• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 #include <linux/mm_purgeable.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93 
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98 
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102 
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112 
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121 					1;
122 #else
123 					2;
124 #endif
125 
126 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)127 static inline bool arch_faults_on_old_pte(void)
128 {
129 	/*
130 	 * Those arches which don't have hw access flag feature need to
131 	 * implement their own helper. By default, "true" means pagefault
132 	 * will be hit on old pte.
133 	 */
134 	return true;
135 }
136 #endif
137 
disable_randmaps(char * s)138 static int __init disable_randmaps(char *s)
139 {
140 	randomize_va_space = 0;
141 	return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144 
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147 
148 unsigned long highest_memmap_pfn __read_mostly;
149 
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
init_zero_pfn(void)153 static int __init init_zero_pfn(void)
154 {
155 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 	return 0;
157 }
158 early_initcall(init_zero_pfn);
159 
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162 	trace_rss_stat(mm, member, count);
163 }
164 
165 #if defined(SPLIT_RSS_COUNTING)
166 
sync_mm_rss(struct mm_struct * mm)167 void sync_mm_rss(struct mm_struct *mm)
168 {
169 	int i;
170 
171 	for (i = 0; i < NR_MM_COUNTERS; i++) {
172 		if (current->rss_stat.count[i]) {
173 			add_mm_counter(mm, i, current->rss_stat.count[i]);
174 			current->rss_stat.count[i] = 0;
175 		}
176 	}
177 	current->rss_stat.events = 0;
178 }
179 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182 	struct task_struct *task = current;
183 
184 	if (likely(task->mm == mm))
185 		task->rss_stat.count[member] += val;
186 	else
187 		add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191 
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196 	if (unlikely(task != current))
197 		return;
198 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199 		sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202 
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205 
check_sync_rss_stat(struct task_struct * task)206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209 
210 #endif /* SPLIT_RSS_COUNTING */
211 
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 			   unsigned long addr)
218 {
219 	pgtable_t token = pmd_pgtable(*pmd);
220 	pmd_clear(pmd);
221 	pte_free_tlb(tlb, token, addr);
222 	mm_dec_nr_ptes(tlb->mm);
223 }
224 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 				unsigned long addr, unsigned long end,
227 				unsigned long floor, unsigned long ceiling)
228 {
229 	pmd_t *pmd;
230 	unsigned long next;
231 	unsigned long start;
232 
233 	start = addr;
234 	pmd = pmd_offset(pud, addr);
235 	do {
236 		next = pmd_addr_end(addr, end);
237 		if (pmd_none_or_clear_bad(pmd))
238 			continue;
239 		free_pte_range(tlb, pmd, addr);
240 	} while (pmd++, addr = next, addr != end);
241 
242 	start &= PUD_MASK;
243 	if (start < floor)
244 		return;
245 	if (ceiling) {
246 		ceiling &= PUD_MASK;
247 		if (!ceiling)
248 			return;
249 	}
250 	if (end - 1 > ceiling - 1)
251 		return;
252 
253 	pmd = pmd_offset(pud, start);
254 	pud_clear(pud);
255 	pmd_free_tlb(tlb, pmd, start);
256 	mm_dec_nr_pmds(tlb->mm);
257 }
258 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260 				unsigned long addr, unsigned long end,
261 				unsigned long floor, unsigned long ceiling)
262 {
263 	pud_t *pud;
264 	unsigned long next;
265 	unsigned long start;
266 
267 	start = addr;
268 	pud = pud_offset(p4d, addr);
269 	do {
270 		next = pud_addr_end(addr, end);
271 		if (pud_none_or_clear_bad(pud))
272 			continue;
273 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274 	} while (pud++, addr = next, addr != end);
275 
276 	start &= P4D_MASK;
277 	if (start < floor)
278 		return;
279 	if (ceiling) {
280 		ceiling &= P4D_MASK;
281 		if (!ceiling)
282 			return;
283 	}
284 	if (end - 1 > ceiling - 1)
285 		return;
286 
287 	pud = pud_offset(p4d, start);
288 	p4d_clear(p4d);
289 	pud_free_tlb(tlb, pud, start);
290 	mm_dec_nr_puds(tlb->mm);
291 }
292 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 				unsigned long addr, unsigned long end,
295 				unsigned long floor, unsigned long ceiling)
296 {
297 	p4d_t *p4d;
298 	unsigned long next;
299 	unsigned long start;
300 
301 	start = addr;
302 	p4d = p4d_offset(pgd, addr);
303 	do {
304 		next = p4d_addr_end(addr, end);
305 		if (p4d_none_or_clear_bad(p4d))
306 			continue;
307 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 	} while (p4d++, addr = next, addr != end);
309 
310 	start &= PGDIR_MASK;
311 	if (start < floor)
312 		return;
313 	if (ceiling) {
314 		ceiling &= PGDIR_MASK;
315 		if (!ceiling)
316 			return;
317 	}
318 	if (end - 1 > ceiling - 1)
319 		return;
320 
321 	p4d = p4d_offset(pgd, start);
322 	pgd_clear(pgd);
323 	p4d_free_tlb(tlb, p4d, start);
324 }
325 
326 /*
327  * This function frees user-level page tables of a process.
328  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)329 void free_pgd_range(struct mmu_gather *tlb,
330 			unsigned long addr, unsigned long end,
331 			unsigned long floor, unsigned long ceiling)
332 {
333 	pgd_t *pgd;
334 	unsigned long next;
335 
336 	/*
337 	 * The next few lines have given us lots of grief...
338 	 *
339 	 * Why are we testing PMD* at this top level?  Because often
340 	 * there will be no work to do at all, and we'd prefer not to
341 	 * go all the way down to the bottom just to discover that.
342 	 *
343 	 * Why all these "- 1"s?  Because 0 represents both the bottom
344 	 * of the address space and the top of it (using -1 for the
345 	 * top wouldn't help much: the masks would do the wrong thing).
346 	 * The rule is that addr 0 and floor 0 refer to the bottom of
347 	 * the address space, but end 0 and ceiling 0 refer to the top
348 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 	 * that end 0 case should be mythical).
350 	 *
351 	 * Wherever addr is brought up or ceiling brought down, we must
352 	 * be careful to reject "the opposite 0" before it confuses the
353 	 * subsequent tests.  But what about where end is brought down
354 	 * by PMD_SIZE below? no, end can't go down to 0 there.
355 	 *
356 	 * Whereas we round start (addr) and ceiling down, by different
357 	 * masks at different levels, in order to test whether a table
358 	 * now has no other vmas using it, so can be freed, we don't
359 	 * bother to round floor or end up - the tests don't need that.
360 	 */
361 
362 	addr &= PMD_MASK;
363 	if (addr < floor) {
364 		addr += PMD_SIZE;
365 		if (!addr)
366 			return;
367 	}
368 	if (ceiling) {
369 		ceiling &= PMD_MASK;
370 		if (!ceiling)
371 			return;
372 	}
373 	if (end - 1 > ceiling - 1)
374 		end -= PMD_SIZE;
375 	if (addr > end - 1)
376 		return;
377 	/*
378 	 * We add page table cache pages with PAGE_SIZE,
379 	 * (see pte_free_tlb()), flush the tlb if we need
380 	 */
381 	tlb_change_page_size(tlb, PAGE_SIZE);
382 	pgd = pgd_offset(tlb->mm, addr);
383 	do {
384 		next = pgd_addr_end(addr, end);
385 		if (pgd_none_or_clear_bad(pgd))
386 			continue;
387 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388 	} while (pgd++, addr = next, addr != end);
389 }
390 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392 		unsigned long floor, unsigned long ceiling)
393 {
394 	while (vma) {
395 		struct vm_area_struct *next = vma->vm_next;
396 		unsigned long addr = vma->vm_start;
397 
398 		/*
399 		 * Hide vma from rmap and truncate_pagecache before freeing
400 		 * pgtables
401 		 */
402 		unlink_anon_vmas(vma);
403 		unlink_file_vma(vma);
404 
405 		if (is_vm_hugetlb_page(vma)) {
406 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407 				floor, next ? next->vm_start : ceiling);
408 		} else {
409 			/*
410 			 * Optimization: gather nearby vmas into one call down
411 			 */
412 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413 			       && !is_vm_hugetlb_page(next)) {
414 				vma = next;
415 				next = vma->vm_next;
416 				unlink_anon_vmas(vma);
417 				unlink_file_vma(vma);
418 			}
419 			free_pgd_range(tlb, addr, vma->vm_end,
420 				floor, next ? next->vm_start : ceiling);
421 		}
422 		vma = next;
423 	}
424 }
425 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428 	spinlock_t *ptl;
429 	pgtable_t new = pte_alloc_one(mm);
430 	if (!new)
431 		return -ENOMEM;
432 
433 	/*
434 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 	 * visible before the pte is made visible to other CPUs by being
436 	 * put into page tables.
437 	 *
438 	 * The other side of the story is the pointer chasing in the page
439 	 * table walking code (when walking the page table without locking;
440 	 * ie. most of the time). Fortunately, these data accesses consist
441 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 	 * being the notable exception) will already guarantee loads are
443 	 * seen in-order. See the alpha page table accessors for the
444 	 * smp_rmb() barriers in page table walking code.
