1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched.h>
92 #ifdef CONFIG_SCHED_RTG
93 #include <linux/sched/rtg_ctrl.h>
94 #endif
95 #include <linux/sched/autogroup.h>
96 #include <linux/sched/mm.h>
97 #include <linux/sched/coredump.h>
98 #include <linux/sched/debug.h>
99 #include <linux/sched/stat.h>
100 #include <linux/posix-timers.h>
101 #include <linux/time_namespace.h>
102 #include <linux/resctrl.h>
103 #include <trace/events/oom.h>
104 #include "internal.h"
105 #include "fd.h"
106
107 #include "../../lib/kstrtox.h"
108
109 /* NOTE:
110 * Implementing inode permission operations in /proc is almost
111 * certainly an error. Permission checks need to happen during
112 * each system call not at open time. The reason is that most of
113 * what we wish to check for permissions in /proc varies at runtime.
114 *
115 * The classic example of a problem is opening file descriptors
116 * in /proc for a task before it execs a suid executable.
117 */
118
119 static u8 nlink_tid __ro_after_init;
120 static u8 nlink_tgid __ro_after_init;
121
122 struct pid_entry {
123 const char *name;
124 unsigned int len;
125 umode_t mode;
126 const struct inode_operations *iop;
127 const struct file_operations *fop;
128 union proc_op op;
129 };
130
131 #define NOD(NAME, MODE, IOP, FOP, OP) { \
132 .name = (NAME), \
133 .len = sizeof(NAME) - 1, \
134 .mode = MODE, \
135 .iop = IOP, \
136 .fop = FOP, \
137 .op = OP, \
138 }
139
140 #define DIR(NAME, MODE, iops, fops) \
141 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
142 #define LNK(NAME, get_link) \
143 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
144 &proc_pid_link_inode_operations, NULL, \
145 { .proc_get_link = get_link } )
146 #define REG(NAME, MODE, fops) \
147 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
148 #define ONE(NAME, MODE, show) \
149 NOD(NAME, (S_IFREG|(MODE)), \
150 NULL, &proc_single_file_operations, \
151 { .proc_show = show } )
152 #define ATTR(LSM, NAME, MODE) \
153 NOD(NAME, (S_IFREG|(MODE)), \
154 NULL, &proc_pid_attr_operations, \
155 { .lsm = LSM })
156
157 /*
158 * Count the number of hardlinks for the pid_entry table, excluding the .
159 * and .. links.
160 */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)161 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
162 unsigned int n)
163 {
164 unsigned int i;
165 unsigned int count;
166
167 count = 2;
168 for (i = 0; i < n; ++i) {
169 if (S_ISDIR(entries[i].mode))
170 ++count;
171 }
172
173 return count;
174 }
175
get_task_root(struct task_struct * task,struct path * root)176 static int get_task_root(struct task_struct *task, struct path *root)
177 {
178 int result = -ENOENT;
179
180 task_lock(task);
181 if (task->fs) {
182 get_fs_root(task->fs, root);
183 result = 0;
184 }
185 task_unlock(task);
186 return result;
187 }
188
proc_cwd_link(struct dentry * dentry,struct path * path)189 static int proc_cwd_link(struct dentry *dentry, struct path *path)
190 {
191 struct task_struct *task = get_proc_task(d_inode(dentry));
192 int result = -ENOENT;
193
194 if (task) {
195 task_lock(task);
196 if (task->fs) {
197 get_fs_pwd(task->fs, path);
198 result = 0;
199 }
200 task_unlock(task);
201 put_task_struct(task);
202 }
203 return result;
204 }
205
proc_root_link(struct dentry * dentry,struct path * path)206 static int proc_root_link(struct dentry *dentry, struct path *path)
207 {
208 struct task_struct *task = get_proc_task(d_inode(dentry));
209 int result = -ENOENT;
210
211 if (task) {
212 result = get_task_root(task, path);
213 put_task_struct(task);
214 }
215 return result;
216 }
217
218 /*
219 * If the user used setproctitle(), we just get the string from
220 * user space at arg_start, and limit it to a maximum of one page.
221 */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)222 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
223 size_t count, unsigned long pos,
224 unsigned long arg_start)
225 {
226 char *page;
227 int ret, got;
228
229 if (pos >= PAGE_SIZE)
230 return 0;
231
232 page = (char *)__get_free_page(GFP_KERNEL);
233 if (!page)
234 return -ENOMEM;
235
236 ret = 0;
237 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
238 if (got > 0) {
239 int len = strnlen(page, got);
240
241 /* Include the NUL character if it was found */
242 if (len < got)
243 len++;
244
245 if (len > pos) {
246 len -= pos;
247 if (len > count)
248 len = count;
249 len -= copy_to_user(buf, page+pos, len);
250 if (!len)
251 len = -EFAULT;
252 ret = len;
253 }
254 }
255 free_page((unsigned long)page);
256 return ret;
257 }
258
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)259 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
260 size_t count, loff_t *ppos)
261 {
262 unsigned long arg_start, arg_end, env_start, env_end;
263 unsigned long pos, len;
264 char *page, c;
265
266 /* Check if process spawned far enough to have cmdline. */
267 if (!mm->env_end)
268 return 0;
269
270 spin_lock(&mm->arg_lock);
271 arg_start = mm->arg_start;
272 arg_end = mm->arg_end;
273 env_start = mm->env_start;
274 env_end = mm->env_end;
275 spin_unlock(&mm->arg_lock);
276
277 if (arg_start >= arg_end)
278 return 0;
279
280 /*
281 * We allow setproctitle() to overwrite the argument
282 * strings, and overflow past the original end. But
283 * only when it overflows into the environment area.
284 */
285 if (env_start != arg_end || env_end < env_start)
286 env_start = env_end = arg_end;
287 len = env_end - arg_start;
288
289 /* We're not going to care if "*ppos" has high bits set */
290 pos = *ppos;
291 if (pos >= len)
292 return 0;
293 if (count > len - pos)
294 count = len - pos;
295 if (!count)
296 return 0;
297
298 /*
299 * Magical special case: if the argv[] end byte is not
300 * zero, the user has overwritten it with setproctitle(3).
301 *
302 * Possible future enhancement: do this only once when
303 * pos is 0, and set a flag in the 'struct file'.
304 */
305 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
306 return get_mm_proctitle(mm, buf, count, pos, arg_start);
307
308 /*
309 * For the non-setproctitle() case we limit things strictly
310 * to the [arg_start, arg_end[ range.
311 */
312 pos += arg_start;
313 if (pos < arg_start || pos >= arg_end)
314 return 0;
315 if (count > arg_end - pos)
316 count = arg_end - pos;
317
318 page = (char *)__get_free_page(GFP_KERNEL);
319 if (!page)
320 return -ENOMEM;
321
322 len = 0;
323 while (count) {
324 int got;
325 size_t size = min_t(size_t, PAGE_SIZE, count);
326
327 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
328 if (got <= 0)
329 break;
330 got -= copy_to_user(buf, page, got);
331 if (unlikely(!got)) {
332 if (!len)
333 len = -EFAULT;
334 break;
335 }
336 pos += got;
337 buf += got;
338 len += got;
339 count -= got;
340 }
341
342 free_page((unsigned long)page);
343 return len;
344 }
345
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)346 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
347 size_t count, loff_t *pos)
348 {
349 struct mm_struct *mm;
350 ssize_t ret;
351
352 mm = get_task_mm(tsk);
353 if (!mm)
354 return 0;
355
356 ret = get_mm_cmdline(mm, buf, count, pos);
357 mmput(mm);
358 return ret;
359 }
360
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)361 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
362 size_t count, loff_t *pos)
363 {
364 struct task_struct *tsk;
365 ssize_t ret;
366
367 BUG_ON(*pos < 0);
368
369 tsk = get_proc_task(file_inode(file));
370 if (!tsk)
371 return -ESRCH;
372 ret = get_task_cmdline(tsk, buf, count, pos);
373 put_task_struct(tsk);
374 if (ret > 0)
375 *pos += ret;
376 return ret;
377 }
378
379 static const struct file_operations proc_pid_cmdline_ops = {
380 .read = proc_pid_cmdline_read,
381 .llseek = generic_file_llseek,
382 };
383
384 #ifdef CONFIG_KALLSYMS
385 /*
386 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
387 * Returns the resolved symbol. If that fails, simply return the address.
388 */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)389 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
390 struct pid *pid, struct task_struct *task)
391 {
392 unsigned long wchan;
393 char symname[KSYM_NAME_LEN];
394
395 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
396 goto print0;
397
398 wchan = get_wchan(task);
399 if (wchan && !lookup_symbol_name(wchan, symname)) {
400 seq_puts(m, symname);
401 return 0;
402 }
403
404 print0:
405 seq_putc(m, '0');
406 return 0;
407 }
408 #endif /* CONFIG_KALLSYMS */
409
lock_trace(struct task_struct * task)410 static int lock_trace(struct task_struct *task)
411 {
412 int err = down_read_killable(&task->signal->exec_update_lock);
413 if (err)
414 return err;
415 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
416 up_read(&task->signal->exec_update_lock);
417 return -EPERM;
418 }
419 return 0;
420 }
421
unlock_trace(struct task_struct * task)422 static void unlock_trace(struct task_struct *task)
423 {
424 up_read(&task->signal->exec_update_lock);
425 }
426
427 #ifdef CONFIG_STACKTRACE
428
429 #define MAX_STACK_TRACE_DEPTH 64
430
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)431 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
432 struct pid *pid, struct task_struct *task)
433 {
434 unsigned long *entries;
435 int err;
436
437 /*
438 * The ability to racily run the kernel stack unwinder on a running task
439 * and then observe the unwinder output is scary; while it is useful for
440 * debugging kernel issues, it can also allow an attacker to leak kernel
441 * stack contents.
442 * Doing this in a manner that is at least safe from races would require
443 * some work to ensure that the remote task can not be scheduled; and
444 * even then, this would still expose the unwinder as local attack
445 * surface.
446 * Therefore, this interface is restricted to root.
447 */
448 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
449 return -EACCES;
450
451 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
452 GFP_KERNEL);
453 if (!entries)
454 return -ENOMEM;
455
456 err = lock_trace(task);
457 if (!err) {
458 unsigned int i, nr_entries;
459
460 nr_entries = stack_trace_save_tsk(task, entries,
461 MAX_STACK_TRACE_DEPTH, 0);
462
463 for (i = 0; i < nr_entries; i++) {
464 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
465 }
466
467 unlock_trace(task);
468 }
469 kfree(entries);
470
471 return err;
472 }
473 #endif
474
475 #ifdef CONFIG_SCHED_INFO
476 /*
477 * Provides /proc/PID/schedstat
478 */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)479 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
480 struct pid *pid, struct task_struct *task)
481 {
482 if (unlikely(!sched_info_on()))
483 seq_puts(m, "0 0 0\n");
484 else
485 seq_printf(m, "%llu %llu %lu\n",
486 (unsigned long long)task->se.sum_exec_runtime,
487 (unsigned long long)task->sched_info.run_delay,
488 task->sched_info.pcount);
489
490 return 0;
491 }
492 #endif
493
494 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)495 static int lstats_show_proc(struct seq_file *m, void *v)
496 {
497 int i;
498 struct inode *inode = m->private;
499 struct task_struct *task = get_proc_task(inode);
500
501 if (!task)
502 return -ESRCH;
503 seq_puts(m, "Latency Top version : v0.1\n");
504 for (i = 0; i < LT_SAVECOUNT; i++) {
505 struct latency_record *lr = &task->latency_record[i];
506 if (lr->backtrace[0]) {
507 int q;
508 seq_printf(m, "%i %li %li",
509 lr->count, lr->time, lr->max);
510 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
511 unsigned long bt = lr->backtrace[q];
512
513 if (!bt)
514 break;
515 seq_printf(m, " %ps", (void *)bt);
516 }
517 seq_putc(m, '\n');
518 }
519
520 }
521 put_task_struct(task);
522 return 0;
523 }
524
lstats_open(struct inode * inode,struct file * file)525 static int lstats_open(struct inode *inode, struct file *file)
526 {
527 return single_open(file, lstats_show_proc, inode);
528 }
529
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)530 static ssize_t lstats_write(struct file *file, const char __user *buf,
531 size_t count, loff_t *offs)
532 {
533 struct task_struct *task = get_proc_task(file_inode(file));
534
535 if (!task)
536 return -ESRCH;
537 clear_tsk_latency_tracing(task);
538 put_task_struct(task);
539
540 return count;
541 }
542
543 static const struct file_operations proc_lstats_operations = {
544 .open = lstats_open,
545 .read = seq_read,
546 .write = lstats_write,
547 .llseek = seq_lseek,
548 .release = single_release,
549 };
550
551 #endif
552
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)553 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
554 struct pid *pid, struct task_struct *task)
555 {
556 unsigned long totalpages = totalram_pages() + total_swap_pages;
557 unsigned long points = 0;
558 long badness;
559
560 badness = oom_badness(task, totalpages);
561 /*
562 * Special case OOM_SCORE_ADJ_MIN for all others scale the
563 * badness value into [0, 2000] range which we have been
564 * exporting for a long time so userspace might depend on it.
