• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
zonefs_zone_mgmt(struct inode * inode,enum req_opf op)27 static inline int zonefs_zone_mgmt(struct inode *inode,
28 				   enum req_opf op)
29 {
30 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 	int ret;
32 
33 	lockdep_assert_held(&zi->i_truncate_mutex);
34 
35 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
36 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
37 	if (ret) {
38 		zonefs_err(inode->i_sb,
39 			   "Zone management operation %s at %llu failed %d\n",
40 			   blk_op_str(op), zi->i_zsector, ret);
41 		return ret;
42 	}
43 
44 	return 0;
45 }
46 
zonefs_i_size_write(struct inode * inode,loff_t isize)47 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
48 {
49 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
50 
51 	i_size_write(inode, isize);
52 	/*
53 	 * A full zone is no longer open/active and does not need
54 	 * explicit closing.
55 	 */
56 	if (isize >= zi->i_max_size)
57 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
58 }
59 
zonefs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)60 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
61 			      unsigned int flags, struct iomap *iomap,
62 			      struct iomap *srcmap)
63 {
64 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
65 	struct super_block *sb = inode->i_sb;
66 	loff_t isize;
67 
68 	/* All I/Os should always be within the file maximum size */
69 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
70 		return -EIO;
71 
72 	/*
73 	 * Sequential zones can only accept direct writes. This is already
74 	 * checked when writes are issued, so warn if we see a page writeback
75 	 * operation.
76 	 */
77 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
78 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
79 		return -EIO;
80 
81 	/*
82 	 * For conventional zones, all blocks are always mapped. For sequential
83 	 * zones, all blocks after always mapped below the inode size (zone
84 	 * write pointer) and unwriten beyond.
85 	 */
86 	mutex_lock(&zi->i_truncate_mutex);
87 	isize = i_size_read(inode);
88 	if (offset >= isize)
89 		iomap->type = IOMAP_UNWRITTEN;
90 	else
91 		iomap->type = IOMAP_MAPPED;
92 	if (flags & IOMAP_WRITE)
93 		length = zi->i_max_size - offset;
94 	else
95 		length = min(length, isize - offset);
96 	mutex_unlock(&zi->i_truncate_mutex);
97 
98 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
99 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
100 	iomap->bdev = inode->i_sb->s_bdev;
101 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
102 
103 	return 0;
104 }
105 
106 static const struct iomap_ops zonefs_iomap_ops = {
107 	.iomap_begin	= zonefs_iomap_begin,
108 };
109 
zonefs_readpage(struct file * unused,struct page * page)110 static int zonefs_readpage(struct file *unused, struct page *page)
111 {
112 	return iomap_readpage(page, &zonefs_iomap_ops);
113 }
114 
zonefs_readahead(struct readahead_control * rac)115 static void zonefs_readahead(struct readahead_control *rac)
116 {
117 	iomap_readahead(rac, &zonefs_iomap_ops);
118 }
119 
120 /*
121  * Map blocks for page writeback. This is used only on conventional zone files,
122  * which implies that the page range can only be within the fixed inode size.
123  */
zonefs_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)124 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
125 			     struct inode *inode, loff_t offset)
126 {
127 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
128 
129 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
130 		return -EIO;
131 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
132 		return -EIO;
133 
134 	/* If the mapping is already OK, nothing needs to be done */
135 	if (offset >= wpc->iomap.offset &&
136 	    offset < wpc->iomap.offset + wpc->iomap.length)
137 		return 0;
138 
139 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
140 				  IOMAP_WRITE, &wpc->iomap, NULL);
141 }
142 
143 static const struct iomap_writeback_ops zonefs_writeback_ops = {
144 	.map_blocks		= zonefs_map_blocks,
145 };
146 
zonefs_writepage(struct page * page,struct writeback_control * wbc)147 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
148 {
149 	struct iomap_writepage_ctx wpc = { };
150 
151 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
152 }
153 
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)154 static int zonefs_writepages(struct address_space *mapping,
155 			     struct writeback_control *wbc)
156 {
157 	struct iomap_writepage_ctx wpc = { };
158 
159 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
160 }
161 
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)162 static int zonefs_swap_activate(struct swap_info_struct *sis,
163 				struct file *swap_file, sector_t *span)
164 {
165 	struct inode *inode = file_inode(swap_file);
166 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
167 
168 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
169 		zonefs_err(inode->i_sb,
170 			   "swap file: not a conventional zone file\n");
171 		return -EINVAL;
172 	}
173 
174 	return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops);
175 }
176 
177 static const struct address_space_operations zonefs_file_aops = {
178 	.readpage		= zonefs_readpage,
179 	.readahead		= zonefs_readahead,
180 	.writepage		= zonefs_writepage,
181 	.writepages		= zonefs_writepages,
182 	.set_page_dirty		= iomap_set_page_dirty,
183 	.releasepage		= iomap_releasepage,
184 	.invalidatepage		= iomap_invalidatepage,
185 	.migratepage		= iomap_migrate_page,
186 	.is_partially_uptodate	= iomap_is_partially_uptodate,
187 	.error_remove_page	= generic_error_remove_page,
188 	.direct_IO		= noop_direct_IO,
189 	.swap_activate		= zonefs_swap_activate,
190 };
191 
zonefs_update_stats(struct inode * inode,loff_t new_isize)192 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
193 {
194 	struct super_block *sb = inode->i_sb;
195 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
196 	loff_t old_isize = i_size_read(inode);
197 	loff_t nr_blocks;
198 
199 	if (new_isize == old_isize)
200 		return;
201 
202 	spin_lock(&sbi->s_lock);
203 
204 	/*
205 	 * This may be called for an update after an IO error.
206 	 * So beware of the values seen.
207 	 */
208 	if (new_isize < old_isize) {
209 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
210 		if (sbi->s_used_blocks > nr_blocks)
211 			sbi->s_used_blocks -= nr_blocks;
212 		else
213 			sbi->s_used_blocks = 0;
214 	} else {
215 		sbi->s_used_blocks +=
216 			(new_isize - old_isize) >> sb->s_blocksize_bits;
217 		if (sbi->s_used_blocks > sbi->s_blocks)
218 			sbi->s_used_blocks = sbi->s_blocks;
219 	}
220 
221 	spin_unlock(&sbi->s_lock);
222 }
223 
224 /*
225  * Check a zone condition and adjust its file inode access permissions for
226  * offline and readonly zones. Return the inode size corresponding to the
227  * amount of readable data in the zone.
228  */
zonefs_check_zone_condition(struct inode * inode,struct blk_zone * zone,bool warn,bool mount)229 static loff_t zonefs_check_zone_condition(struct inode *inode,
230 					  struct blk_zone *zone, bool warn,
231 					  bool mount)
232 {
233 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
234 
235 	switch (zone->cond) {
236 	case BLK_ZONE_COND_OFFLINE:
237 		/*
238 		 * Dead zone: make the inode immutable, disable all accesses
239 		 * and set the file size to 0 (zone wp set to zone start).