445 	 */
446 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447 
448 	ptl = pmd_lock(mm, pmd);
449 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
450 		mm_inc_nr_ptes(mm);
451 		pmd_populate(mm, pmd, new);
452 		new = NULL;
453 	}
454 	spin_unlock(ptl);
455 	if (new)
456 		pte_free(mm, new);
457 	return 0;
458 }
459 
__pte_alloc_kernel(pmd_t * pmd)460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462 	pte_t *new = pte_alloc_one_kernel(&init_mm);
463 	if (!new)
464 		return -ENOMEM;
465 
466 	smp_wmb(); /* See comment in __pte_alloc */
467 
468 	spin_lock(&init_mm.page_table_lock);
469 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
470 		pmd_populate_kernel(&init_mm, pmd, new);
471 		new = NULL;
472 	}
473 	spin_unlock(&init_mm.page_table_lock);
474 	if (new)
475 		pte_free_kernel(&init_mm, new);
476 	return 0;
477 }
478 
init_rss_vec(int * rss)479 static inline void init_rss_vec(int *rss)
480 {
481 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483 
add_mm_rss_vec(struct mm_struct * mm,int * rss)484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486 	int i;
487 
488 	if (current->mm == mm)
489 		sync_mm_rss(mm);
490 	for (i = 0; i < NR_MM_COUNTERS; i++)
491 		if (rss[i])
492 			add_mm_counter(mm, i, rss[i]);
493 }
494 
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 			  pte_t pte, struct page *page)
504 {
505 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506 	p4d_t *p4d = p4d_offset(pgd, addr);
507 	pud_t *pud = pud_offset(p4d, addr);
508 	pmd_t *pmd = pmd_offset(pud, addr);
509 	struct address_space *mapping;
510 	pgoff_t index;
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			return;
523 		}
524 		if (nr_unshown) {
525 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 				 nr_unshown);
527 			nr_unshown = 0;
528 		}
529 		nr_shown = 0;
530 	}
531 	if (nr_shown++ == 0)
532 		resume = jiffies + 60 * HZ;
533 
534 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 	index = linear_page_index(vma, addr);
536 
537 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538 		 current->comm,
539 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
540 	if (page)
541 		dump_page(page, "bad pte");
542 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545 		 vma->vm_file,
546 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 		 mapping ? mapping->a_ops->readpage : NULL);
549 	dump_stack();
550 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552 
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 			    pte_t pte)
597 {
598 	unsigned long pfn = pte_pfn(pte);
599 
600 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601 		if (likely(!pte_special(pte)))
602 			goto check_pfn;
603 		if (vma->vm_ops && vma->vm_ops->find_special_page)
604 			return vma->vm_ops->find_special_page(vma, addr);
605 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 			return NULL;
607 		if (is_zero_pfn(pfn))
608 			return NULL;
609 		if (pte_devmap(pte))
610 			return NULL;
611 
612 		print_bad_pte(vma, addr, pte, NULL);
613 		return NULL;
614 	}
615 
616 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617 
618 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 		if (vma->vm_flags & VM_MIXEDMAP) {
620 			if (!pfn_valid(pfn))
621 				return NULL;
622 			goto out;
623 		} else {
624 			unsigned long off;
625 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 			if (pfn == vma->vm_pgoff + off)
627 				return NULL;
628 			if (!is_cow_mapping(vma->vm_flags))
629 				return NULL;
630 		}
631 	}
632 
633 	if (is_zero_pfn(pfn))
634 		return NULL;
635 
636 check_pfn:
637 	if (unlikely(pfn > highest_memmap_pfn)) {
638 		print_bad_pte(vma, addr, pte, NULL);
639 		return NULL;
640 	}
641 
642 	/*
643 	 * NOTE! We still have PageReserved() pages in the page tables.
644 	 * eg. VDSO mappings can cause them to exist.
645 	 */
646 out:
647 	return pfn_to_page(pfn);
648 }
649 
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 				pmd_t pmd)
653 {
654 	unsigned long pfn = pmd_pfn(pmd);
655 
656 	/*
657 	 * There is no pmd_special() but there may be special pmds, e.g.
658 	 * in a direct-access (dax) mapping, so let's just replicate the
659 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660 	 */
661 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 		if (vma->vm_flags & VM_MIXEDMAP) {
663 			if (!pfn_valid(pfn))
664 				return NULL;
665 			goto out;
666 		} else {
667 			unsigned long off;
668 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 			if (pfn == vma->vm_pgoff + off)
670 				return NULL;
671 			if (!is_cow_mapping(vma->vm_flags))
672 				return NULL;
673 		}
674 	}
675 
676 	if (pmd_devmap(pmd))
677 		return NULL;
678 	if (is_huge_zero_pmd(pmd))
679 		return NULL;
680 	if (unlikely(pfn > highest_memmap_pfn))
681 		return NULL;
682 
683 	/*
684 	 * NOTE! We still have PageReserved() pages in the page tables.
685 	 * eg. VDSO mappings can cause them to exist.
686 	 */
687 out:
688 	return pfn_to_page(pfn);
689 }
690 #endif
691 
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697 
698 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
701 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
702 {
703 	unsigned long vm_flags = dst_vma->vm_flags;
704 	pte_t pte = *src_pte;
705 	struct page *page;
706 	swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 	if (likely(!non_swap_entry(entry))) {
709 		if (swap_duplicate(entry) < 0)
710 			return entry.val;
711 
712 		/* make sure dst_mm is on swapoff's mmlist. */
713 		if (unlikely(list_empty(&dst_mm->mmlist))) {
714 			spin_lock(&mmlist_lock);
715 			if (list_empty(&dst_mm->mmlist))
716 				list_add(&dst_mm->mmlist,
717 						&src_mm->mmlist);
718 			spin_unlock(&mmlist_lock);
719 		}
720 		rss[MM_SWAPENTS]++;
721 	} else if (is_migration_entry(entry)) {
722 		page = migration_entry_to_page(entry);
723 
724 		rss[mm_counter(page)]++;
725 
726 		if (is_write_migration_entry(entry) &&
727 				is_cow_mapping(vm_flags)) {
728 			/*
729 			 * COW mappings require pages in both
730 			 * parent and child to be set to read.
731 			 */
732 			make_migration_entry_read(&entry);
733 			pte = swp_entry_to_pte(entry);
734 			if (pte_swp_soft_dirty(*src_pte))
735 				pte = pte_swp_mksoft_dirty(pte);
736 			if (pte_swp_uffd_wp(*src_pte))
737 				pte = pte_swp_mkuffd_wp(pte);
738 			set_pte_at(src_mm, addr, src_pte, pte);
739 		}
740 	} else if (is_device_private_entry(entry)) {
741 		page = device_private_entry_to_page(entry);
742 
743 		/*
744 		 * Update rss count even for unaddressable pages, as
745 		 * they should treated just like normal pages in this
746 		 * respect.
747 		 *
748 		 * We will likely want to have some new rss counters
749 		 * for unaddressable pages, at some point. But for now
750 		 * keep things as they are.
751 		 */
752 		get_page(page);
753 		rss[mm_counter(page)]++;
754 		page_dup_rmap(page, false);
755 
756 		/*
757 		 * We do not preserve soft-dirty information, because so
758 		 * far, checkpoint/restore is the only feature that
759 		 * requires that. And checkpoint/restore does not work
760 		 * when a device driver is involved (you cannot easily
761 		 * save and restore device driver state).
762 		 */
763 		if (is_write_device_private_entry(entry) &&
764 		    is_cow_mapping(vm_flags)) {
765 			make_device_private_entry_read(&entry);
766 			pte = swp_entry_to_pte(entry);
767 			if (pte_swp_uffd_wp(*src_pte))
768 				pte = pte_swp_mkuffd_wp(pte);
769 			set_pte_at(src_mm, addr, src_pte, pte);
770 		}
771 	}
772 	if (!userfaultfd_wp(dst_vma))
773 		pte = pte_swp_clear_uffd_wp(pte);
774 	set_pte_at(dst_mm, addr, dst_pte, pte);
775 	return 0;
776 }
777 
778 /*
779  * Copy a present and normal page if necessary.
780  *
781  * NOTE! The usual case is that this doesn't need to do
782  * anything, and can just return a positive value. That
783  * will let the caller know that it can just increase
784  * the page refcount and re-use the pte the traditional
785  * way.
786  *
787  * But _if_ we need to copy it because it needs to be
788  * pinned in the parent (and the child should get its own
789  * copy rather than just a reference to the same page),
790  * we'll do that here and return zero to let the caller
791  * know we're done.
792  *
793  * And if we need a pre-allocated page but don't yet have
794  * one, return a negative error to let the preallocation
795  * code know so that it can do so outside the page table
796  * lock.
797  */
798 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)799 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
800 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
801 		  struct page **prealloc, pte_t pte, struct page *page)
802 {
803 	struct mm_struct *src_mm = src_vma->vm_mm;
804 	struct page *new_page;
805 
806 	if (!is_cow_mapping(src_vma->vm_flags))
807 		return 1;
808 
809 	/*
810 	 * What we want to do is to check whether this page may
811 	 * have been pinned by the parent process.  If so,
812 	 * instead of wrprotect the pte on both sides, we copy
813 	 * the page immediately so that we'll always guarantee
814 	 * the pinned page won't be randomly replaced in the
815 	 * future.
816 	 *
817 	 * The page pinning checks are just "has this mm ever
818 	 * seen pinning", along with the (inexact) check of
819 	 * the page count. That might give false positives for
820 	 * for pinning, but it will work correctly.
821 	 */
822 	if (likely(!atomic_read(&src_mm->has_pinned)))
823 		return 1;
824 	if (likely(!page_maybe_dma_pinned(page)))
825 		return 1;
826 
827 	new_page = *prealloc;
828 	if (!new_page)
829 		return -EAGAIN;
830 
831 	/*
832 	 * We have a prealloc page, all good!  Take it
833 	 * over and copy the page & arm it.
834 	 */
835 	*prealloc = NULL;
836 	copy_user_highpage(new_page, page, addr, src_vma);
837 	__SetPageUptodate(new_page);
838 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
839 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
840 	rss[mm_counter(new_page)]++;
841 
842 	/* All done, just insert the new page copy in the child */
843 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
844 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
845 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
846 		/* Uffd-wp needs to be delivered to dest pte as well */
847 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
848 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
849 	return 0;
850 }
851 
852 /*
853  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
854  * is required to copy this pte.