565 */
566 if (badness != LONG_MIN)
567 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
568
569 seq_printf(m, "%lu\n", points);
570
571 return 0;
572 }
573
574 struct limit_names {
575 const char *name;
576 const char *unit;
577 };
578
579 static const struct limit_names lnames[RLIM_NLIMITS] = {
580 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
581 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
582 [RLIMIT_DATA] = {"Max data size", "bytes"},
583 [RLIMIT_STACK] = {"Max stack size", "bytes"},
584 [RLIMIT_CORE] = {"Max core file size", "bytes"},
585 [RLIMIT_RSS] = {"Max resident set", "bytes"},
586 [RLIMIT_NPROC] = {"Max processes", "processes"},
587 [RLIMIT_NOFILE] = {"Max open files", "files"},
588 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
589 [RLIMIT_AS] = {"Max address space", "bytes"},
590 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
591 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
592 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
593 [RLIMIT_NICE] = {"Max nice priority", NULL},
594 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
595 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
596 };
597
598 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)599 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
600 struct pid *pid, struct task_struct *task)
601 {
602 unsigned int i;
603 unsigned long flags;
604
605 struct rlimit rlim[RLIM_NLIMITS];
606
607 if (!lock_task_sighand(task, &flags))
608 return 0;
609 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
610 unlock_task_sighand(task, &flags);
611
612 /*
613 * print the file header
614 */
615 seq_puts(m, "Limit "
616 "Soft Limit "
617 "Hard Limit "
618 "Units \n");
619
620 for (i = 0; i < RLIM_NLIMITS; i++) {
621 if (rlim[i].rlim_cur == RLIM_INFINITY)
622 seq_printf(m, "%-25s %-20s ",
623 lnames[i].name, "unlimited");
624 else
625 seq_printf(m, "%-25s %-20lu ",
626 lnames[i].name, rlim[i].rlim_cur);
627
628 if (rlim[i].rlim_max == RLIM_INFINITY)
629 seq_printf(m, "%-20s ", "unlimited");
630 else
631 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
632
633 if (lnames[i].unit)
634 seq_printf(m, "%-10s\n", lnames[i].unit);
635 else
636 seq_putc(m, '\n');
637 }
638
639 return 0;
640 }
641
642 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)643 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
644 struct pid *pid, struct task_struct *task)
645 {
646 struct syscall_info info;
647 u64 *args = &info.data.args[0];
648 int res;
649
650 res = lock_trace(task);
651 if (res)
652 return res;
653
654 if (task_current_syscall(task, &info))
655 seq_puts(m, "running\n");
656 else if (info.data.nr < 0)
657 seq_printf(m, "%d 0x%llx 0x%llx\n",
658 info.data.nr, info.sp, info.data.instruction_pointer);
659 else
660 seq_printf(m,
661 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
662 info.data.nr,
663 args[0], args[1], args[2], args[3], args[4], args[5],
664 info.sp, info.data.instruction_pointer);
665 unlock_trace(task);
666
667 return 0;
668 }
669 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
670
671 /************************************************************************/
672 /* Here the fs part begins */
673 /************************************************************************/
674
675 /* permission checks */
proc_fd_access_allowed(struct inode * inode)676 static int proc_fd_access_allowed(struct inode *inode)
677 {
678 struct task_struct *task;
679 int allowed = 0;
680 /* Allow access to a task's file descriptors if it is us or we
681 * may use ptrace attach to the process and find out that
682 * information.
683 */
684 task = get_proc_task(inode);
685 if (task) {
686 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
687 put_task_struct(task);
688 }
689 return allowed;
690 }
691
proc_setattr(struct dentry * dentry,struct iattr * attr)692 int proc_setattr(struct dentry *dentry, struct iattr *attr)
693 {
694 int error;
695 struct inode *inode = d_inode(dentry);
696
697 if (attr->ia_valid & ATTR_MODE)
698 return -EPERM;
699
700 error = setattr_prepare(dentry, attr);
701 if (error)
702 return error;
703
704 setattr_copy(inode, attr);
705 mark_inode_dirty(inode);
706 return 0;
707 }
708
709 /*
710 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
711 * or euid/egid (for hide_pid_min=2)?
712 */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)713 static bool has_pid_permissions(struct proc_fs_info *fs_info,
714 struct task_struct *task,
715 enum proc_hidepid hide_pid_min)
716 {
717 /*
718 * If 'hidpid' mount option is set force a ptrace check,
719 * we indicate that we are using a filesystem syscall
720 * by passing PTRACE_MODE_READ_FSCREDS
721 */
722 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
723 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
724
725 if (fs_info->hide_pid < hide_pid_min)
726 return true;
727 if (in_group_p(fs_info->pid_gid))
728 return true;
729 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
730 }
731
732
proc_pid_permission(struct inode * inode,int mask)733 static int proc_pid_permission(struct inode *inode, int mask)
734 {
735 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
736 struct task_struct *task;
737 bool has_perms;
738
739 task = get_proc_task(inode);
740 if (!task)
741 return -ESRCH;
742 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
743 put_task_struct(task);
744
745 if (!has_perms) {
746 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
747 /*
748 * Let's make getdents(), stat(), and open()
749 * consistent with each other. If a process
750 * may not stat() a file, it shouldn't be seen
751 * in procfs at all.
752 */
753 return -ENOENT;
754 }
755
756 return -EPERM;
757 }
758 return generic_permission(inode, mask);
759 }
760
761
762
763 static const struct inode_operations proc_def_inode_operations = {
764 .setattr = proc_setattr,
765 };
766
proc_single_show(struct seq_file * m,void * v)767 static int proc_single_show(struct seq_file *m, void *v)
768 {
769 struct inode *inode = m->private;
770 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
771 struct pid *pid = proc_pid(inode);
772 struct task_struct *task;
773 int ret;
774
775 task = get_pid_task(pid, PIDTYPE_PID);
776 if (!task)
777 return -ESRCH;
778
779 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
780
781 put_task_struct(task);
782 return ret;
783 }
784
proc_single_open(struct inode * inode,struct file * filp)785 static int proc_single_open(struct inode *inode, struct file *filp)
786 {
787 return single_open(filp, proc_single_show, inode);
788 }
789
790 static const struct file_operations proc_single_file_operations = {
791 .open = proc_single_open,
792 .read = seq_read,
793 .llseek = seq_lseek,
794 .release = single_release,
795 };
796
797
proc_mem_open(struct inode * inode,unsigned int mode)798 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
799 {
800 struct task_struct *task = get_proc_task(inode);
801 struct mm_struct *mm = ERR_PTR(-ESRCH);
802
803 if (task) {
804 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
805 put_task_struct(task);
806
807 if (!IS_ERR_OR_NULL(mm)) {
808 /* ensure this mm_struct can't be freed */
809 mmgrab(mm);
810 /* but do not pin its memory */
811 mmput(mm);
812 }
813 }
814
815 return mm;
816 }
817
__mem_open(struct inode * inode,struct file * file,unsigned int mode)818 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
819 {
820 struct mm_struct *mm = proc_mem_open(inode, mode);
821
822 if (IS_ERR(mm))
823 return PTR_ERR(mm);
824
825 file->private_data = mm;
826 return 0;
827 }
828
mem_open(struct inode * inode,struct file * file)829 static int mem_open(struct inode *inode, struct file *file)
830 {
831 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
832
833 /* OK to pass negative loff_t, we can catch out-of-range */
834 file->f_mode |= FMODE_UNSIGNED_OFFSET;
835
836 return ret;
837 }
838
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)839 static ssize_t mem_rw(struct file *file, char __user *buf,
840 size_t count, loff_t *ppos, int write)
841 {
842 struct mm_struct *mm = file->private_data;
843 unsigned long addr = *ppos;
844 ssize_t copied;
845 char *page;
846 unsigned int flags;
847
848 if (!mm)
849 return 0;
850
851 page = (char *)__get_free_page(GFP_KERNEL);
852 if (!page)
853 return -ENOMEM;
854
855 copied = 0;
856 if (!mmget_not_zero(mm))
857 goto free;
858
859 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
860
861 while (count > 0) {
862 size_t this_len = min_t(size_t, count, PAGE_SIZE);
863
864 if (write && copy_from_user(page, buf, this_len)) {
865 copied = -EFAULT;
866 break;
867 }
868
869 this_len = access_remote_vm(mm, addr, page, this_len, flags);
870 if (!this_len) {
871 if (!copied)
872 copied = -EIO;
873 break;
874 }
875
876 if (!write && copy_to_user(buf, page, this_len)) {
877 copied = -EFAULT;
878 break;
879 }
880
881 buf += this_len;
882 addr += this_len;
883 copied += this_len;
884 count -= this_len;
885 }
886 *ppos = addr;
887
888 mmput(mm);
889 free:
890 free_page((unsigned long) page);
891 return copied;
892 }
893
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)894 static ssize_t mem_read(struct file *file, char __user *buf,
895 size_t count, loff_t *ppos)
896 {
897 return mem_rw(file, buf, count, ppos, 0);
898 }
899
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)900 static ssize_t mem_write(struct file *file, const char __user *buf,
901 size_t count, loff_t *ppos)
902 {
903 return mem_rw(file, (char __user*)buf, count, ppos, 1);
904 }
905
mem_lseek(struct file * file,loff_t offset,int orig)906 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
907 {
908 loff_t ret = 0;
909
910 spin_lock(&file->f_lock);
911 switch (orig) {
912 case SEEK_CUR:
913 offset += file->f_pos;
914 /* fall through */
915 case SEEK_SET:
916 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
917 if ((unsigned long long)offset >= -MAX_ERRNO)
918 ret = -EOVERFLOW;
919 break;
920 default:
921 ret = -EINVAL;
922 }
923
924 if (!ret) {
925 if (offset < 0 && !(unsigned_offsets(file))) {
926 ret = -EINVAL;
927 } else {
928 file->f_pos = offset;
929 ret = file->f_pos;
930 force_successful_syscall_return();
931 }
932 }
933
934 spin_unlock(&file->f_lock);
935 return ret;
936 }
937
mem_release(struct inode * inode,struct file * file)938 static int mem_release(struct inode *inode, struct file *file)
939 {
940 struct mm_struct *mm = file->private_data;
941 if (mm)
942 mmdrop(mm);
943 return 0;
944 }
945
946 static const struct file_operations proc_mem_operations = {
947 .llseek = mem_lseek,
948 .read = mem_read,
949 .write = mem_write,
950 .open = mem_open,
951 .release = mem_release,
952 };
953
environ_open(struct inode * inode,struct file * file)954 static int environ_open(struct inode *inode, struct file *file)
955 {
956 return __mem_open(inode, file, PTRACE_MODE_READ);
957 }
958
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)959 static ssize_t environ_read(struct file *file, char __user *buf,
960 size_t count, loff_t *ppos)
961 {
962 char *page;
963 unsigned long src = *ppos;
964 int ret = 0;
965 struct mm_struct *mm = file->private_data;
966 unsigned long env_start, env_end;
967
968 /* Ensure the process spawned far enough to have an environment. */
969 if (!mm || !mm->env_end)
970 return 0;
971
972 page = (char *)__get_free_page(GFP_KERNEL);
973 if (!page)
974 return -ENOMEM;
975
976 ret = 0;
977 if (!mmget_not_zero(mm))
978 goto free;
979
980 spin_lock(&mm->arg_lock);
981 env_start = mm->env_start;
982 env_end = mm->env_end;
983 spin_unlock(&mm->arg_lock);
984
985 while (count > 0) {
986 size_t this_len, max_len;
987 int retval;
988
989 if (src >= (env_end - env_start))
990 break;
991
992 this_len = env_end - (env_start + src);
993
994 max_len = min_t(size_t, PAGE_SIZE, count);
995 this_len = min(max_len, this_len);
996
997 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
998
999 if (retval <= 0) {
1000 ret = retval;
1001 break;
1002 }
1003
1004 if (copy_to_user(buf, page, retval)) {
1005 ret = -EFAULT;
1006 break;
1007 }
1008
1009 ret += retval;
1010 src += retval;
1011 buf += retval;
1012 count -= retval;
1013 }
1014 *ppos = src;
1015 mmput(mm);
1016
1017 free:
1018 free_page((unsigned long) page);
1019 return ret;
1020 }
1021
1022 static const struct file_operations proc_environ_operations = {
1023 .open = environ_open,
1024 .read = environ_read,
1025 .llseek = generic_file_llseek,
1026 .release = mem_release,
1027 };
1028
auxv_open(struct inode * inode,struct file * file)1029 static int auxv_open(struct inode *inode, struct file *file)
1030 {
1031 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1032 }
1033
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1034 static ssize_t auxv_read(struct file *file, char __user *buf,
1035 size_t count, loff_t *ppos)
1036 {
1037 struct mm_struct *mm = file->private_data;
1038 unsigned int nwords = 0;
1039
1040 if (!mm)
1041 return 0;
1042 do {
1043 nwords += 2;
1044 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1045 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1046 nwords * sizeof(mm->saved_auxv[0]));
1047 }
1048
1049 static const struct file_operations proc_auxv_operations = {
1050 .open = auxv_open,
1051 .read = auxv_read,
1052 .llseek = generic_file_llseek,
1053 .release = mem_release,
1054 };
1055
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1056 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1057 loff_t *ppos)
1058 {
1059 struct task_struct *task = get_proc_task(file_inode(file));
1060 char buffer[PROC_NUMBUF];
1061 int oom_adj = OOM_ADJUST_MIN;
1062 size_t len;
1063
1064 if (!task)
1065 return -ESRCH;
1066 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1067 oom_adj = OOM_ADJUST_MAX;
1068 else
1069 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1070 OOM_SCORE_ADJ_MAX;
1071 put_task_struct(task);
1072 if (oom_adj > OOM_ADJUST_MAX)
1073 oom_adj = OOM_ADJUST_MAX;
1074 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1075 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1076 }
1077
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1078 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1079 {
1080 struct mm_struct *mm = NULL;
1081 struct task_struct *task;
1082 int err = 0;
1083
1084 task = get_proc_task(file_inode(file));
1085 if (!task)
1086 return -ESRCH;
1087
1088 mutex_lock(&oom_adj_mutex);
1089 if (legacy) {
1090 if (oom_adj < task->signal->oom_score_adj &&
1091 !capable(CAP_SYS_RESOURCE)) {
1092 err = -EACCES;
1093 goto err_unlock;
1094 }
1095 /*
1096 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1097 * /proc/pid/oom_score_adj instead.
1098 */
1099 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1100 current->comm, task_pid_nr(current), task_pid_nr(task),
1101 task_pid_nr(task));
1102 } else {
1103 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1104 !capable(CAP_SYS_RESOURCE)) {
1105 err = -EACCES;
1106 goto err_unlock;
1107 }
1108 }
1109
1110 /*
1111 * Make sure we will check other processes sharing the mm if this is
1112 * not vfrok which wants its own oom_score_adj.