240 		 */
241 		if (warn)
242 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
243 				    inode->i_ino);
244 		inode->i_flags |= S_IMMUTABLE;
245 		inode->i_mode &= ~0777;
246 		zone->wp = zone->start;
247 		return 0;
248 	case BLK_ZONE_COND_READONLY:
249 		/*
250 		 * The write pointer of read-only zones is invalid. If such a
251 		 * zone is found during mount, the file size cannot be retrieved
252 		 * so we treat the zone as offline (mount == true case).
253 		 * Otherwise, keep the file size as it was when last updated
254 		 * so that the user can recover data. In both cases, writes are
255 		 * always disabled for the zone.
256 		 */
257 		if (warn)
258 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
259 				    inode->i_ino);
260 		inode->i_flags |= S_IMMUTABLE;
261 		if (mount) {
262 			zone->cond = BLK_ZONE_COND_OFFLINE;
263 			inode->i_mode &= ~0777;
264 			zone->wp = zone->start;
265 			return 0;
266 		}
267 		inode->i_mode &= ~0222;
268 		return i_size_read(inode);
269 	case BLK_ZONE_COND_FULL:
270 		/* The write pointer of full zones is invalid. */
271 		return zi->i_max_size;
272 	default:
273 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
274 			return zi->i_max_size;
275 		return (zone->wp - zone->start) << SECTOR_SHIFT;
276 	}
277 }
278 
279 struct zonefs_ioerr_data {
280 	struct inode	*inode;
281 	bool		write;
282 };
283 
zonefs_io_error_cb(struct blk_zone * zone,unsigned int idx,void * data)284 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
285 			      void *data)
286 {
287 	struct zonefs_ioerr_data *err = data;
288 	struct inode *inode = err->inode;
289 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
290 	struct super_block *sb = inode->i_sb;
291 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
292 	loff_t isize, data_size;
293 
294 	/*
295 	 * Check the zone condition: if the zone is not "bad" (offline or
296 	 * read-only), read errors are simply signaled to the IO issuer as long
297 	 * as there is no inconsistency between the inode size and the amount of
298 	 * data writen in the zone (data_size).
299 	 */
300 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
301 	isize = i_size_read(inode);
302 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
303 	    zone->cond != BLK_ZONE_COND_READONLY &&
304 	    !err->write && isize == data_size)
305 		return 0;
306 
307 	/*
308 	 * At this point, we detected either a bad zone or an inconsistency
309 	 * between the inode size and the amount of data written in the zone.
310 	 * For the latter case, the cause may be a write IO error or an external
311 	 * action on the device. Two error patterns exist:
312 	 * 1) The inode size is lower than the amount of data in the zone:
313 	 *    a write operation partially failed and data was writen at the end
314 	 *    of the file. This can happen in the case of a large direct IO
315 	 *    needing several BIOs and/or write requests to be processed.
316 	 * 2) The inode size is larger than the amount of data in the zone:
317 	 *    this can happen with a deferred write error with the use of the
318 	 *    device side write cache after getting successful write IO
319 	 *    completions. Other possibilities are (a) an external corruption,
320 	 *    e.g. an application reset the zone directly, or (b) the device
321 	 *    has a serious problem (e.g. firmware bug).
322 	 *
323 	 * In all cases, warn about inode size inconsistency and handle the
324 	 * IO error according to the zone condition and to the mount options.
325 	 */
326 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
327 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
328 			    inode->i_ino, isize, data_size);
329 
330 	/*
331 	 * First handle bad zones signaled by hardware. The mount options
332 	 * errors=zone-ro and errors=zone-offline result in changing the
333 	 * zone condition to read-only and offline respectively, as if the
334 	 * condition was signaled by the hardware.
335 	 */
336 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
337 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
338 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
339 			    inode->i_ino);
340 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
341 			zone->cond = BLK_ZONE_COND_OFFLINE;
342 			data_size = zonefs_check_zone_condition(inode, zone,
343 								false, false);
344 		}
345 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
346 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
347 		zonefs_warn(sb, "inode %lu: write access disabled\n",
348 			    inode->i_ino);
349 		if (zone->cond != BLK_ZONE_COND_READONLY) {
350 			zone->cond = BLK_ZONE_COND_READONLY;
351 			data_size = zonefs_check_zone_condition(inode, zone,
352 								false, false);
353 		}
354 	}
355 
356 	/*
357 	 * If the filesystem is mounted with the explicit-open mount option, we
358 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
359 	 * the read-only or offline condition, to avoid attempting an explicit
360 	 * close of the zone when the inode file is closed.
361 	 */
362 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
363 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
364 	     zone->cond == BLK_ZONE_COND_READONLY))
365 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
366 
367 	/*
368 	 * If error=remount-ro was specified, any error result in remounting
369 	 * the volume as read-only.
370 	 */
371 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
372 		zonefs_warn(sb, "remounting filesystem read-only\n");
373 		sb->s_flags |= SB_RDONLY;
374 	}
375 
376 	/*
377 	 * Update block usage stats and the inode size  to prevent access to
378 	 * invalid data.
379 	 */
380 	zonefs_update_stats(inode, data_size);
381 	zonefs_i_size_write(inode, data_size);
382 	zi->i_wpoffset = data_size;
383 
384 	return 0;
385 }
386 
387 /*
388  * When an file IO error occurs, check the file zone to see if there is a change
389  * in the zone condition (e.g. offline or read-only). For a failed write to a
390  * sequential zone, the zone write pointer position must also be checked to
391  * eventually correct the file size and zonefs inode write pointer offset
392  * (which can be out of sync with the drive due to partial write failures).
393  */
__zonefs_io_error(struct inode * inode,bool write)394 static void __zonefs_io_error(struct inode *inode, bool write)
395 {
396 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
397 	struct super_block *sb = inode->i_sb;
398 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
399 	unsigned int noio_flag;
400 	unsigned int nr_zones =
401 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
402 	struct zonefs_ioerr_data err = {
403 		.inode = inode,
404 		.write = write,
405 	};
406 	int ret;
407 
408 	/*
409 	 * Memory allocations in blkdev_report_zones() can trigger a memory
410 	 * reclaim which may in turn cause a recursion into zonefs as well as
411 	 * struct request allocations for the same device. The former case may
412 	 * end up in a deadlock on the inode truncate mutex, while the latter
413 	 * may prevent IO forward progress. Executing the report zones under
414 	 * the GFP_NOIO context avoids both problems.
415 	 */
416 	noio_flag = memalloc_noio_save();
417 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
418 				  zonefs_io_error_cb, &err);
419 	if (ret != nr_zones)
420 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
421 			   inode->i_ino, ret);
422 	memalloc_noio_restore(noio_flag);
423 }
424 
zonefs_io_error(struct inode * inode,bool write)425 static void zonefs_io_error(struct inode *inode, bool write)
426 {
427 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
428 
429 	mutex_lock(&zi->i_truncate_mutex);
430 	__zonefs_io_error(inode, write);
431 	mutex_unlock(&zi->i_truncate_mutex);
432 }
433 
zonefs_file_truncate(struct inode * inode,loff_t isize)434 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
435 {
436 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
437 	loff_t old_isize;
438 	enum req_opf op;
439 	int ret = 0;
440 
441 	/*
442 	 * Only sequential zone files can be truncated and truncation is allowed
443 	 * only down to a 0 size, which is equivalent to a zone reset, and to
444 	 * the maximum file size, which is equivalent to a zone finish.