855  */
856 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)857 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 		 struct page **prealloc)
860 {
861 	struct mm_struct *src_mm = src_vma->vm_mm;
862 	unsigned long vm_flags = src_vma->vm_flags;
863 	pte_t pte = *src_pte;
864 	struct page *page;
865 
866 	page = vm_normal_page(src_vma, addr, pte);
867 	if (page) {
868 		int retval;
869 
870 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 					   addr, rss, prealloc, pte, page);
872 		if (retval <= 0)
873 			return retval;
874 
875 		get_page(page);
876 		page_dup_rmap(page, false);
877 		rss[mm_counter(page)]++;
878 	}
879 
880 	/*
881 	 * If it's a COW mapping, write protect it both
882 	 * in the parent and the child
883 	 */
884 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
885 		ptep_set_wrprotect(src_mm, addr, src_pte);
886 		pte = pte_wrprotect(pte);
887 	}
888 
889 	/*
890 	 * If it's a shared mapping, mark it clean in
891 	 * the child
892 	 */
893 	if (vm_flags & VM_SHARED)
894 		pte = pte_mkclean(pte);
895 	pte = pte_mkold(pte);
896 
897 	if (!userfaultfd_wp(dst_vma))
898 		pte = pte_clear_uffd_wp(pte);
899 
900 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
901 	return 0;
902 }
903 
904 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)905 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
906 		   unsigned long addr)
907 {
908 	struct page *new_page;
909 
910 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
911 	if (!new_page)
912 		return NULL;
913 
914 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
915 		put_page(new_page);
916 		return NULL;
917 	}
918 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
919 
920 	return new_page;
921 }
922 
923 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)924 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
925 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
926 	       unsigned long end)
927 {
928 	struct mm_struct *dst_mm = dst_vma->vm_mm;
929 	struct mm_struct *src_mm = src_vma->vm_mm;
930 	pte_t *orig_src_pte, *orig_dst_pte;
931 	pte_t *src_pte, *dst_pte;
932 	spinlock_t *src_ptl, *dst_ptl;
933 	int progress, ret = 0;
934 	int rss[NR_MM_COUNTERS];
935 	swp_entry_t entry = (swp_entry_t){0};
936 	struct page *prealloc = NULL;
937 
938 again:
939 	progress = 0;
940 	init_rss_vec(rss);
941 
942 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943 	if (!dst_pte) {
944 		ret = -ENOMEM;
945 		goto out;
946 	}
947 	src_pte = pte_offset_map(src_pmd, addr);
948 	src_ptl = pte_lockptr(src_mm, src_pmd);
949 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
950 	orig_src_pte = src_pte;
951 	orig_dst_pte = dst_pte;
952 	arch_enter_lazy_mmu_mode();
953 
954 	do {
955 		/*
956 		 * We are holding two locks at this point - either of them
957 		 * could generate latencies in another task on another CPU.
958 		 */
959 		if (progress >= 32) {
960 			progress = 0;
961 			if (need_resched() ||
962 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
963 				break;
964 		}
965 		if (pte_none(*src_pte)) {
966 			progress++;
967 			continue;
968 		}
969 		if (unlikely(!pte_present(*src_pte))) {
970 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
971 							dst_pte, src_pte,
972 							dst_vma, src_vma,
973 							addr, rss);
974 			if (entry.val)
975 				break;
976 			progress += 8;
977 			continue;
978 		}
979 		/* copy_present_pte() will clear `*prealloc' if consumed */
980 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
981 				       addr, rss, &prealloc);
982 		/*
983 		 * If we need a pre-allocated page for this pte, drop the
984 		 * locks, allocate, and try again.
985 		 */
986 		if (unlikely(ret == -EAGAIN))
987 			break;
988 		if (unlikely(prealloc)) {
989 			/*
990 			 * pre-alloc page cannot be reused by next time so as
991 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
992 			 * will allocate page according to address).  This
993 			 * could only happen if one pinned pte changed.
994 			 */
995 			put_page(prealloc);
996 			prealloc = NULL;
997 		}
998 		progress += 8;
999 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1000 
1001 	arch_leave_lazy_mmu_mode();
1002 	spin_unlock(src_ptl);
1003 	pte_unmap(orig_src_pte);
1004 	add_mm_rss_vec(dst_mm, rss);
1005 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1006 	cond_resched();
1007 
1008 	if (entry.val) {
1009 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1010 			ret = -ENOMEM;
1011 			goto out;
1012 		}
1013 		entry.val = 0;
1014 	} else if (ret) {
1015 		WARN_ON_ONCE(ret != -EAGAIN);
1016 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1017 		if (!prealloc)
1018 			return -ENOMEM;
1019 		/* We've captured and resolved the error. Reset, try again. */
1020 		ret = 0;
1021 	}
1022 	if (addr != end)
1023 		goto again;
1024 out:
1025 	if (unlikely(prealloc))
1026 		put_page(prealloc);
1027 	return ret;
1028 }
1029 
1030 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1031 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1032 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1033 	       unsigned long end)
1034 {
1035 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1036 	struct mm_struct *src_mm = src_vma->vm_mm;
1037 	pmd_t *src_pmd, *dst_pmd;
1038 	unsigned long next;
1039 
1040 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1041 	if (!dst_pmd)
1042 		return -ENOMEM;
1043 	src_pmd = pmd_offset(src_pud, addr);
1044 	do {
1045 		next = pmd_addr_end(addr, end);
1046 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1047 			|| pmd_devmap(*src_pmd)) {
1048 			int err;
1049 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1050 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1051 					    addr, dst_vma, src_vma);
1052 			if (err == -ENOMEM)
1053 				return -ENOMEM;
1054 			if (!err)
1055 				continue;
1056 			/* fall through */
1057 		}
1058 		if (pmd_none_or_clear_bad(src_pmd))
1059 			continue;
1060 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1061 				   addr, next))
1062 			return -ENOMEM;
1063 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1064 	return 0;
1065 }
1066 
1067 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1068 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1069 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1070 	       unsigned long end)
1071 {
1072 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1073 	struct mm_struct *src_mm = src_vma->vm_mm;
1074 	pud_t *src_pud, *dst_pud;
1075 	unsigned long next;
1076 
1077 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1078 	if (!dst_pud)
1079 		return -ENOMEM;
1080 	src_pud = pud_offset(src_p4d, addr);
1081 	do {
1082 		next = pud_addr_end(addr, end);
1083 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1084 			int err;
1085 
1086 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1087 			err = copy_huge_pud(dst_mm, src_mm,
1088 					    dst_pud, src_pud, addr, src_vma);
1089 			if (err == -ENOMEM)
1090 				return -ENOMEM;
1091 			if (!err)
1092 				continue;
1093 			/* fall through */
1094 		}
1095 		if (pud_none_or_clear_bad(src_pud))
1096 			continue;
1097 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1098 				   addr, next))
1099 			return -ENOMEM;
1100 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1101 	return 0;
1102 }
1103 
1104 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1105 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1106 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1107 	       unsigned long end)
1108 {
1109 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1110 	p4d_t *src_p4d, *dst_p4d;
1111 	unsigned long next;
1112 
1113 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1114 	if (!dst_p4d)
1115 		return -ENOMEM;
1116 	src_p4d = p4d_offset(src_pgd, addr);
1117 	do {
1118 		next = p4d_addr_end(addr, end);
1119 		if (p4d_none_or_clear_bad(src_p4d))
1120 			continue;
1121 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1122 				   addr, next))
1123 			return -ENOMEM;
1124 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1125 	return 0;
1126 }
1127 
1128 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1129 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1130 {
1131 	pgd_t *src_pgd, *dst_pgd;
1132 	unsigned long next;
1133 	unsigned long addr = src_vma->vm_start;
1134 	unsigned long end = src_vma->vm_end;
1135 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1136 	struct mm_struct *src_mm = src_vma->vm_mm;
1137 	struct mmu_notifier_range range;
1138 	bool is_cow;
1139 	int ret;
1140 
1141 	/*
1142 	 * Don't copy ptes where a page fault will fill them correctly.
1143 	 * Fork becomes much lighter when there are big shared or private
1144 	 * readonly mappings. The tradeoff is that copy_page_range is more
1145 	 * efficient than faulting.
1146 	 */
1147 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1148 	    !src_vma->anon_vma)
1149 		return 0;
1150 
1151 	if (is_vm_hugetlb_page(src_vma))
1152 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1153 
1154 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1155 		/*
1156 		 * We do not free on error cases below as remove_vma
1157 		 * gets called on error from higher level routine
1158 		 */
1159 		ret = track_pfn_copy(src_vma);
1160 		if (ret)
1161 			return ret;
1162 	}
1163 
1164 	/*
1165 	 * We need to invalidate the secondary MMU mappings only when
1166 	 * there could be a permission downgrade on the ptes of the
1167 	 * parent mm. And a permission downgrade will only happen if
1168 	 * is_cow_mapping() returns true.
1169 	 */
1170 	is_cow = is_cow_mapping(src_vma->vm_flags);
1171 
1172 	if (is_cow) {
1173 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1174 					0, src_vma, src_mm, addr, end);
1175 		mmu_notifier_invalidate_range_start(&range);
1176 		/*
1177 		 * Disabling preemption is not needed for the write side, as
1178 		 * the read side doesn't spin, but goes to the mmap_lock.
1179 		 *
1180 		 * Use the raw variant of the seqcount_t write API to avoid
1181 		 * lockdep complaining about preemptibility.
1182 		 */
1183 		mmap_assert_write_locked(src_mm);
1184 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1185 	}
1186 
1187 	ret = 0;
1188 	dst_pgd = pgd_offset(dst_mm, addr);
1189 	src_pgd = pgd_offset(src_mm, addr);
1190 	do {
1191 		next = pgd_addr_end(addr, end);
1192 		if (pgd_none_or_clear_bad(src_pgd))
1193 			continue;
1194 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1195 					    addr, next))) {
1196 			ret = -ENOMEM;
1197 			break;
1198 		}
1199 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1200 
1201 	if (is_cow) {
1202 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1203 		mmu_notifier_invalidate_range_end(&range);
1204 	}
1205 	return ret;
1206 }
1207 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1208 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1209 				struct vm_area_struct *vma, pmd_t *pmd,
1210 				unsigned long addr, unsigned long end,
1211 				struct zap_details *details)
1212 {
1213 	struct mm_struct *mm = tlb->mm;
1214 	int force_flush = 0;
1215 	int rss[NR_MM_COUNTERS];
1216 	spinlock_t *ptl;
1217 	pte_t *start_pte;
1218 	pte_t *pte;
1219 	swp_entry_t entry;
1220 
1221 	tlb_change_page_size(tlb, PAGE_SIZE);
1222 again:
1223 	init_rss_vec(rss);
1224 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1225 	pte = start_pte;
1226 	flush_tlb_batched_pending(mm);
1227 	arch_enter_lazy_mmu_mode();
1228 	do {
1229 		pte_t ptent = *pte;
1230 		if (pte_none(ptent))
1231 			continue;
1232 
1233 		if (need_resched())
1234 			break;
1235 
1236 		if (pte_present(ptent)) {
1237 			struct page *page;
1238 
1239 			page = vm_normal_page(vma, addr, ptent);
1240 			if (vma->vm_flags & VM_USEREXPTE)
1241 				page =  NULL;
1242 			if (unlikely(details) && page) {
1243 				/*
1244 				 * unmap_shared_mapping_pages() wants to
1245 				 * invalidate cache without truncating:
1246 				 * unmap shared but keep private pages.