1113 * pin the mm so it doesn't go away and get reused after task_unlock
1114 */
1115 if (!task->vfork_done) {
1116 struct task_struct *p = find_lock_task_mm(task);
1117
1118 if (p) {
1119 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1120 mm = p->mm;
1121 mmgrab(mm);
1122 }
1123 task_unlock(p);
1124 }
1125 }
1126
1127 task->signal->oom_score_adj = oom_adj;
1128 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1129 task->signal->oom_score_adj_min = (short)oom_adj;
1130 trace_oom_score_adj_update(task);
1131
1132 if (mm) {
1133 struct task_struct *p;
1134
1135 rcu_read_lock();
1136 for_each_process(p) {
1137 if (same_thread_group(task, p))
1138 continue;
1139
1140 /* do not touch kernel threads or the global init */
1141 if (p->flags & PF_KTHREAD || is_global_init(p))
1142 continue;
1143
1144 task_lock(p);
1145 if (!p->vfork_done && process_shares_mm(p, mm)) {
1146 p->signal->oom_score_adj = oom_adj;
1147 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1148 p->signal->oom_score_adj_min = (short)oom_adj;
1149 }
1150 task_unlock(p);
1151 }
1152 rcu_read_unlock();
1153 mmdrop(mm);
1154 }
1155 err_unlock:
1156 mutex_unlock(&oom_adj_mutex);
1157 put_task_struct(task);
1158 return err;
1159 }
1160
1161 /*
1162 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1163 * kernels. The effective policy is defined by oom_score_adj, which has a
1164 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1165 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1166 * Processes that become oom disabled via oom_adj will still be oom disabled
1167 * with this implementation.
1168 *
1169 * oom_adj cannot be removed since existing userspace binaries use it.
1170 */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1171 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1172 size_t count, loff_t *ppos)
1173 {
1174 char buffer[PROC_NUMBUF];
1175 int oom_adj;
1176 int err;
1177
1178 memset(buffer, 0, sizeof(buffer));
1179 if (count > sizeof(buffer) - 1)
1180 count = sizeof(buffer) - 1;
1181 if (copy_from_user(buffer, buf, count)) {
1182 err = -EFAULT;
1183 goto out;
1184 }
1185
1186 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1187 if (err)
1188 goto out;
1189 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1190 oom_adj != OOM_DISABLE) {
1191 err = -EINVAL;
1192 goto out;
1193 }
1194
1195 /*
1196 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1197 * value is always attainable.
1198 */
1199 if (oom_adj == OOM_ADJUST_MAX)
1200 oom_adj = OOM_SCORE_ADJ_MAX;
1201 else
1202 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1203
1204 err = __set_oom_adj(file, oom_adj, true);
1205 out:
1206 return err < 0 ? err : count;
1207 }
1208
1209 static const struct file_operations proc_oom_adj_operations = {
1210 .read = oom_adj_read,
1211 .write = oom_adj_write,
1212 .llseek = generic_file_llseek,
1213 };
1214
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1215 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1216 size_t count, loff_t *ppos)
1217 {
1218 struct task_struct *task = get_proc_task(file_inode(file));
1219 char buffer[PROC_NUMBUF];
1220 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1221 size_t len;
1222
1223 if (!task)
1224 return -ESRCH;
1225 oom_score_adj = task->signal->oom_score_adj;
1226 put_task_struct(task);
1227 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1228 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1229 }
1230
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1231 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1232 size_t count, loff_t *ppos)
1233 {
1234 char buffer[PROC_NUMBUF];
1235 int oom_score_adj;
1236 int err;
1237
1238 memset(buffer, 0, sizeof(buffer));
1239 if (count > sizeof(buffer) - 1)
1240 count = sizeof(buffer) - 1;
1241 if (copy_from_user(buffer, buf, count)) {
1242 err = -EFAULT;
1243 goto out;
1244 }
1245
1246 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1247 if (err)
1248 goto out;
1249 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1250 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1251 err = -EINVAL;
1252 goto out;
1253 }
1254
1255 err = __set_oom_adj(file, oom_score_adj, false);
1256 out:
1257 return err < 0 ? err : count;
1258 }
1259
1260 static const struct file_operations proc_oom_score_adj_operations = {
1261 .read = oom_score_adj_read,
1262 .write = oom_score_adj_write,
1263 .llseek = default_llseek,
1264 };
1265
1266 #ifdef CONFIG_AUDIT
1267 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1268 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1269 size_t count, loff_t *ppos)
1270 {
1271 struct inode * inode = file_inode(file);
1272 struct task_struct *task = get_proc_task(inode);
1273 ssize_t length;
1274 char tmpbuf[TMPBUFLEN];
1275
1276 if (!task)
1277 return -ESRCH;
1278 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1279 from_kuid(file->f_cred->user_ns,
1280 audit_get_loginuid(task)));
1281 put_task_struct(task);
1282 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1283 }
1284
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1285 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1286 size_t count, loff_t *ppos)
1287 {
1288 struct inode * inode = file_inode(file);
1289 uid_t loginuid;
1290 kuid_t kloginuid;
1291 int rv;
1292
1293 /* Don't let kthreads write their own loginuid */
1294 if (current->flags & PF_KTHREAD)
1295 return -EPERM;
1296
1297 rcu_read_lock();
1298 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1299 rcu_read_unlock();
1300 return -EPERM;
1301 }
1302 rcu_read_unlock();
1303
1304 if (*ppos != 0) {
1305 /* No partial writes. */
1306 return -EINVAL;
1307 }
1308
1309 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1310 if (rv < 0)
1311 return rv;
1312
1313 /* is userspace tring to explicitly UNSET the loginuid? */
1314 if (loginuid == AUDIT_UID_UNSET) {
1315 kloginuid = INVALID_UID;
1316 } else {
1317 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1318 if (!uid_valid(kloginuid))
1319 return -EINVAL;
1320 }
1321
1322 rv = audit_set_loginuid(kloginuid);
1323 if (rv < 0)
1324 return rv;
1325 return count;
1326 }
1327
1328 static const struct file_operations proc_loginuid_operations = {
1329 .read = proc_loginuid_read,
1330 .write = proc_loginuid_write,
1331 .llseek = generic_file_llseek,
1332 };
1333
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1334 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1335 size_t count, loff_t *ppos)
1336 {
1337 struct inode * inode = file_inode(file);
1338 struct task_struct *task = get_proc_task(inode);
1339 ssize_t length;
1340 char tmpbuf[TMPBUFLEN];
1341
1342 if (!task)
1343 return -ESRCH;
1344 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1345 audit_get_sessionid(task));
1346 put_task_struct(task);
1347 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1348 }
1349
1350 static const struct file_operations proc_sessionid_operations = {
1351 .read = proc_sessionid_read,
1352 .llseek = generic_file_llseek,
1353 };
1354 #endif
1355
1356 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1357 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1358 size_t count, loff_t *ppos)
1359 {
1360 struct task_struct *task = get_proc_task(file_inode(file));
1361 char buffer[PROC_NUMBUF];
1362 size_t len;
1363 int make_it_fail;
1364
1365 if (!task)
1366 return -ESRCH;
1367 make_it_fail = task->make_it_fail;
1368 put_task_struct(task);
1369
1370 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1371
1372 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1373 }
1374
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1375 static ssize_t proc_fault_inject_write(struct file * file,
1376 const char __user * buf, size_t count, loff_t *ppos)
1377 {
1378 struct task_struct *task;
1379 char buffer[PROC_NUMBUF];
1380 int make_it_fail;
1381 int rv;
1382
1383 if (!capable(CAP_SYS_RESOURCE))
1384 return -EPERM;
1385 memset(buffer, 0, sizeof(buffer));
1386 if (count > sizeof(buffer) - 1)
1387 count = sizeof(buffer) - 1;
1388 if (copy_from_user(buffer, buf, count))
1389 return -EFAULT;
1390 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1391 if (rv < 0)
1392 return rv;
1393 if (make_it_fail < 0 || make_it_fail > 1)
1394 return -EINVAL;
1395
1396 task = get_proc_task(file_inode(file));
1397 if (!task)
1398 return -ESRCH;
1399 task->make_it_fail = make_it_fail;
1400 put_task_struct(task);
1401
1402 return count;
1403 }
1404
1405 static const struct file_operations proc_fault_inject_operations = {
1406 .read = proc_fault_inject_read,
1407 .write = proc_fault_inject_write,
1408 .llseek = generic_file_llseek,
1409 };
1410
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1411 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1412 size_t count, loff_t *ppos)
1413 {
1414 struct task_struct *task;
1415 int err;
1416 unsigned int n;
1417
1418 err = kstrtouint_from_user(buf, count, 0, &n);
1419 if (err)
1420 return err;
1421
1422 task = get_proc_task(file_inode(file));
1423 if (!task)
1424 return -ESRCH;
1425 task->fail_nth = n;
1426 put_task_struct(task);
1427
1428 return count;
1429 }
1430
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1431 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1432 size_t count, loff_t *ppos)
1433 {
1434 struct task_struct *task;
1435 char numbuf[PROC_NUMBUF];
1436 ssize_t len;
1437
1438 task = get_proc_task(file_inode(file));
1439 if (!task)
1440 return -ESRCH;
1441 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1442 put_task_struct(task);
1443 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1444 }
1445
1446 static const struct file_operations proc_fail_nth_operations = {
1447 .read = proc_fail_nth_read,
1448 .write = proc_fail_nth_write,
1449 };
1450 #endif
1451
1452
1453 #ifdef CONFIG_SCHED_DEBUG
1454 /*
1455 * Print out various scheduling related per-task fields:
1456 */
sched_show(struct seq_file * m,void * v)1457 static int sched_show(struct seq_file *m, void *v)
1458 {
1459 struct inode *inode = m->private;
1460 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1461 struct task_struct *p;
1462
1463 p = get_proc_task(inode);
1464 if (!p)
1465 return -ESRCH;
1466 proc_sched_show_task(p, ns, m);
1467
1468 put_task_struct(p);
1469
1470 return 0;
1471 }
1472
1473 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1474 sched_write(struct file *file, const char __user *buf,
1475 size_t count, loff_t *offset)
1476 {
1477 struct inode *inode = file_inode(file);
1478 struct task_struct *p;
1479
1480 p = get_proc_task(inode);
1481 if (!p)
1482 return -ESRCH;
1483 proc_sched_set_task(p);
1484
1485 put_task_struct(p);
1486
1487 return count;
1488 }
1489
sched_open(struct inode * inode,struct file * filp)1490 static int sched_open(struct inode *inode, struct file *filp)
1491 {
1492 return single_open(filp, sched_show, inode);
1493 }
1494
1495 static const struct file_operations proc_pid_sched_operations = {
1496 .open = sched_open,
1497 .read = seq_read,
1498 .write = sched_write,
1499 .llseek = seq_lseek,
1500 .release = single_release,
1501 };
1502
1503 #endif
1504
1505 #ifdef CONFIG_SCHED_RTG
1506 static const struct file_operations proc_rtg_operations = {
1507 .open = proc_rtg_open,
1508 .unlocked_ioctl = proc_rtg_ioctl,
1509 #ifdef CONFIG_COMPAT
1510 .compat_ioctl = proc_rtg_compat_ioctl,
1511 #endif
1512 };
1513 #endif
1514
1515 #ifdef CONFIG_SCHED_RTG_DEBUG
sched_group_id_show(struct seq_file * m,void * v)1516 static int sched_group_id_show(struct seq_file *m, void *v)
1517 {
1518 struct inode *inode = m->private;
1519 struct task_struct *p;
1520
1521 p = get_proc_task(inode);
1522 if (!p)
1523 return -ESRCH;
1524
1525 seq_printf(m, "%d\n", sched_get_group_id(p));
1526
1527 put_task_struct(p);
1528
1529 return 0;
1530 }
1531
1532 static ssize_t
sched_group_id_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1533 sched_group_id_write(struct file *file, const char __user *buf,
1534 size_t count, loff_t *offset)
1535 {
1536 struct inode *inode = file_inode(file);
1537 struct task_struct *p;
1538 char buffer[PROC_NUMBUF];
1539 int group_id, err;
1540
1541 memset(buffer, 0, sizeof(buffer));
1542 if (count > sizeof(buffer) - 1)
1543 count = sizeof(buffer) - 1;
1544 if (copy_from_user(buffer, buf, count)) {
1545 err = -EFAULT;
1546 goto out;
1547 }
1548
1549 err = kstrtoint(strstrip(buffer), 0, &group_id);
1550 if (err)
1551 goto out;
1552
1553 p = get_proc_task(inode);
1554 if (!p)
1555 return -ESRCH;
1556
1557 err = sched_set_group_id(p, group_id);
1558
1559 put_task_struct(p);
1560
1561 out:
1562 return err < 0 ? err : count;
1563 }
1564
sched_group_id_open(struct inode * inode,struct file * filp)1565 static int sched_group_id_open(struct inode *inode, struct file *filp)
1566 {
1567 return single_open(filp, sched_group_id_show, inode);
1568 }
1569
1570 static const struct file_operations proc_pid_sched_group_id_operations = {
1571 .open = sched_group_id_open,
1572 .read = seq_read,
1573 .write = sched_group_id_write,
1574 .llseek = seq_lseek,
1575 .release = single_release,
1576 };
1577 #endif /* CONFIG_SCHED_RTG_DEBUG */
1578
1579 #ifdef CONFIG_SCHED_AUTOGROUP
1580 /*
1581 * Print out autogroup related information:
1582 */
sched_autogroup_show(struct seq_file * m,void * v)1583 static int sched_autogroup_show(struct seq_file *m, void *v)
1584 {
1585 struct inode *inode = m->private;
1586 struct task_struct *p;
1587
1588 p = get_proc_task(inode);
1589 if (!p)
1590 return -ESRCH;
1591 proc_sched_autogroup_show_task(p, m);
1592
1593 put_task_struct(p);
1594
1595 return 0;
1596 }
1597
1598 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1599 sched_autogroup_write(struct file *file, const char __user *buf,
1600 size_t count, loff_t *offset)
1601 {
