_task(file_inode(file));
1219 	char buffer[PROC_NUMBUF];
1220 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1221 	size_t len;
1222 
1223 	if (!task)
1224 		return -ESRCH;
1225 	oom_score_adj = task->signal->oom_score_adj;
1226 	put_task_struct(task);
1227 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1228 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1229 }
1230 
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1231 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1232 					size_t count, loff_t *ppos)
1233 {
1234 	char buffer[PROC_NUMBUF];
1235 	int oom_score_adj;
1236 	int err;
1237 
1238 	memset(buffer, 0, sizeof(buffer));
1239 	if (count > sizeof(buffer) - 1)
1240 		count = sizeof(buffer) - 1;
1241 	if (copy_from_user(buffer, buf, count)) {
1242 		err = -EFAULT;
1243 		goto out;
1244 	}
1245 
1246 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1247 	if (err)
1248 		goto out;
1249 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1250 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1251 		err = -EINVAL;
1252 		goto out;
1253 	}
1254 
1255 	err = __set_oom_adj(file, oom_score_adj, false);
1256 out:
1257 	return err < 0 ? err : count;
1258 }
1259 
1260 static const struct file_operations proc_oom_score_adj_operations = {
1261 	.read		= oom_score_adj_read,
1262 	.write		= oom_score_adj_write,
1263 	.llseek		= default_llseek,
1264 };
1265 
1266 #ifdef CONFIG_AUDIT
1267 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1268 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1269 				  size_t count, loff_t *ppos)
1270 {
1271 	struct inode * inode = file_inode(file);
1272 	struct task_struct *task = get_proc_task(inode);
1273 	ssize_t length;
1274 	char tmpbuf[TMPBUFLEN];
1275 
1276 	if (!task)
1277 		return -ESRCH;
1278 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1279 			   from_kuid(file->f_cred->user_ns,
1280 				     audit_get_loginuid(task)));
1281 	put_task_struct(task);
1282 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1283 }
1284 
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1285 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1286 				   size_t count, loff_t *ppos)
1287 {
1288 	struct inode * inode = file_inode(file);
1289 	uid_t loginuid;
1290 	kuid_t kloginuid;
1291 	int rv;
1292 
1293 	/* Don't let kthreads write their own loginuid */
1294 	if (current->flags & PF_KTHREAD)
1295 		return -EPERM;
1296 
1297 	rcu_read_lock();
1298 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1299 		rcu_read_unlock();
1300 		return -EPERM;
1301 	}
1302 	rcu_read_unlock();
1303 
1304 	if (*ppos != 0) {
1305 		/* No partial writes. */
1306 		return -EINVAL;
1307 	}
1308 
1309 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1310 	if (rv < 0)
1311 		return rv;
1312 
1313 	/* is userspace tring to explicitly UNSET the loginuid? */
1314 	if (loginuid == AUDIT_UID_UNSET) {
1315 		kloginuid = INVALID_UID;
1316 	} else {
1317 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1318 		if (!uid_valid(kloginuid))
1319 			return -EINVAL;
1320 	}
1321 
1322 	rv = audit_set_loginuid(kloginuid);
1323 	if (rv < 0)
1324 		return rv;
1325 	return count;
1326 }
1327 
1328 static const struct file_operations proc_loginuid_operations = {
1329 	.read		= proc_loginuid_read,
1330 	.write		= proc_loginuid_write,
1331 	.llseek		= generic_file_llseek,
1332 };
1333 
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1334 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1335 				  size_t count, loff_t *ppos)
1336 {
1337 	struct inode * inode = file_inode(file);
1338 	struct task_struct *task = get_proc_task(inode);
1339 	ssize_t length;
1340 	char tmpbuf[TMPBUFLEN];
1341 
1342 	if (!task)
1343 		return -ESRCH;
1344 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1345 				audit_get_sessionid(task));
1346 	put_task_struct(task);
1347 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1348 }
1349 
1350 static const struct file_operations proc_sessionid_operations = {
1351 	.read		= proc_sessionid_read,
1352 	.llseek		= generic_file_llseek,
1353 };
1354 #endif
1355 
1356 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1357 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1358 				      size_t count, loff_t *ppos)
1359 {
1360 	struct task_struct *task = get_proc_task(file_inode(file));
1361 	char buffer[PROC_NUMBUF];
1362 	size_t len;
1363 	int make_it_fail;
1364 
1365 	if (!task)
1366 		return -ESRCH;
1367 	make_it_fail = task->make_it_fail;
1368 	put_task_struct(task);
1369 
1370 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1371 
1372 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1373 }
1374 
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1375 static ssize_t proc_fault_inject_write(struct file * file,
1376 			const char __user * buf, size_t count, loff_t *ppos)
1377 {
1378 	struct task_struct *task;
1379 	char buffer[PROC_NUMBUF];
1380 	int make_it_fail;
1381 	int rv;
1382 
1383 	if (!capable(CAP_SYS_RESOURCE))
1384 		return -EPERM;
1385 	memset(buffer, 0, sizeof(buffer));
1386 	if (count > sizeof(buffer) - 1)
1387 		count = sizeof(buffer) - 1;
1388 	if (copy_from_user(buffer, buf, count))
1389 		return -EFAULT;
1390 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1391 	if (rv < 0)
1392 		return rv;
1393 	if (make_it_fail < 0 || make_it_fail > 1)
1394 		return -EINVAL;
1395 
1396 	task = get_proc_task(file_inode(file));
1397 	if (!task)
1398 		return -ESRCH;
1399 	task->make_it_fail = make_it_fail;
1400 	put_task_struct(task);
1401 
1402 	return count;
1403 }
1404 
1405 static const struct file_operations proc_fault_inject_operations = {
1406 	.read		= proc_fault_inject_read,
1407 	.write		= proc_fault_inject_write,
1408 	.llseek		= generic_file_llseek,
1409 };
1410 
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1411 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1412 				   size_t count, loff_t *ppos)
1413 {
1414 	struct task_struct *task;
1415 	int err;
1416 	unsigned int n;
1417 
1418 	err = kstrtouint_from_user(buf, count, 0, &n);
1419 	if (err)
1420 		return err;
1421 
1422 	task = get_proc_task(file_inode(file));
1423 	if (!task)
1424 		return -ESRCH;
1425 	task->fail_nth = n;
1426 	put_task_struct(task);
1427 
1428 	return count;
1429 }
1430 
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1431 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1432 				  size_t count, loff_t *ppos)
1433 {
1434 	struct task_struct *task;
1435 	char numbuf[PROC_NUMBUF];
1436 	ssize_t len;
1437 
1438 	task = get_proc_task(file_inode(file));
1439 	if (!task)
1440 		return -ESRCH;
1441 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1442 	put_task_struct(task);
1443 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1444 }
1445 
1446 static const struct file_operations proc_fail_nth_operations = {
1447 	.read		= proc_fail_nth_read,
1448 	.write		= proc_fail_nth_write,
1449 };
1450 #endif
1451 
1452 
1453 #ifdef CONFIG_SCHED_DEBUG
1454 /*
1455  * Print out various scheduling related per-task fields:
1456  */
sched_show(struct seq_file * m,void * v)1457 static int sched_show(struct seq_file *m, void *v)
1458 {
1459 	struct inode *inode = m->private;
1460 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1461 	struct task_struct *p;
1462 
1463 	p = get_proc_task(inode);
1464 	if (!p)
1465 		return -ESRCH;
1466 	proc_sched_show_task(p, ns, m);
1467 
1468 	put_task_struct(p);
1469 
1470 	return 0;
1471 }
1472 
1473 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1474 sched_write(struct file *file, const char __user *buf,
1475 	    size_t count, loff_t *offset)
1476 {
1477 	struct inode *inode = file_inode(file);
1478 	struct task_struct *p;
1479 
1480 	p = get_proc_task(inode);
1481 	if (!p)
1482 		return -ESRCH;
1483 	proc_sched_set_task(p);
1484 
1485 	put_task_struct(p);
1486 
1487 	return count;
1488 }
1489 
sched_open(struct inode * inode,struct file * filp)1490 static int sched_open(struct inode *inode, struct file *filp)
1491 {
1492 	return single_open(filp, sched_show, inode);
1493 }
1494 
1495 static const struct file_operations proc_pid_sched_operations = {
1496 	.open		= sched_open,
1497 	.read		= seq_read,
1498 	.write		= sched_write,
1499 	.llseek		= seq_lseek,
1500 	.release	= single_release,
1501 };
1502 
1503 #endif
1504 
1505 #ifdef CONFIG_SCHED_RTG
1506 static const struct file_operations proc_rtg_operations = {
1507 	.open		= proc_rtg_open,
1508 	.unlocked_ioctl	= proc_rtg_ioctl,
1509 #ifdef CONFIG_COMPAT
1510 	.compat_ioctl	= proc_rtg_compat_ioctl,
1511 #endif
1512 };
1513 #endif
1514 
1515 #ifdef CONFIG_SCHED_RTG_DEBUG
sched_group_id_show(struct seq_file * m,void * v)1516 static int sched_group_id_show(struct seq_file *m, void *v)
1517 {
1518 	struct inode *inode = m->private;
1519 	struct task_struct *p;
1520 
1521 	p = get_proc_task(inode);
1522 	if (!p)
1523 		return -ESRCH;
1524 
1525 	seq_printf(m, "%d\n", sched_get_group_id(p));
1526 
1527 	put_task_struct(p);
1528 
1529 	return 0;
1530 }
1531 
1532 static ssize_t
sched_group_id_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1533 sched_group_id_write(struct file *file, const char __user *buf,
1534 	    size_t count, loff_t *offset)
1535 {
1536 	struct inode *inode = file_inode(file);
1537 	struct task_struct *p;
1538 	char buffer[PROC_NUMBUF];
1539 	int group_id, err;
1540 
1541 	memset(buffer, 0, sizeof(buffer));
1542 	if (count > sizeof(buffer) - 1)
1543 		count = sizeof(buffer) - 1;
1544 	if (copy_from_user(buffer, buf, count)) {
1545 		err = -EFAULT;
1546 		goto out;
1547 	}
1548 
1549 	err = kstrtoint(strstrip(buffer), 0, &group_id);
1550 	if (err)
1551 		goto out;
1552 
1553 	p = get_proc_task(inode);
1554 	if (!p)
1555 		return -ESRCH;
1556 
1557 	err = sched_set_group_id(p, group_id);
1558 
1559 	put_task_struct(p);
1560 
1561 out:
1562 	return err < 0 ? err : count;
1563 }
1564 
sched_group_id_open(struct inode * inode,struct file * filp)1565 static int sched_group_id_open(struct inode *inode, struct file *filp)
1566 {
1567 	return single_open(filp, sched_group_id_show, inode);
1568 }
1569 
1570 static const struct file_operations proc_pid_sched_group_id_operations = {
1571 	.open		= sched_group_id_open,
1572 	.read		= seq_read,
1573 	.write		= sched_group_id_write,
1574 	.llseek		= seq_lseek,
1575 	.release	= single_release,
1576 };
1577 #endif	/* CONFIG_SCHED_RTG_DEBUG */
1578 
1579 #ifdef CONFIG_SCHED_AUTOGROUP
1580 /*
1581  * Print out autogroup related information:
1582  */
sched_autogroup_show(struct seq_file * m,void * v)1583 static int sched_autogroup_show(struct seq_file *m, void *v)
1584 {
1585 	struct inode *inode = m->private;
1586 	struct task_struct *p;
1587 
1588 	p = get_proc_task(inode);
1589 	if (!p)
1590 		return -ESRCH;
1591 	proc_sched_autogroup_show_task(p, m);