1247 				 */
1248 				if (details->check_mapping &&
1249 				    details->check_mapping != page_rmapping(page))
1250 					continue;
1251 			}
1252 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1253 							tlb->fullmm);
1254 			tlb_remove_tlb_entry(tlb, pte, addr);
1255 			if (unlikely(!page))
1256 				continue;
1257 			if (vma->vm_flags & VM_PURGEABLE)
1258 				uxpte_clear_present(vma, addr);
1259 			if (!PageAnon(page)) {
1260 				if (pte_dirty(ptent)) {
1261 					force_flush = 1;
1262 					set_page_dirty(page);
1263 				}
1264 				if (pte_young(ptent) &&
1265 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1266 					mark_page_accessed(page);
1267 			}
1268 			rss[mm_counter(page)]--;
1269 			page_remove_rmap(page, false);
1270 			if (unlikely(page_mapcount(page) < 0))
1271 				print_bad_pte(vma, addr, ptent, page);
1272 			if (unlikely(__tlb_remove_page(tlb, page))) {
1273 				force_flush = 1;
1274 				addr += PAGE_SIZE;
1275 				break;
1276 			}
1277 			continue;
1278 		}
1279 
1280 		entry = pte_to_swp_entry(ptent);
1281 		if (is_device_private_entry(entry)) {
1282 			struct page *page = device_private_entry_to_page(entry);
1283 
1284 			if (unlikely(details && details->check_mapping)) {
1285 				/*
1286 				 * unmap_shared_mapping_pages() wants to
1287 				 * invalidate cache without truncating:
1288 				 * unmap shared but keep private pages.
1289 				 */
1290 				if (details->check_mapping !=
1291 				    page_rmapping(page))
1292 					continue;
1293 			}
1294 
1295 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1296 			rss[mm_counter(page)]--;
1297 			page_remove_rmap(page, false);
1298 			put_page(page);
1299 			continue;
1300 		}
1301 
1302 		/* If details->check_mapping, we leave swap entries. */
1303 		if (unlikely(details))
1304 			continue;
1305 
1306 		if (!non_swap_entry(entry))
1307 			rss[MM_SWAPENTS]--;
1308 		else if (is_migration_entry(entry)) {
1309 			struct page *page;
1310 
1311 			page = migration_entry_to_page(entry);
1312 			rss[mm_counter(page)]--;
1313 		}
1314 		if (unlikely(!free_swap_and_cache(entry)))
1315 			print_bad_pte(vma, addr, ptent, NULL);
1316 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1317 	} while (pte++, addr += PAGE_SIZE, addr != end);
1318 
1319 	add_mm_rss_vec(mm, rss);
1320 	arch_leave_lazy_mmu_mode();
1321 
1322 	/* Do the actual TLB flush before dropping ptl */
1323 	if (force_flush)
1324 		tlb_flush_mmu_tlbonly(tlb);
1325 	pte_unmap_unlock(start_pte, ptl);
1326 
1327 	/*
1328 	 * If we forced a TLB flush (either due to running out of
1329 	 * batch buffers or because we needed to flush dirty TLB
1330 	 * entries before releasing the ptl), free the batched
1331 	 * memory too. Restart if we didn't do everything.
1332 	 */
1333 	if (force_flush) {
1334 		force_flush = 0;
1335 		tlb_flush_mmu(tlb);
1336 	}
1337 
1338 	if (addr != end) {
1339 		cond_resched();
1340 		goto again;
1341 	}
1342 
1343 	return addr;
1344 }
1345 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1346 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1347 				struct vm_area_struct *vma, pud_t *pud,
1348 				unsigned long addr, unsigned long end,
1349 				struct zap_details *details)
1350 {
1351 	pmd_t *pmd;
1352 	unsigned long next;
1353 
1354 	pmd = pmd_offset(pud, addr);
1355 	do {
1356 		next = pmd_addr_end(addr, end);
1357 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1358 			if (next - addr != HPAGE_PMD_SIZE)
1359 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1360 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1361 				goto next;
1362 			/* fall through */
1363 		} else if (details && details->single_page &&
1364 			   PageTransCompound(details->single_page) &&
1365 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1366 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1367 			/*
1368 			 * Take and drop THP pmd lock so that we cannot return
1369 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1370 			 * but not yet decremented compound_mapcount().
1371 			 */
1372 			spin_unlock(ptl);
1373 		}
1374 
1375 		/*
1376 		 * Here there can be other concurrent MADV_DONTNEED or
1377 		 * trans huge page faults running, and if the pmd is
1378 		 * none or trans huge it can change under us. This is
1379 		 * because MADV_DONTNEED holds the mmap_lock in read
1380 		 * mode.
1381 		 */
1382 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1383 			goto next;
1384 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1385 next:
1386 		cond_resched();
1387 	} while (pmd++, addr = next, addr != end);
1388 
1389 	return addr;
1390 }
1391 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1392 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1393 				struct vm_area_struct *vma, p4d_t *p4d,
1394 				unsigned long addr, unsigned long end,
1395 				struct zap_details *details)
1396 {
1397 	pud_t *pud;
1398 	unsigned long next;
1399 
1400 	pud = pud_offset(p4d, addr);
1401 	do {
1402 		next = pud_addr_end(addr, end);
1403 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1404 			if (next - addr != HPAGE_PUD_SIZE) {
1405 				mmap_assert_locked(tlb->mm);
1406 				split_huge_pud(vma, pud, addr);
1407 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1408 				goto next;
1409 			/* fall through */
1410 		}
1411 		if (pud_none_or_clear_bad(pud))
1412 			continue;
1413 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1414 next:
1415 		cond_resched();
1416 	} while (pud++, addr = next, addr != end);
1417 
1418 	return addr;
1419 }
1420 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1421 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1422 				struct vm_area_struct *vma, pgd_t *pgd,
1423 				unsigned long addr, unsigned long end,
1424 				struct zap_details *details)
1425 {
1426 	p4d_t *p4d;
1427 	unsigned long next;
1428 
1429 	p4d = p4d_offset(pgd, addr);
1430 	do {
1431 		next = p4d_addr_end(addr, end);
1432 		if (p4d_none_or_clear_bad(p4d))
1433 			continue;
1434 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1435 	} while (p4d++, addr = next, addr != end);
1436 
1437 	return addr;
1438 }
1439 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1440 void unmap_page_range(struct mmu_gather *tlb,
1441 			     struct vm_area_struct *vma,
1442 			     unsigned long addr, unsigned long end,
1443 			     struct zap_details *details)
1444 {
1445 	pgd_t *pgd;
1446 	unsigned long next;
1447 
1448 	BUG_ON(addr >= end);
1449 	tlb_start_vma(tlb, vma);
1450 	pgd = pgd_offset(vma->vm_mm, addr);
1451 	do {
1452 		next = pgd_addr_end(addr, end);
1453 		if (pgd_none_or_clear_bad(pgd))
1454 			continue;
1455 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1456 	} while (pgd++, addr = next, addr != end);
1457 	tlb_end_vma(tlb, vma);
1458 }
1459 
1460 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1461 static void unmap_single_vma(struct mmu_gather *tlb,
1462 		struct vm_area_struct *vma, unsigned long start_addr,
1463 		unsigned long end_addr,
1464 		struct zap_details *details)
1465 {
1466 	unsigned long start = max(vma->vm_start, start_addr);
1467 	unsigned long end;
1468 
1469 	if (start >= vma->vm_end)
1470 		return;
1471 	end = min(vma->vm_end, end_addr);
1472 	if (end <= vma->vm_start)
1473 		return;
1474 
1475 	if (vma->vm_file)
1476 		uprobe_munmap(vma, start, end);
1477 
1478 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1479 		untrack_pfn(vma, 0, 0);
1480 
1481 	if (start != end) {
1482 		if (unlikely(is_vm_hugetlb_page(vma))) {
1483 			/*
1484 			 * It is undesirable to test vma->vm_file as it
1485 			 * should be non-null for valid hugetlb area.
1486 			 * However, vm_file will be NULL in the error
1487 			 * cleanup path of mmap_region. When
1488 			 * hugetlbfs ->mmap method fails,
1489 			 * mmap_region() nullifies vma->vm_file
1490 			 * before calling this function to clean up.
1491 			 * Since no pte has actually been setup, it is
1492 			 * safe to do nothing in this case.
1493 			 */
1494 			if (vma->vm_file) {
1495 				i_mmap_lock_write(vma->vm_file->f_mapping);
1496 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1497 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1498 			}
1499 		} else
1500 			unmap_page_range(tlb, vma, start, end, details);
1501 	}
1502 }
1503 
1504 /**
1505  * unmap_vmas - unmap a range of memory covered by a list of vma's
1506  * @tlb: address of the caller's struct mmu_gather
1507  * @vma: the starting vma
1508  * @start_addr: virtual address at which to start unmapping
1509  * @end_addr: virtual address at which to end unmapping
1510  *
1511  * Unmap all pages in the vma list.
1512  *
1513  * Only addresses between `start' and `end' will be unmapped.
1514  *
1515  * The VMA list must be sorted in ascending virtual address order.
1516  *
1517  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1518  * range after unmap_vmas() returns.  So the only responsibility here is to
1519  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1520  * drops the lock and schedules.
1521  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1522 void unmap_vmas(struct mmu_gather *tlb,
1523 		struct vm_area_struct *vma, unsigned long start_addr,
1524 		unsigned long end_addr)
1525 {
1526 	struct mmu_notifier_range range;
1527 
1528 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1529 				start_addr, end_addr);
1530 	mmu_notifier_invalidate_range_start(&range);
1531 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1532 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1533 	mmu_notifier_invalidate_range_end(&range);
1534 }
1535 
1536 /**
1537  * zap_page_range - remove user pages in a given range
1538  * @vma: vm_area_struct holding the applicable pages
1539  * @start: starting address of pages to zap
1540  * @size: number of bytes to zap
1541  *
1542  * Caller must protect the VMA list
1543  */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1544 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1545 		unsigned long size)
1546 {
1547 	struct mmu_notifier_range range;
1548 	struct mmu_gather tlb;
1549 
1550 	lru_add_drain();
1551 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552 				start, start + size);
1553 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1554 	update_hiwater_rss(vma->vm_mm);
1555 	mmu_notifier_invalidate_range_start(&range);
1556 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1557 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1558 	mmu_notifier_invalidate_range_end(&range);
1559 	tlb_finish_mmu(&tlb, start, range.end);
1560 }
1561 
1562 /**
1563  * zap_page_range_single - remove user pages in a given range
1564  * @vma: vm_area_struct holding the applicable pages
1565  * @address: starting address of pages to zap
1566  * @size: number of bytes to zap
1567  * @details: details of shared cache invalidation
1568  *
1569  * The range must fit into one VMA.