1602 struct inode *inode = file_inode(file);
1603 struct task_struct *p;
1604 char buffer[PROC_NUMBUF];
1605 int nice;
1606 int err;
1607
1608 memset(buffer, 0, sizeof(buffer));
1609 if (count > sizeof(buffer) - 1)
1610 count = sizeof(buffer) - 1;
1611 if (copy_from_user(buffer, buf, count))
1612 return -EFAULT;
1613
1614 err = kstrtoint(strstrip(buffer), 0, &nice);
1615 if (err < 0)
1616 return err;
1617
1618 p = get_proc_task(inode);
1619 if (!p)
1620 return -ESRCH;
1621
1622 err = proc_sched_autogroup_set_nice(p, nice);
1623 if (err)
1624 count = err;
1625
1626 put_task_struct(p);
1627
1628 return count;
1629 }
1630
sched_autogroup_open(struct inode * inode,struct file * filp)1631 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1632 {
1633 int ret;
1634
1635 ret = single_open(filp, sched_autogroup_show, NULL);
1636 if (!ret) {
1637 struct seq_file *m = filp->private_data;
1638
1639 m->private = inode;
1640 }
1641 return ret;
1642 }
1643
1644 static const struct file_operations proc_pid_sched_autogroup_operations = {
1645 .open = sched_autogroup_open,
1646 .read = seq_read,
1647 .write = sched_autogroup_write,
1648 .llseek = seq_lseek,
1649 .release = single_release,
1650 };
1651
1652 #endif /* CONFIG_SCHED_AUTOGROUP */
1653
1654 #ifdef CONFIG_SCHED_WALT
sched_init_task_load_show(struct seq_file * m,void * v)1655 static int sched_init_task_load_show(struct seq_file *m, void *v)
1656 {
1657 struct inode *inode = m->private;
1658 struct task_struct *p;
1659
1660 p = get_proc_task(inode);
1661 if (!p)
1662 return -ESRCH;
1663
1664 seq_printf(m, "%d\n", sched_get_init_task_load(p));
1665
1666 put_task_struct(p);
1667
1668 return 0;
1669 }
1670
1671 static ssize_t
sched_init_task_load_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1672 sched_init_task_load_write(struct file *file, const char __user *buf,
1673 size_t count, loff_t *offset)
1674 {
1675 struct inode *inode = file_inode(file);
1676 struct task_struct *p;
1677 char buffer[PROC_NUMBUF];
1678 int init_task_load, err;
1679
1680 memset(buffer, 0, sizeof(buffer));
1681 if (count > sizeof(buffer) - 1)
1682 count = sizeof(buffer) - 1;
1683 if (copy_from_user(buffer, buf, count)) {
1684 err = -EFAULT;
1685 goto out;
1686 }
1687
1688 err = kstrtoint(strstrip(buffer), 0, &init_task_load);
1689 if (err)
1690 goto out;
1691
1692 p = get_proc_task(inode);
1693 if (!p)
1694 return -ESRCH;
1695
1696 err = sched_set_init_task_load(p, init_task_load);
1697
1698 put_task_struct(p);
1699
1700 out:
1701 return err < 0 ? err : count;
1702 }
1703
sched_init_task_load_open(struct inode * inode,struct file * filp)1704 static int sched_init_task_load_open(struct inode *inode, struct file *filp)
1705 {
1706 return single_open(filp, sched_init_task_load_show, inode);
1707 }
1708
1709 static const struct file_operations proc_pid_sched_init_task_load_operations = {
1710 .open = sched_init_task_load_open,
1711 .read = seq_read,
1712 .write = sched_init_task_load_write,
1713 .llseek = seq_lseek,
1714 .release = single_release,
1715 };
1716 #endif /* CONFIG_SCHED_WALT */
1717
1718 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1719 static int timens_offsets_show(struct seq_file *m, void *v)
1720 {
1721 struct task_struct *p;
1722
1723 p = get_proc_task(file_inode(m->file));
1724 if (!p)
1725 return -ESRCH;
1726 proc_timens_show_offsets(p, m);
1727
1728 put_task_struct(p);
1729
1730 return 0;
1731 }
1732
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1733 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1734 size_t count, loff_t *ppos)
1735 {
1736 struct inode *inode = file_inode(file);
1737 struct proc_timens_offset offsets[2];
1738 char *kbuf = NULL, *pos, *next_line;
1739 struct task_struct *p;
1740 int ret, noffsets;
1741
1742 /* Only allow < page size writes at the beginning of the file */
1743 if ((*ppos != 0) || (count >= PAGE_SIZE))
1744 return -EINVAL;
1745
1746 /* Slurp in the user data */
1747 kbuf = memdup_user_nul(buf, count);
1748 if (IS_ERR(kbuf))
1749 return PTR_ERR(kbuf);
1750
1751 /* Parse the user data */
1752 ret = -EINVAL;
1753 noffsets = 0;
1754 for (pos = kbuf; pos; pos = next_line) {
1755 struct proc_timens_offset *off = &offsets[noffsets];
1756 char clock[10];
1757 int err;
1758
1759 /* Find the end of line and ensure we don't look past it */
1760 next_line = strchr(pos, '\n');
1761 if (next_line) {
1762 *next_line = '\0';
1763 next_line++;
1764 if (*next_line == '\0')
1765 next_line = NULL;
1766 }
1767
1768 err = sscanf(pos, "%9s %lld %lu", clock,
1769 &off->val.tv_sec, &off->val.tv_nsec);
1770 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1771 goto out;
1772
1773 clock[sizeof(clock) - 1] = 0;
1774 if (strcmp(clock, "monotonic") == 0 ||
1775 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1776 off->clockid = CLOCK_MONOTONIC;
1777 else if (strcmp(clock, "boottime") == 0 ||
1778 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1779 off->clockid = CLOCK_BOOTTIME;
1780 else
1781 goto out;
1782
1783 noffsets++;
1784 if (noffsets == ARRAY_SIZE(offsets)) {
1785 if (next_line)
1786 count = next_line - kbuf;
1787 break;
1788 }
1789 }
1790
1791 ret = -ESRCH;
1792 p = get_proc_task(inode);
1793 if (!p)
1794 goto out;
1795 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1796 put_task_struct(p);
1797 if (ret)
1798 goto out;
1799
1800 ret = count;
1801 out:
1802 kfree(kbuf);
1803 return ret;
1804 }
1805
timens_offsets_open(struct inode * inode,struct file * filp)1806 static int timens_offsets_open(struct inode *inode, struct file *filp)
1807 {
1808 return single_open(filp, timens_offsets_show, inode);
1809 }
1810
1811 static const struct file_operations proc_timens_offsets_operations = {
1812 .open = timens_offsets_open,
1813 .read = seq_read,
1814 .write = timens_offsets_write,
1815 .llseek = seq_lseek,
1816 .release = single_release,
1817 };
1818 #endif /* CONFIG_TIME_NS */
1819
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1820 static ssize_t comm_write(struct file *file, const char __user *buf,
1821 size_t count, loff_t *offset)
1822 {
1823 struct inode *inode = file_inode(file);
1824 struct task_struct *p;
1825 char buffer[TASK_COMM_LEN];
1826 const size_t maxlen = sizeof(buffer) - 1;
1827
1828 memset(buffer, 0, sizeof(buffer));
1829 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1830 return -EFAULT;
1831
1832 p = get_proc_task(inode);
1833 if (!p)
1834 return -ESRCH;
1835
1836 if (same_thread_group(current, p))
1837 set_task_comm(p, buffer);
1838 else
1839 count = -EINVAL;
1840
1841 put_task_struct(p);
1842
1843 return count;
1844 }
1845
comm_show(struct seq_file * m,void * v)1846 static int comm_show(struct seq_file *m, void *v)
1847 {
1848 struct inode *inode = m->private;
1849 struct task_struct *p;
1850
1851 p = get_proc_task(inode);
1852 if (!p)
1853 return -ESRCH;
1854
1855 proc_task_name(m, p, false);
1856 seq_putc(m, '\n');
1857
1858 put_task_struct(p);
1859
1860 return 0;
1861 }
1862
comm_open(struct inode * inode,struct file * filp)1863 static int comm_open(struct inode *inode, struct file *filp)
1864 {
1865 return single_open(filp, comm_show, inode);
1866 }
1867
1868 static const struct file_operations proc_pid_set_comm_operations = {
1869 .open = comm_open,
1870 .read = seq_read,
1871 .write = comm_write,
1872 .llseek = seq_lseek,
1873 .release = single_release,
1874 };
1875
proc_exe_link(struct dentry * dentry,struct path * exe_path)1876 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1877 {
1878 struct task_struct *task;
1879 struct file *exe_file;
1880
1881 task = get_proc_task(d_inode(dentry));
1882 if (!task)
1883 return -ENOENT;
1884 exe_file = get_task_exe_file(task);
1885 put_task_struct(task);
1886 if (exe_file) {
1887 *exe_path = exe_file->f_path;
1888 path_get(&exe_file->f_path);
1889 fput(exe_file);
1890 return 0;
1891 } else
1892 return -ENOENT;
1893 }
1894
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1895 static const char *proc_pid_get_link(struct dentry *dentry,
1896 struct inode *inode,
1897 struct delayed_call *done)
1898 {
1899 struct path path;
1900 int error = -EACCES;
1901
1902 if (!dentry)
1903 return ERR_PTR(-ECHILD);
1904
1905 /* Are we allowed to snoop on the tasks file descriptors? */
1906 if (!proc_fd_access_allowed(inode))
1907 goto out;
1908
1909 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1910 if (error)
1911 goto out;
1912
1913 error = nd_jump_link(&path);
1914 out:
1915 return ERR_PTR(error);
1916 }
1917
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1918 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1919 {
1920 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1921 char *pathname;
1922 int len;
1923
1924 if (!tmp)
1925 return -ENOMEM;
1926
1927 pathname = d_path(path, tmp, PAGE_SIZE);
1928 len = PTR_ERR(pathname);
1929 if (IS_ERR(pathname))
1930 goto out;
1931 len = tmp + PAGE_SIZE - 1 - pathname;
1932
1933 if (len > buflen)
1934 len = buflen;
1935 if (copy_to_user(buffer, pathname, len))
1936 len = -EFAULT;
1937 out:
1938 free_page((unsigned long)tmp);
1939 return len;
1940 }
1941
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1942 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1943 {
1944 int error = -EACCES;
1945 struct inode *inode = d_inode(dentry);
1946 struct path path;
1947
1948 /* Are we allowed to snoop on the tasks file descriptors? */
1949 if (!proc_fd_access_allowed(inode))
1950 goto out;
1951
1952 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1953 if (error)
1954 goto out;
1955
1956 error = do_proc_readlink(&path, buffer, buflen);
1957 path_put(&path);
1958 out:
1959 return error;
1960 }
1961
1962 const struct inode_operations proc_pid_link_inode_operations = {
1963 .readlink = proc_pid_readlink,
1964 .get_link = proc_pid_get_link,
1965 .setattr = proc_setattr,
1966 };
1967
1968
1969 /* building an inode */
1970
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1971 void task_dump_owner(struct task_struct *task, umode_t mode,
1972 kuid_t *ruid, kgid_t *rgid)
1973 {
1974 /* Depending on the state of dumpable compute who should own a
1975 * proc file for a task.
1976 */
1977 const struct cred *cred;
1978 kuid_t uid;
1979 kgid_t gid;
1980
1981 if (unlikely(task->flags & PF_KTHREAD)) {
1982 *ruid = GLOBAL_ROOT_UID;
1983 *rgid = GLOBAL_ROOT_GID;
1984 return;
1985 }
1986
1987 /* Default to the tasks effective ownership */
1988 rcu_read_lock();
1989 cred = __task_cred(task);
1990 uid = cred->euid;
1991 gid = cred->egid;
1992 rcu_read_unlock();
1993
1994 /*
1995 * Before the /proc/pid/status file was created the only way to read
1996 * the effective uid of a /process was to stat /proc/pid. Reading
1997 * /proc/pid/status is slow enough that procps and other packages
1998 * kept stating /proc/pid. To keep the rules in /proc simple I have
1999 * made this apply to all per process world readable and executable
2000 * directories.
2001 */
2002 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
2003 struct mm_struct *mm;
2004 task_lock(task);
2005 mm = task->mm;
2006 /* Make non-dumpable tasks owned by some root */
2007 if (mm) {
2008 if (get_dumpable(mm) != SUID_DUMP_USER) {
2009 struct user_namespace *user_ns = mm->user_ns;
2010
2011 uid = make_kuid(user_ns, 0);
2012 if (!uid_valid(uid))
2013 uid = GLOBAL_ROOT_UID;
2014
2015 gid = make_kgid(user_ns, 0);
2016 if (!gid_valid(gid))
2017 gid = GLOBAL_ROOT_GID;
2018 }
2019 } else {
2020 uid = GLOBAL_ROOT_UID;
2021 gid = GLOBAL_ROOT_GID;
2022 }
2023 task_unlock(task);
2024 }
2025 *ruid = uid;
2026 *rgid = gid;
2027 }
2028
proc_pid_evict_inode(struct proc_inode * ei)2029 void proc_pid_evict_inode(struct proc_inode *ei)
2030 {
2031 struct pid *pid = ei->pid;
2032
2033 if (S_ISDIR(ei->vfs_inode.i_mode)) {
2034 spin_lock(&pid->lock);
2035 hlist_del_init_rcu(&ei->sibling_inodes);
2036 spin_unlock(&pid->lock);
2037 }
2038
2039 put_pid(pid);
2040 }
2041
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)2042 struct inode *proc_pid_make_inode(struct super_block * sb,
2043 struct task_struct *task, umode_t mode)
2044 {
2045 struct inode * inode;
2046 struct proc_inode *ei;
2047 struct pid *pid;
2048
2049 /* We need a new inode */
2050
2051 inode = new_inode(sb);
2052 if (!inode)
2053 goto out;
2054
2055 /* Common stuff */
2056 ei = PROC_I(inode);
2057 inode->i_mode = mode;
2058 inode->i_ino = get_next_ino();
2059 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2060 inode->i_op = &proc_def_inode_operations;
2061
2062 /*
2063 * grab the reference to task.
2064 */
2065 pid = get_task_pid(task, PIDTYPE_PID);
2066 if (!pid)
2067 goto out_unlock;
2068
2069 /* Let the pid remember us for quick removal */
2070 ei->pid = pid;
2071 if (S_ISDIR(mode)) {
2072 spin_lock(&pid->lock);
2073 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2074 spin_unlock(&pid->lock);
2075 }
2076
2077 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2078 security_task_to_inode(task, inode);
2079
2080 out:
2081 return inode;
2082
2083 out_unlock:
2084 iput(inode);
2085 return NULL;
2086 }
2087
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2088 int pid_getattr(const struct path *path, struct kstat *stat,
2089 u32 request_mask, unsigned int query_flags)
2090 {
2091 struct inode *inode = d_inode(path->dentry);
2092 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2093 struct task_struct *task;
2094
2095 generic_fillattr(inode, stat);
2096
2097 stat->uid = GLOBAL_ROOT_UID;
2098 stat->gid = GLOBAL_ROOT_GID;
2099 rcu_read_lock();
2100 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2101 if (task) {
2102 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2103 rcu_read_unlock();
2104 /*
2105 * This doesn't prevent learning whether PID exists,
2106 * it only makes getattr() consistent with readdir().