445 	 */
446 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
447 		return -EPERM;
448 
449 	if (!isize)
450 		op = REQ_OP_ZONE_RESET;
451 	else if (isize == zi->i_max_size)
452 		op = REQ_OP_ZONE_FINISH;
453 	else
454 		return -EPERM;
455 
456 	inode_dio_wait(inode);
457 
458 	/* Serialize against page faults */
459 	down_write(&zi->i_mmap_sem);
460 
461 	/* Serialize against zonefs_iomap_begin() */
462 	mutex_lock(&zi->i_truncate_mutex);
463 
464 	old_isize = i_size_read(inode);
465 	if (isize == old_isize)
466 		goto unlock;
467 
468 	ret = zonefs_zone_mgmt(inode, op);
469 	if (ret)
470 		goto unlock;
471 
472 	/*
473 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
474 	 * take care of open zones.
475 	 */
476 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
477 		/*
478 		 * Truncating a zone to EMPTY or FULL is the equivalent of
479 		 * closing the zone. For a truncation to 0, we need to
480 		 * re-open the zone to ensure new writes can be processed.
481 		 * For a truncation to the maximum file size, the zone is
482 		 * closed and writes cannot be accepted anymore, so clear
483 		 * the open flag.
484 		 */
485 		if (!isize)
486 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
487 		else
488 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
489 	}
490 
491 	zonefs_update_stats(inode, isize);
492 	truncate_setsize(inode, isize);
493 	zi->i_wpoffset = isize;
494 
495 unlock:
496 	mutex_unlock(&zi->i_truncate_mutex);
497 	up_write(&zi->i_mmap_sem);
498 
499 	return ret;
500 }
501 
zonefs_inode_setattr(struct dentry * dentry,struct iattr * iattr)502 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
503 {
504 	struct inode *inode = d_inode(dentry);
505 	int ret;
506 
507 	if (unlikely(IS_IMMUTABLE(inode)))
508 		return -EPERM;
509 
510 	ret = setattr_prepare(dentry, iattr);
511 	if (ret)
512 		return ret;
513 
514 	/*
515 	 * Since files and directories cannot be created nor deleted, do not
516 	 * allow setting any write attributes on the sub-directories grouping
517 	 * files by zone type.
518 	 */
519 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
520 	    (iattr->ia_mode & 0222))
521 		return -EPERM;
522 
523 	if (((iattr->ia_valid & ATTR_UID) &&
524 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
525 	    ((iattr->ia_valid & ATTR_GID) &&
526 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
527 		ret = dquot_transfer(inode, iattr);
528 		if (ret)
529 			return ret;
530 	}
531 
532 	if (iattr->ia_valid & ATTR_SIZE) {
533 		ret = zonefs_file_truncate(inode, iattr->ia_size);
534 		if (ret)
535 			return ret;
536 	}
537 
538 	setattr_copy(inode, iattr);
539 
540 	return 0;
541 }
542 
543 static const struct inode_operations zonefs_file_inode_operations = {
544 	.setattr	= zonefs_inode_setattr,
545 };
546 
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)547 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
548 			     int datasync)
549 {
550 	struct inode *inode = file_inode(file);
551 	int ret = 0;
552 
553 	if (unlikely(IS_IMMUTABLE(inode)))
554 		return -EPERM;
555 
556 	/*
557 	 * Since only direct writes are allowed in sequential files, page cache
558 	 * flush is needed only for conventional zone files.
559 	 */
560 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
561 		ret = file_write_and_wait_range(file, start, end);
562 	if (!ret)
563 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
564 
565 	if (ret)
566 		zonefs_io_error(inode, true);
567 
568 	return ret;
569 }
570 
zonefs_filemap_fault(struct vm_fault * vmf)571 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
572 {
573 	struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
574 	vm_fault_t ret;
575 
576 	down_read(&zi->i_mmap_sem);
577 	ret = filemap_fault(vmf);
578 	up_read(&zi->i_mmap_sem);
579 
580 	return ret;
581 }
582 
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)583 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
584 {
585 	struct inode *inode = file_inode(vmf->vma->vm_file);
586 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
587 	vm_fault_t ret;
588 
589 	if (unlikely(IS_IMMUTABLE(inode)))
590 		return VM_FAULT_SIGBUS;
591 
592 	/*
593 	 * Sanity check: only conventional zone files can have shared
594 	 * writeable mappings.
595 	 */
596 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
597 		return VM_FAULT_NOPAGE;
598 
599 	sb_start_pagefault(inode->i_sb);
600 	file_update_time(vmf->vma->vm_file);
601 
602 	/* Serialize against truncates */
603 	down_read(&zi->i_mmap_sem);
604 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
605 	up_read(&zi->i_mmap_sem);
606 
607 	sb_end_pagefault(inode->i_sb);
608 	return ret;
609 }
610 
611 static const struct vm_operations_struct zonefs_file_vm_ops = {
612 	.fault		= zonefs_filemap_fault,
613 	.map_pages	= filemap_map_pages,
614 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
615 };
616 
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)617 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
618 {
619 	/*
620 	 * Conventional zones accept random writes, so their files can support
621 	 * shared writable mappings. For sequential zone files, only read
622 	 * mappings are possible since there are no guarantees for write
623 	 * ordering between msync() and page cache writeback.
624 	 */
625 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
626 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
627 		return -EINVAL;
628 
629 	file_accessed(file);
630 	vma->vm_ops = &zonefs_file_vm_ops;
631 
632 	return 0;
633 }
634 
zonefs_file_llseek(struct file * file,loff_t offset,int whence)635 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
636 {
637 	loff_t isize = i_size_read(file_inode(file));
638 
639 	/*
640 	 * Seeks are limited to below the zone size for conventional zones
641 	 * and below the zone write pointer for sequential zones. In both
642 	 * cases, this limit is the inode size.
643 	 */
644 	return generic_file_llseek_size(file, offset, whence, isize, isize);
645 }
646 
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)647 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
648 					int error, unsigned int flags)
649 {
650 	struct inode *inode = file_inode(iocb->ki_filp);
651 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
652 
653 	if (error) {
654 		zonefs_io_error(inode, true);
655 		return error;
656 	}
657 
658 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
659 		/*
660 		 * Note that we may be seeing completions out of order,
661 		 * but that is not a problem since a write completed
662 		 * successfully necessarily means that all preceding writes
663 		 * were also successful. So we can safely increase the inode
664 		 * size to the write end location.