1570  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1571 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1572 		unsigned long size, struct zap_details *details)
1573 {
1574 	struct mmu_notifier_range range;
1575 	struct mmu_gather tlb;
1576 
1577 	lru_add_drain();
1578 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1579 				address, address + size);
1580 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1581 	update_hiwater_rss(vma->vm_mm);
1582 	mmu_notifier_invalidate_range_start(&range);
1583 	unmap_single_vma(&tlb, vma, address, range.end, details);
1584 	mmu_notifier_invalidate_range_end(&range);
1585 	tlb_finish_mmu(&tlb, address, range.end);
1586 }
1587 
1588 /**
1589  * zap_vma_ptes - remove ptes mapping the vma
1590  * @vma: vm_area_struct holding ptes to be zapped
1591  * @address: starting address of pages to zap
1592  * @size: number of bytes to zap
1593  *
1594  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1595  *
1596  * The entire address range must be fully contained within the vma.
1597  *
1598  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1599 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1600 		unsigned long size)
1601 {
1602 	if (address < vma->vm_start || address + size > vma->vm_end ||
1603 	    		!(vma->vm_flags & VM_PFNMAP))
1604 		return;
1605 
1606 	zap_page_range_single(vma, address, size, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1609 
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1610 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1611 {
1612 	pgd_t *pgd;
1613 	p4d_t *p4d;
1614 	pud_t *pud;
1615 	pmd_t *pmd;
1616 
1617 	pgd = pgd_offset(mm, addr);
1618 	p4d = p4d_alloc(mm, pgd, addr);
1619 	if (!p4d)
1620 		return NULL;
1621 	pud = pud_alloc(mm, p4d, addr);
1622 	if (!pud)
1623 		return NULL;
1624 	pmd = pmd_alloc(mm, pud, addr);
1625 	if (!pmd)
1626 		return NULL;
1627 
1628 	VM_BUG_ON(pmd_trans_huge(*pmd));
1629 	return pmd;
1630 }
1631 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1632 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1633 			spinlock_t **ptl)
1634 {
1635 	pmd_t *pmd = walk_to_pmd(mm, addr);
1636 
1637 	if (!pmd)
1638 		return NULL;
1639 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1640 }
1641 
validate_page_before_insert(struct page * page)1642 static int validate_page_before_insert(struct page *page)
1643 {
1644 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1645 		return -EINVAL;
1646 	flush_dcache_page(page);
1647 	return 0;
1648 }
1649 
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1650 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1651 			unsigned long addr, struct page *page, pgprot_t prot)
1652 {
1653 	if (!pte_none(*pte))
1654 		return -EBUSY;
1655 	/* Ok, finally just insert the thing.. */
1656 	get_page(page);
1657 	inc_mm_counter_fast(mm, mm_counter_file(page));
1658 	page_add_file_rmap(page, false);
1659 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1660 	return 0;
1661 }
1662 
1663 /*
1664  * This is the old fallback for page remapping.
1665  *
1666  * For historical reasons, it only allows reserved pages. Only
1667  * old drivers should use this, and they needed to mark their
1668  * pages reserved for the old functions anyway.
1669  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1670 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1671 			struct page *page, pgprot_t prot)
1672 {
1673 	struct mm_struct *mm = vma->vm_mm;
1674 	int retval;
1675 	pte_t *pte;
1676 	spinlock_t *ptl;
1677 
1678 	retval = validate_page_before_insert(page);
1679 	if (retval)
1680 		goto out;
1681 	retval = -ENOMEM;
1682 	pte = get_locked_pte(mm, addr, &ptl);
1683 	if (!pte)
1684 		goto out;
1685 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1686 	pte_unmap_unlock(pte, ptl);
1687 out:
1688 	return retval;
1689 }
1690 
1691 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1692 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1693 			unsigned long addr, struct page *page, pgprot_t prot)
1694 {
1695 	int err;
1696 
1697 	if (!page_count(page))
1698 		return -EINVAL;
1699 	err = validate_page_before_insert(page);
1700 	if (err)
1701 		return err;
1702 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1703 }
1704 
1705 /* insert_pages() amortizes the cost of spinlock operations
1706  * when inserting pages in a loop. Arch *must* define pte_index.
1707  */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1708 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1709 			struct page **pages, unsigned long *num, pgprot_t prot)
1710 {
1711 	pmd_t *pmd = NULL;
1712 	pte_t *start_pte, *pte;
1713 	spinlock_t *pte_lock;
1714 	struct mm_struct *const mm = vma->vm_mm;
1715 	unsigned long curr_page_idx = 0;
1716 	unsigned long remaining_pages_total = *num;
1717 	unsigned long pages_to_write_in_pmd;
1718 	int ret;
1719 more:
1720 	ret = -EFAULT;
1721 	pmd = walk_to_pmd(mm, addr);
1722 	if (!pmd)
1723 		goto out;
1724 
1725 	pages_to_write_in_pmd = min_t(unsigned long,
1726 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1727 
1728 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1729 	ret = -ENOMEM;
1730 	if (pte_alloc(mm, pmd))
1731 		goto out;
1732 
1733 	while (pages_to_write_in_pmd) {
1734 		int pte_idx = 0;
1735 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1736 
1737 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1738 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1739 			int err = insert_page_in_batch_locked(mm, pte,
1740 				addr, pages[curr_page_idx], prot);
1741 			if (unlikely(err)) {
1742 				pte_unmap_unlock(start_pte, pte_lock);
1743 				ret = err;
1744 				remaining_pages_total -= pte_idx;
1745 				goto out;
1746 			}
1747 			addr += PAGE_SIZE;
1748 			++curr_page_idx;
1749 		}
1750 		pte_unmap_unlock(start_pte, pte_lock);
1751 		pages_to_write_in_pmd -= batch_size;
1752 		remaining_pages_total -= batch_size;
1753 	}
1754 	if (remaining_pages_total)
1755 		goto more;
1756 	ret = 0;
1757 out:
1758 	*num = remaining_pages_total;
1759 	return ret;
1760 }
1761 #endif  /* ifdef pte_index */
1762 
1763 /**
1764  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1765  * @vma: user vma to map to
1766  * @addr: target start user address of these pages
1767  * @pages: source kernel pages
1768  * @num: in: number of pages to map. out: number of pages that were *not*
1769  * mapped. (0 means all pages were successfully mapped).
1770  *
1771  * Preferred over vm_insert_page() when inserting multiple pages.
1772  *
1773  * In case of error, we may have mapped a subset of the provided
1774  * pages. It is the caller's responsibility to account for this case.
1775  *
1776  * The same restrictions apply as in vm_insert_page().
1777  */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1778 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1779 			struct page **pages, unsigned long *num)
1780 {
1781 #ifdef pte_index
1782 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1783 
1784 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1785 		return -EFAULT;
1786 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1787 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1788 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1789 		vma->vm_flags |= VM_MIXEDMAP;
1790 	}
1791 	/* Defer page refcount checking till we're about to map that page. */
1792 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1793 #else
1794 	unsigned long idx = 0, pgcount = *num;
1795 	int err = -EINVAL;
1796 
1797 	for (; idx < pgcount; ++idx) {
1798 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1799 		if (err)
1800 			break;
1801 	}
1802 	*num = pgcount - idx;
1803 	return err;
1804 #endif  /* ifdef pte_index */
1805 }
1806 EXPORT_SYMBOL(vm_insert_pages);
1807 
1808 /**
1809  * vm_insert_page - insert single page into user vma
1810  * @vma: user vma to map to
1811  * @addr: target user address of this page
1812  * @page: source kernel page
1813  *
1814  * This allows drivers to insert individual pages they've allocated
1815  * into a user vma.
1816  *
1817  * The page has to be a nice clean _individual_ kernel allocation.
1818  * If you allocate a compound page, you need to have marked it as
1819  * such (__GFP_COMP), or manually just split the page up yourself
1820  * (see split_page()).
1821  *
1822  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1823  * took an arbitrary page protection parameter. This doesn't allow
1824  * that. Your vma protection will have to be set up correctly, which
1825  * means that if you want a shared writable mapping, you'd better
1826  * ask for a shared writable mapping!
1827  *
1828  * The page does not need to be reserved.
1829  *
1830  * Usually this function is called from f_op->mmap() handler
1831  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1832  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1833  * function from other places, for example from page-fault handler.
1834  *
1835  * Return: %0 on success, negative error code otherwise.
1836  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1837 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1838 			struct page *page)
1839 {
1840 	if (addr < vma->vm_start || addr >= vma->vm_end)
1841 		return -EFAULT;
1842 	if (!page_count(page))
1843 		return -EINVAL;
1844 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1845 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1846 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1847 		vma->vm_flags |= VM_MIXEDMAP;
1848 	}
1849 	return insert_page(vma, addr, page, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_page);
1852 
1853 /*
1854  * __vm_map_pages - maps range of kernel pages into user vma
1855  * @vma: user vma to map to
1856  * @pages: pointer to array of source kernel pages
1857  * @num: number of pages in page array
1858  * @offset: user's requested vm_pgoff
1859  *
1860  * This allows drivers to map range of kernel pages into a user vma.
1861  *
1862  * Return: 0 on success and error code otherwise.
1863  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1864 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1865 				unsigned long num, unsigned long offset)
1866 {
1867 	unsigned long count = vma_pages(vma);
1868 	unsigned long uaddr = vma->vm_start;
1869 	int ret, i;
1870 
1871 	/* Fail if the user requested offset is beyond the end of the object */
1872 	if (offset >= num)
1873 		return -ENXIO;
1874 
1875 	/* Fail if the user requested size exceeds available object size */
1876 	if (count > num - offset)
1877 		return -ENXIO;
1878 
1879 	for (i = 0; i < count; i++) {
1880 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1881 		if (ret < 0)
1882 			return ret;
1883 		uaddr += PAGE_SIZE;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 /**
1890  * vm_map_pages - maps range of kernel pages starts with non zero offset
1891  * @vma: user vma to map to
1892  * @pages: pointer to array of source kernel pages
1893  * @num: number of pages in page array
1894  *
1895  * Maps an object consisting of @num pages, catering for the user's
1896  * requested vm_pgoff
1897  *
1898  * If we fail to insert any page into the vma, the function will return
1899  * immediately leaving any previously inserted pages present.  Callers
1900  * from the mmap handler may immediately return the error as their caller
1901  * will destroy the vma, removing any successfully inserted pages. Other
1902  * callers should make their own arrangements for calling unmap_region().
1903  *
1904  * Context: Process context. Called by mmap handlers.