2107 */
2108 return -ENOENT;
2109 }
2110 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2111 }
2112 rcu_read_unlock();
2113 return 0;
2114 }
2115
2116 /* dentry stuff */
2117
2118 /*
2119 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2120 */
pid_update_inode(struct task_struct * task,struct inode * inode)2121 void pid_update_inode(struct task_struct *task, struct inode *inode)
2122 {
2123 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2124
2125 inode->i_mode &= ~(S_ISUID | S_ISGID);
2126 security_task_to_inode(task, inode);
2127 }
2128
2129 /*
2130 * Rewrite the inode's ownerships here because the owning task may have
2131 * performed a setuid(), etc.
2132 *
2133 */
pid_revalidate(struct dentry * dentry,unsigned int flags)2134 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2135 {
2136 struct inode *inode;
2137 struct task_struct *task;
2138
2139 if (flags & LOOKUP_RCU)
2140 return -ECHILD;
2141
2142 inode = d_inode(dentry);
2143 task = get_proc_task(inode);
2144
2145 if (task) {
2146 pid_update_inode(task, inode);
2147 put_task_struct(task);
2148 return 1;
2149 }
2150 return 0;
2151 }
2152
proc_inode_is_dead(struct inode * inode)2153 static inline bool proc_inode_is_dead(struct inode *inode)
2154 {
2155 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2156 }
2157
pid_delete_dentry(const struct dentry * dentry)2158 int pid_delete_dentry(const struct dentry *dentry)
2159 {
2160 /* Is the task we represent dead?
2161 * If so, then don't put the dentry on the lru list,
2162 * kill it immediately.
2163 */
2164 return proc_inode_is_dead(d_inode(dentry));
2165 }
2166
2167 const struct dentry_operations pid_dentry_operations =
2168 {
2169 .d_revalidate = pid_revalidate,
2170 .d_delete = pid_delete_dentry,
2171 };
2172
2173 /* Lookups */
2174
2175 /*
2176 * Fill a directory entry.
2177 *
2178 * If possible create the dcache entry and derive our inode number and
2179 * file type from dcache entry.
2180 *
2181 * Since all of the proc inode numbers are dynamically generated, the inode
2182 * numbers do not exist until the inode is cache. This means creating the
2183 * the dcache entry in readdir is necessary to keep the inode numbers
2184 * reported by readdir in sync with the inode numbers reported
2185 * by stat.
2186 */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2187 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2188 const char *name, unsigned int len,
2189 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2190 {
2191 struct dentry *child, *dir = file->f_path.dentry;
2192 struct qstr qname = QSTR_INIT(name, len);
2193 struct inode *inode;
2194 unsigned type = DT_UNKNOWN;
2195 ino_t ino = 1;
2196
2197 child = d_hash_and_lookup(dir, &qname);
2198 if (!child) {
2199 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2200 child = d_alloc_parallel(dir, &qname, &wq);
2201 if (IS_ERR(child))
2202 goto end_instantiate;
2203 if (d_in_lookup(child)) {
2204 struct dentry *res;
2205 res = instantiate(child, task, ptr);
2206 d_lookup_done(child);
2207 if (unlikely(res)) {
2208 dput(child);
2209 child = res;
2210 if (IS_ERR(child))
2211 goto end_instantiate;
2212 }
2213 }
2214 }
2215 inode = d_inode(child);
2216 ino = inode->i_ino;
2217 type = inode->i_mode >> 12;
2218 dput(child);
2219 end_instantiate:
2220 return dir_emit(ctx, name, len, ino, type);
2221 }
2222
2223 /*
2224 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2225 * which represent vma start and end addresses.
2226 */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2227 static int dname_to_vma_addr(struct dentry *dentry,
2228 unsigned long *start, unsigned long *end)
2229 {
2230 const char *str = dentry->d_name.name;
2231 unsigned long long sval, eval;
2232 unsigned int len;
2233
2234 if (str[0] == '0' && str[1] != '-')
2235 return -EINVAL;
2236 len = _parse_integer(str, 16, &sval);
2237 if (len & KSTRTOX_OVERFLOW)
2238 return -EINVAL;
2239 if (sval != (unsigned long)sval)
2240 return -EINVAL;
2241 str += len;
2242
2243 if (*str != '-')
2244 return -EINVAL;
2245 str++;
2246
2247 if (str[0] == '0' && str[1])
2248 return -EINVAL;
2249 len = _parse_integer(str, 16, &eval);
2250 if (len & KSTRTOX_OVERFLOW)
2251 return -EINVAL;
2252 if (eval != (unsigned long)eval)
2253 return -EINVAL;
2254 str += len;
2255
2256 if (*str != '\0')
2257 return -EINVAL;
2258
2259 *start = sval;
2260 *end = eval;
2261
2262 return 0;
2263 }
2264
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2265 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2266 {
2267 unsigned long vm_start, vm_end;
2268 bool exact_vma_exists = false;
2269 struct mm_struct *mm = NULL;
2270 struct task_struct *task;
2271 struct inode *inode;
2272 int status = 0;
2273
2274 if (flags & LOOKUP_RCU)
2275 return -ECHILD;
2276
2277 inode = d_inode(dentry);
2278 task = get_proc_task(inode);
2279 if (!task)
2280 goto out_notask;
2281
2282 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2283 if (IS_ERR_OR_NULL(mm))
2284 goto out;
2285
2286 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2287 status = mmap_read_lock_killable(mm);
2288 if (!status) {
2289 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2290 vm_end);
2291 mmap_read_unlock(mm);
2292 }
2293 }
2294
2295 mmput(mm);
2296
2297 if (exact_vma_exists) {
2298 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2299
2300 security_task_to_inode(task, inode);
2301 status = 1;
2302 }
2303
2304 out:
2305 put_task_struct(task);
2306
2307 out_notask:
2308 return status;
2309 }
2310
2311 static const struct dentry_operations tid_map_files_dentry_operations = {
2312 .d_revalidate = map_files_d_revalidate,
2313 .d_delete = pid_delete_dentry,
2314 };
2315
map_files_get_link(struct dentry * dentry,struct path * path)2316 static int map_files_get_link(struct dentry *dentry, struct path *path)
2317 {
2318 unsigned long vm_start, vm_end;
2319 struct vm_area_struct *vma;
2320 struct task_struct *task;
2321 struct mm_struct *mm;
2322 int rc;
2323
2324 rc = -ENOENT;
2325 task = get_proc_task(d_inode(dentry));
2326 if (!task)
2327 goto out;
2328
2329 mm = get_task_mm(task);
2330 put_task_struct(task);
2331 if (!mm)
2332 goto out;
2333
2334 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2335 if (rc)
2336 goto out_mmput;
2337
2338 rc = mmap_read_lock_killable(mm);
2339 if (rc)
2340 goto out_mmput;
2341
2342 rc = -ENOENT;
2343 vma = find_exact_vma(mm, vm_start, vm_end);
2344 if (vma && vma->vm_file) {
2345 *path = vma->vm_file->f_path;
2346 path_get(path);
2347 rc = 0;
2348 }
2349 mmap_read_unlock(mm);
2350
2351 out_mmput:
2352 mmput(mm);
2353 out:
2354 return rc;
2355 }
2356
2357 struct map_files_info {
2358 unsigned long start;
2359 unsigned long end;
2360 fmode_t mode;
2361 };
2362
2363 /*
2364 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2365 * to concerns about how the symlinks may be used to bypass permissions on
2366 * ancestor directories in the path to the file in question.
2367 */
2368 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2369 proc_map_files_get_link(struct dentry *dentry,
2370 struct inode *inode,
2371 struct delayed_call *done)
2372 {
2373 if (!checkpoint_restore_ns_capable(&init_user_ns))
2374 return ERR_PTR(-EPERM);
2375
2376 return proc_pid_get_link(dentry, inode, done);
2377 }
2378
2379 /*
2380 * Identical to proc_pid_link_inode_operations except for get_link()
2381 */
2382 static const struct inode_operations proc_map_files_link_inode_operations = {
2383 .readlink = proc_pid_readlink,
2384 .get_link = proc_map_files_get_link,
2385 .setattr = proc_setattr,
2386 };
2387
2388 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2389 proc_map_files_instantiate(struct dentry *dentry,
2390 struct task_struct *task, const void *ptr)
2391 {
2392 fmode_t mode = (fmode_t)(unsigned long)ptr;
2393 struct proc_inode *ei;
2394 struct inode *inode;
2395
2396 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2397 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2398 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2399 if (!inode)
2400 return ERR_PTR(-ENOENT);
2401
2402 ei = PROC_I(inode);
2403 ei->op.proc_get_link = map_files_get_link;
2404
2405 inode->i_op = &proc_map_files_link_inode_operations;
2406 inode->i_size = 64;
2407
2408 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2409 return d_splice_alias(inode, dentry);
2410 }
2411
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2412 static struct dentry *proc_map_files_lookup(struct inode *dir,
2413 struct dentry *dentry, unsigned int flags)
2414 {
2415 unsigned long vm_start, vm_end;
2416 struct vm_area_struct *vma;
2417 struct task_struct *task;
2418 struct dentry *result;
2419 struct mm_struct *mm;
2420
2421 result = ERR_PTR(-ENOENT);
2422 task = get_proc_task(dir);
2423 if (!task)
2424 goto out;
2425
2426 result = ERR_PTR(-EACCES);
2427 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2428 goto out_put_task;
2429
2430 result = ERR_PTR(-ENOENT);
2431 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2432 goto out_put_task;
2433
2434 mm = get_task_mm(task);
2435 if (!mm)
2436 goto out_put_task;
2437
2438 result = ERR_PTR(-EINTR);
2439 if (mmap_read_lock_killable(mm))
2440 goto out_put_mm;
2441
2442 result = ERR_PTR(-ENOENT);
2443 vma = find_exact_vma(mm, vm_start, vm_end);
2444 if (!vma)
2445 goto out_no_vma;
2446
2447 if (vma->vm_file)
2448 result = proc_map_files_instantiate(dentry, task,
2449 (void *)(unsigned long)vma->vm_file->f_mode);
2450
2451 out_no_vma:
2452 mmap_read_unlock(mm);
2453 out_put_mm:
2454 mmput(mm);
2455 out_put_task:
2456 put_task_struct(task);
2457 out:
2458 return result;
2459 }
2460
2461 static const struct inode_operations proc_map_files_inode_operations = {
2462 .lookup = proc_map_files_lookup,
2463 .permission = proc_fd_permission,
2464 .setattr = proc_setattr,
2465 };
2466
2467 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2468 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2469 {
2470 struct vm_area_struct *vma;
2471 struct task_struct *task;
2472 struct mm_struct *mm;
2473 unsigned long nr_files, pos, i;
2474 GENRADIX(struct map_files_info) fa;
2475 struct map_files_info *p;
2476 int ret;
2477
2478 genradix_init(&fa);
2479
2480 ret = -ENOENT;
2481 task = get_proc_task(file_inode(file));
2482 if (!task)
2483 goto out;
2484
2485 ret = -EACCES;
2486 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2487 goto out_put_task;
2488
2489 ret = 0;
2490 if (!dir_emit_dots(file, ctx))
2491 goto out_put_task;
2492
2493 mm = get_task_mm(task);
2494 if (!mm)
2495 goto out_put_task;
2496
2497 ret = mmap_read_lock_killable(mm);
2498 if (ret) {
2499 mmput(mm);
2500 goto out_put_task;
2501 }
2502
2503 nr_files = 0;
2504
2505 /*
2506 * We need two passes here:
2507 *
2508 * 1) Collect vmas of mapped files with mmap_lock taken
2509 * 2) Release mmap_lock and instantiate entries
2510 *
2511 * otherwise we get lockdep complained, since filldir()
2512 * routine might require mmap_lock taken in might_fault().