665 		 */
666 		mutex_lock(&zi->i_truncate_mutex);
667 		if (i_size_read(inode) < iocb->ki_pos + size) {
668 			zonefs_update_stats(inode, iocb->ki_pos + size);
669 			zonefs_i_size_write(inode, iocb->ki_pos + size);
670 		}
671 		mutex_unlock(&zi->i_truncate_mutex);
672 	}
673 
674 	return 0;
675 }
676 
677 static const struct iomap_dio_ops zonefs_write_dio_ops = {
678 	.end_io			= zonefs_file_write_dio_end_io,
679 };
680 
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)681 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
682 {
683 	struct inode *inode = file_inode(iocb->ki_filp);
684 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
685 	struct block_device *bdev = inode->i_sb->s_bdev;
686 	unsigned int max;
687 	struct bio *bio;
688 	ssize_t size;
689 	int nr_pages;
690 	ssize_t ret;
691 
692 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
693 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
694 	iov_iter_truncate(from, max);
695 
696 	nr_pages = iov_iter_npages(from, BIO_MAX_PAGES);
697 	if (!nr_pages)
698 		return 0;
699 
700 	bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set);
701 	if (!bio)
702 		return -ENOMEM;
703 
704 	bio_set_dev(bio, bdev);
705 	bio->bi_iter.bi_sector = zi->i_zsector;
706 	bio->bi_write_hint = iocb->ki_hint;
707 	bio->bi_ioprio = iocb->ki_ioprio;
708 	bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
709 	if (iocb->ki_flags & IOCB_DSYNC)
710 		bio->bi_opf |= REQ_FUA;
711 
712 	ret = bio_iov_iter_get_pages(bio, from);
713 	if (unlikely(ret))
714 		goto out_release;
715 
716 	size = bio->bi_iter.bi_size;
717 	task_io_account_write(size);
718 
719 	if (iocb->ki_flags & IOCB_HIPRI)
720 		bio_set_polled(bio, iocb);
721 
722 	ret = submit_bio_wait(bio);
723 
724 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
725 
726 out_release:
727 	bio_release_pages(bio, false);
728 	bio_put(bio);
729 
730 	if (ret >= 0) {
731 		iocb->ki_pos += size;
732 		return size;
733 	}
734 
735 	return ret;
736 }
737 
738 /*
739  * Do not exceed the LFS limits nor the file zone size. If pos is under the
740  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
741  */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)742 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
743 					loff_t count)
744 {
745 	struct inode *inode = file_inode(file);
746 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
747 	loff_t limit = rlimit(RLIMIT_FSIZE);
748 	loff_t max_size = zi->i_max_size;
749 
750 	if (limit != RLIM_INFINITY) {
751 		if (pos >= limit) {
752 			send_sig(SIGXFSZ, current, 0);
753 			return -EFBIG;
754 		}
755 		count = min(count, limit - pos);
756 	}
757 
758 	if (!(file->f_flags & O_LARGEFILE))
759 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
760 
761 	if (unlikely(pos >= max_size))
762 		return -EFBIG;
763 
764 	return min(count, max_size - pos);
765 }
766 
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)767 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
768 {
769 	struct file *file = iocb->ki_filp;
770 	struct inode *inode = file_inode(file);
771 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
772 	loff_t count;
773 
774 	if (IS_SWAPFILE(inode))
775 		return -ETXTBSY;
776 
777 	if (!iov_iter_count(from))
778 		return 0;
779 
780 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
781 		return -EINVAL;
782 
783 	if (iocb->ki_flags & IOCB_APPEND) {
784 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
785 			return -EINVAL;
786 		mutex_lock(&zi->i_truncate_mutex);
787 		iocb->ki_pos = zi->i_wpoffset;
788 		mutex_unlock(&zi->i_truncate_mutex);
789 	}
790 
791 	count = zonefs_write_check_limits(file, iocb->ki_pos,
792 					  iov_iter_count(from));
793 	if (count < 0)
794 		return count;
795 
796 	iov_iter_truncate(from, count);
797 	return iov_iter_count(from);
798 }
799 
800 /*
801  * Handle direct writes. For sequential zone files, this is the only possible
802  * write path. For these files, check that the user is issuing writes
803  * sequentially from the end of the file. This code assumes that the block layer
804  * delivers write requests to the device in sequential order. This is always the
805  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
806  * elevator feature is being used (e.g. mq-deadline). The block layer always
807  * automatically select such an elevator for zoned block devices during the
808  * device initialization.
809  */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)810 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
811 {
812 	struct inode *inode = file_inode(iocb->ki_filp);
813 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
814 	struct super_block *sb = inode->i_sb;
815 	bool sync = is_sync_kiocb(iocb);
816 	bool append = false;
817 	ssize_t ret, count;
818 
819 	/*
820 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
821 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
822 	 * on the inode lock but the second goes through but is now unaligned).
823 	 */
824 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
825 	    (iocb->ki_flags & IOCB_NOWAIT))
826 		return -EOPNOTSUPP;
827 
828 	if (iocb->ki_flags & IOCB_NOWAIT) {
829 		if (!inode_trylock(inode))
830 			return -EAGAIN;
831 	} else {
832 		inode_lock(inode);
833 	}
834 
835 	count = zonefs_write_checks(iocb, from);
836 	if (count <= 0) {
837 		ret = count;
838 		goto inode_unlock;
839 	}
840 
841 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
842 		ret = -EINVAL;
843 		goto inode_unlock;
844 	}
845 
846 	/* Enforce sequential writes (append only) in sequential zones */
847 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
848 		mutex_lock(&zi->i_truncate_mutex);
849 		if (iocb->ki_pos != zi->i_wpoffset) {
850 			mutex_unlock(&zi->i_truncate_mutex);
851 			ret = -EINVAL;
852 			goto inode_unlock;
853 		}
854 		mutex_unlock(&zi->i_truncate_mutex);
855 		append = sync;
856 	}
857 
858 	if (append)
859 		ret = zonefs_file_dio_append(iocb, from);
860 	else
861 		ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
862 				   &zonefs_write_dio_ops, sync);
863 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
864 	    (ret > 0 || ret == -EIOCBQUEUED)) {
865 		if (ret > 0)
866 			count = ret;
867 		mutex_lock(&zi->i_truncate_mutex);
868 		zi->i_wpoffset += count;
869 		mutex_unlock(&zi->i_truncate_mutex);
870 	}
871 
872 inode_unlock:
873 	inode_unlock(inode);
874 
875 	return ret;
876 }
877 
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)878 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
879 					  struct iov_iter *from)
880 {
881 	struct inode *inode = file_inode(iocb->ki_filp);
882 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
883 	ssize_t ret;
884 
885 	/*
886 	 * Direct IO writes are mandatory for sequential zone files so that the
887 	 * write IO issuing order is preserved.