1592 
1593 	put_task_struct(p);
1594 
1595 	return 0;
1596 }
1597 
1598 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1599 sched_autogroup_write(struct file *file, const char __user *buf,
1600 	    size_t count, loff_t *offset)
1601 {
1602 	struct inode *inode = file_inode(file);
1603 	struct task_struct *p;
1604 	char buffer[PROC_NUMBUF];
1605 	int nice;
1606 	int err;
1607 
1608 	memset(buffer, 0, sizeof(buffer));
1609 	if (count > sizeof(buffer) - 1)
1610 		count = sizeof(buffer) - 1;
1611 	if (copy_from_user(buffer, buf, count))
1612 		return -EFAULT;
1613 
1614 	err = kstrtoint(strstrip(buffer), 0, &nice);
1615 	if (err < 0)
1616 		return err;
1617 
1618 	p = get_proc_task(inode);
1619 	if (!p)
1620 		return -ESRCH;
1621 
1622 	err = proc_sched_autogroup_set_nice(p, nice);
1623 	if (err)
1624 		count = err;
1625 
1626 	put_task_struct(p);
1627 
1628 	return count;
1629 }
1630 
sched_autogroup_open(struct inode * inode,struct file * filp)1631 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1632 {
1633 	int ret;
1634 
1635 	ret = single_open(filp, sched_autogroup_show, NULL);
1636 	if (!ret) {
1637 		struct seq_file *m = filp->private_data;
1638 
1639 		m->private = inode;
1640 	}
1641 	return ret;
1642 }
1643 
1644 static const struct file_operations proc_pid_sched_autogroup_operations = {
1645 	.open		= sched_autogroup_open,
1646 	.read		= seq_read,
1647 	.write		= sched_autogroup_write,
1648 	.llseek		= seq_lseek,
1649 	.release	= single_release,
1650 };
1651 
1652 #endif /* CONFIG_SCHED_AUTOGROUP */
1653 
1654 #ifdef CONFIG_SCHED_WALT
sched_init_task_load_show(struct seq_file * m,void * v)1655 static int sched_init_task_load_show(struct seq_file *m, void *v)
1656 {
1657 	struct inode *inode = m->private;
1658 	struct task_struct *p;
1659 
1660 	p = get_proc_task(inode);
1661 	if (!p)
1662 		return -ESRCH;
1663 
1664 	seq_printf(m, "%d\n", sched_get_init_task_load(p));
1665 
1666 	put_task_struct(p);
1667 
1668 	return 0;
1669 }
1670 
1671 static ssize_t
sched_init_task_load_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1672 sched_init_task_load_write(struct file *file, const char __user *buf,
1673 	    size_t count, loff_t *offset)
1674 {
1675 	struct inode *inode = file_inode(file);
1676 	struct task_struct *p;
1677 	char buffer[PROC_NUMBUF];
1678 	int init_task_load, err;
1679 
1680 	memset(buffer, 0, sizeof(buffer));
1681 	if (count > sizeof(buffer) - 1)
1682 		count = sizeof(buffer) - 1;
1683 	if (copy_from_user(buffer, buf, count)) {
1684 		err = -EFAULT;
1685 		goto out;
1686 	}
1687 
1688 	err = kstrtoint(strstrip(buffer), 0, &init_task_load);
1689 	if (err)
1690 		goto out;
1691 
1692 	p = get_proc_task(inode);
1693 	if (!p)
1694 		return -ESRCH;
1695 
1696 	err = sched_set_init_task_load(p, init_task_load);
1697 
1698 	put_task_struct(p);
1699 
1700 out:
1701 	return err < 0 ? err : count;
1702 }
1703 
sched_init_task_load_open(struct inode * inode,struct file * filp)1704 static int sched_init_task_load_open(struct inode *inode, struct file *filp)
1705 {
1706 	return single_open(filp, sched_init_task_load_show, inode);
1707 }
1708 
1709 static const struct file_operations proc_pid_sched_init_task_load_operations = {
1710 	.open		= sched_init_task_load_open,
1711 	.read		= seq_read,
1712 	.write		= sched_init_task_load_write,
1713 	.llseek		= seq_lseek,
1714 	.release	= single_release,
1715 };
1716 #endif	/* CONFIG_SCHED_WALT */
1717 
1718 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1719 static int timens_offsets_show(struct seq_file *m, void *v)
1720 {
1721 	struct task_struct *p;
1722 
1723 	p = get_proc_task(file_inode(m->file));
1724 	if (!p)
1725 		return -ESRCH;
1726 	proc_timens_show_offsets(p, m);
1727 
1728 	put_task_struct(p);
1729 
1730 	return 0;
1731 }
1732 
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1733 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1734 				    size_t count, loff_t *ppos)
1735 {
1736 	struct inode *inode = file_inode(file);
1737 	struct proc_timens_offset offsets[2];
1738 	char *kbuf = NULL, *pos, *next_line;
1739 	struct task_struct *p;
1740 	int ret, noffsets;
1741 
1742 	/* Only allow < page size writes at the beginning of the file */
1743 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1744 		return -EINVAL;
1745 
1746 	/* Slurp in the user data */
1747 	kbuf = memdup_user_nul(buf, count);
1748 	if (IS_ERR(kbuf))
1749 		return PTR_ERR(kbuf);
1750 
1751 	/* Parse the user data */
1752 	ret = -EINVAL;
1753 	noffsets = 0;
1754 	for (pos = kbuf; pos; pos = next_line) {
1755 		struct proc_timens_offset *off = &offsets[noffsets];
1756 		char clock[10];
1757 		int err;
1758 
1759 		/* Find the end of line and ensure we don't look past it */
1760 		next_line = strchr(pos, '\n');
1761 		if (next_line) {
1762 			*next_line = '\0';
1763 			next_line++;
1764 			if (*next_line == '\0')
1765 				next_line = NULL;
1766 		}
1767 
1768 		err = sscanf(pos, "%9s %lld %lu", clock,
1769 				&off->val.tv_sec, &off->val.tv_nsec);
1770 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1771 			goto out;
1772 
1773 		clock[sizeof(clock) - 1] = 0;
1774 		if (strcmp(clock, "monotonic") == 0 ||
1775 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1776 			off->clockid = CLOCK_MONOTONIC;
1777 		else if (strcmp(clock, "boottime") == 0 ||
1778 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1779 			off->clockid = CLOCK_BOOTTIME;
1780 		else
1781 			goto out;
1782 
1783 		noffsets++;
1784 		if (noffsets == ARRAY_SIZE(offsets)) {
1785 			if (next_line)
1786 				count = next_line - kbuf;
1787 			break;
1788 		}
1789 	}
1790 
1791 	ret = -ESRCH;
1792 	p = get_proc_task(inode);
1793 	if (!p)
1794 		goto out;
1795 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1796 	put_task_struct(p);
1797 	if (ret)
1798 		goto out;
1799 
1800 	ret = count;
1801 out:
1802 	kfree(kbuf);
1803 	return ret;
1804 }
1805 
timens_offsets_open(struct inode * inode,struct file * filp)1806 static int timens_offsets_open(struct inode *inode, struct file *filp)
1807 {
1808 	return single_open(filp, timens_offsets_show, inode);
1809 }
1810 
1811 static const struct file_operations proc_timens_offsets_operations = {
1812 	.open		= timens_offsets_open,
1813 	.read		= seq_read,
1814 	.write		= timens_offsets_write,
1815 	.llseek		= seq_lseek,
1816 	.release	= single_release,
1817 };
1818 #endif /* CONFIG_TIME_NS */
1819 
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1820 static ssize_t comm_write(struct file *file, const char __user *buf,
1821 				size_t count, loff_t *offset)
1822 {
1823 	struct inode *inode = file_inode(file);
1824 	struct task_struct *p;
1825 	char buffer[TASK_COMM_LEN];
1826 	const size_t maxlen = sizeof(buffer) - 1;
1827 
1828 	memset(buffer, 0, sizeof(buffer));
1829 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1830 		return -EFAULT;
1831 
1832 	p = get_proc_task(inode);
1833 	if (!p)
1834 		return -ESRCH;
1835 
1836 	if (same_thread_group(current, p))
1837 		set_task_comm(p, buffer);
1838 	else
1839 		count = -EINVAL;
1840 
1841 	put_task_struct(p);
1842 
1843 	return count;
1844 }
1845 
comm_show(struct seq_file * m,void * v)1846 static int comm_show(struct seq_file *m, void *v)
1847 {
1848 	struct inode *inode = m->private;
1849 	struct task_struct *p;
1850 
1851 	p = get_proc_task(inode);
1852 	if (!p)
1853 		return -ESRCH;
1854 
1855 	proc_task_name(m, p, false);
1856 	seq_putc(m, '\n');
1857 
1858 	put_task_struct(p);
1859 
1860 	return 0;
1861 }
1862 
comm_open(struct inode * inode,struct file * filp)1863 static int comm_open(struct inode *inode, struct file *filp)
1864 {
1865 	return single_open(filp, comm_show, inode);
1866 }
1867 
1868 static const struct file_operations proc_pid_set_comm_operations = {
1869 	.open		= comm_open,
1870 	.read		= seq_read,
1871 	.write		= comm_write,
1872 	.llseek		= seq_lseek,
1873 	.release	= single_release,
1874 };
1875 
proc_exe_link(struct dentry * dentry,struct path * exe_path)1876 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1877 {
1878 	struct task_struct *task;
1879 	struct file *exe_file;
1880 
1881 	task = get_proc_task(d_inode(dentry));
1882 	if (!task)
1883 		return -ENOENT;
1884 	exe_file = get_task_exe_file(task);
1885 	put_task_struct(task);
1886 	if (exe_file) {
1887 		*exe_path = exe_file->f_path;
1888 		path_get(&exe_file->f_path);
1889 		fput(exe_file);
1890 		return 0;
1891 	} else
1892 		return -ENOENT;
1893 }
1894 
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1895 static const char *proc_pid_get_link(struct dentry *dentry,
1896 				     struct inode *inode,
1897 				     struct delayed_call *done)
1898 {
1899 	struct path path;
1900 	int error = -EACCES;
1901 
1902 	if (!dentry)
1903 		return ERR_PTR(-ECHILD);
1904 
1905 	/* Are we allowed to snoop on the tasks file descriptors? */
1906 	if (!proc_fd_access_allowed(inode))
1907 		goto out;
1908 
1909 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1910 	if (error)
1911 		goto out;
1912 
1913 	error = nd_jump_link(&path);
1914 out:
1915 	return ERR_PTR(error);
1916 }
1917 
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1918 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1919 {
1920 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1921 	char *pathname;
1922 	int len;
1923 
1924 	if (!tmp)
1925 		return -ENOMEM;
1926 
1927 	pathname = d_path(path, tmp, PAGE_SIZE);
1928 	len = PTR_ERR(pathname);
1929 	if (IS_ERR(pathname))
1930 		goto out;
1931 	len = tmp + PAGE_SIZE - 1 - pathname;
1932 
1933 	if (len > buflen)
1934 		len = buflen;
1935 	if (copy_to_user(buffer, pathname, len))
1936 		len = -EFAULT;
1937  out:
1938 	free_page((unsigned long)tmp);
1939 	return len;
1940 }
1941 
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1942 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1943 {
1944 	int error = -EACCES;
1945 	struct inode *inode = d_inode(dentry);
1946 	struct path path;
1947 
1948 	/* Are we allowed to snoop on the tasks file descriptors? */
1949 	if (!proc_fd_access_allowed(inode))
1950 		goto out;
1951 
1952 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1953 	if (error)
1954 		goto out;
1955 
1956 	error = do_proc_readlink(&path, buffer, buflen);
1957 	path_put(&path);
1958 out:
1959 	return error;
1960 }
1961 
1962 const struct inode_operations proc_pid_link_inode_operations = {
1963 	.readlink	= proc_pid_readlink,
1964 	.get_link	= proc_pid_get_link,
1965 	.setattr	= proc_setattr,
1966 };
1967 
1968 
1969 /* building an inode */
1970 
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1971 void task_dump_owner(struct task_struct *task, umode_t mode,
1972 		     kuid_t *ruid, kgid_t *rgid)
1973 {
1974 	/* Depending on the state of dumpable compute who should own a
1975 	 * proc file for a task.