2513 */
2514
2515 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2516 if (!vma->vm_file)
2517 continue;
2518 if (++pos <= ctx->pos)
2519 continue;
2520
2521 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2522 if (!p) {
2523 ret = -ENOMEM;
2524 mmap_read_unlock(mm);
2525 mmput(mm);
2526 goto out_put_task;
2527 }
2528
2529 p->start = vma->vm_start;
2530 p->end = vma->vm_end;
2531 p->mode = vma->vm_file->f_mode;
2532 }
2533 mmap_read_unlock(mm);
2534 mmput(mm);
2535
2536 for (i = 0; i < nr_files; i++) {
2537 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2538 unsigned int len;
2539
2540 p = genradix_ptr(&fa, i);
2541 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2542 if (!proc_fill_cache(file, ctx,
2543 buf, len,
2544 proc_map_files_instantiate,
2545 task,
2546 (void *)(unsigned long)p->mode))
2547 break;
2548 ctx->pos++;
2549 }
2550
2551 out_put_task:
2552 put_task_struct(task);
2553 out:
2554 genradix_free(&fa);
2555 return ret;
2556 }
2557
2558 static const struct file_operations proc_map_files_operations = {
2559 .read = generic_read_dir,
2560 .iterate_shared = proc_map_files_readdir,
2561 .llseek = generic_file_llseek,
2562 };
2563
2564 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2565 struct timers_private {
2566 struct pid *pid;
2567 struct task_struct *task;
2568 struct sighand_struct *sighand;
2569 struct pid_namespace *ns;
2570 unsigned long flags;
2571 };
2572
timers_start(struct seq_file * m,loff_t * pos)2573 static void *timers_start(struct seq_file *m, loff_t *pos)
2574 {
2575 struct timers_private *tp = m->private;
2576
2577 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2578 if (!tp->task)
2579 return ERR_PTR(-ESRCH);
2580
2581 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2582 if (!tp->sighand)
2583 return ERR_PTR(-ESRCH);
2584
2585 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2586 }
2587
timers_next(struct seq_file * m,void * v,loff_t * pos)2588 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2589 {
2590 struct timers_private *tp = m->private;
2591 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2592 }
2593
timers_stop(struct seq_file * m,void * v)2594 static void timers_stop(struct seq_file *m, void *v)
2595 {
2596 struct timers_private *tp = m->private;
2597
2598 if (tp->sighand) {
2599 unlock_task_sighand(tp->task, &tp->flags);
2600 tp->sighand = NULL;
2601 }
2602
2603 if (tp->task) {
2604 put_task_struct(tp->task);
2605 tp->task = NULL;
2606 }
2607 }
2608
show_timer(struct seq_file * m,void * v)2609 static int show_timer(struct seq_file *m, void *v)
2610 {
2611 struct k_itimer *timer;
2612 struct timers_private *tp = m->private;
2613 int notify;
2614 static const char * const nstr[] = {
2615 [SIGEV_SIGNAL] = "signal",
2616 [SIGEV_NONE] = "none",
2617 [SIGEV_THREAD] = "thread",
2618 };
2619
2620 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2621 notify = timer->it_sigev_notify;
2622
2623 seq_printf(m, "ID: %d\n", timer->it_id);
2624 seq_printf(m, "signal: %d/%px\n",
2625 timer->sigq->info.si_signo,
2626 timer->sigq->info.si_value.sival_ptr);
2627 seq_printf(m, "notify: %s/%s.%d\n",
2628 nstr[notify & ~SIGEV_THREAD_ID],
2629 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2630 pid_nr_ns(timer->it_pid, tp->ns));
2631 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2632
2633 return 0;
2634 }
2635
2636 static const struct seq_operations proc_timers_seq_ops = {
2637 .start = timers_start,
2638 .next = timers_next,
2639 .stop = timers_stop,
2640 .show = show_timer,
2641 };
2642
proc_timers_open(struct inode * inode,struct file * file)2643 static int proc_timers_open(struct inode *inode, struct file *file)
2644 {
2645 struct timers_private *tp;
2646
2647 tp = __seq_open_private(file, &proc_timers_seq_ops,
2648 sizeof(struct timers_private));
2649 if (!tp)
2650 return -ENOMEM;
2651
2652 tp->pid = proc_pid(inode);
2653 tp->ns = proc_pid_ns(inode->i_sb);
2654 return 0;
2655 }
2656
2657 static const struct file_operations proc_timers_operations = {
2658 .open = proc_timers_open,
2659 .read = seq_read,
2660 .llseek = seq_lseek,
2661 .release = seq_release_private,
2662 };
2663 #endif
2664
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2665 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2666 size_t count, loff_t *offset)
2667 {
2668 struct inode *inode = file_inode(file);
2669 struct task_struct *p;
2670 u64 slack_ns;
2671 int err;
2672
2673 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2674 if (err < 0)
2675 return err;
2676
2677 p = get_proc_task(inode);
2678 if (!p)
2679 return -ESRCH;
2680
2681 if (p != current) {
2682 rcu_read_lock();
2683 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2684 rcu_read_unlock();
2685 count = -EPERM;
2686 goto out;
2687 }
2688 rcu_read_unlock();
2689
2690 err = security_task_setscheduler(p);
2691 if (err) {
2692 count = err;
2693 goto out;
2694 }
2695 }
2696
2697 task_lock(p);
2698 if (slack_ns == 0)
2699 p->timer_slack_ns = p->default_timer_slack_ns;
2700 else
2701 p->timer_slack_ns = slack_ns;
2702 task_unlock(p);
2703
2704 out:
2705 put_task_struct(p);
2706
2707 return count;
2708 }
2709
timerslack_ns_show(struct seq_file * m,void * v)2710 static int timerslack_ns_show(struct seq_file *m, void *v)
2711 {
2712 struct inode *inode = m->private;
2713 struct task_struct *p;
2714 int err = 0;
2715
2716 p = get_proc_task(inode);
2717 if (!p)
2718 return -ESRCH;
2719
2720 if (p != current) {
2721 rcu_read_lock();
2722 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2723 rcu_read_unlock();
2724 err = -EPERM;
2725 goto out;
2726 }
2727 rcu_read_unlock();
2728
2729 err = security_task_getscheduler(p);
2730 if (err)
2731 goto out;
2732 }
2733
2734 task_lock(p);
2735 seq_printf(m, "%llu\n", p->timer_slack_ns);
2736 task_unlock(p);
2737
2738 out:
2739 put_task_struct(p);
2740
2741 return err;
2742 }
2743
timerslack_ns_open(struct inode * inode,struct file * filp)2744 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2745 {
2746 return single_open(filp, timerslack_ns_show, inode);
2747 }
2748
2749 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2750 .open = timerslack_ns_open,
2751 .read = seq_read,
2752 .write = timerslack_ns_write,
2753 .llseek = seq_lseek,
2754 .release = single_release,
2755 };
2756
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2757 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2758 struct task_struct *task, const void *ptr)
2759 {
2760 const struct pid_entry *p = ptr;
2761 struct inode *inode;
2762 struct proc_inode *ei;
2763
2764 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2765 if (!inode)
2766 return ERR_PTR(-ENOENT);
2767
2768 ei = PROC_I(inode);
2769 if (S_ISDIR(inode->i_mode))
2770 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2771 if (p->iop)
2772 inode->i_op = p->iop;
2773 if (p->fop)
2774 inode->i_fop = p->fop;
2775 ei->op = p->op;
2776 pid_update_inode(task, inode);
2777 d_set_d_op(dentry, &pid_dentry_operations);
2778 return d_splice_alias(inode, dentry);
2779 }
2780
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2781 static struct dentry *proc_pident_lookup(struct inode *dir,
2782 struct dentry *dentry,
2783 const struct pid_entry *p,
2784 const struct pid_entry *end)
2785 {
2786 struct task_struct *task = get_proc_task(dir);
2787 struct dentry *res = ERR_PTR(-ENOENT);
2788
2789 if (!task)
2790 goto out_no_task;
2791
2792 /*
2793 * Yes, it does not scale. And it should not. Don't add
2794 * new entries into /proc/<tgid>/ without very good reasons.
2795 */
2796 for (; p < end; p++) {
2797 if (p->len != dentry->d_name.len)
2798 continue;
2799 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2800 res = proc_pident_instantiate(dentry, task, p);
2801 break;
2802 }
2803 }
2804 put_task_struct(task);
2805 out_no_task:
2806 return res;
2807 }
2808
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2809 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2810 const struct pid_entry *ents, unsigned int nents)
2811 {
2812 struct task_struct *task = get_proc_task(file_inode(file));
2813 const struct pid_entry *p;
2814
2815 if (!task)
2816 return -ENOENT;
2817
2818 if (!dir_emit_dots(file, ctx))
2819 goto out;
2820
2821 if (ctx->pos >= nents + 2)
2822 goto out;
2823
2824 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2825 if (!proc_fill_cache(file, ctx, p->name, p->len,
2826 proc_pident_instantiate, task, p))
2827 break;
2828 ctx->pos++;
2829 }
2830 out:
2831 put_task_struct(task);
2832 return 0;
2833 }
2834
2835 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2836 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2837 {
2838 file->private_data = NULL;
2839 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2840 return 0;
2841 }
2842
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2843 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2844 size_t count, loff_t *ppos)
2845 {
2846 struct inode * inode = file_inode(file);
2847 char *p = NULL;
2848 ssize_t length;
2849 struct task_struct *task = get_proc_task(inode);
2850
2851 if (!task)
2852 return -ESRCH;
2853
2854 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2855 (char*)file->f_path.dentry->d_name.name,
2856 &p);
2857 put_task_struct(task);
2858 if (length > 0)
2859 length = simple_read_from_buffer(buf, count, ppos, p, length);
2860 kfree(p);
2861 return length;
2862 }
2863
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2864 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2865 size_t count, loff_t *ppos)
2866 {
2867 struct inode * inode = file_inode(file);
2868 struct task_struct *task;
2869 void *page;
2870 int rv;
2871
2872 /* A task may only write when it was the opener. */
2873 if (file->private_data != current->mm)
2874 return -EPERM;
2875
2876 rcu_read_lock();
2877 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2878 if (!task) {
2879 rcu_read_unlock();
2880 return -ESRCH;
2881 }
2882 /* A task may only write its own attributes. */
2883 if (current != task) {
2884 rcu_read_unlock();
2885 return -EACCES;
2886 }
2887 /* Prevent changes to overridden credentials. */
2888 if (current_cred() != current_real_cred()) {
2889 rcu_read_unlock();
2890 return -EBUSY;
2891 }
2892 rcu_read_unlock();
2893
2894 if (count > PAGE_SIZE)
2895 count = PAGE_SIZE;
2896
2897 /* No partial writes. */
2898 if (*ppos != 0)
2899 return -EINVAL;
2900
2901 page = memdup_user(buf, count);
2902 if (IS_ERR(page)) {
2903 rv = PTR_ERR(page);
2904 goto out;
2905 }
2906
2907 /* Guard against adverse ptrace interaction */
2908 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2909 if (rv < 0)
2910 goto out_free;
2911
2912 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2913 file->f_path.dentry->d_name.name, page,
2914 count);
2915 mutex_unlock(¤t->signal->cred_guard_mutex);
2916 out_free:
2917 kfree(page);
2918 out:
2919 return rv;
2920 }
2921
2922 static const struct file_operations proc_pid_attr_operations = {
2923 .open = proc_pid_attr_open,
2924 .read = proc_pid_attr_read,
2925 .write = proc_pid_attr_write,
2926 .llseek = generic_file_llseek,
2927 .release = mem_release,
2928 };
2929
2930 #define LSM_DIR_OPS(LSM) \
2931 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2932 struct dir_context *ctx) \
2933 { \
2934 return proc_pident_readdir(filp, ctx, \
2935 LSM##_attr_dir_stuff, \
2936 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2937 } \
2938 \
2939 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2940 .read = generic_read_dir, \
2941 .iterate = proc_##LSM##_attr_dir_iterate, \
2942 .llseek = default_llseek, \
2943 }; \
2944 \
2945 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2946 struct dentry *dentry, unsigned int flags) \
2947 { \
2948 return proc_pident_lookup(dir, dentry, \
2949 LSM##_attr_dir_stuff, \
2950 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2951 } \
2952 \
2953 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2954 .lookup = proc_##LSM##_attr_dir_lookup, \
2955 .getattr = pid_getattr, \
2956 .setattr = proc_setattr, \
2957 }
2958
2959 #ifdef CONFIG_SECURITY_SMACK
2960 static const struct pid_entry smack_attr_dir_stuff[] = {
2961 ATTR("smack", "current", 0666),
2962 };
2963 LSM_DIR_OPS(smack);
2964 #endif
2965
2966 #ifdef CONFIG_SECURITY_APPARMOR
2967 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2968 ATTR("apparmor", "current", 0666),
2969 ATTR("apparmor", "prev", 0444),
2970 ATTR("apparmor", "exec", 0666),
2971 };
2972 LSM_DIR_OPS(apparmor);
2973 #endif
2974
2975 static const struct pid_entry attr_dir_stuff[] = {
2976 ATTR(NULL, "current", 0666),
2977 ATTR(NULL, "prev", 0444),
2978 ATTR(NULL, "exec", 0666),
2979 ATTR(NULL, "fscreate", 0666),
2980 ATTR(NULL, "keycreate", 0666),
2981 ATTR(NULL, "sockcreate", 0666),
2982 #ifdef CONFIG_SECURITY_SMACK
2983 DIR("smack", 0555,
2984 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2985 #endif
2986 #ifdef CONFIG_SECURITY_APPARMOR
2987 DIR("apparmor", 0555,
2988 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2989 #endif
2990 };
2991
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2992 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2993 {
2994 return proc_pident_readdir(file, ctx,
2995 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2996 }
2997
2998 static const struct file_operations proc_attr_dir_operations = {
2999 .read = generic_read_dir,
3000 .iterate_shared = proc_attr_dir_readdir,
3001 .llseek = generic_file_llseek,
3002 };
3003
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3004 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
3005 struct dentry *dentry, unsigned int flags)
3006 {
3007 return proc_pident_lookup(dir, dentry,
3008 attr_dir_stuff,
3009 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
3010 }
3011
3012 static const struct inode_operations proc_attr_dir_inode_operations = {
3013 .lookup = proc_attr_dir_lookup,
3014 .getattr = pid_getattr,
3015 .setattr = proc_setattr,
3016 };
3017
3018 #endif
3019
3020 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3021 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
3022 size_t count, loff_t *ppos)
3023 {
3024 struct task_struct *task = get_proc_task(file_inode(file));
3025 struct mm_struct *mm;
3026 char buffer[PROC_NUMBUF];
3027 size_t len;
3028 int ret;
3029
3030 if (!task)
3031 return -ESRCH;
3032
3033 ret = 0;
3034 mm = get_task_mm(task);
3035 if (mm) {
3036 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
3037 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
3038 MMF_DUMP_FILTER_SHIFT));
3039 mmput(mm);
3040 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
3041 }
3042
3043 put_task_struct(task);
3044
3045 return ret;
3046 }
3047
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)3048 static ssize_t proc_coredump_filter_write(struct file *file,
3049 const char __user *buf,
3050 size_t count,
3051 loff_t *ppos)
3052 {
3053 struct task_struct *task;
3054 struct mm_struct *mm;
3055 unsigned int val;
3056 int ret;
3057 int i;
3058 unsigned long mask;
3059
3060 ret = kstrtouint_from_user(buf, count, 0, &val);
3061 if (ret < 0)