888 	 */
889 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
890 		return -EIO;
891 
892 	if (iocb->ki_flags & IOCB_NOWAIT) {
893 		if (!inode_trylock(inode))
894 			return -EAGAIN;
895 	} else {
896 		inode_lock(inode);
897 	}
898 
899 	ret = zonefs_write_checks(iocb, from);
900 	if (ret <= 0)
901 		goto inode_unlock;
902 
903 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
904 	if (ret > 0)
905 		iocb->ki_pos += ret;
906 	else if (ret == -EIO)
907 		zonefs_io_error(inode, true);
908 
909 inode_unlock:
910 	inode_unlock(inode);
911 	if (ret > 0)
912 		ret = generic_write_sync(iocb, ret);
913 
914 	return ret;
915 }
916 
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)917 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
918 {
919 	struct inode *inode = file_inode(iocb->ki_filp);
920 
921 	if (unlikely(IS_IMMUTABLE(inode)))
922 		return -EPERM;
923 
924 	if (sb_rdonly(inode->i_sb))
925 		return -EROFS;
926 
927 	/* Write operations beyond the zone size are not allowed */
928 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
929 		return -EFBIG;
930 
931 	if (iocb->ki_flags & IOCB_DIRECT) {
932 		ssize_t ret = zonefs_file_dio_write(iocb, from);
933 		if (ret != -ENOTBLK)
934 			return ret;
935 	}
936 
937 	return zonefs_file_buffered_write(iocb, from);
938 }
939 
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)940 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
941 				       int error, unsigned int flags)
942 {
943 	if (error) {
944 		zonefs_io_error(file_inode(iocb->ki_filp), false);
945 		return error;
946 	}
947 
948 	return 0;
949 }
950 
951 static const struct iomap_dio_ops zonefs_read_dio_ops = {
952 	.end_io			= zonefs_file_read_dio_end_io,
953 };
954 
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)955 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
956 {
957 	struct inode *inode = file_inode(iocb->ki_filp);
958 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
959 	struct super_block *sb = inode->i_sb;
960 	loff_t isize;
961 	ssize_t ret;
962 
963 	/* Offline zones cannot be read */
964 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
965 		return -EPERM;
966 
967 	if (iocb->ki_pos >= zi->i_max_size)
968 		return 0;
969 
970 	if (iocb->ki_flags & IOCB_NOWAIT) {
971 		if (!inode_trylock_shared(inode))
972 			return -EAGAIN;
973 	} else {
974 		inode_lock_shared(inode);
975 	}
976 
977 	/* Limit read operations to written data */
978 	mutex_lock(&zi->i_truncate_mutex);
979 	isize = i_size_read(inode);
980 	if (iocb->ki_pos >= isize) {
981 		mutex_unlock(&zi->i_truncate_mutex);
982 		ret = 0;
983 		goto inode_unlock;
984 	}
985 	iov_iter_truncate(to, isize - iocb->ki_pos);
986 	mutex_unlock(&zi->i_truncate_mutex);
987 
988 	if (iocb->ki_flags & IOCB_DIRECT) {
989 		size_t count = iov_iter_count(to);
990 
991 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
992 			ret = -EINVAL;
993 			goto inode_unlock;
994 		}
995 		file_accessed(iocb->ki_filp);
996 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
997 				   &zonefs_read_dio_ops, is_sync_kiocb(iocb));
998 	} else {
999 		ret = generic_file_read_iter(iocb, to);
1000 		if (ret == -EIO)
1001 			zonefs_io_error(inode, false);
1002 	}
1003 
1004 inode_unlock:
1005 	inode_unlock_shared(inode);
1006 
1007 	return ret;
1008 }
1009 
zonefs_file_use_exp_open(struct inode * inode,struct file * file)1010 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1011 {
1012 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1013 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1014 
1015 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1016 		return false;
1017 
1018 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1019 		return false;
1020 
1021 	if (!(file->f_mode & FMODE_WRITE))
1022 		return false;
1023 
1024 	return true;
1025 }
1026 
zonefs_open_zone(struct inode * inode)1027 static int zonefs_open_zone(struct inode *inode)
1028 {
1029 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1030 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1031 	int ret = 0;
1032 
1033 	mutex_lock(&zi->i_truncate_mutex);
1034 
1035 	if (!zi->i_wr_refcnt) {
1036 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1037 			atomic_dec(&sbi->s_open_zones);
1038 			ret = -EBUSY;
1039 			goto unlock;
1040 		}
1041 
1042 		if (i_size_read(inode) < zi->i_max_size) {
1043 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1044 			if (ret) {
1045 				atomic_dec(&sbi->s_open_zones);
1046 				goto unlock;
1047 			}
1048 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1049 		}
1050 	}
1051 
1052 	zi->i_wr_refcnt++;
1053 
1054 unlock:
1055 	mutex_unlock(&zi->i_truncate_mutex);
1056 
1057 	return ret;
1058 }
1059 
zonefs_file_open(struct inode * inode,struct file * file)1060 static int zonefs_file_open(struct inode *inode, struct file *file)
1061 {
1062 	int ret;
1063 
1064 	ret = generic_file_open(inode, file);
1065 	if (ret)
1066 		return ret;
1067 
1068 	if (zonefs_file_use_exp_open(inode, file))
1069 		return zonefs_open_zone(inode);
1070 
1071 	return 0;
1072 }
1073 
zonefs_close_zone(struct inode * inode)1074 static void zonefs_close_zone(struct inode *inode)
1075 {
1076 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1077 	int ret = 0;
1078 
1079 	mutex_lock(&zi->i_truncate_mutex);
1080 	zi->i_wr_refcnt--;
1081 	if (!zi->i_wr_refcnt) {
1082 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1083 		struct super_block *sb = inode->i_sb;
1084 
1085 		/*
1086 		 * If the file zone is full, it is not open anymore and we only
1087 		 * need to decrement the open count.
1088 		 */
1089 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1090 			goto dec;
1091 
1092 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1093 		if (ret) {
1094 			__zonefs_io_error(inode, false);
1095 			/*
1096 			 * Leaving zones explicitly open may lead to a state
1097 			 * where most zones cannot be written (zone resources
1098 			 * exhausted). So take preventive action by remounting
1099 			 * read-only.
1100 			 */
1101 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1102 			    !(sb->s_flags & SB_RDONLY)) {
1103 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1104 				sb->s_flags |= SB_RDONLY;
1105 			}
1106 		}
1107 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1108 dec:
1109 		atomic_dec(&sbi->s_open_zones);
1110 	}
1111 	mutex_unlock(&zi->i_truncate_mutex);
1112 }
1113 
zonefs_file_release(struct inode * inode,struct file * file)1114 static int zonefs_file_release(struct inode *inode, struct file *file)
1115 {
1116 	/*
1117 	 * If we explicitly open a zone we must close it again as well, but the
1118 	 * zone management operation can fail (either due to an IO error or as
1119 	 * the zone has gone offline or read-only). Make sure we don't fail the
1120 	 * close(2) for user-space.