1905  * Return: 0 on success and error code otherwise.
1906  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1907 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1908 				unsigned long num)
1909 {
1910 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1911 }
1912 EXPORT_SYMBOL(vm_map_pages);
1913 
1914 /**
1915  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1916  * @vma: user vma to map to
1917  * @pages: pointer to array of source kernel pages
1918  * @num: number of pages in page array
1919  *
1920  * Similar to vm_map_pages(), except that it explicitly sets the offset
1921  * to 0. This function is intended for the drivers that did not consider
1922  * vm_pgoff.
1923  *
1924  * Context: Process context. Called by mmap handlers.
1925  * Return: 0 on success and error code otherwise.
1926  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1927 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1928 				unsigned long num)
1929 {
1930 	return __vm_map_pages(vma, pages, num, 0);
1931 }
1932 EXPORT_SYMBOL(vm_map_pages_zero);
1933 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1934 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1935 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1936 {
1937 	struct mm_struct *mm = vma->vm_mm;
1938 	pte_t *pte, entry;
1939 	spinlock_t *ptl;
1940 
1941 	pte = get_locked_pte(mm, addr, &ptl);
1942 	if (!pte)
1943 		return VM_FAULT_OOM;
1944 	if (!pte_none(*pte)) {
1945 		if (mkwrite) {
1946 			/*
1947 			 * For read faults on private mappings the PFN passed
1948 			 * in may not match the PFN we have mapped if the
1949 			 * mapped PFN is a writeable COW page.  In the mkwrite
1950 			 * case we are creating a writable PTE for a shared
1951 			 * mapping and we expect the PFNs to match. If they
1952 			 * don't match, we are likely racing with block
1953 			 * allocation and mapping invalidation so just skip the
1954 			 * update.
1955 			 */
1956 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1957 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1958 				goto out_unlock;
1959 			}
1960 			entry = pte_mkyoung(*pte);
1961 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1962 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1963 				update_mmu_cache(vma, addr, pte);
1964 		}
1965 		goto out_unlock;
1966 	}
1967 
1968 	/* Ok, finally just insert the thing.. */
1969 	if (pfn_t_devmap(pfn))
1970 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1971 	else
1972 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1973 
1974 	if (mkwrite) {
1975 		entry = pte_mkyoung(entry);
1976 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1977 	}
1978 
1979 	set_pte_at(mm, addr, pte, entry);
1980 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1981 
1982 out_unlock:
1983 	pte_unmap_unlock(pte, ptl);
1984 	return VM_FAULT_NOPAGE;
1985 }
1986 
1987 /**
1988  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1989  * @vma: user vma to map to
1990  * @addr: target user address of this page
1991  * @pfn: source kernel pfn
1992  * @pgprot: pgprot flags for the inserted page
1993  *
1994  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1995  * to override pgprot on a per-page basis.
1996  *
1997  * This only makes sense for IO mappings, and it makes no sense for
1998  * COW mappings.  In general, using multiple vmas is preferable;
1999  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2000  * impractical.
2001  *
2002  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2003  * a value of @pgprot different from that of @vma->vm_page_prot.
2004  *
2005  * Context: Process context.  May allocate using %GFP_KERNEL.
2006  * Return: vm_fault_t value.
2007  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2008 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2009 			unsigned long pfn, pgprot_t pgprot)
2010 {
2011 	/*
2012 	 * Technically, architectures with pte_special can avoid all these
2013 	 * restrictions (same for remap_pfn_range).  However we would like
2014 	 * consistency in testing and feature parity among all, so we should
2015 	 * try to keep these invariants in place for everybody.
2016 	 */
2017 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2018 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2019 						(VM_PFNMAP|VM_MIXEDMAP));
2020 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2021 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2022 
2023 	if (addr < vma->vm_start || addr >= vma->vm_end)
2024 		return VM_FAULT_SIGBUS;
2025 
2026 	if (!pfn_modify_allowed(pfn, pgprot))
2027 		return VM_FAULT_SIGBUS;
2028 
2029 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2030 
2031 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2032 			false);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2035 
2036 /**
2037  * vmf_insert_pfn - insert single pfn into user vma
2038  * @vma: user vma to map to
2039  * @addr: target user address of this page
2040  * @pfn: source kernel pfn
2041  *
2042  * Similar to vm_insert_page, this allows drivers to insert individual pages
2043  * they've allocated into a user vma. Same comments apply.
2044  *
2045  * This function should only be called from a vm_ops->fault handler, and
2046  * in that case the handler should return the result of this function.
2047  *
2048  * vma cannot be a COW mapping.
2049  *
2050  * As this is called only for pages that do not currently exist, we
2051  * do not need to flush old virtual caches or the TLB.
2052  *
2053  * Context: Process context.  May allocate using %GFP_KERNEL.
2054  * Return: vm_fault_t value.
2055  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2056 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2057 			unsigned long pfn)
2058 {
2059 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2060 }
2061 EXPORT_SYMBOL(vmf_insert_pfn);
2062 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2063 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2064 {
2065 	/* these checks mirror the abort conditions in vm_normal_page */
2066 	if (vma->vm_flags & VM_MIXEDMAP)
2067 		return true;
2068 	if (pfn_t_devmap(pfn))
2069 		return true;
2070 	if (pfn_t_special(pfn))
2071 		return true;
2072 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2073 		return true;
2074 	return false;
2075 }
2076 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2077 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2078 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2079 		bool mkwrite)
2080 {
2081 	int err;
2082 
2083 	BUG_ON(!vm_mixed_ok(vma, pfn));
2084 
2085 	if (addr < vma->vm_start || addr >= vma->vm_end)
2086 		return VM_FAULT_SIGBUS;
2087 
2088 	track_pfn_insert(vma, &pgprot, pfn);
2089 
2090 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2091 		return VM_FAULT_SIGBUS;
2092 
2093 	/*
2094 	 * If we don't have pte special, then we have to use the pfn_valid()
2095 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2096 	 * refcount the page if pfn_valid is true (hence insert_page rather
2097 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2098 	 * without pte special, it would there be refcounted as a normal page.
2099 	 */
2100 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2101 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2102 		struct page *page;
2103 
2104 		/*
2105 		 * At this point we are committed to insert_page()
2106 		 * regardless of whether the caller specified flags that
2107 		 * result in pfn_t_has_page() == false.
2108 		 */
2109 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2110 		err = insert_page(vma, addr, page, pgprot);
2111 	} else {
2112 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2113 	}
2114 
2115 	if (err == -ENOMEM)
2116 		return VM_FAULT_OOM;
2117 	if (err < 0 && err != -EBUSY)
2118 		return VM_FAULT_SIGBUS;
2119 
2120 	return VM_FAULT_NOPAGE;
2121 }
2122 
2123 /**
2124  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2125  * @vma: user vma to map to
2126  * @addr: target user address of this page
2127  * @pfn: source kernel pfn
2128  * @pgprot: pgprot flags for the inserted page
2129  *
2130  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2131  * to override pgprot on a per-page basis.
2132  *
2133  * Typically this function should be used by drivers to set caching- and
2134  * encryption bits different than those of @vma->vm_page_prot, because
2135  * the caching- or encryption mode may not be known at mmap() time.
2136  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2137  * to set caching and encryption bits for those vmas (except for COW pages).
2138  * This is ensured by core vm only modifying these page table entries using
2139  * functions that don't touch caching- or encryption bits, using pte_modify()
2140  * if needed. (See for example mprotect()).
2141  * Also when new page-table entries are created, this is only done using the
2142  * fault() callback, and never using the value of vma->vm_page_prot,
2143  * except for page-table entries that point to anonymous pages as the result
2144  * of COW.
2145  *
2146  * Context: Process context.  May allocate using %GFP_KERNEL.
2147  * Return: vm_fault_t value.
2148  */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2149 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2150 				 pfn_t pfn, pgprot_t pgprot)
2151 {
2152 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2153 }
2154 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2155 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2156 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2157 		pfn_t pfn)
2158 {
2159 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2160 }
2161 EXPORT_SYMBOL(vmf_insert_mixed);
2162 
2163 /*
2164  *  If the insertion of PTE failed because someone else already added a
2165  *  different entry in the mean time, we treat that as success as we assume
2166  *  the same entry was actually inserted.
2167  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2168 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2169 		unsigned long addr, pfn_t pfn)
2170 {
2171 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2172 }
2173 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2174 
2175 /*
2176  * maps a range of physical memory into the requested pages. the old
2177  * mappings are removed. any references to nonexistent pages results
2178  * in null mappings (currently treated as "copy-on-access")
2179  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2180 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2181 			unsigned long addr, unsigned long end,
2182 			unsigned long pfn, pgprot_t prot)
2183 {
2184 	pte_t *pte, *mapped_pte;
2185 	spinlock_t *ptl;
2186 	int err = 0;
2187 
2188 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2189 	if (!pte)
2190 		return -ENOMEM;
2191 	arch_enter_lazy_mmu_mode();
2192 	do {
2193 		BUG_ON(!pte_none(*pte));
2194 		if (!pfn_modify_allowed(pfn, prot)) {
2195 			err = -EACCES;
2196 			break;
2197 		}
2198 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2199 		pfn++;
2200 	} while (pte++, addr += PAGE_SIZE, addr != end);
2201 	arch_leave_lazy_mmu_mode();
2202 	pte_unmap_unlock(mapped_pte, ptl);
2203 	return err;
2204 }
2205 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2206 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2207 			unsigned long addr, unsigned long end,
2208 			unsigned long pfn, pgprot_t prot)
2209 {
2210 	pmd_t *pmd;
2211 	unsigned long next;
2212 	int err;
2213 
2214 	pfn -= addr >> PAGE_SHIFT;
2215 	pmd = pmd_alloc(mm, pud, addr);
2216 	if (!pmd)
2217 		return -ENOMEM;
2218 	VM_BUG_ON(pmd_trans_huge(*pmd));
2219 	do {
2220 		next = pmd_addr_end(addr, end);
2221 		err = remap_pte_range(mm, pmd, addr, next,
2222 				pfn + (addr >> PAGE_SHIFT), prot);
2223 		if (err)
2224 			return err;
2225 	} while (pmd++, addr = next, addr != end);
2226 	return 0;
2227 }
2228 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2229 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2230 			unsigned long addr, unsigned long end,
2231 			unsigned long pfn, pgprot_t prot)
2232 {
2233 	pud_t *pud;
2234 	unsigned long next;
2235 	int err;
2236 
2237 	pfn -= addr >> PAGE_SHIFT;
2238 	pud = pud_alloc(mm, p4d, addr);
2239 	if (!pud)
2240 		return -ENOMEM;
2241 	do {
2242 		next = pud_addr_end(addr, end);
2243 		err = remap_pmd_range(mm, pud, addr, next,
2244 				pfn + (addr >> PAGE_SHIFT), prot);
2245 		if (err)
2246 			return err;
2247 	} while (pud++, addr = next, addr != end);
2248 	return 0;
2249 }
2250 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2251 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2252 			unsigned long addr, unsigned long end,
2253 			unsigned long pfn, pgprot_t prot)
2254 {
2255 	p4d_t *p4d;
2256 	unsigned long next;
2257 	int err;
2258 
2259 	pfn -= addr >> PAGE_SHIFT;
2260 	p4d = p4d_alloc(mm, pgd, addr);
2261 	if (!p4d)
2262 		return -ENOMEM;
2263 	do {
2264 		next = p4d_addr_end(addr, end);
2265 		err = remap_pud_range(mm, p4d, addr, next,
2266 				pfn + (addr >> PAGE_SHIFT), prot);
2267 		if (err)
2268 			return err;
2269 	} while (p4d++, addr = next, addr != end);
2270 	return 0;
2271 }
2272 
2273 /**
2274  * remap_pfn_range - remap kernel memory to userspace
2275  * @vma: user vma to map to
2276  * @addr: target page aligned user address to start at
2277  * @pfn: page frame number of kernel physical memory address
2278  * @size: size of mapping area
2279  * @prot: page protection flags for this mapping
2280  *
2281  * Note: this is only safe if the mm semaphore is held when called.