3062 return ret;
3063
3064 ret = -ESRCH;
3065 task = get_proc_task(file_inode(file));
3066 if (!task)
3067 goto out_no_task;
3068
3069 mm = get_task_mm(task);
3070 if (!mm)
3071 goto out_no_mm;
3072 ret = 0;
3073
3074 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3075 if (val & mask)
3076 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3077 else
3078 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3079 }
3080
3081 mmput(mm);
3082 out_no_mm:
3083 put_task_struct(task);
3084 out_no_task:
3085 if (ret < 0)
3086 return ret;
3087 return count;
3088 }
3089
3090 static const struct file_operations proc_coredump_filter_operations = {
3091 .read = proc_coredump_filter_read,
3092 .write = proc_coredump_filter_write,
3093 .llseek = generic_file_llseek,
3094 };
3095 #endif
3096
3097 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3098 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3099 {
3100 struct task_io_accounting acct = task->ioac;
3101 unsigned long flags;
3102 int result;
3103
3104 result = down_read_killable(&task->signal->exec_update_lock);
3105 if (result)
3106 return result;
3107
3108 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3109 result = -EACCES;
3110 goto out_unlock;
3111 }
3112
3113 if (whole && lock_task_sighand(task, &flags)) {
3114 struct task_struct *t = task;
3115
3116 task_io_accounting_add(&acct, &task->signal->ioac);
3117 while_each_thread(task, t)
3118 task_io_accounting_add(&acct, &t->ioac);
3119
3120 unlock_task_sighand(task, &flags);
3121 }
3122 seq_printf(m,
3123 "rchar: %llu\n"
3124 "wchar: %llu\n"
3125 "syscr: %llu\n"
3126 "syscw: %llu\n"
3127 "read_bytes: %llu\n"
3128 "write_bytes: %llu\n"
3129 "cancelled_write_bytes: %llu\n",
3130 (unsigned long long)acct.rchar,
3131 (unsigned long long)acct.wchar,
3132 (unsigned long long)acct.syscr,
3133 (unsigned long long)acct.syscw,
3134 (unsigned long long)acct.read_bytes,
3135 (unsigned long long)acct.write_bytes,
3136 (unsigned long long)acct.cancelled_write_bytes);
3137 result = 0;
3138
3139 out_unlock:
3140 up_read(&task->signal->exec_update_lock);
3141 return result;
3142 }
3143
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3144 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3145 struct pid *pid, struct task_struct *task)
3146 {
3147 return do_io_accounting(task, m, 0);
3148 }
3149
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3150 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3151 struct pid *pid, struct task_struct *task)
3152 {
3153 return do_io_accounting(task, m, 1);
3154 }
3155 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3156
3157 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3158 static int proc_id_map_open(struct inode *inode, struct file *file,
3159 const struct seq_operations *seq_ops)
3160 {
3161 struct user_namespace *ns = NULL;
3162 struct task_struct *task;
3163 struct seq_file *seq;
3164 int ret = -EINVAL;
3165
3166 task = get_proc_task(inode);
3167 if (task) {
3168 rcu_read_lock();
3169 ns = get_user_ns(task_cred_xxx(task, user_ns));
3170 rcu_read_unlock();
3171 put_task_struct(task);
3172 }
3173 if (!ns)
3174 goto err;
3175
3176 ret = seq_open(file, seq_ops);
3177 if (ret)
3178 goto err_put_ns;
3179
3180 seq = file->private_data;
3181 seq->private = ns;
3182
3183 return 0;
3184 err_put_ns:
3185 put_user_ns(ns);
3186 err:
3187 return ret;
3188 }
3189
proc_id_map_release(struct inode * inode,struct file * file)3190 static int proc_id_map_release(struct inode *inode, struct file *file)
3191 {
3192 struct seq_file *seq = file->private_data;
3193 struct user_namespace *ns = seq->private;
3194 put_user_ns(ns);
3195 return seq_release(inode, file);
3196 }
3197
proc_uid_map_open(struct inode * inode,struct file * file)3198 static int proc_uid_map_open(struct inode *inode, struct file *file)
3199 {
3200 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3201 }
3202
proc_gid_map_open(struct inode * inode,struct file * file)3203 static int proc_gid_map_open(struct inode *inode, struct file *file)
3204 {
3205 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3206 }
3207
proc_projid_map_open(struct inode * inode,struct file * file)3208 static int proc_projid_map_open(struct inode *inode, struct file *file)
3209 {
3210 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3211 }
3212
3213 static const struct file_operations proc_uid_map_operations = {
3214 .open = proc_uid_map_open,
3215 .write = proc_uid_map_write,
3216 .read = seq_read,
3217 .llseek = seq_lseek,
3218 .release = proc_id_map_release,
3219 };
3220
3221 static const struct file_operations proc_gid_map_operations = {
3222 .open = proc_gid_map_open,
3223 .write = proc_gid_map_write,
3224 .read = seq_read,
3225 .llseek = seq_lseek,
3226 .release = proc_id_map_release,
3227 };
3228
3229 static const struct file_operations proc_projid_map_operations = {
3230 .open = proc_projid_map_open,
3231 .write = proc_projid_map_write,
3232 .read = seq_read,
3233 .llseek = seq_lseek,
3234 .release = proc_id_map_release,
3235 };
3236
proc_setgroups_open(struct inode * inode,struct file * file)3237 static int proc_setgroups_open(struct inode *inode, struct file *file)
3238 {
3239 struct user_namespace *ns = NULL;
3240 struct task_struct *task;
3241 int ret;
3242
3243 ret = -ESRCH;
3244 task = get_proc_task(inode);
3245 if (task) {
3246 rcu_read_lock();
3247 ns = get_user_ns(task_cred_xxx(task, user_ns));
3248 rcu_read_unlock();
3249 put_task_struct(task);
3250 }
3251 if (!ns)
3252 goto err;
3253
3254 if (file->f_mode & FMODE_WRITE) {
3255 ret = -EACCES;
3256 if (!ns_capable(ns, CAP_SYS_ADMIN))
3257 goto err_put_ns;
3258 }
3259
3260 ret = single_open(file, &proc_setgroups_show, ns);
3261 if (ret)
3262 goto err_put_ns;
3263
3264 return 0;
3265 err_put_ns:
3266 put_user_ns(ns);
3267 err:
3268 return ret;
3269 }
3270
proc_setgroups_release(struct inode * inode,struct file * file)3271 static int proc_setgroups_release(struct inode *inode, struct file *file)
3272 {
3273 struct seq_file *seq = file->private_data;
3274 struct user_namespace *ns = seq->private;
3275 int ret = single_release(inode, file);
3276 put_user_ns(ns);
3277 return ret;
3278 }
3279
3280 static const struct file_operations proc_setgroups_operations = {
3281 .open = proc_setgroups_open,
3282 .write = proc_setgroups_write,
3283 .read = seq_read,
3284 .llseek = seq_lseek,
3285 .release = proc_setgroups_release,
3286 };
3287 #endif /* CONFIG_USER_NS */
3288
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3289 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3290 struct pid *pid, struct task_struct *task)
3291 {
3292 int err = lock_trace(task);
3293 if (!err) {
3294 seq_printf(m, "%08x\n", task->personality);
3295 unlock_trace(task);
3296 }
3297 return err;
3298 }
3299
3300 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3301 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3302 struct pid *pid, struct task_struct *task)
3303 {
3304 seq_printf(m, "%d\n", task->patch_state);
3305 return 0;
3306 }
3307 #endif /* CONFIG_LIVEPATCH */
3308
3309 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3310 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3311 struct pid *pid, struct task_struct *task)
3312 {
3313 unsigned long prev_depth = THREAD_SIZE -
3314 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3315 unsigned long depth = THREAD_SIZE -
3316 (task->lowest_stack & (THREAD_SIZE - 1));
3317
3318 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3319 prev_depth, depth);
3320 return 0;
3321 }
3322 #endif /* CONFIG_STACKLEAK_METRICS */
3323
3324 #ifdef CONFIG_ACCESS_TOKENID
proc_token_operations(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3325 static int proc_token_operations(struct seq_file *m, struct pid_namespace *ns,
3326 struct pid *pid, struct task_struct *task)
3327 {
3328 seq_printf(m, "%#llx %#llx\n", task->token, task->ftoken);
3329 return 0;
3330 }
3331 #endif /* CONFIG_ACCESS_TOKENID */
3332
3333 /*
3334 * Thread groups
3335 */
3336 static const struct file_operations proc_task_operations;
3337 static const struct inode_operations proc_task_inode_operations;
3338
3339 static const struct pid_entry tgid_base_stuff[] = {
3340 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3341 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3342 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3343 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3344 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3345 #ifdef CONFIG_NET
3346 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3347 #endif
3348 REG("environ", S_IRUSR, proc_environ_operations),
3349 REG("auxv", S_IRUSR, proc_auxv_operations),
3350 ONE("status", S_IRUGO, proc_pid_status),
3351 ONE("personality", S_IRUSR, proc_pid_personality),
3352 ONE("limits", S_IRUGO, proc_pid_limits),
3353 #ifdef CONFIG_SCHED_WALT
3354 REG("sched_init_task_load", 00644, proc_pid_sched_init_task_load_operations),
3355 #endif
3356 #ifdef CONFIG_SCHED_DEBUG
3357 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3358 #endif
3359 #ifdef CONFIG_SCHED_AUTOGROUP
3360 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3361 #endif
3362 #ifdef CONFIG_TIME_NS
3363 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3364 #endif
3365 #ifdef CONFIG_RSS_THRESHOLD
3366 ONE("rss", S_IRUGO, proc_pid_rss),
3367 REG("rss_threshold", S_IRUGO|S_IWUSR, proc_pid_rss_threshold_operations),
3368 #endif
3369 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3370 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3371 ONE("syscall", S_IRUSR, proc_pid_syscall),
3372 #endif
3373 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3374 ONE("stat", S_IRUGO, proc_tgid_stat),
3375 ONE("statm", S_IRUGO, proc_pid_statm),
3376 REG("maps", S_IRUGO, proc_pid_maps_operations),
3377 #ifdef CONFIG_NUMA
3378 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3379 #endif
3380 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3381 LNK("cwd", proc_cwd_link),
3382 LNK("root", proc_root_link),
3383 LNK("exe", proc_exe_link),
3384 REG("mounts", S_IRUGO, proc_mounts_operations),
3385 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3386 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3387 #ifdef CONFIG_PROC_PAGE_MONITOR
3388 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3389 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3390 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3391 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3392 #endif
3393 #ifdef CONFIG_SECURITY
3394 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3395 #endif
3396 #ifdef CONFIG_KALLSYMS
3397 ONE("wchan", S_IRUGO, proc_pid_wchan),
3398 #endif
3399 #ifdef CONFIG_STACKTRACE
3400 ONE("stack", S_IRUSR, proc_pid_stack),
3401 #endif
3402 #ifdef CONFIG_SCHED_INFO
3403 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3404 #endif
3405 #ifdef CONFIG_LATENCYTOP
3406 REG("latency", S_IRUGO, proc_lstats_operations),
3407 #endif
3408 #ifdef CONFIG_PROC_PID_CPUSET
3409 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3410 #endif
3411 #ifdef CONFIG_CGROUPS
3412 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3413 #endif
3414 #ifdef CONFIG_PROC_CPU_RESCTRL
3415 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3416 #endif
3417 ONE("oom_score", S_IRUGO, proc_oom_score),
3418 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3419 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3420 #ifdef CONFIG_AUDIT
3421 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3422 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3423 #endif
3424 #ifdef CONFIG_FAULT_INJECTION
3425 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3426 REG("fail-nth", 0644, proc_fail_nth_operations),
3427 #endif
3428 #ifdef CONFIG_ELF_CORE
3429 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3430 #endif
3431 #ifdef CONFIG_TASK_IO_ACCOUNTING
3432 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3433 #endif
3434 #ifdef CONFIG_USER_NS
3435 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3436 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3437 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3438 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3439 #endif
3440 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3441 REG("timers", S_IRUGO, proc_timers_operations),
3442 #endif
3443 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3444 #ifdef CONFIG_LIVEPATCH
3445 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3446 #endif
3447 #ifdef CONFIG_STACKLEAK_METRICS
3448 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3449 #endif
3450 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3451 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3452 #endif
3453 #ifdef CONFIG_ACCESS_TOKENID
3454 ONE("tokenid", S_IRUSR, proc_token_operations),
3455 #endif
3456 #ifdef CONFIG_SCHED_RTG
3457 REG("sched_rtg_ctrl", S_IRUGO|S_IWUGO, proc_rtg_operations),
3458 #endif
3459 #ifdef CONFIG_SCHED_RTG_DEBUG
3460 REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3461 #endif
3462 };
3463
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3464 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3465 {
3466 return proc_pident_readdir(file, ctx,
3467 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3468 }
3469
3470 static const struct file_operations proc_tgid_base_operations = {
3471 .read = generic_read_dir,
3472 .iterate_shared = proc_tgid_base_readdir,
3473 .llseek = generic_file_llseek,
3474 };
3475
tgid_pidfd_to_pid(const struct file * file)3476 struct pid *tgid_pidfd_to_pid(const struct file *file)
3477 {
3478 if (file->f_op != &proc_tgid_base_operations)
3479 return ERR_PTR(-EBADF);
3480
3481 return proc_pid(file_inode(file));
3482 }
3483
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3484 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3485 {
3486 return proc_pident_lookup(dir, dentry,
3487 tgid_base_stuff,
3488 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3489 }
3490
3491 static const struct inode_operations proc_tgid_base_inode_operations = {
3492 .lookup = proc_tgid_base_lookup,
3493 .getattr = pid_getattr,
3494 .setattr = proc_setattr,
3495 .permission = proc_pid_permission,
3496 };
3497
3498 /**
3499 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3500 * @pid: pid that should be flushed.
3501 *
3502 * This function walks a list of inodes (that belong to any proc
3503 * filesystem) that are attached to the pid and flushes them from
3504 * the dentry cache.
3505 *
3506 * It is safe and reasonable to cache /proc entries for a task until
3507 * that task exits. After that they just clog up the dcache with
3508 * useless entries, possibly causing useful dcache entries to be
3509 * flushed instead. This routine is provided to flush those useless
3510 * dcache entries when a process is reaped.
3511 *
3512 * NOTE: This routine is just an optimization so it does not guarantee
3513 * that no dcache entries will exist after a process is reaped
3514 * it just makes it very unlikely that any will persist.