1976 	 */
1977 	const struct cred *cred;
1978 	kuid_t uid;
1979 	kgid_t gid;
1980 
1981 	if (unlikely(task->flags & PF_KTHREAD)) {
1982 		*ruid = GLOBAL_ROOT_UID;
1983 		*rgid = GLOBAL_ROOT_GID;
1984 		return;
1985 	}
1986 
1987 	/* Default to the tasks effective ownership */
1988 	rcu_read_lock();
1989 	cred = __task_cred(task);
1990 	uid = cred->euid;
1991 	gid = cred->egid;
1992 	rcu_read_unlock();
1993 
1994 	/*
1995 	 * Before the /proc/pid/status file was created the only way to read
1996 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1997 	 * /proc/pid/status is slow enough that procps and other packages
1998 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1999 	 * made this apply to all per process world readable and executable
2000 	 * directories.
2001 	 */
2002 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
2003 		struct mm_struct *mm;
2004 		task_lock(task);
2005 		mm = task->mm;
2006 		/* Make non-dumpable tasks owned by some root */
2007 		if (mm) {
2008 			if (get_dumpable(mm) != SUID_DUMP_USER) {
2009 				struct user_namespace *user_ns = mm->user_ns;
2010 
2011 				uid = make_kuid(user_ns, 0);
2012 				if (!uid_valid(uid))
2013 					uid = GLOBAL_ROOT_UID;
2014 
2015 				gid = make_kgid(user_ns, 0);
2016 				if (!gid_valid(gid))
2017 					gid = GLOBAL_ROOT_GID;
2018 			}
2019 		} else {
2020 			uid = GLOBAL_ROOT_UID;
2021 			gid = GLOBAL_ROOT_GID;
2022 		}
2023 		task_unlock(task);
2024 	}
2025 	*ruid = uid;
2026 	*rgid = gid;
2027 }
2028 
proc_pid_evict_inode(struct proc_inode * ei)2029 void proc_pid_evict_inode(struct proc_inode *ei)
2030 {
2031 	struct pid *pid = ei->pid;
2032 
2033 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
2034 		spin_lock(&pid->lock);
2035 		hlist_del_init_rcu(&ei->sibling_inodes);
2036 		spin_unlock(&pid->lock);
2037 	}
2038 
2039 	put_pid(pid);
2040 }
2041 
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)2042 struct inode *proc_pid_make_inode(struct super_block * sb,
2043 				  struct task_struct *task, umode_t mode)
2044 {
2045 	struct inode * inode;
2046 	struct proc_inode *ei;
2047 	struct pid *pid;
2048 
2049 	/* We need a new inode */
2050 
2051 	inode = new_inode(sb);
2052 	if (!inode)
2053 		goto out;
2054 
2055 	/* Common stuff */
2056 	ei = PROC_I(inode);
2057 	inode->i_mode = mode;
2058 	inode->i_ino = get_next_ino();
2059 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2060 	inode->i_op = &proc_def_inode_operations;
2061 
2062 	/*
2063 	 * grab the reference to task.
2064 	 */
2065 	pid = get_task_pid(task, PIDTYPE_PID);
2066 	if (!pid)
2067 		goto out_unlock;
2068 
2069 	/* Let the pid remember us for quick removal */
2070 	ei->pid = pid;
2071 	if (S_ISDIR(mode)) {
2072 		spin_lock(&pid->lock);
2073 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2074 		spin_unlock(&pid->lock);
2075 	}
2076 
2077 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2078 	security_task_to_inode(task, inode);
2079 
2080 out:
2081 	return inode;
2082 
2083 out_unlock:
2084 	iput(inode);
2085 	return NULL;
2086 }
2087 
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2088 int pid_getattr(const struct path *path, struct kstat *stat,
2089 		u32 request_mask, unsigned int query_flags)
2090 {
2091 	struct inode *inode = d_inode(path->dentry);
2092 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2093 	struct task_struct *task;
2094 
2095 	generic_fillattr(inode, stat);
2096 
2097 	stat->uid = GLOBAL_ROOT_UID;
2098 	stat->gid = GLOBAL_ROOT_GID;
2099 	rcu_read_lock();
2100 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2101 	if (task) {
2102 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2103 			rcu_read_unlock();
2104 			/*
2105 			 * This doesn't prevent learning whether PID exists,
2106 			 * it only makes getattr() consistent with readdir().
2107 			 */
2108 			return -ENOENT;
2109 		}
2110 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2111 	}
2112 	rcu_read_unlock();
2113 	return 0;
2114 }
2115 
2116 /* dentry stuff */
2117 
2118 /*
2119  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2120  */
pid_update_inode(struct task_struct * task,struct inode * inode)2121 void pid_update_inode(struct task_struct *task, struct inode *inode)
2122 {
2123 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2124 
2125 	inode->i_mode &= ~(S_ISUID | S_ISGID);
2126 	security_task_to_inode(task, inode);
2127 }
2128 
2129 /*
2130  * Rewrite the inode's ownerships here because the owning task may have
2131  * performed a setuid(), etc.
2132  *
2133  */
pid_revalidate(struct dentry * dentry,unsigned int flags)2134 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2135 {
2136 	struct inode *inode;
2137 	struct task_struct *task;
2138 
2139 	if (flags & LOOKUP_RCU)
2140 		return -ECHILD;
2141 
2142 	inode = d_inode(dentry);
2143 	task = get_proc_task(inode);
2144 
2145 	if (task) {
2146 		pid_update_inode(task, inode);
2147 		put_task_struct(task);
2148 		return 1;
2149 	}
2150 	return 0;
2151 }
2152 
proc_inode_is_dead(struct inode * inode)2153 static inline bool proc_inode_is_dead(struct inode *inode)
2154 {
2155 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2156 }
2157 
pid_delete_dentry(const struct dentry * dentry)2158 int pid_delete_dentry(const struct dentry *dentry)
2159 {
2160 	/* Is the task we represent dead?
2161 	 * If so, then don't put the dentry on the lru list,
2162 	 * kill it immediately.
2163 	 */
2164 	return proc_inode_is_dead(d_inode(dentry));
2165 }
2166 
2167 const struct dentry_operations pid_dentry_operations =
2168 {
2169 	.d_revalidate	= pid_revalidate,
2170 	.d_delete	= pid_delete_dentry,
2171 };
2172 
2173 /* Lookups */
2174 
2175 /*
2176  * Fill a directory entry.
2177  *
2178  * If possible create the dcache entry and derive our inode number and
2179  * file type from dcache entry.
2180  *
2181  * Since all of the proc inode numbers are dynamically generated, the inode
2182  * numbers do not exist until the inode is cache.  This means creating the
2183  * the dcache entry in readdir is necessary to keep the inode numbers
2184  * reported by readdir in sync with the inode numbers reported
2185  * by stat.
2186  */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2187 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2188 	const char *name, unsigned int len,
2189 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2190 {
2191 	struct dentry *child, *dir = file->f_path.dentry;
2192 	struct qstr qname = QSTR_INIT(name, len);
2193 	struct inode *inode;
2194 	unsigned type = DT_UNKNOWN;
2195 	ino_t ino = 1;
2196 
2197 	child = d_hash_and_lookup(dir, &qname);
2198 	if (!child) {
2199 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2200 		child = d_alloc_parallel(dir, &qname, &wq);
2201 		if (IS_ERR(child))
2202 			goto end_instantiate;
2203 		if (d_in_lookup(child)) {
2204 			struct dentry *res;
2205 			res = instantiate(child, task, ptr);
2206 			d_lookup_done(child);
2207 			if (unlikely(res)) {
2208 				dput(child);
2209 				child = res;
2210 				if (IS_ERR(child))
2211 					goto end_instantiate;
2212 			}
2213 		}
2214 	}
2215 	inode = d_inode(child);
2216 	ino = inode->i_ino;
2217 	type = inode->i_mode >> 12;
2218 	dput(child);
2219 end_instantiate:
2220 	return dir_emit(ctx, name, len, ino, type);
2221 }
2222 
2223 /*
2224  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2225  * which represent vma start and end addresses.