2282  *
2283  * Return: %0 on success, negative error code otherwise.
2284  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2285 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2286 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2287 {
2288 	pgd_t *pgd;
2289 	unsigned long next;
2290 	unsigned long end = addr + PAGE_ALIGN(size);
2291 	struct mm_struct *mm = vma->vm_mm;
2292 	unsigned long remap_pfn = pfn;
2293 	int err;
2294 
2295 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2296 		return -EINVAL;
2297 
2298 	/*
2299 	 * Physically remapped pages are special. Tell the
2300 	 * rest of the world about it:
2301 	 *   VM_IO tells people not to look at these pages
2302 	 *	(accesses can have side effects).
2303 	 *   VM_PFNMAP tells the core MM that the base pages are just
2304 	 *	raw PFN mappings, and do not have a "struct page" associated
2305 	 *	with them.
2306 	 *   VM_DONTEXPAND
2307 	 *      Disable vma merging and expanding with mremap().
2308 	 *   VM_DONTDUMP
2309 	 *      Omit vma from core dump, even when VM_IO turned off.
2310 	 *
2311 	 * There's a horrible special case to handle copy-on-write
2312 	 * behaviour that some programs depend on. We mark the "original"
2313 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2314 	 * See vm_normal_page() for details.
2315 	 */
2316 	if (is_cow_mapping(vma->vm_flags)) {
2317 		if (addr != vma->vm_start || end != vma->vm_end)
2318 			return -EINVAL;
2319 		vma->vm_pgoff = pfn;
2320 	}
2321 
2322 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2323 	if (err)
2324 		return -EINVAL;
2325 
2326 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2327 
2328 	BUG_ON(addr >= end);
2329 	pfn -= addr >> PAGE_SHIFT;
2330 	pgd = pgd_offset(mm, addr);
2331 	flush_cache_range(vma, addr, end);
2332 	do {
2333 		next = pgd_addr_end(addr, end);
2334 		err = remap_p4d_range(mm, pgd, addr, next,
2335 				pfn + (addr >> PAGE_SHIFT), prot);
2336 		if (err)
2337 			break;
2338 	} while (pgd++, addr = next, addr != end);
2339 
2340 	if (err)
2341 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2342 
2343 	return err;
2344 }
2345 EXPORT_SYMBOL(remap_pfn_range);
2346 
2347 /**
2348  * vm_iomap_memory - remap memory to userspace
2349  * @vma: user vma to map to
2350  * @start: start of the physical memory to be mapped
2351  * @len: size of area
2352  *
2353  * This is a simplified io_remap_pfn_range() for common driver use. The
2354  * driver just needs to give us the physical memory range to be mapped,
2355  * we'll figure out the rest from the vma information.
2356  *
2357  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2358  * whatever write-combining details or similar.
2359  *
2360  * Return: %0 on success, negative error code otherwise.
2361  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2362 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2363 {
2364 	unsigned long vm_len, pfn, pages;
2365 
2366 	/* Check that the physical memory area passed in looks valid */
2367 	if (start + len < start)
2368 		return -EINVAL;
2369 	/*
2370 	 * You *really* shouldn't map things that aren't page-aligned,
2371 	 * but we've historically allowed it because IO memory might
2372 	 * just have smaller alignment.
2373 	 */
2374 	len += start & ~PAGE_MASK;
2375 	pfn = start >> PAGE_SHIFT;
2376 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2377 	if (pfn + pages < pfn)
2378 		return -EINVAL;
2379 
2380 	/* We start the mapping 'vm_pgoff' pages into the area */
2381 	if (vma->vm_pgoff > pages)
2382 		return -EINVAL;
2383 	pfn += vma->vm_pgoff;
2384 	pages -= vma->vm_pgoff;
2385 
2386 	/* Can we fit all of the mapping? */
2387 	vm_len = vma->vm_end - vma->vm_start;
2388 	if (vm_len >> PAGE_SHIFT > pages)
2389 		return -EINVAL;
2390 
2391 	/* Ok, let it rip */
2392 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2393 }
2394 EXPORT_SYMBOL(vm_iomap_memory);
2395 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2396 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2397 				     unsigned long addr, unsigned long end,
2398 				     pte_fn_t fn, void *data, bool create,
2399 				     pgtbl_mod_mask *mask)
2400 {
2401 	pte_t *pte;
2402 	int err = 0;
2403 	spinlock_t *ptl;
2404 
2405 	if (create) {
2406 		pte = (mm == &init_mm) ?
2407 			pte_alloc_kernel_track(pmd, addr, mask) :
2408 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2409 		if (!pte)
2410 			return -ENOMEM;
2411 	} else {
2412 		pte = (mm == &init_mm) ?
2413 			pte_offset_kernel(pmd, addr) :
2414 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2415 	}
2416 
2417 	BUG_ON(pmd_huge(*pmd));
2418 
2419 	arch_enter_lazy_mmu_mode();
2420 
2421 	if (fn) {
2422 		do {
2423 			if (create || !pte_none(*pte)) {
2424 				err = fn(pte++, addr, data);
2425 				if (err)
2426 					break;
2427 			}
2428 		} while (addr += PAGE_SIZE, addr != end);
2429 	}
2430 	*mask |= PGTBL_PTE_MODIFIED;
2431 
2432 	arch_leave_lazy_mmu_mode();
2433 
2434 	if (mm != &init_mm)
2435 		pte_unmap_unlock(pte-1, ptl);
2436 	return err;
2437 }
2438 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2439 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2440 				     unsigned long addr, unsigned long end,
2441 				     pte_fn_t fn, void *data, bool create,
2442 				     pgtbl_mod_mask *mask)
2443 {
2444 	pmd_t *pmd;
2445 	unsigned long next;
2446 	int err = 0;
2447 
2448 	BUG_ON(pud_huge(*pud));
2449 
2450 	if (create) {
2451 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2452 		if (!pmd)
2453 			return -ENOMEM;
2454 	} else {
2455 		pmd = pmd_offset(pud, addr);
2456 	}
2457 	do {
2458 		next = pmd_addr_end(addr, end);
2459 		if (create || !pmd_none_or_clear_bad(pmd)) {
2460 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2461 						 create, mask);
2462 			if (err)
2463 				break;
2464 		}
2465 	} while (pmd++, addr = next, addr != end);
2466 	return err;
2467 }
2468 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2469 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2470 				     unsigned long addr, unsigned long end,
2471 				     pte_fn_t fn, void *data, bool create,
2472 				     pgtbl_mod_mask *mask)
2473 {
2474 	pud_t *pud;
2475 	unsigned long next;
2476 	int err = 0;
2477 
2478 	if (create) {
2479 		pud = pud_alloc_track(mm, p4d, addr, mask);
2480 		if (!pud)
2481 			return -ENOMEM;
2482 	} else {
2483 		pud = pud_offset(p4d, addr);
2484 	}
2485 	do {
2486 		next = pud_addr_end(addr, end);
2487 		if (create || !pud_none_or_clear_bad(pud)) {
2488 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2489 						 create, mask);
2490 			if (err)
2491 				break;
2492 		}
2493 	} while (pud++, addr = next, addr != end);
2494 	return err;
2495 }
2496 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2497 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2498 				     unsigned long addr, unsigned long end,
2499 				     pte_fn_t fn, void *data, bool create,
2500 				     pgtbl_mod_mask *mask)
2501 {
2502 	p4d_t *p4d;
2503 	unsigned long next;
2504 	int err = 0;
2505 
2506 	if (create) {
2507 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2508 		if (!p4d)
2509 			return -ENOMEM;
2510 	} else {
2511 		p4d = p4d_offset(pgd, addr);
2512 	}
2513 	do {
2514 		next = p4d_addr_end(addr, end);
2515 		if (create || !p4d_none_or_clear_bad(p4d)) {
2516 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2517 						 create, mask);
2518 			if (err)
2519 				break;
2520 		}
2521 	} while (p4d++, addr = next, addr != end);
2522 	return err;
2523 }
2524 
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2525 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2526 				 unsigned long size, pte_fn_t fn,
2527 				 void *data, bool create)
2528 {
2529 	pgd_t *pgd;
2530 	unsigned long start = addr, next;
2531 	unsigned long end = addr + size;
2532 	pgtbl_mod_mask mask = 0;
2533 	int err = 0;
2534 
2535 	if (WARN_ON(addr >= end))
2536 		return -EINVAL;
2537 
2538 	pgd = pgd_offset(mm, addr);
2539 	do {
2540 		next = pgd_addr_end(addr, end);
2541 		if (!create && pgd_none_or_clear_bad(pgd))
2542 			continue;
2543 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2544 		if (err)
2545 			break;
2546 	} while (pgd++, addr = next, addr != end);
2547 
2548 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2549 		arch_sync_kernel_mappings(start, start + size);
2550 
2551 	return err;
2552 }
2553 
2554 /*
2555  * Scan a region of virtual memory, filling in page tables as necessary
2556  * and calling a provided function on each leaf page table.