1121 	 */
1122 	if (zonefs_file_use_exp_open(inode, file))
1123 		zonefs_close_zone(inode);
1124 
1125 	return 0;
1126 }
1127 
1128 static const struct file_operations zonefs_file_operations = {
1129 	.open		= zonefs_file_open,
1130 	.release	= zonefs_file_release,
1131 	.fsync		= zonefs_file_fsync,
1132 	.mmap		= zonefs_file_mmap,
1133 	.llseek		= zonefs_file_llseek,
1134 	.read_iter	= zonefs_file_read_iter,
1135 	.write_iter	= zonefs_file_write_iter,
1136 	.splice_read	= generic_file_splice_read,
1137 	.splice_write	= iter_file_splice_write,
1138 	.iopoll		= iomap_dio_iopoll,
1139 };
1140 
1141 static struct kmem_cache *zonefs_inode_cachep;
1142 
zonefs_alloc_inode(struct super_block * sb)1143 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1144 {
1145 	struct zonefs_inode_info *zi;
1146 
1147 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1148 	if (!zi)
1149 		return NULL;
1150 
1151 	inode_init_once(&zi->i_vnode);
1152 	mutex_init(&zi->i_truncate_mutex);
1153 	init_rwsem(&zi->i_mmap_sem);
1154 	zi->i_wr_refcnt = 0;
1155 
1156 	return &zi->i_vnode;
1157 }
1158 
zonefs_free_inode(struct inode * inode)1159 static void zonefs_free_inode(struct inode *inode)
1160 {
1161 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1162 }
1163 
1164 /*
1165  * File system stat.
1166  */
zonefs_statfs(struct dentry * dentry,struct kstatfs * buf)1167 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1168 {
1169 	struct super_block *sb = dentry->d_sb;
1170 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1171 	enum zonefs_ztype t;
1172 	u64 fsid;
1173 
1174 	buf->f_type = ZONEFS_MAGIC;
1175 	buf->f_bsize = sb->s_blocksize;
1176 	buf->f_namelen = ZONEFS_NAME_MAX;
1177 
1178 	spin_lock(&sbi->s_lock);
1179 
1180 	buf->f_blocks = sbi->s_blocks;
1181 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1182 		buf->f_bfree = 0;
1183 	else
1184 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1185 	buf->f_bavail = buf->f_bfree;
1186 
1187 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1188 		if (sbi->s_nr_files[t])
1189 			buf->f_files += sbi->s_nr_files[t] + 1;
1190 	}
1191 	buf->f_ffree = 0;
1192 
1193 	spin_unlock(&sbi->s_lock);
1194 
1195 	fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
1196 		le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
1197 	buf->f_fsid = u64_to_fsid(fsid);
1198 
1199 	return 0;
1200 }
1201 
1202 enum {
1203 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1204 	Opt_explicit_open, Opt_err,
1205 };
1206 
1207 static const match_table_t tokens = {
1208 	{ Opt_errors_ro,	"errors=remount-ro"},
1209 	{ Opt_errors_zro,	"errors=zone-ro"},
1210 	{ Opt_errors_zol,	"errors=zone-offline"},
1211 	{ Opt_errors_repair,	"errors=repair"},
1212 	{ Opt_explicit_open,	"explicit-open" },
1213 	{ Opt_err,		NULL}
1214 };
1215 
zonefs_parse_options(struct super_block * sb,char * options)1216 static int zonefs_parse_options(struct super_block *sb, char *options)
1217 {
1218 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1219 	substring_t args[MAX_OPT_ARGS];
1220 	char *p;
1221 
1222 	if (!options)
1223 		return 0;
1224 
1225 	while ((p = strsep(&options, ",")) != NULL) {
1226 		int token;
1227 
1228 		if (!*p)
1229 			continue;
1230 
1231 		token = match_token(p, tokens, args);
1232 		switch (token) {
1233 		case Opt_errors_ro:
1234 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1235 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1236 			break;
1237 		case Opt_errors_zro:
1238 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1239 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1240 			break;
1241 		case Opt_errors_zol:
1242 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1243 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1244 			break;
1245 		case Opt_errors_repair:
1246 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1247 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1248 			break;
1249 		case Opt_explicit_open:
1250 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1251 			break;
1252 		default:
1253 			return -EINVAL;
1254 		}
1255 	}
1256 
1257 	return 0;
1258 }
1259 
zonefs_show_options(struct seq_file * seq,struct dentry * root)1260 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1261 {
1262 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1263 
1264 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1265 		seq_puts(seq, ",errors=remount-ro");
1266 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1267 		seq_puts(seq, ",errors=zone-ro");
1268 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1269 		seq_puts(seq, ",errors=zone-offline");
1270 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1271 		seq_puts(seq, ",errors=repair");
1272 
1273 	return 0;
1274 }
1275 
zonefs_remount(struct super_block * sb,int * flags,char * data)1276 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1277 {
1278 	sync_filesystem(sb);
1279 
1280 	return zonefs_parse_options(sb, data);
1281 }
1282 
1283 static const struct super_operations zonefs_sops = {
1284 	.alloc_inode	= zonefs_alloc_inode,
1285 	.free_inode	= zonefs_free_inode,
1286 	.statfs		= zonefs_statfs,
1287 	.remount_fs	= zonefs_remount,
1288 	.show_options	= zonefs_show_options,
1289 };
1290 
1291 static const struct inode_operations zonefs_dir_inode_operations = {
1292 	.lookup		= simple_lookup,
1293 	.setattr	= zonefs_inode_setattr,
1294 };
1295 
zonefs_init_dir_inode(struct inode * parent,struct inode * inode,enum zonefs_ztype type)1296 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1297 				  enum zonefs_ztype type)
1298 {
1299 	struct super_block *sb = parent->i_sb;
1300 
1301 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1302 	inode_init_owner(inode, parent, S_IFDIR | 0555);
1303 	inode->i_op = &zonefs_dir_inode_operations;
1304 	inode->i_fop = &simple_dir_operations;
1305 	set_nlink(inode, 2);
1306 	inc_nlink(parent);
1307 }
1308 
zonefs_init_file_inode(struct inode * inode,struct blk_zone * zone,enum zonefs_ztype type)1309 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1310 				   enum zonefs_ztype type)
1311 {
1312 	struct super_block *sb = inode->i_sb;
1313 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1314 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1315 
1316 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1317 	inode->i_mode = S_IFREG | sbi->s_perm;
1318 
1319 	zi->i_ztype = type;
1320 	zi->i_zsector = zone->start;
1321 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1322 
1323 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1324 			       zone->capacity << SECTOR_SHIFT);
1325 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1326 
1327 	inode->i_uid = sbi->s_uid;
1328 	inode->i_gid = sbi->s_gid;
1329 	inode->i_size = zi->i_wpoffset;
1330 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1331 
1332 	inode->i_op = &zonefs_file_inode_operations;
1333 	inode->i_fop = &zonefs_file_operations;
1334 	inode->i_mapping->a_ops = &zonefs_file_aops;
1335 
1336 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1337 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1338 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1339 }
1340 
zonefs_create_inode(struct dentry * parent,const char * name,struct blk_zone * zone,enum zonefs_ztype type)1341 static struct dentry *zonefs_create_inode(struct dentry *parent,
1342 					const char *name, struct blk_zone *zone,
1343 					enum zonefs_ztype type)
1344 {
1345 	struct inode *dir = d_inode(parent);
1346 	struct dentry *dentry;
1347 	struct inode *inode;
1348 
1349 	dentry = d_alloc_name(parent, name);
1350 	if (!dentry)
1351 		return NULL;
1352 
1353 	inode = new_inode(parent->d_sb);
1354 	if (!inode)
1355 		goto dput;
1356 
1357 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1358 	if (zone)
1359 		zonefs_init_file_inode(inode, zone, type);
1360 	else
1361 		zonefs_init_dir_inode(dir, inode, type);
1362 	d_add(dentry, inode);
1363 	dir->i_size++;
1364 
1365 	return dentry;
1366 
1367 dput:
1368 	dput(dentry);
1369 
1370 	return NULL;
1371 }
1372 
1373 struct zonefs_zone_data {
1374 	struct super_block	*sb;
1375 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1376 	struct blk_zone		*zones;
1377 };
1378 
1379 /*
1380  * Create a zone group and populate it with zone files.