2226  */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2227 static int dname_to_vma_addr(struct dentry *dentry,
2228 			     unsigned long *start, unsigned long *end)
2229 {
2230 	const char *str = dentry->d_name.name;
2231 	unsigned long long sval, eval;
2232 	unsigned int len;
2233 
2234 	if (str[0] == '0' && str[1] != '-')
2235 		return -EINVAL;
2236 	len = _parse_integer(str, 16, &sval);
2237 	if (len & KSTRTOX_OVERFLOW)
2238 		return -EINVAL;
2239 	if (sval != (unsigned long)sval)
2240 		return -EINVAL;
2241 	str += len;
2242 
2243 	if (*str != '-')
2244 		return -EINVAL;
2245 	str++;
2246 
2247 	if (str[0] == '0' && str[1])
2248 		return -EINVAL;
2249 	len = _parse_integer(str, 16, &eval);
2250 	if (len & KSTRTOX_OVERFLOW)
2251 		return -EINVAL;
2252 	if (eval != (unsigned long)eval)
2253 		return -EINVAL;
2254 	str += len;
2255 
2256 	if (*str != '\0')
2257 		return -EINVAL;
2258 
2259 	*start = sval;
2260 	*end = eval;
2261 
2262 	return 0;
2263 }
2264 
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2265 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2266 {
2267 	unsigned long vm_start, vm_end;
2268 	bool exact_vma_exists = false;
2269 	struct mm_struct *mm = NULL;
2270 	struct task_struct *task;
2271 	struct inode *inode;
2272 	int status = 0;
2273 
2274 	if (flags & LOOKUP_RCU)
2275 		return -ECHILD;
2276 
2277 	inode = d_inode(dentry);
2278 	task = get_proc_task(inode);
2279 	if (!task)
2280 		goto out_notask;
2281 
2282 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2283 	if (IS_ERR_OR_NULL(mm))
2284 		goto out;
2285 
2286 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2287 		status = mmap_read_lock_killable(mm);
2288 		if (!status) {
2289 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2290 							    vm_end);
2291 			mmap_read_unlock(mm);
2292 		}
2293 	}
2294 
2295 	mmput(mm);
2296 
2297 	if (exact_vma_exists) {
2298 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2299 
2300 		security_task_to_inode(task, inode);
2301 		status = 1;
2302 	}
2303 
2304 out:
2305 	put_task_struct(task);
2306 
2307 out_notask:
2308 	return status;
2309 }
2310 
2311 static const struct dentry_operations tid_map_files_dentry_operations = {
2312 	.d_revalidate	= map_files_d_revalidate,
2313 	.d_delete	= pid_delete_dentry,
2314 };
2315 
map_files_get_link(struct dentry * dentry,struct path * path)2316 static int map_files_get_link(struct dentry *dentry, struct path *path)
2317 {
2318 	unsigned long vm_start, vm_end;
2319 	struct vm_area_struct *vma;
2320 	struct task_struct *task;
2321 	struct mm_struct *mm;
2322 	int rc;
2323 
2324 	rc = -ENOENT;
2325 	task = get_proc_task(d_inode(dentry));
2326 	if (!task)
2327 		goto out;
2328 
2329 	mm = get_task_mm(task);
2330 	put_task_struct(task);
2331 	if (!mm)
2332 		goto out;
2333 
2334 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2335 	if (rc)
2336 		goto out_mmput;
2337 
2338 	rc = mmap_read_lock_killable(mm);
2339 	if (rc)
2340 		goto out_mmput;
2341 
2342 	rc = -ENOENT;
2343 	vma = find_exact_vma(mm, vm_start, vm_end);
2344 	if (vma && vma->vm_file) {
2345 		*path = vma->vm_file->f_path;
2346 		path_get(path);
2347 		rc = 0;
2348 	}
2349 	mmap_read_unlock(mm);
2350 
2351 out_mmput:
2352 	mmput(mm);
2353 out:
2354 	return rc;
2355 }
2356 
2357 struct map_files_info {
2358 	unsigned long	start;
2359 	unsigned long	end;
2360 	fmode_t		mode;
2361 };
2362 
2363 /*
2364  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2365  * to concerns about how the symlinks may be used to bypass permissions on
2366  * ancestor directories in the path to the file in question.
2367  */
2368 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2369 proc_map_files_get_link(struct dentry *dentry,
2370 			struct inode *inode,
2371 		        struct delayed_call *done)
2372 {
2373 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2374 		return ERR_PTR(-EPERM);
2375 
2376 	return proc_pid_get_link(dentry, inode, done);
2377 }
2378 
2379 /*
2380  * Identical to proc_pid_link_inode_operations except for get_link()
2381  */
2382 static const struct inode_operations proc_map_files_link_inode_operations = {
2383 	.readlink	= proc_pid_readlink,
2384 	.get_link	= proc_map_files_get_link,
2385 	.setattr	= proc_setattr,
2386 };
2387 
2388 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2389 proc_map_files_instantiate(struct dentry *dentry,
2390 			   struct task_struct *task, const void *ptr)
2391 {
2392 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2393 	struct proc_inode *ei;
2394 	struct inode *inode;
2395 
2396 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2397 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2398 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2399 	if (!inode)
2400 		return ERR_PTR(-ENOENT);
2401 
2402 	ei = PROC_I(inode);
2403 	ei->op.proc_get_link = map_files_get_link;
2404 
2405 	inode->i_op = &proc_map_files_link_inode_operations;
2406 	inode->i_size = 64;
2407 
2408 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2409 	return d_splice_alias(inode, dentry);
2410 }
2411 
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2412 static struct dentry *proc_map_files_lookup(struct inode *dir,
2413 		struct dentry *dentry, unsigned int flags)
2414 {
2415 	unsigned long vm_start, vm_end;
2416 	struct vm_area_struct *vma;
2417 	struct task_struct *task;
2418 	struct dentry *result;
2419 	struct mm_struct *mm;
2420 
2421 	result = ERR_PTR(-ENOENT);
2422 	task = get_proc_task(dir);
2423 	if (!task)
2424 		goto out;
2425 
2426 	result = ERR_PTR(-EACCES);
2427 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2428 		goto out_put_task;
2429 
2430 	result = ERR_PTR(-ENOENT);
2431 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2432 		goto out_put_task;
2433 
2434 	mm = get_task_mm(task);
2435 	if (!mm)
2436 		goto out_put_task;
2437 
2438 	result = ERR_PTR(-EINTR);
2439 	if (mmap_read_lock_killable(mm))
2440 		goto out_put_mm;
2441 
2442 	result = ERR_PTR(-ENOENT);
2443 	vma = find_exact_vma(mm, vm_start, vm_end);
2444 	if (!vma)
2445 		goto out_no_vma;
2446 
2447 	if (vma->vm_file)
2448 		result = proc_map_files_instantiate(dentry, task,
2449 				(void *)(unsigned long)vma->vm_file->f_mode);
2450 
2451 out_no_vma:
2452 	mmap_read_unlock(mm);
2453 out_put_mm:
2454 	mmput(mm);
2455 out_put_task:
2456 	put_task_struct(task);
2457 out:
2458 	return result;
2459 }
2460 
2461 static const struct inode_operations proc_map_files_inode_operations = {
2462 	.lookup		= proc_map_files_lookup,
2463 	.permission	= proc_fd_permission,
2464 	.setattr	= proc_setattr,
2465 };
2466 
2467 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2468 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2469 {
2470 	struct vm_area_struct *vma;
2471 	struct task_struct *task;
2472 	struct mm_struct *mm;
2473 	unsigned long nr_files, pos, i;
2474 	GENRADIX(struct map_files_info) fa;
2475 	struct map_files_info *p;
2476 	int ret;
2477 
2478 	genradix_init(&fa);
2479 
2480 	ret = -ENOENT;
2481 	task = get_proc_task(file_inode(file));
2482 	if (!task)
2483 		goto out;
2484 
2485 	ret = -EACCES;
2486 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2487 		goto out_put_task;
2488 
2489 	ret = 0;
2490 	if (!dir_emit_dots(file, ctx))
2491 		goto out_put_task;
2492 
2493 	mm = get_task_mm(task);
2494 	if (!mm)
2495 		goto out_put_task;
2496 
2497 	ret = mmap_read_lock_killable(mm);
2498 	if (ret) {
2499 		mmput(mm);
2500 		goto out_put_task;
2501 	}
2502 
2503 	nr_files = 0;
2504 
2505 	/*
2506 	 * We need two passes here:
2507 	 *
2508 	 *  1) Collect vmas of mapped files with mmap_lock taken
2509 	 *  2) Release mmap_lock and instantiate entries
2510 	 *
2511 	 * otherwise we get lockdep complained, since filldir()
2512 	 * routine might require mmap_lock taken in might_fault().