3515 */
3516
proc_flush_pid(struct pid * pid)3517 void proc_flush_pid(struct pid *pid)
3518 {
3519 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3520 }
3521
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3522 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3523 struct task_struct *task, const void *ptr)
3524 {
3525 struct inode *inode;
3526
3527 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3528 if (!inode)
3529 return ERR_PTR(-ENOENT);
3530
3531 inode->i_op = &proc_tgid_base_inode_operations;
3532 inode->i_fop = &proc_tgid_base_operations;
3533 inode->i_flags|=S_IMMUTABLE;
3534
3535 set_nlink(inode, nlink_tgid);
3536 pid_update_inode(task, inode);
3537
3538 d_set_d_op(dentry, &pid_dentry_operations);
3539 return d_splice_alias(inode, dentry);
3540 }
3541
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3542 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3543 {
3544 struct task_struct *task;
3545 unsigned tgid;
3546 struct proc_fs_info *fs_info;
3547 struct pid_namespace *ns;
3548 struct dentry *result = ERR_PTR(-ENOENT);
3549
3550 tgid = name_to_int(&dentry->d_name);
3551 if (tgid == ~0U)
3552 goto out;
3553
3554 fs_info = proc_sb_info(dentry->d_sb);
3555 ns = fs_info->pid_ns;
3556 rcu_read_lock();
3557 task = find_task_by_pid_ns(tgid, ns);
3558 if (task)
3559 get_task_struct(task);
3560 rcu_read_unlock();
3561 if (!task)
3562 goto out;
3563
3564 /* Limit procfs to only ptraceable tasks */
3565 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3566 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3567 goto out_put_task;
3568 }
3569
3570 result = proc_pid_instantiate(dentry, task, NULL);
3571 out_put_task:
3572 put_task_struct(task);
3573 out:
3574 return result;
3575 }
3576
3577 /*
3578 * Find the first task with tgid >= tgid
3579 *
3580 */
3581 struct tgid_iter {
3582 unsigned int tgid;
3583 struct task_struct *task;
3584 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3585 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3586 {
3587 struct pid *pid;
3588
3589 if (iter.task)
3590 put_task_struct(iter.task);
3591 rcu_read_lock();
3592 retry:
3593 iter.task = NULL;
3594 pid = find_ge_pid(iter.tgid, ns);
3595 if (pid) {
3596 iter.tgid = pid_nr_ns(pid, ns);
3597 iter.task = pid_task(pid, PIDTYPE_TGID);
3598 if (!iter.task) {
3599 iter.tgid += 1;
3600 goto retry;
3601 }
3602 get_task_struct(iter.task);
3603 }
3604 rcu_read_unlock();
3605 return iter;
3606 }
3607
3608 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3609
3610 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3611 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3612 {
3613 struct tgid_iter iter;
3614 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3615 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3616 loff_t pos = ctx->pos;
3617
3618 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3619 return 0;
3620
3621 if (pos == TGID_OFFSET - 2) {
3622 struct inode *inode = d_inode(fs_info->proc_self);
3623 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3624 return 0;
3625 ctx->pos = pos = pos + 1;
3626 }
3627 if (pos == TGID_OFFSET - 1) {
3628 struct inode *inode = d_inode(fs_info->proc_thread_self);
3629 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3630 return 0;
3631 ctx->pos = pos = pos + 1;
3632 }
3633 iter.tgid = pos - TGID_OFFSET;
3634 iter.task = NULL;
3635 for (iter = next_tgid(ns, iter);
3636 iter.task;
3637 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3638 char name[10 + 1];
3639 unsigned int len;
3640
3641 cond_resched();
3642 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3643 continue;
3644
3645 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3646 ctx->pos = iter.tgid + TGID_OFFSET;
3647 if (!proc_fill_cache(file, ctx, name, len,
3648 proc_pid_instantiate, iter.task, NULL)) {
3649 put_task_struct(iter.task);
3650 return 0;
3651 }
3652 }
3653 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3654 return 0;
3655 }
3656
3657 /*
3658 * proc_tid_comm_permission is a special permission function exclusively
3659 * used for the node /proc/<pid>/task/<tid>/comm.
3660 * It bypasses generic permission checks in the case where a task of the same
3661 * task group attempts to access the node.
3662 * The rationale behind this is that glibc and bionic access this node for
3663 * cross thread naming (pthread_set/getname_np(!self)). However, if
3664 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3665 * which locks out the cross thread naming implementation.
3666 * This function makes sure that the node is always accessible for members of
3667 * same thread group.
3668 */
proc_tid_comm_permission(struct inode * inode,int mask)3669 static int proc_tid_comm_permission(struct inode *inode, int mask)
3670 {
3671 bool is_same_tgroup;
3672 struct task_struct *task;
3673
3674 task = get_proc_task(inode);
3675 if (!task)
3676 return -ESRCH;
3677 is_same_tgroup = same_thread_group(current, task);
3678 put_task_struct(task);
3679
3680 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3681 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3682 * read or written by the members of the corresponding
3683 * thread group.
3684 */
3685 return 0;
3686 }
3687
3688 return generic_permission(inode, mask);
3689 }
3690
3691 static const struct inode_operations proc_tid_comm_inode_operations = {
3692 .permission = proc_tid_comm_permission,
3693 };
3694
3695 /*
3696 * Tasks
3697 */
3698 static const struct pid_entry tid_base_stuff[] = {
3699 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3700 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3701 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3702 #ifdef CONFIG_NET
3703 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3704 #endif
3705 REG("environ", S_IRUSR, proc_environ_operations),
3706 REG("auxv", S_IRUSR, proc_auxv_operations),
3707 ONE("status", S_IRUGO, proc_pid_status),
3708 ONE("personality", S_IRUSR, proc_pid_personality),
3709 ONE("limits", S_IRUGO, proc_pid_limits),
3710 #ifdef CONFIG_SCHED_DEBUG
3711 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3712 #endif
3713 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3714 &proc_tid_comm_inode_operations,
3715 &proc_pid_set_comm_operations, {}),
3716 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3717 ONE("syscall", S_IRUSR, proc_pid_syscall),
3718 #endif
3719 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3720 ONE("stat", S_IRUGO, proc_tid_stat),
3721 ONE("statm", S_IRUGO, proc_pid_statm),
3722 REG("maps", S_IRUGO, proc_pid_maps_operations),
3723 #ifdef CONFIG_PROC_CHILDREN
3724 REG("children", S_IRUGO, proc_tid_children_operations),
3725 #endif
3726 #ifdef CONFIG_NUMA
3727 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3728 #endif
3729 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3730 LNK("cwd", proc_cwd_link),
3731 LNK("root", proc_root_link),
3732 LNK("exe", proc_exe_link),
3733 REG("mounts", S_IRUGO, proc_mounts_operations),
3734 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3735 #ifdef CONFIG_PROC_PAGE_MONITOR
3736 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3737 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3738 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3739 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3740 #endif
3741 #ifdef CONFIG_SECURITY
3742 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3743 #endif
3744 #ifdef CONFIG_KALLSYMS
3745 ONE("wchan", S_IRUGO, proc_pid_wchan),
3746 #endif
3747 #ifdef CONFIG_STACKTRACE
3748 ONE("stack", S_IRUSR, proc_pid_stack),
3749 #endif
3750 #ifdef CONFIG_SCHED_INFO
3751 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3752 #endif
3753 #ifdef CONFIG_LATENCYTOP
3754 REG("latency", S_IRUGO, proc_lstats_operations),
3755 #endif
3756 #ifdef CONFIG_PROC_PID_CPUSET
3757 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3758 #endif
3759 #ifdef CONFIG_CGROUPS
3760 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3761 #endif
3762 #ifdef CONFIG_PROC_CPU_RESCTRL
3763 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3764 #endif
3765 ONE("oom_score", S_IRUGO, proc_oom_score),
3766 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3767 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3768 #ifdef CONFIG_AUDIT
3769 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3770 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3771 #endif
3772 #ifdef CONFIG_FAULT_INJECTION
3773 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3774 REG("fail-nth", 0644, proc_fail_nth_operations),
3775 #endif
3776 #ifdef CONFIG_TASK_IO_ACCOUNTING
3777 ONE("io", S_IRUSR, proc_tid_io_accounting),
3778 #endif
3779 #ifdef CONFIG_USER_NS
3780 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3781 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3782 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3783 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3784 #endif
3785 #ifdef CONFIG_LIVEPATCH
3786 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3787 #endif
3788 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3789 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3790 #endif
3791 #ifdef CONFIG_ACCESS_TOKENID
3792 ONE("tokenid", S_IRUSR, proc_token_operations),
3793 #endif
3794 #ifdef CONFIG_SCHED_RTG_DEBUG
3795 REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3796 #endif
3797 };
3798
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3799 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3800 {
3801 return proc_pident_readdir(file, ctx,
3802 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3803 }
3804
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3805 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3806 {
3807 return proc_pident_lookup(dir, dentry,
3808 tid_base_stuff,
3809 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3810 }
3811
3812 static const struct file_operations proc_tid_base_operations = {
3813 .read = generic_read_dir,
3814 .iterate_shared = proc_tid_base_readdir,
3815 .llseek = generic_file_llseek,
3816 };
3817
3818 static const struct inode_operations proc_tid_base_inode_operations = {
3819 .lookup = proc_tid_base_lookup,
3820 .getattr = pid_getattr,
3821 .setattr = proc_setattr,
3822 };
3823
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3824 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3825 struct task_struct *task, const void *ptr)
3826 {
3827 struct inode *inode;
3828 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3829 if (!inode)
3830 return ERR_PTR(-ENOENT);
3831
3832 inode->i_op = &proc_tid_base_inode_operations;
3833 inode->i_fop = &proc_tid_base_operations;
3834 inode->i_flags |= S_IMMUTABLE;
3835
3836 set_nlink(inode, nlink_tid);
3837 pid_update_inode(task, inode);
3838
3839 d_set_d_op(dentry, &pid_dentry_operations);
3840 return d_splice_alias(inode, dentry);
3841 }
3842
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3843 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3844 {
3845 struct task_struct *task;
3846 struct task_struct *leader = get_proc_task(dir);
3847 unsigned tid;
3848 struct proc_fs_info *fs_info;
3849 struct pid_namespace *ns;
3850 struct dentry *result = ERR_PTR(-ENOENT);
3851
3852 if (!leader)
3853 goto out_no_task;
3854
3855 tid = name_to_int(&dentry->d_name);
3856 if (tid == ~0U)
3857 goto out;
3858
3859 fs_info = proc_sb_info(dentry->d_sb);
3860 ns = fs_info->pid_ns;
3861 rcu_read_lock();
3862 task = find_task_by_pid_ns(tid, ns);
3863 if (task)
3864 get_task_struct(task);
3865 rcu_read_unlock();
3866 if (!task)
3867 goto out;
3868 if (!same_thread_group(leader, task))
3869 goto out_drop_task;
3870
3871 result = proc_task_instantiate(dentry, task, NULL);
3872 out_drop_task:
3873 put_task_struct(task);
3874 out:
3875 put_task_struct(leader);
3876 out_no_task:
3877 return result;
3878 }
3879
3880 /*
3881 * Find the first tid of a thread group to return to user space.
3882 *
3883 * Usually this is just the thread group leader, but if the users
3884 * buffer was too small or there was a seek into the middle of the
3885 * directory we have more work todo.
3886 *
3887 * In the case of a short read we start with find_task_by_pid.
3888 *
3889 * In the case of a seek we start with the leader and walk nr
3890 * threads past it.
3891 */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3892 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3893 struct pid_namespace *ns)
3894 {
3895 struct task_struct *pos, *task;
3896 unsigned long nr = f_pos;
3897
3898 if (nr != f_pos) /* 32bit overflow? */
3899 return NULL;
3900
3901 rcu_read_lock();
3902 task = pid_task(pid, PIDTYPE_PID);
3903 if (!task)
3904 goto fail;
3905
3906 /* Attempt to start with the tid of a thread */
3907 if (tid && nr) {
3908 pos = find_task_by_pid_ns(tid, ns);
3909 if (pos && same_thread_group(pos, task))
3910 goto found;
3911 }
3912
3913 /* If nr exceeds the number of threads there is nothing todo */
3914 if (nr >= get_nr_threads(task))
3915 goto fail;
3916
3917 /* If we haven't found our starting place yet start
3918 * with the leader and walk nr threads forward.
3919 */
3920 pos = task = task->group_leader;
3921 do {
3922 if (!nr--)
3923 goto found;
3924 } while_each_thread(task, pos);
3925 fail:
3926 pos = NULL;
3927 goto out;
3928 found:
3929 get_task_struct(pos);
3930 out:
3931 rcu_read_unlock();
3932 return pos;
3933 }
3934
3935 /*
3936 * Find the next thread in the thread list.
3937 * Return NULL if there is an error or no next thread.
3938 *
3939 * The reference to the input task_struct is released.
3940 */
next_tid(struct task_struct * start)3941 static struct task_struct *next_tid(struct task_struct *start)
3942 {
3943 struct task_struct *pos = NULL;
3944 rcu_read_lock();
3945 if (pid_alive(start)) {
3946 pos = next_thread(start);
3947 if (thread_group_leader(pos))
3948 pos = NULL;
3949 else
3950 get_task_struct(pos);
3951 }
3952 rcu_read_unlock();
3953 put_task_struct(start);
3954 return pos;
3955 }
3956
3957 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3958 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3959 {
3960 struct inode *inode = file_inode(file);
3961 struct task_struct *task;
3962 struct pid_namespace *ns;
3963 int tid;
3964
3965 if (proc_inode_is_dead(inode))
3966 return -ENOENT;
3967
3968 if (!dir_emit_dots(file, ctx))
3969 return 0;
3970
3971 /* f_version caches the tgid value that the last readdir call couldn't
3972 * return. lseek aka telldir automagically resets f_version to 0.
3973 */
3974 ns = proc_pid_ns(inode->i_sb);
3975 tid = (int)file->f_version;
3976 file->f_version = 0;
3977 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3978 task;
3979 task = next_tid(task), ctx->pos++) {
3980 char name[10 + 1];
3981 unsigned int len;
3982 tid = task_pid_nr_ns(task, ns);
3983 len = snprintf(name, sizeof(name), "%u", tid);
3984 if (!proc_fill_cache(file, ctx, name, len,
3985 proc_task_instantiate, task, NULL)) {
3986 /* returning this tgid failed, save it as the first
3987 * pid for the next readir call */
3988 file->f_version = (u64)tid;
3989 put_task_struct(task);
3990 break;
3991 }
3992 }
3993
3994 return 0;
3995 }
3996
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3997 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3998 u32 request_mask, unsigned int query_flags)
3999 {
4000 struct inode *inode = d_inode(path->dentry);
4001 struct task_struct *p = get_proc_task(inode);
4002 generic_fillattr(inode, stat);
4003
4004 if (p) {
4005 stat->nlink += get_nr_threads(p);
4006 put_task_struct(p);
4007 }
4008
4009 return 0;
4010 }
4011
4012 static const struct inode_operations proc_task_inode_operations = {
4013 .lookup = proc_task_lookup,
4014 .getattr = proc_task_getattr,
4015 .setattr = proc_setattr,
4016 .permission = proc_pid_permission,
4017 };
4018
4019 static const struct file_operations proc_task_operations = {
4020 .read = generic_read_dir,
4021 .iterate_shared = proc_task_readdir,
4022 .llseek = generic_file_llseek,
4023 };
4024
set_proc_pid_nlink(void)4025 void __init set_proc_pid_nlink(void)
4026 {
4027 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4028 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4029 }
4030