1381  */
zonefs_create_zgroup(struct zonefs_zone_data * zd,enum zonefs_ztype type)1382 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1383 				enum zonefs_ztype type)
1384 {
1385 	struct super_block *sb = zd->sb;
1386 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1387 	struct blk_zone *zone, *next, *end;
1388 	const char *zgroup_name;
1389 	char *file_name;
1390 	struct dentry *dir;
1391 	unsigned int n = 0;
1392 	int ret;
1393 
1394 	/* If the group is empty, there is nothing to do */
1395 	if (!zd->nr_zones[type])
1396 		return 0;
1397 
1398 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1399 	if (!file_name)
1400 		return -ENOMEM;
1401 
1402 	if (type == ZONEFS_ZTYPE_CNV)
1403 		zgroup_name = "cnv";
1404 	else
1405 		zgroup_name = "seq";
1406 
1407 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1408 	if (!dir) {
1409 		ret = -ENOMEM;
1410 		goto free;
1411 	}
1412 
1413 	/*
1414 	 * The first zone contains the super block: skip it.
1415 	 */
1416 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1417 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1418 
1419 		next = zone + 1;
1420 		if (zonefs_zone_type(zone) != type)
1421 			continue;
1422 
1423 		/*
1424 		 * For conventional zones, contiguous zones can be aggregated
1425 		 * together to form larger files. Note that this overwrites the
1426 		 * length of the first zone of the set of contiguous zones
1427 		 * aggregated together. If one offline or read-only zone is
1428 		 * found, assume that all zones aggregated have the same
1429 		 * condition.
1430 		 */
1431 		if (type == ZONEFS_ZTYPE_CNV &&
1432 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1433 			for (; next < end; next++) {
1434 				if (zonefs_zone_type(next) != type)
1435 					break;
1436 				zone->len += next->len;
1437 				zone->capacity += next->capacity;
1438 				if (next->cond == BLK_ZONE_COND_READONLY &&
1439 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1440 					zone->cond = BLK_ZONE_COND_READONLY;
1441 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1442 					zone->cond = BLK_ZONE_COND_OFFLINE;
1443 			}
1444 			if (zone->capacity != zone->len) {
1445 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1446 				ret = -EINVAL;
1447 				goto free;
1448 			}
1449 		}
1450 
1451 		/*
1452 		 * Use the file number within its group as file name.
1453 		 */
1454 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1455 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1456 			ret = -ENOMEM;
1457 			goto free;
1458 		}
1459 
1460 		n++;
1461 	}
1462 
1463 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1464 		    zgroup_name, n, n > 1 ? "s" : "");
1465 
1466 	sbi->s_nr_files[type] = n;
1467 	ret = 0;
1468 
1469 free:
1470 	kfree(file_name);
1471 
1472 	return ret;
1473 }
1474 
zonefs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1475 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1476 				   void *data)
1477 {
1478 	struct zonefs_zone_data *zd = data;
1479 
1480 	/*
1481 	 * Count the number of usable zones: the first zone at index 0 contains
1482 	 * the super block and is ignored.
1483 	 */
1484 	switch (zone->type) {
1485 	case BLK_ZONE_TYPE_CONVENTIONAL:
1486 		zone->wp = zone->start + zone->len;
1487 		if (idx)
1488 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1489 		break;
1490 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1491 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1492 		if (idx)
1493 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1494 		break;
1495 	default:
1496 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1497 			   zone->type);
1498 		return -EIO;
1499 	}
1500 
1501 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1502 
1503 	return 0;
1504 }
1505 
zonefs_get_zone_info(struct zonefs_zone_data * zd)1506 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1507 {
1508 	struct block_device *bdev = zd->sb->s_bdev;
1509 	int ret;
1510 
1511 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1512 			     sizeof(struct blk_zone), GFP_KERNEL);
1513 	if (!zd->zones)
1514 		return -ENOMEM;
1515 
1516 	/* Get zones information from the device */
1517 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1518 				  zonefs_get_zone_info_cb, zd);
1519 	if (ret < 0) {
1520 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1521 		return ret;
1522 	}
1523 
1524 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1525 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1526 			   ret, blkdev_nr_zones(bdev->bd_disk));
1527 		return -EIO;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
zonefs_cleanup_zone_info(struct zonefs_zone_data * zd)1533 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1534 {
1535 	kvfree(zd->zones);
1536 }
1537 
1538 /*
1539  * Read super block information from the device.
1540  */
zonefs_read_super(struct super_block * sb)1541 static int zonefs_read_super(struct super_block *sb)
1542 {
1543 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1544 	struct zonefs_super *super;
1545 	u32 crc, stored_crc;
1546 	struct page *page;
1547 	struct bio_vec bio_vec;
1548 	struct bio bio;
1549 	int ret;
1550 
1551 	page = alloc_page(GFP_KERNEL);
1552 	if (!page)
1553 		return -ENOMEM;
1554 
1555 	bio_init(&bio, &bio_vec, 1);
1556 	bio.bi_iter.bi_sector = 0;
1557 	bio.bi_opf = REQ_OP_READ;
1558 	bio_set_dev(&bio, sb->s_bdev);
1559 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1560 
1561 	ret = submit_bio_wait(&bio);
1562 	if (ret)
1563 		goto free_page;
1564 
1565 	super = kmap(page);
1566 
1567 	ret = -EINVAL;
1568 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1569 		goto unmap;
1570 
1571 	stored_crc = le32_to_cpu(super->s_crc);
1572 	super->s_crc = 0;
1573 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1574 	if (crc != stored_crc) {
1575 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1576 			   crc, stored_crc);
1577 		goto unmap;
1578 	}
1579 
1580 	sbi->s_features = le64_to_cpu(super->s_features);
1581 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1582 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1583 			   sbi->s_features);
1584 		goto unmap;
1585 	}
1586 
1587 	if (sbi->s_features & ZONEFS_F_UID) {
1588 		sbi->s_uid = make_kuid(current_user_ns(),
1589 				       le32_to_cpu(super->s_uid));
1590 		if (!uid_valid(sbi->s_uid)) {
1591 			zonefs_err(sb, "Invalid UID feature\n");
1592 			goto unmap;
1593 		}
1594 	}
1595 
1596 	if (sbi->s_features & ZONEFS_F_GID) {
1597 		sbi->s_gid = make_kgid(current_user_ns(),
1598 				       le32_to_cpu(super->s_gid));
1599 		if (!gid_valid(sbi->s_gid)) {
1600 			zonefs_err(sb, "Invalid GID feature\n");
1601 			goto unmap;
1602 		}
1603 	}
1604 
1605 	if (sbi->s_features & ZONEFS_F_PERM)
1606 		sbi->s_perm = le32_to_cpu(super->s_perm);
1607 
1608 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1609 		zonefs_err(sb, "Reserved area is being used\n");
1610 		goto unmap;
1611 	}
1612 
1613 	import_uuid(&sbi->s_uuid, super->s_uuid);
1614 	ret = 0;
1615 
1616 unmap:
1617 	kunmap(page);
1618 free_page:
1619 	__free_page(page);
1620 
1621 	return ret;
1622 }
1623 
1624 /*
1625  * Check that the device is zoned. If it is, get the list of zones and create
1626  * sub-directories and files according to the device zone configuration and
1627  * format options.