2513 	 */
2514 
2515 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2516 		if (!vma->vm_file)
2517 			continue;
2518 		if (++pos <= ctx->pos)
2519 			continue;
2520 
2521 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2522 		if (!p) {
2523 			ret = -ENOMEM;
2524 			mmap_read_unlock(mm);
2525 			mmput(mm);
2526 			goto out_put_task;
2527 		}
2528 
2529 		p->start = vma->vm_start;
2530 		p->end = vma->vm_end;
2531 		p->mode = vma->vm_file->f_mode;
2532 	}
2533 	mmap_read_unlock(mm);
2534 	mmput(mm);
2535 
2536 	for (i = 0; i < nr_files; i++) {
2537 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2538 		unsigned int len;
2539 
2540 		p = genradix_ptr(&fa, i);
2541 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2542 		if (!proc_fill_cache(file, ctx,
2543 				      buf, len,
2544 				      proc_map_files_instantiate,
2545 				      task,
2546 				      (void *)(unsigned long)p->mode))
2547 			break;
2548 		ctx->pos++;
2549 	}
2550 
2551 out_put_task:
2552 	put_task_struct(task);
2553 out:
2554 	genradix_free(&fa);
2555 	return ret;
2556 }
2557 
2558 static const struct file_operations proc_map_files_operations = {
2559 	.read		= generic_read_dir,
2560 	.iterate_shared	= proc_map_files_readdir,
2561 	.llseek		= generic_file_llseek,
2562 };
2563 
2564 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2565 struct timers_private {
2566 	struct pid *pid;
2567 	struct task_struct *task;
2568 	struct sighand_struct *sighand;
2569 	struct pid_namespace *ns;
2570 	unsigned long flags;
2571 };
2572 
timers_start(struct seq_file * m,loff_t * pos)2573 static void *timers_start(struct seq_file *m, loff_t *pos)
2574 {
2575 	struct timers_private *tp = m->private;
2576 
2577 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2578 	if (!tp->task)
2579 		return ERR_PTR(-ESRCH);
2580 
2581 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2582 	if (!tp->sighand)
2583 		return ERR_PTR(-ESRCH);
2584 
2585 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2586 }
2587 
timers_next(struct seq_file * m,void * v,loff_t * pos)2588 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2589 {
2590 	struct timers_private *tp = m->private;
2591 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2592 }
2593 
timers_stop(struct seq_file * m,void * v)2594 static void timers_stop(struct seq_file *m, void *v)
2595 {
2596 	struct timers_private *tp = m->private;
2597 
2598 	if (tp->sighand) {
2599 		unlock_task_sighand(tp->task, &tp->flags);
2600 		tp->sighand = NULL;
2601 	}
2602 
2603 	if (tp->task) {
2604 		put_task_struct(tp->task);
2605 		tp->task = NULL;
2606 	}
2607 }
2608 
show_timer(struct seq_file * m,void * v)2609 static int show_timer(struct seq_file *m, void *v)
2610 {
2611 	struct k_itimer *timer;
2612 	struct timers_private *tp = m->private;
2613 	int notify;
2614 	static const char * const nstr[] = {
2615 		[SIGEV_SIGNAL] = "signal",
2616 		[SIGEV_NONE] = "none",
2617 		[SIGEV_THREAD] = "thread",
2618 	};
2619 
2620 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2621 	notify = timer->it_sigev_notify;
2622 
2623 	seq_printf(m, "ID: %d\n", timer->it_id);
2624 	seq_printf(m, "signal: %d/%px\n",
2625 		   timer->sigq->info.si_signo,
2626 		   timer->sigq->info.si_value.sival_ptr);
2627 	seq_printf(m, "notify: %s/%s.%d\n",
2628 		   nstr[notify & ~SIGEV_THREAD_ID],
2629 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2630 		   pid_nr_ns(timer->it_pid, tp->ns));
2631 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2632 
2633 	return 0;
2634 }
2635 
2636 static const struct seq_operations proc_timers_seq_ops = {
2637 	.start	= timers_start,
2638 	.next	= timers_next,
2639 	.stop	= timers_stop,
2640 	.show	= show_timer,
2641 };
2642 
proc_timers_open(struct inode * inode,struct file * file)2643 static int proc_timers_open(struct inode *inode, struct file *file)
2644 {
2645 	struct timers_private *tp;
2646 
2647 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2648 			sizeof(struct timers_private));
2649 	if (!tp)
2650 		return -ENOMEM;
2651 
2652 	tp->pid = proc_pid(inode);
2653 	tp->ns = proc_pid_ns(inode->i_sb);
2654 	return 0;
2655 }
2656 
2657 static const struct file_operations proc_timers_operations = {
2658 	.open		= proc_timers_open,
2659 	.read		= seq_read,
2660 	.llseek		= seq_lseek,
2661 	.release	= seq_release_private,
2662 };
2663 #endif
2664 
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2665 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2666 					size_t count, loff_t *offset)
2667 {
2668 	struct inode *inode = file_inode(file);
2669 	struct task_struct *p;
2670 	u64 slack_ns;
2671 	int err;
2672 
2673 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2674 	if (err < 0)
2675 		return err;
2676 
2677 	p = get_proc_task(inode);
2678 	if (!p)
2679 		return -ESRCH;
2680 
2681 	if (p != current) {
2682 		rcu_read_lock();
2683 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2684 			rcu_read_unlock();
2685 			count = -EPERM;
2686 			goto out;
2687 		}
2688 		rcu_read_unlock();
2689 
2690 		err = security_task_setscheduler(p);
2691 		if (err) {
2692 			count = err;
2693 			goto out;
2694 		}
2695 	}
2696 
2697 	task_lock(p);
2698 	if (slack_ns == 0)
2699 		p->timer_slack_ns = p->default_timer_slack_ns;
2700 	else
2701 		p->timer_slack_ns = slack_ns;
2702 	task_unlock(p);
2703 
2704 out:
2705 	put_task_struct(p);
2706 
2707 	return count;
2708 }
2709 
timerslack_ns_show(struct seq_file * m,void * v)2710 static int timerslack_ns_show(struct seq_file *m, void *v)
2711 {
2712 	struct inode *inode = m->private;
2713 	struct task_struct *p;
2714 	int err = 0;
2715 
2716 	p = get_proc_task(inode);
2717 	if (!p)
2718 		return -ESRCH;
2719 
2720 	if (p != current) {
2721 		rcu_read_lock();
2722 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2723 			rcu_read_unlock();
2724 			err = -EPERM;
2725 			goto out;
2726 		}
2727 		rcu_read_unlock();
2728 
2729 		err = security_task_getscheduler(p);
2730 		if (err)
2731 			goto out;
2732 	}
2733 
2734 	task_lock(p);
2735 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2736 	task_unlock(p);
2737 
2738 out:
2739 	put_task_struct(p);
2740 
2741 	return err;
2742 }
2743 
timerslack_ns_open(struct inode * inode,struct file * filp)2744 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2745 {
2746 	return single_open(filp, timerslack_ns_show, inode);
2747 }
2748 
2749 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2750 	.open		= timerslack_ns_open,
2751 	.read		= seq_read,
2752 	.write		= timerslack_ns_write,
2753 	.llseek		= seq_lseek,
2754 	.release	= single_release,
2755 };
2756 
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2757 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2758 	struct task_struct *task, const void *ptr)
2759 {
2760 	const struct pid_entry *p = ptr;
2761 	struct inode *inode;
2762 	struct proc_inode *ei;
2763 
2764 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2765 	if (!inode)
2766 		return ERR_PTR(-ENOENT);
2767 
2768 	ei = PROC_I(inode);
2769 	if (S_ISDIR(inode->i_mode))
2770 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2771 	if (p->iop)
2772 		inode->i_op = p->iop;
2773 	if (p->fop)
2774 		inode->i_fop = p->fop;
2775 	ei->op = p->op;
2776 	pid_update_inode(task, inode);
2777 	d_set_d_op(dentry, &pid_dentry_operations);
2778 	return d_splice_alias(inode, dentry);
2779 }
2780 
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2781 static struct dentry *proc_pident_lookup(struct inode *dir,
2782 					 struct dentry *dentry,
2783 					 const struct pid_entry *p,
2784 					 const struct pid_entry *end)
2785 {
2786 	struct task_struct *task = get_proc_task(dir);
2787 	struct dentry *res = ERR_PTR(-ENOENT);
2788 
2789 	if (!task)
2790 		goto out_no_task;
2791 
2792 	/*
2793 	 * Yes, it does not scale. And it should not. Don't add
2794 	 * new entries into /proc/<tgid>/ without very good reasons.
2795 	 */
2796 	for (; p < end; p++) {
2797 		if (p->len != dentry->d_name.len)
2798 			continue;
2799 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2800 			res = proc_pident_instantiate(dentry, task, p);
2801 			break;
2802 		}
2803 	}
2804 	put_task_struct(task);
2805 out_no_task:
2806 	return res;
2807 }
2808 
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2809 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2810 		const struct pid_entry *ents, unsigned int nents)
2811 {
2812 	struct task_struct *task = get_proc_task(file_inode(file));
2813 	const struct pid_entry *p;
2814 
2815 	if (!task)
2816 		return -ENOENT;
2817 
2818 	if (!dir_emit_dots(file, ctx))
2819 		goto out;
2820 
2821 	if (ctx->pos >= nents + 2)
2822 		goto out;
2823 
2824 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2825 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2826 				proc_pident_instantiate, task, p))
2827 			break;
2828 		ctx->pos++;
2829 	}
2830 out:
2831 	put_task_struct(task);
2832 	return 0;
2833 }
2834 
2835 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2836 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2837 {
2838 	file->private_data = NULL;
2839 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2840 	return 0;
2841 }
2842 
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2843 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2844 				  size_t count, loff_t *ppos)
2845 {
2846 	struct inode * inode = file_inode(file);
2847 	char *p = NULL;
2848 	ssize_t length;
2849 	struct task_struct *task = get_proc_task(inode);
2850 
2851 	if (!task)
2852 		return -ESRCH;
2853 
2854 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2855 				      (char*)file->f_path.dentry->d_name.name,
2856 				      &p);
2857 	put_task_struct(task);
2858 	if (length > 0)
2859 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2860 	kfree(p);
2861 	return length;
2862 }
2863 
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2864 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2865 				   size_t count, loff_t *ppos)
2866 {
2867 	struct inode * inode = file_inode(file);
2868 	struct task_struct *task;
2869 	void *page;
2870 	int rv;
2871 
2872 	/* A task may only write when it was the opener. */
2873 	if (file->private_data != current->mm)
2874 		return -EPERM;
2875 
2876 	rcu_read_lock();
2877 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2878 	if (!task) {
2879 		rcu_read_unlock();
2880 		return -ESRCH;
2881 	}
2882 	/* A task may only write its own attributes. */
2883 	if (current != task) {
2884 		rcu_read_unlock();
2885 		return -EACCES;
2886 	}
2887 	/* Prevent changes to overridden credentials. */
2888 	if (current_cred() != current_real_cred()) {
2889 		rcu_read_unlock();
2890 		return -EBUSY;
2891 	}
2892 	rcu_read_unlock();
2893 
2894 	if (count > PAGE_SIZE)
2895 		count = PAGE_SIZE;
2896 
2897 	/* No partial writes. */
2898 	if (*ppos != 0)
2899 		return -EINVAL;
2900 
2901 	page = memdup_user(buf, count);
2902 	if (IS_ERR(page)) {
2903 		rv = PTR_ERR(page);
2904 		goto out;
2905 	}
2906 
2907 	/* Guard against adverse ptrace interaction */
2908 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2909 	if (rv < 0)
2910 		goto out_free;
2911 
2912 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2913 				  file->f_path.dentry->d_name.name, page,
2914 				  count);
2915 	mutex_unlock(&current->signal->cred_guard_mutex);
2916 out_free:
2917 	kfree(page);
2918 out:
2919 	return rv;
2920 }
2921 
2922 static const struct file_operations proc_pid_attr_operations = {
2923 	.open		= proc_pid_attr_open,
2924 	.read		= proc_pid_attr_read,
2925 	.write		= proc_pid_attr_write,
2926 	.llseek		= generic_file_llseek,
2927 	.release	= mem_release,
2928 };
2929 
2930 #define LSM_DIR_OPS(LSM) \
2931 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2932 			     struct dir_context *ctx) \
2933 { \
2934 	return proc_pident_readdir(filp, ctx, \
2935 				   LSM##_attr_dir_stuff, \
2936 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2937 } \
2938 \
2939 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2940 	.read		= generic_read_dir, \
2941 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2942 	.llseek		= default_llseek, \
2943 }; \
2944 \
2945 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2946 				struct dentry *dentry, unsigned int flags) \
2947 { \
2948 	return proc_pident_lookup(dir, dentry, \
2949 				  LSM##_attr_dir_stuff, \
2950 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2951 } \
2952 \
2953 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2954 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2955 	.getattr	= pid_getattr, \
2956 	.setattr	= proc_setattr, \
2957 }
2958 
2959 #ifdef CONFIG_SECURITY_SMACK
2960 static const struct pid_entry smack_attr_dir_stuff[] = {
2961 	ATTR("smack", "current",	0666),
2962 };
2963 LSM_DIR_OPS(smack);
2964 #endif
2965 
2966 #ifdef CONFIG_SECURITY_APPARMOR
2967 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2968 	ATTR("apparmor", "current",	0666),
2969 	ATTR("apparmor", "prev",	0444),
2970 	ATTR("apparmor", "exec",	0666),
2971 };
2972 LSM_DIR_OPS(apparmor);
2973 #endif
2974 
2975 static const struct pid_entry attr_dir_stuff[] = {
2976 	ATTR(NULL, "current",		0666),
2977 	ATTR(NULL, "prev",		0444),
2978 	ATTR(NULL, "exec",		0666),
2979 	ATTR(NULL, "fscreate",		0666),
2980 	ATTR(NULL, "keycreate",		0666),
2981 	ATTR(NULL, "sockcreate",	0666),
2982 #ifdef CONFIG_SECURITY_SMACK
2983 	DIR("smack",			0555,
2984 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2985 #endif
2986 #ifdef CONFIG_SECURITY_APPARMOR
2987 	DIR("apparmor",			0555,
2988 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2989 #endif
2990 };
2991 
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2992 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2993 {
2994 	return proc_pident_readdir(file, ctx,
2995 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2996 }
2997 
2998 static const struct file_operations proc_attr_dir_operations = {
2999 	.read		= generic_read_dir,
3000 	.iterate_shared	= proc_attr_dir_readdir,
3001 	.llseek		= generic_file_llseek,
3002 };
3003 
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3004 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
3005 				struct dentry *dentry, unsigned int flags)
3006 {
3007 	return proc_pident_lookup(dir, dentry,
3008 				  attr_dir_stuff,
3009 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
3010 }
3011 
3012 static const struct inode_operations proc_attr_dir_inode_operations = {
3013 	.lookup		= proc_attr_dir_lookup,
3014 	.getattr	= pid_getattr,
3015 	.setattr	= proc_setattr,
3016 };
3017 
3018 #endif
3019 
3020 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3021 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
3022 					 size_t count, loff_t *ppos)
3023 {
3024 	struct task_struct *task = get_proc_task(file_inode(file));
3025 	struct mm_struct *mm;
3026 	char buffer[PROC_NUMBUF];
3027 	size_t len;
3028 	int ret;
3029 
3030 	if (!task)
3031 		return -ESRCH;
3032 
3033 	ret = 0;
3034 	mm = get_task_mm(task);
3035 	if (mm) {
3036 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
3037 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
3038 				MMF_DUMP_FILTER_SHIFT));
3039 		mmput(mm);
3040 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
3041 	}
3042 
3043 	put_task_struct(task);
3044 
3045 	return ret;
3046 }
3047 
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)3048 static ssize_t proc_coredump_filter_write(struct file *file,
3049 					  const char __user *buf,
3050 					  size_t count,
3051 					  loff_t *ppos)
3052 {
3053 	struct task_struct *task;
3054 	struct mm_struct *mm;
3055 	unsigned int val;
3056 	int ret;
3057 	int i;
3058 	unsigned long mask;
3059 
3060 	ret = kstrtouint_from_user(buf, count, 0, &val);
3061 	if (ret < 0)
3062 		return ret;
3063 
3064 	ret = -ESRCH;
3065 	task = get_proc_task(file_inode(file));
3066 	if (!task)
3067 		goto out_no_task;
3068 
3069 	mm = get_task_mm(task);
3070 	if (!mm)
3071 		goto out_no_mm;
3072 	ret = 0;
3073 
3074 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3075 		if (val & mask)
3076 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3077 		else
3078 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3079 	}
3080 
3081 	mmput(mm);
3082  out_no_mm:
3083 	put_task_struct(task);
3084  out_no_task:
3085 	if (ret < 0)
3086 		return ret;
3087 	return count;
3088 }
3089 
3090 static const struct file_operations proc_coredump_filter_operations = {
3091 	.read		= proc_coredump_filter_read,
3092 	.write		= proc_coredump_filter_write,
3093 	.llseek		= generic_file_llseek,
3094 };
3095 #endif
3096 
3097 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3098 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3099 {
3100 	struct task_io_accounting acct = task->ioac;
3101 	unsigned long flags;
3102 	int result;
3103 
3104 	result = down_read_killable(&task->signal->exec_update_lock);
3105 	if (result)
3106 		return result;
3107 
3108 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3109 		result = -EACCES;
3110 		goto out_unlock;
3111 	}
3112 
3113 	if (whole && lock_task_sighand(task, &flags)) {
3114 		struct task_struct *t = task;
3115 
3116 		task_io_accounting_add(&acct, &task->signal->ioac);
3117 		while_each_thread(task, t)
3118 			task_io_accounting_add(&acct, &t->ioac);
3119 
3120 		unlock_task_sighand(task, &flags);
3121 	}
3122 	seq_printf(m,
3123 		   "rchar: %llu\n"
3124 		   "wchar: %llu\n"
3125 		   "syscr: %llu\n"
3126 		   "syscw: %llu\n"
3127 		   "read_bytes: %llu\n"
3128 		   "write_bytes: %llu\n"
3129 		   "cancelled_write_bytes: %llu\n",
3130 		   (unsigned long long)acct.rchar,
3131 		   (unsigned long long)acct.wchar,
3132 		   (unsigned long long)acct.syscr,
3133 		   (unsigned long long)acct.syscw,
3134 		   (unsigned long long)acct.read_bytes,
3135 		   (unsigned long long)acct.write_bytes,
3136 		   (unsigned long long)acct.cancelled_write_bytes);
3137 	result = 0;
3138 
3139 out_unlock:
3140 	up_read(&task->signal->exec_update_lock);
3141 	return result;
3142 }
3143 
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3144 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3145 				  struct pid *pid, struct task_struct *task)
3146 {
3147 	return do_io_accounting(task, m, 0);
3148 }
3149 
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3150 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3151 				   struct pid *pid, struct task_struct *task)
3152 {
3153 	return do_io_accounting(task, m, 1);
3154 }
3155 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3156 
3157 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3158 static int proc_id_map_open(struct inode *inode, struct file *file,
3159 	const struct seq_operations *seq_ops)
3160 {
3161 	struct user_namespace *ns = NULL;
3162 	struct task_struct *task;
3163 	struct seq_file *seq;
3164 	int ret = -EINVAL;
3165 
3166 	task = get_proc_task(inode);
3167 	if (task) {
3168 		rcu_read_lock();
3169 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3170 		rcu_read_unlock();
3171 		put_task_struct(task);
3172 	}
3173 	if (!ns)
3174 		goto err;
3175 
3176 	ret = seq_open(file, seq_ops);
3177 	if (ret)
3178 		goto err_put_ns;
3179 
3180 	seq = file->private_data;
3181 	seq->private = ns;
3182 
3183 	return 0;
3184 err_put_ns:
3185 	put_user_ns(ns);
3186 err:
3187 	return ret;
3188 }
3189 
proc_id_map_release(struct inode * inode,struct file * file)3190 static int proc_id_map_release(struct inode *inode, struct file *file)
3191 {
3192 	struct seq_file *seq = file->private_data;
3193 	struct user_namespace *ns = seq->private;
3194 	put_user_ns(ns);
3195 	return seq_release(inode, file);
3196 }
3197 
proc_uid_map_open(struct inode * inode,struct file * file)3198 static int proc_uid_map_open(struct inode *inode, struct file *file)
3199 {
3200 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3201 }
3202 
proc_gid_map_open(struct inode * inode,struct file * file)3203 static int proc_gid_map_open(struct inode *inode, struct file *file)
3204 {
3205 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3206 }
3207 
proc_projid_map_open(struct inode * inode,struct file * file)3208 static int proc_projid_map_open(struct inode *inode, struct file *file)
3209 {
3210 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3211 }
3212 
3213 static const struct file_operations proc_uid_map_operations = {
3214 	.open		= proc_uid_map_open,
3215 	.write		= proc_uid_map_write,
3216 	.read		= seq_read,
3217 	.llseek		= seq_lseek,
3218 	.release	= proc_id_map_release,
3219 };
3220 
3221 static const struct file_operations proc_gid_map_operations = {
3222 	.open		= proc_gid_map_open,
3223 	.write		= proc_gid_map_write,
3224 	.read		= seq_read,
3225 	.llseek		= seq_lseek,
3226 	.release	= proc_id_map_release,
3227 };
3228 
3229 static const struct file_operations proc_projid_map_operations = {
3230 	.open		= proc_projid_map_open,
3231 	.write		= proc_projid_map_write,
3232 	.read		= seq_read,
3233 	.llseek		= seq_lseek,
3234 	.release	= proc_id_map_release,
3235 };
3236 
proc_setgroups_open(struct inode * inode,struct file * file)3237 static int proc_setgroups_open(struct inode *inode, struct file *file)
3238 {
3239 	struct user_namespace *ns = NULL;
3240 	struct task_struct *task;
3241 	int ret;
3242 
3243 	ret = -ESRCH;
3244 	task = get_proc_task(inode);
3245 	if (task) {
3246 		rcu_read_lock();
3247 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3248 		rcu_read_unlock();
3249 		put_task_struct(task);
3250 	}
3251 	if (!ns)
3252 		goto err;
3253 
3254 	if (file->f_mode & FMODE_WRITE) {
3255 		ret = -EACCES;
3256 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3257 			goto err_put_ns;
3258 	}
3259 
3260 	ret = single_open(file, &proc_setgroups_show, ns);
3261 	if (ret)
3262 		goto err_put_ns;
3263 
3264 	return 0;
3265 err_put_ns:
3266 	put_user_ns(ns);
3267 err:
3268 	return ret;
3269 }
3270 
proc_setgroups_release(struct inode * inode,struct file * file)3271 static int proc_setgroups_release(struct inode *inode, struct file *file)
3272 {
3273 	struct seq_file *seq = file->private_data;
3274 	struct user_namespace *ns = seq->private;
3275 	int ret = single_release(inode, file);
3276 	put_user_ns(ns);
3277 	return ret;
3278 }
3279 
3280 static const struct file_operations proc_setgroups_operations = {
3281 	.open		= proc_setgroups_open,
3282 	.write		= proc_setgroups_write,
3283 	.read		= seq_read,
3284 	.llseek		= seq_lseek,
3285 	.release	= proc_setgroups_release,
3286 };
3287 #endif /* CONFIG_USER_NS */
3288 
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3289 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3290 				struct pid *pid, struct task_struct *task)
3291 {
3292 	int err = lock_trace(task);
3293 	if (!err) {
3294 		seq_printf(m, "%08x\n", task->personality);
3295 		unlock_trace(task);
3296 	}
3297 	return err;
3298 }
3299 
3300 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3301 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3302 				struct pid *pid, struct task_struct *task)
3303 {
3304 	seq_printf(m, "%d\n", task->patch_state);
3305 	return 0;
3306 }
3307 #endif /* CONFIG_LIVEPATCH */
3308 
3309 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3310 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3311 				struct pid *pid, struct task_struct *task)
3312 {
3313 	unsigned long prev_depth = THREAD_SIZE -
3314 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3315 	unsigned long depth = THREAD_SIZE -
3316 				(task->lowest_stack & (THREAD_SIZE - 1));
3317 
3318 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3319 							prev_depth, depth);
3320 	return 0;
3321 }
3322 #endif /* CONFIG_STACKLEAK_METRICS */
3323 
3324 #ifdef CONFIG_ACCESS_TOKENID
proc_token_operations(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3325 static int proc_token_operations(struct seq_file *m, struct pid_namespace *ns,
3326 				 struct pid *pid, struct task_struct *task)
3327 {
3328 	seq_printf(m, "%#llx %#llx\n", task->token, task->ftoken);
3329 	return 0;
3330 }
3331 #endif /* CONFIG_ACCESS_TOKENID */
3332 
3333 /*
3334  * Thread groups
3335  */
3336 static const struct file_operations proc_task_operations;
3337 static const struct inode_operations proc_task_inode_operations;
3338 
3339 static const struct pid_entry tgid_base_stuff[] = {
3340 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3341 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3342 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3343 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3344 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3345 #ifdef CONFIG_NET