1628  */
zonefs_fill_super(struct super_block * sb,void * data,int silent)1629 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1630 {
1631 	struct zonefs_zone_data zd;
1632 	struct zonefs_sb_info *sbi;
1633 	struct inode *inode;
1634 	enum zonefs_ztype t;
1635 	int ret;
1636 
1637 	if (!bdev_is_zoned(sb->s_bdev)) {
1638 		zonefs_err(sb, "Not a zoned block device\n");
1639 		return -EINVAL;
1640 	}
1641 
1642 	/*
1643 	 * Initialize super block information: the maximum file size is updated
1644 	 * when the zone files are created so that the format option
1645 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1646 	 * beyond the zone size is taken into account.
1647 	 */
1648 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1649 	if (!sbi)
1650 		return -ENOMEM;
1651 
1652 	spin_lock_init(&sbi->s_lock);
1653 	sb->s_fs_info = sbi;
1654 	sb->s_magic = ZONEFS_MAGIC;
1655 	sb->s_maxbytes = 0;
1656 	sb->s_op = &zonefs_sops;
1657 	sb->s_time_gran	= 1;
1658 
1659 	/*
1660 	 * The block size is set to the device physical sector size to ensure
1661 	 * that write operations on 512e devices (512B logical block and 4KB
1662 	 * physical block) are always aligned to the device physical blocks,
1663 	 * as mandated by the ZBC/ZAC specifications.
1664 	 */
1665 	sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1666 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1667 	sbi->s_uid = GLOBAL_ROOT_UID;
1668 	sbi->s_gid = GLOBAL_ROOT_GID;
1669 	sbi->s_perm = 0640;
1670 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1671 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1672 	atomic_set(&sbi->s_open_zones, 0);
1673 	if (!sbi->s_max_open_zones &&
1674 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1675 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1676 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1677 	}
1678 
1679 	ret = zonefs_read_super(sb);
1680 	if (ret)
1681 		return ret;
1682 
1683 	ret = zonefs_parse_options(sb, data);
1684 	if (ret)
1685 		return ret;
1686 
1687 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1688 	zd.sb = sb;
1689 	ret = zonefs_get_zone_info(&zd);
1690 	if (ret)
1691 		goto cleanup;
1692 
1693 	zonefs_info(sb, "Mounting %u zones",
1694 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1695 
1696 	/* Create root directory inode */
1697 	ret = -ENOMEM;
1698 	inode = new_inode(sb);
1699 	if (!inode)
1700 		goto cleanup;
1701 
1702 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1703 	inode->i_mode = S_IFDIR | 0555;
1704 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1705 	inode->i_op = &zonefs_dir_inode_operations;
1706 	inode->i_fop = &simple_dir_operations;
1707 	set_nlink(inode, 2);
1708 
1709 	sb->s_root = d_make_root(inode);
1710 	if (!sb->s_root)
1711 		goto cleanup;
1712 
1713 	/* Create and populate files in zone groups directories */
1714 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1715 		ret = zonefs_create_zgroup(&zd, t);
1716 		if (ret)
1717 			break;
1718 	}
1719 
1720 cleanup:
1721 	zonefs_cleanup_zone_info(&zd);
1722 
1723 	return ret;
1724 }
1725 
zonefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1726 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1727 				   int flags, const char *dev_name, void *data)
1728 {
1729 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1730 }
1731 
zonefs_kill_super(struct super_block * sb)1732 static void zonefs_kill_super(struct super_block *sb)
1733 {
1734 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1735 
1736 	if (sb->s_root)
1737 		d_genocide(sb->s_root);
1738 	kill_block_super(sb);
1739 	kfree(sbi);
1740 }
1741 
1742 /*
1743  * File system definition and registration.
1744  */
1745 static struct file_system_type zonefs_type = {
1746 	.owner		= THIS_MODULE,
1747 	.name		= "zonefs",
1748 	.mount		= zonefs_mount,
1749 	.kill_sb	= zonefs_kill_super,
1750 	.fs_flags	= FS_REQUIRES_DEV,
1751 };
1752 
zonefs_init_inodecache(void)1753 static int __init zonefs_init_inodecache(void)
1754 {
1755 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1756 			sizeof(struct zonefs_inode_info), 0,
1757 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1758 			NULL);
1759 	if (zonefs_inode_cachep == NULL)
1760 		return -ENOMEM;
1761 	return 0;
1762 }
1763 
zonefs_destroy_inodecache(void)1764 static void zonefs_destroy_inodecache(void)
1765 {
1766 	/*
1767 	 * Make sure all delayed rcu free inodes are flushed before we
1768 	 * destroy the inode cache.
1769 	 */
1770 	rcu_barrier();
1771 	kmem_cache_destroy(zonefs_inode_cachep);
1772 }
1773 
zonefs_init(void)1774 static int __init zonefs_init(void)
1775 {
1776 	int ret;
1777 
1778 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1779 
1780 	ret = zonefs_init_inodecache();
1781 	if (ret)
1782 		return ret;
1783 
1784 	ret = register_filesystem(&zonefs_type);
1785 	if (ret) {
1786 		zonefs_destroy_inodecache();
1787 		return ret;
1788 	}
1789 
1790 	return 0;
1791 }
1792 
zonefs_exit(void)1793 static void __exit zonefs_exit(void)
1794 {
1795 	zonefs_destroy_inodecache();
1796 	unregister_filesystem(&zonefs_type);
1797 }
1798 
1799 MODULE_AUTHOR("Damien Le Moal");
1800 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1801 MODULE_LICENSE("GPL");
1802 MODULE_ALIAS_FS("zonefs");
1803 module_init(zonefs_init);
1804 module_exit(zonefs_exit);
1805