3346 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3347 #endif
3348 	REG("environ",    S_IRUSR, proc_environ_operations),
3349 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3350 	ONE("status",     S_IRUGO, proc_pid_status),
3351 	ONE("personality", S_IRUSR, proc_pid_personality),
3352 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3353 #ifdef CONFIG_SCHED_WALT
3354 	REG("sched_init_task_load", 00644, proc_pid_sched_init_task_load_operations),
3355 #endif
3356 #ifdef CONFIG_SCHED_DEBUG
3357 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3358 #endif
3359 #ifdef CONFIG_SCHED_AUTOGROUP
3360 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3361 #endif
3362 #ifdef CONFIG_TIME_NS
3363 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3364 #endif
3365 #ifdef CONFIG_RSS_THRESHOLD
3366 	ONE("rss", S_IRUGO, proc_pid_rss),
3367 	REG("rss_threshold", S_IRUGO|S_IWUSR, proc_pid_rss_threshold_operations),
3368 #endif
3369 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3370 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3371 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3372 #endif
3373 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3374 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3375 	ONE("statm",      S_IRUGO, proc_pid_statm),
3376 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3377 #ifdef CONFIG_NUMA
3378 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3379 #endif
3380 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3381 	LNK("cwd",        proc_cwd_link),
3382 	LNK("root",       proc_root_link),
3383 	LNK("exe",        proc_exe_link),
3384 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3385 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3386 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3387 #ifdef CONFIG_PROC_PAGE_MONITOR
3388 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3389 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3390 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3391 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3392 #endif
3393 #ifdef CONFIG_SECURITY
3394 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3395 #endif
3396 #ifdef CONFIG_KALLSYMS
3397 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3398 #endif
3399 #ifdef CONFIG_STACKTRACE
3400 	ONE("stack",      S_IRUSR, proc_pid_stack),
3401 #endif
3402 #ifdef CONFIG_SCHED_INFO
3403 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3404 #endif
3405 #ifdef CONFIG_LATENCYTOP
3406 	REG("latency",  S_IRUGO, proc_lstats_operations),
3407 #endif
3408 #ifdef CONFIG_PROC_PID_CPUSET
3409 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3410 #endif
3411 #ifdef CONFIG_CGROUPS
3412 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3413 #endif
3414 #ifdef CONFIG_PROC_CPU_RESCTRL
3415 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3416 #endif
3417 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3418 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3419 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3420 #ifdef CONFIG_AUDIT
3421 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3422 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3423 #endif
3424 #ifdef CONFIG_FAULT_INJECTION
3425 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3426 	REG("fail-nth", 0644, proc_fail_nth_operations),
3427 #endif
3428 #ifdef CONFIG_ELF_CORE
3429 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3430 #endif
3431 #ifdef CONFIG_TASK_IO_ACCOUNTING
3432 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3433 #endif
3434 #ifdef CONFIG_USER_NS
3435 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3436 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3437 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3438 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3439 #endif
3440 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3441 	REG("timers",	  S_IRUGO, proc_timers_operations),
3442 #endif
3443 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3444 #ifdef CONFIG_LIVEPATCH
3445 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3446 #endif
3447 #ifdef CONFIG_STACKLEAK_METRICS
3448 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3449 #endif
3450 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3451 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3452 #endif
3453 #ifdef CONFIG_ACCESS_TOKENID
3454 	ONE("tokenid", S_IRUSR, proc_token_operations),
3455 #endif
3456 #ifdef CONFIG_SCHED_RTG
3457 	REG("sched_rtg_ctrl", S_IRUGO|S_IWUGO, proc_rtg_operations),
3458 #endif
3459 #ifdef CONFIG_SCHED_RTG_DEBUG
3460 	REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3461 #endif
3462 };
3463 
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3464 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3465 {
3466 	return proc_pident_readdir(file, ctx,
3467 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3468 }
3469 
3470 static const struct file_operations proc_tgid_base_operations = {
3471 	.read		= generic_read_dir,
3472 	.iterate_shared	= proc_tgid_base_readdir,
3473 	.llseek		= generic_file_llseek,
3474 };
3475 
tgid_pidfd_to_pid(const struct file * file)3476 struct pid *tgid_pidfd_to_pid(const struct file *file)
3477 {
3478 	if (file->f_op != &proc_tgid_base_operations)
3479 		return ERR_PTR(-EBADF);
3480 
3481 	return proc_pid(file_inode(file));
3482 }
3483 
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3484 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3485 {
3486 	return proc_pident_lookup(dir, dentry,
3487 				  tgid_base_stuff,
3488 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3489 }
3490 
3491 static const struct inode_operations proc_tgid_base_inode_operations = {
3492 	.lookup		= proc_tgid_base_lookup,
3493 	.getattr	= pid_getattr,
3494 	.setattr	= proc_setattr,
3495 	.permission	= proc_pid_permission,
3496 };
3497 
3498 /**
3499  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3500  * @pid: pid that should be flushed.
3501  *
3502  * This function walks a list of inodes (that belong to any proc
3503  * filesystem) that are attached to the pid and flushes them from
3504  * the dentry cache.
3505  *
3506  * It is safe and reasonable to cache /proc entries for a task until
3507  * that task exits.  After that they just clog up the dcache with
3508  * useless entries, possibly causing useful dcache entries to be
3509  * flushed instead.  This routine is provided to flush those useless
3510  * dcache entries when a process is reaped.
3511  *
3512  * NOTE: This routine is just an optimization so it does not guarantee
3513  *       that no dcache entries will exist after a process is reaped
3514  *       it just makes it very unlikely that any will persist.
3515  */
3516 
proc_flush_pid(struct pid * pid)3517 void proc_flush_pid(struct pid *pid)
3518 {
3519 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3520 }
3521 
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3522 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3523 				   struct task_struct *task, const void *ptr)
3524 {
3525 	struct inode *inode;
3526 
3527 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3528 	if (!inode)
3529 		return ERR_PTR(-ENOENT);
3530 
3531 	inode->i_op = &proc_tgid_base_inode_operations;
3532 	inode->i_fop = &proc_tgid_base_operations;
3533 	inode->i_flags|=S_IMMUTABLE;
3534 
3535 	set_nlink(inode, nlink_tgid);
3536 	pid_update_inode(task, inode);
3537 
3538 	d_set_d_op(dentry, &pid_dentry_operations);
3539 	return d_splice_alias(inode, dentry);
3540 }
3541 
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3542 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3543 {
3544 	struct task_struct *task;
3545 	unsigned tgid;
3546 	struct proc_fs_info *fs_info;
3547 	struct pid_namespace *ns;
3548 	struct dentry *result = ERR_PTR(-ENOENT);
3549 
3550 	tgid = name_to_int(&dentry->d_name);
3551 	if (tgid == ~0U)
3552 		goto out;
3553 
3554 	fs_info = proc_sb_info(dentry->d_sb);
3555 	ns = fs_info->pid_ns;
3556 	rcu_read_lock();
3557 	task = find_task_by_pid_ns(tgid, ns);
3558 	if (task)
3559 		get_task_struct(task);
3560 	rcu_read_unlock();
3561 	if (!task)
3562 		goto out;
3563 
3564 	/* Limit procfs to only ptraceable tasks */
3565 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3566 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3567 			goto out_put_task;
3568 	}
3569 
3570 	result = proc_pid_instantiate(dentry, task, NULL);
3571 out_put_task:
3572 	put_task_struct(task);
3573 out:
3574 	return result;
3575 }
3576 
3577 /*
3578  * Find the first task with tgid >= tgid
3579  *
3580  */
3581 struct tgid_iter {
3582 	unsigned int tgid;
3583 	struct task_struct *task;
3584 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3585 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3586 {
3587 	struct pid *pid;
3588 
3589 	if (iter.task)
3590 		put_task_struct(iter.task);
3591 	rcu_read_lock();
3592 retry:
3593 	iter.task = NULL;
3594 	pid = find_ge_pid(iter.tgid, ns);
3595 	if (pid) {
3596 		iter.tgid = pid_nr_ns(pid, ns);
3597 		iter.task = pid_task(pid, PIDTYPE_TGID);
3598 		if (!iter.task) {
3599 			iter.tgid += 1;
3600 			goto retry;
3601 		}
3602 		get_task_struct(iter.task);
3603 	}
3604 	rcu_read_unlock();
3605 	return iter;
3606 }
3607 
3608 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3609 
3610 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3611 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3612 {
3613 	struct tgid_iter iter;
3614 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3615 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3616 	loff_t pos = ctx->pos;
3617 
3618 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3619 		return 0;
3620 
3621 	if (pos == TGID_OFFSET - 2) {
3622 		struct inode *inode = d_inode(fs_info->proc_self);
3623 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3624 			return 0;
3625 		ctx->pos = pos = pos + 1;
3626 	}
3627 	if (pos == TGID_OFFSET - 1) {
3628 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3629 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3630 			return 0;
3631 		ctx->pos = pos = pos + 1;
3632 	}
3633 	iter.tgid = pos - TGID_OFFSET;
3634 	iter.task = NULL;
3635 	for (iter = next_tgid(ns, iter);
3636 	     iter.task;
3637 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3638 		char name[10 + 1];
3639 		unsigned int len;
3640 
3641 		cond_resched();
3642 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3643 			continue;
3644 
3645 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3646 		ctx->pos = iter.tgid + TGID_OFFSET;
3647 		if (!proc_fill_cache(file, ctx, name, len,
3648 				     proc_pid_instantiate, iter.task, NULL)) {
3649 			put_task_struct(iter.task);
3650 			return 0;
3651 		}
3652 	}
3653 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3654 	return 0;
3655 }
3656 
3657 /*
3658  * proc_tid_comm_permission is a special permission function exclusively
3659  * used for the node /proc/<pid>/task/<tid>/comm.
3660  * It bypasses generic permission checks in the case where a task of the same
3661  * task group attempts to access the node.
3662  * The rationale behind this is that glibc and bionic access this node for
3663  * cross thread naming (pthread_set/getname_np(!self)). However, if
3664  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3665  * which locks out the cross thread naming implementation.
3666  * This function makes sure that the node is always accessible for members of
3667  * same thread group.
3668  */
proc_tid_comm_permission(struct inode * inode,int mask)3669 static int proc_tid_comm_permission(struct inode *inode, int mask)
3670 {
3671 	bool is_same_tgroup;
3672 	struct task_struct *task;
3673 
3674 	task = get_proc_task(inode);
3675 	if (!task)
3676 		return -ESRCH;
3677 	is_same_tgroup = same_thread_group(current, task);
3678 	put_task_struct(task);
3679 
3680 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3681 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3682 		 * read or written by the members of the corresponding
3683 		 * thread group.
3684 		 */
3685 		return 0;
3686 	}
3687 
3688 	return generic_permission(inode, mask);
3689 }
3690 
3691 static const struct inode_operations proc_tid_comm_inode_operations = {
3692 		.permission = proc_tid_comm_permission,
3693 };
3694 
3695 /*
3696  * Tasks
3697  */
3698 static const struct pid_entry tid_base_stuff[] = {
3699 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3700 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3701 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3702 #ifdef CONFIG_NET
3703 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3704 #endif
3705 	REG("environ",   S_IRUSR, proc_environ_operations),
3706 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3707 	ONE("status",    S_IRUGO, proc_pid_status),
3708 	ONE("personality", S_IRUSR, proc_pid_personality),
3709 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3710 #ifdef CONFIG_SCHED_DEBUG
3711 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3712 #endif
3713 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3714 			 &proc_tid_comm_inode_operations,
3715 			 &proc_pid_set_comm_operations, {}),
3716 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3717 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3718 #endif
3719 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3720 	ONE("stat",      S_IRUGO, proc_tid_stat),
3721 	ONE("statm",     S_IRUGO, proc_pid_statm),
3722 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3723 #ifdef CONFIG_PROC_CHILDREN
3724 	REG("children",  S_IRUGO, proc_tid_children_operations),
3725 #endif
3726 #ifdef CONFIG_NUMA
3727 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3728 #endif
3729 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3730 	LNK("cwd",       proc_cwd_link),
3731 	LNK("root",      proc_root_link),
3732 	LNK("exe",       proc_exe_link),
3733 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3734 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3735 #ifdef CONFIG_PROC_PAGE_MONITOR
3736 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3737 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3738 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3739 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3740 #endif
3741 #ifdef CONFIG_SECURITY
3742 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3743 #endif
3744 #ifdef CONFIG_KALLSYMS
3745 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3746 #endif
3747 #ifdef CONFIG_STACKTRACE
3748 	ONE("stack",      S_IRUSR, proc_pid_stack),
3749 #endif
3750 #ifdef CONFIG_SCHED_INFO
3751 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3752 #endif
3753 #ifdef CONFIG_LATENCYTOP
3754 	REG("latency",  S_IRUGO, proc_lstats_operations),
3755 #endif
3756 #ifdef CONFIG_PROC_PID_CPUSET
3757 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3758 #endif
3759 #ifdef CONFIG_CGROUPS
3760 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3761 #endif
3762 #ifdef CONFIG_PROC_CPU_RESCTRL
3763 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3764 #endif
3765 	ONE("oom_score", S_IRUGO, proc_oom_score),
3766 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3767 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3768 #ifdef CONFIG_AUDIT
3769 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3770 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3771 #endif
3772 #ifdef CONFIG_FAULT_INJECTION
3773 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3774 	REG("fail-nth", 0644, proc_fail_nth_operations),
3775 #endif
3776 #ifdef CONFIG_TASK_IO_ACCOUNTING
3777 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3778 #endif
3779 #ifdef CONFIG_USER_NS
3780 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3781 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3782 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3783 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3784 #endif
3785 #ifdef CONFIG_LIVEPATCH
3786 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3787 #endif
3788 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3789 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3790 #endif
3791 #ifdef CONFIG_ACCESS_TOKENID
3792 	ONE("tokenid", S_IRUSR, proc_token_operations),
3793 #endif
3794 #ifdef CONFIG_SCHED_RTG_DEBUG
3795 	REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3796 #endif
3797 };
3798 
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3799 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3800 {
3801 	return proc_pident_readdir(file, ctx,
3802 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3803 }
3804 
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3805 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3806 {
3807 	return proc_pident_lookup(dir, dentry,
3808 				  tid_base_stuff,
3809 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3810 }
3811 
3812 static const struct file_operations proc_tid_base_operations = {
3813 	.read		= generic_read_dir,
3814 	.iterate_shared	= proc_tid_base_readdir,
3815 	.llseek		= generic_file_llseek,
3816 };
3817 
3818 static const struct inode_operations proc_tid_base_inode_operations = {
3819 	.lookup		= proc_tid_base_lookup,
3820 	.getattr	= pid_getattr,
3821 	.setattr	= proc_setattr,
3822 };
3823 
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3824 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3825 	struct task_struct *task, const void *ptr)
3826 {
3827 	struct inode *inode;
3828 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3829 	if (!inode)
3830 		return ERR_PTR(-ENOENT);
3831 
3832 	inode->i_op = &proc_tid_base_inode_operations;
3833 	inode->i_fop = &proc_tid_base_operations;
3834 	inode->i_flags |= S_IMMUTABLE;
3835 
3836 	set_nlink(inode, nlink_tid);
3837 	pid_update_inode(task, inode);
3838 
3839 	d_set_d_op(dentry, &pid_dentry_operations);
3840 	return d_splice_alias(inode, dentry);
3841 }
3842 
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3843 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3844 {
3845 	struct task_struct *task;
3846 	struct task_struct *leader = get_proc_task(dir);
3847 	unsigned tid;
3848 	struct proc_fs_info *fs_info;
3849 	struct pid_namespace *ns;
3850 	struct dentry *result = ERR_PTR(-ENOENT);
3851 
3852 	if (!leader)
3853 		goto out_no_task;
3854 
3855 	tid = name_to_int(&dentry->d_name);
3856 	if (tid == ~0U)
3857 		goto out;
3858 
3859 	fs_info = proc_sb_info(dentry->d_sb);
3860 	ns = fs_info->pid_ns;
3861 	rcu_read_lock();
3862 	task = find_task_by_pid_ns(tid, ns);
3863 	if (task)
3864 		get_task_struct(task);
3865 	rcu_read_unlock();
3866 	if (!task)
3867 		goto out;
3868 	if (!same_thread_group(leader, task))
3869 		goto out_drop_task;
3870 
3871 	result = proc_task_instantiate(dentry, task, NULL);
3872 out_drop_task:
3873 	put_task_struct(task);
3874 out:
3875 	put_task_struct(leader);
3876 out_no_task:
3877 	return result;
3878 }
3879 
3880 /*
3881  * Find the first tid of a thread group to return to user space.
3882  *
3883  * Usually this is just the thread group leader, but if the users
3884  * buffer was too small or there was a seek into the middle of the
3885  * directory we have more work todo.
3886  *
3887  * In the case of a short read we start with find_task_by_pid.
3888  *
3889  * In the case of a seek we start with the leader and walk nr
3890  * threads past it.
3891  */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3892 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3893 					struct pid_namespace *ns)
3894 {
3895 	struct task_struct *pos, *task;
3896 	unsigned long nr = f_pos;
3897 
3898 	if (nr != f_pos)	/* 32bit overflow? */
3899 		return NULL;
3900 
3901 	rcu_read_lock();
3902 	task = pid_task(pid, PIDTYPE_PID);
3903 	if (!task)
3904 		goto fail;
3905 
3906 	/* Attempt to start with the tid of a thread */
3907 	if (tid && nr) {
3908 		pos = find_task_by_pid_ns(tid, ns);
3909 		if (pos && same_thread_group(pos, task))
3910 			goto found;
3911 	}
3912 
3913 	/* If nr exceeds the number of threads there is nothing todo */
3914 	if (nr >= get_nr_threads(task))
3915 		goto fail;
3916 
3917 	/* If we haven't found our starting place yet start
3918 	 * with the leader and walk nr threads forward.
3919 	 */
3920 	pos = task = task->group_leader;
3921 	do {
3922 		if (!nr--)
3923 			goto found;
3924 	} while_each_thread(task, pos);
3925 fail:
3926 	pos = NULL;
3927 	goto out;
3928 found:
3929 	get_task_struct(pos);
3930 out:
3931 	rcu_read_unlock();
3932 	return pos;
3933 }
3934 
3935 /*
3936  * Find the next thread in the thread list.
3937  * Return NULL if there is an error or no next thread.
3938  *
3939  * The reference to the input task_struct is released.
3940  */
next_tid(struct task_struct * start)3941 static struct task_struct *next_tid(struct task_struct *start)
3942 {
3943 	struct task_struct *pos = NULL;
3944 	rcu_read_lock();
3945 	if (pid_alive(start)) {
3946 		pos = next_thread(start);
3947 		if (thread_group_leader(pos))
3948 			pos = NULL;
3949 		else
3950 			get_task_struct(pos);
3951 	}
3952 	rcu_read_unlock();
3953 	put_task_struct(start);
3954 	return pos;
3955 }
3956 
3957 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3958 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3959 {
3960 	struct inode *inode = file_inode(file);
3961 	struct task_struct *task;
3962 	struct pid_namespace *ns;
3963 	int tid;
3964 
3965 	if (proc_inode_is_dead(inode))
3966 		return -ENOENT;
3967 
3968 	if (!dir_emit_dots(file, ctx))
3969 		return 0;
3970 
3971 	/* f_version caches the tgid value that the last readdir call couldn't
3972 	 * return. lseek aka telldir automagically resets f_version to 0.
3973 	 */
3974 	ns = proc_pid_ns(inode->i_sb);
3975 	tid = (int)file->f_version;
3976 	file->f_version = 0;
3977 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3978 	     task;
3979 	     task = next_tid(task), ctx->pos++) {
3980 		char name[10 + 1];
3981 		unsigned int len;
3982 		tid = task_pid_nr_ns(task, ns);
3983 		len = snprintf(name, sizeof(name), "%u", tid);
3984 		if (!proc_fill_cache(file, ctx, name, len,
3985 				proc_task_instantiate, task, NULL)) {
3986 			/* returning this tgid failed, save it as the first
3987 			 * pid for the next readir call */
3988 			file->f_version = (u64)tid;
3989 			put_task_struct(task);
3990 			break;
3991 		}
3992 	}
3993 
3994 	return 0;
3995 }
3996 
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3997 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3998 			     u32 request_mask, unsigned int query_flags)
3999 {
4000 	struct inode *inode = d_inode(path->dentry);
4001 	struct task_struct *p = get_proc_task(inode);
4002 	generic_fillattr(inode, stat);
4003 
4004 	if (p) {
4005 		stat->nlink += get_nr_threads(p);
4006 		put_task_struct(p);
4007 	}
4008 
4009 	return 0;
4010 }
4011 
4012 static const struct inode_operations proc_task_inode_operations = {
4013 	.lookup		= proc_task_lookup,
4014 	.getattr	= proc_task_getattr,
4015 	.setattr	= proc_setattr,
4016 	.permission	= proc_pid_permission,
4017 };
4018 
4019 static const struct file_operations proc_task_operations = {
4020 	.read		= generic_read_dir,
4021 	.iterate_shared	= proc_task_readdir,
4022 	.llseek		= generic_file_llseek,
4023 };
4024 
set_proc_pid_nlink(void)4025 void __init set_proc_pid_nlink(void)
4026 {
4027 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4028 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4029 }
4030