2557  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2558 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2559 			unsigned long size, pte_fn_t fn, void *data)
2560 {
2561 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2562 }
2563 EXPORT_SYMBOL_GPL(apply_to_page_range);
2564 
2565 /*
2566  * Scan a region of virtual memory, calling a provided function on
2567  * each leaf page table where it exists.
2568  *
2569  * Unlike apply_to_page_range, this does _not_ fill in page tables
2570  * where they are absent.
2571  */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2572 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2573 				 unsigned long size, pte_fn_t fn, void *data)
2574 {
2575 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2576 }
2577 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2578 
2579 /*
2580  * handle_pte_fault chooses page fault handler according to an entry which was
2581  * read non-atomically.  Before making any commitment, on those architectures
2582  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2583  * parts, do_swap_page must check under lock before unmapping the pte and
2584  * proceeding (but do_wp_page is only called after already making such a check;
2585  * and do_anonymous_page can safely check later on).
2586  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2587 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2588 				pte_t *page_table, pte_t orig_pte)
2589 {
2590 	int same = 1;
2591 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2592 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2593 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2594 		spin_lock(ptl);
2595 		same = pte_same(*page_table, orig_pte);
2596 		spin_unlock(ptl);
2597 	}
2598 #endif
2599 	pte_unmap(page_table);
2600 	return same;
2601 }
2602 
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2603 static inline bool cow_user_page(struct page *dst, struct page *src,
2604 				 struct vm_fault *vmf)
2605 {
2606 	bool ret;
2607 	void *kaddr;
2608 	void __user *uaddr;
2609 	bool locked = false;
2610 	struct vm_area_struct *vma = vmf->vma;
2611 	struct mm_struct *mm = vma->vm_mm;
2612 	unsigned long addr = vmf->address;
2613 
2614 	if (likely(src)) {
2615 		copy_user_highpage(dst, src, addr, vma);
2616 		return true;
2617 	}
2618 
2619 	/*
2620 	 * If the source page was a PFN mapping, we don't have
2621 	 * a "struct page" for it. We do a best-effort copy by
2622 	 * just copying from the original user address. If that
2623 	 * fails, we just zero-fill it. Live with it.
2624 	 */
2625 	kaddr = kmap_atomic(dst);
2626 	uaddr = (void __user *)(addr & PAGE_MASK);
2627 
2628 	/*
2629 	 * On architectures with software "accessed" bits, we would
2630 	 * take a double page fault, so mark it accessed here.
2631 	 */
2632 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2633 		pte_t entry;
2634 
2635 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2636 		locked = true;
2637 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2638 			/*
2639 			 * Other thread has already handled the fault
2640 			 * and update local tlb only
2641 			 */
2642 			update_mmu_tlb(vma, addr, vmf->pte);
2643 			ret = false;
2644 			goto pte_unlock;
2645 		}
2646 
2647 		entry = pte_mkyoung(vmf->orig_pte);
2648 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2649 			update_mmu_cache(vma, addr, vmf->pte);
2650 	}
2651 
2652 	/*
2653 	 * This really shouldn't fail, because the page is there
2654 	 * in the page tables. But it might just be unreadable,
2655 	 * in which case we just give up and fill the result with
2656 	 * zeroes.
2657 	 */
2658 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2659 		if (locked)
2660 			goto warn;
2661 
2662 		/* Re-validate under PTL if the page is still mapped */
2663 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2664 		locked = true;
2665 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2666 			/* The PTE changed under us, update local tlb */
2667 			update_mmu_tlb(vma, addr, vmf->pte);
2668 			ret = false;
2669 			goto pte_unlock;
2670 		}
2671 
2672 		/*
2673 		 * The same page can be mapped back since last copy attempt.
2674 		 * Try to copy again under PTL.
2675 		 */
2676 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2677 			/*
2678 			 * Give a warn in case there can be some obscure
2679 			 * use-case
2680 			 */
2681 warn:
2682 			WARN_ON_ONCE(1);
2683 			clear_page(kaddr);
2684 		}
2685 	}
2686 
2687 	ret = true;
2688 
2689 pte_unlock:
2690 	if (locked)
2691 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2692 	kunmap_atomic(kaddr);
2693 	flush_dcache_page(dst);
2694 
2695 	return ret;
2696 }
2697 
__get_fault_gfp_mask(struct vm_area_struct * vma)2698 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2699 {
2700 	struct file *vm_file = vma->vm_file;
2701 
2702 	if (vm_file)
2703 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2704 
2705 	/*
2706 	 * Special mappings (e.g. VDSO) do not have any file so fake
2707 	 * a default GFP_KERNEL for them.
2708 	 */
2709 	return GFP_KERNEL;
2710 }
2711 
2712 /*
2713  * Notify the address space that the page is about to become writable so that
2714  * it can prohibit this or wait for the page to get into an appropriate state.
2715  *
2716  * We do this without the lock held, so that it can sleep if it needs to.
2717  */
do_page_mkwrite(struct vm_fault * vmf)2718 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2719 {
2720 	vm_fault_t ret;
2721 	struct page *page = vmf->page;
2722 	unsigned int old_flags = vmf->flags;
2723 
2724 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2725 
2726 	if (vmf->vma->vm_file &&
2727 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2728 		return VM_FAULT_SIGBUS;
2729 
2730 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2731 	/* Restore original flags so that caller is not surprised */
2732 	vmf->flags = old_flags;
2733 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2734 		return ret;
2735 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2736 		lock_page(page);
2737 		if (!page->mapping) {
2738 			unlock_page(page);
2739 			return 0; /* retry */
2740 		}
2741 		ret |= VM_FAULT_LOCKED;
2742 	} else
2743 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2744 	return ret;
2745 }
2746 
2747 /*
2748  * Handle dirtying of a page in shared file mapping on a write fault.
2749  *
2750  * The function expects the page to be locked and unlocks it.
2751  */
fault_dirty_shared_page(struct vm_fault * vmf)2752 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2753 {
2754 	struct vm_area_struct *vma = vmf->vma;
2755 	struct address_space *mapping;
2756 	struct page *page = vmf->page;
2757 	bool dirtied;
2758 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2759 
2760 	dirtied = set_page_dirty(page);
2761 	VM_BUG_ON_PAGE(PageAnon(page), page);
2762 	/*
2763 	 * Take a local copy of the address_space - page.mapping may be zeroed
2764 	 * by truncate after unlock_page().   The address_space itself remains
2765 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2766 	 * release semantics to prevent the compiler from undoing this copying.
2767 	 */
2768 	mapping = page_rmapping(page);
2769 	unlock_page(page);
2770 
2771 	if (!page_mkwrite)
2772 		file_update_time(vma->vm_file);
2773 
2774 	/*
2775 	 * Throttle page dirtying rate down to writeback speed.
2776 	 *
2777 	 * mapping may be NULL here because some device drivers do not
2778 	 * set page.mapping but still dirty their pages
2779 	 *
2780 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2781 	 * is pinning the mapping, as per above.
2782 	 */
2783 	if ((dirtied || page_mkwrite) && mapping) {
2784 		struct file *fpin;
2785 
2786 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2787 		balance_dirty_pages_ratelimited(mapping);
2788 		if (fpin) {
2789 			fput(fpin);
2790 			return VM_FAULT_RETRY;
2791 		}
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 /*
2798  * Handle write page faults for pages that can be reused in the current vma
2799  *
2800  * This can happen either due to the mapping being with the VM_SHARED flag,
2801  * or due to us being the last reference standing to the page. In either
2802  * case, all we need to do here is to mark the page as writable and update
2803  * any related book-keeping.
2804  */
wp_page_reuse(struct vm_fault * vmf)2805 static inline void wp_page_reuse(struct vm_fault *vmf)
2806 	__releases(vmf->ptl)
2807 {
2808 	struct vm_area_struct *vma = vmf->vma;
2809 	struct page *page = vmf->page;
2810 	pte_t entry;
2811 	/*
2812 	 * Clear the pages cpupid information as the existing
2813 	 * information potentially belongs to a now completely
2814 	 * unrelated process.
2815 	 */
2816 	if (page)
2817 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2818 
2819 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2820 	entry = pte_mkyoung(vmf->orig_pte);
2821 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2822 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2823 		update_mmu_cache(vma, vmf->address, vmf->pte);
2824 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2825 	count_vm_event(PGREUSE);
2826 }
2827 
2828 /*
2829  * Handle the case of a page which we actually need to copy to a new page.
2830  *
2831  * Called with mmap_lock locked and the old page referenced, but
2832  * without the ptl held.
2833  *
2834  * High level logic flow:
2835  *
2836  * - Allocate a page, copy the content of the old page to the new one.
2837  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2838  * - Take the PTL. If the pte changed, bail out and release the allocated page
2839  * - If the pte is still the way we remember it, update the page table and all
2840  *   relevant references. This includes dropping the reference the page-table
2841  *   held to the old page, as well as updating the rmap.
2842  * - In any case, unlock the PTL and drop the reference we took to the old page.
2843  */
wp_page_copy(struct vm_fault * vmf)2844 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2845 {
2846 	struct vm_area_struct *vma = vmf->vma;
2847 	struct mm_struct *mm = vma->vm_mm;
2848 	struct page *old_page = vmf->page;
2849 	struct page *new_page = NULL;
2850 	pte_t entry;
2851 	int page_copied = 0;
2852 	struct mmu_notifier_range range;
2853 
2854 	if (unlikely(anon_vma_prepare(vma)))
2855 		goto oom;
2856 
2857 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2858 		new_page = alloc_zeroed_user_highpage_movable(vma,
2859 							      vmf->address);
2860 		if (!new_page)
2861 			goto oom;
2862 	} else {
2863 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2864 				vmf->address);
2865 		if (!new_page)
2866 			goto oom;
2867 
2868 		if (!cow_user_page(new_page, old_page, vmf)) {
2869 			/*
2870 			 * COW failed, if the fault was solved by other,
2871 			 * it's fine. If not, userspace would re-fault on
2872 			 * the same address and we will handle the fault
2873 			 * from the second attempt.
2874 			 */
2875 			put_page(new_page);
2876 			if (old_page)
2877 				put_page(old_page);
2878 			return 0;
2879 		}
2880 	}
2881 
2882 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2883 		goto oom_free_new;
2884 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2885 
2886 	__SetPageUptodate(new_page);
2887 
2888 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2889 				vmf->address & PAGE_MASK,
2890 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2891 	mmu_notifier_invalidate_range_start(&range);
2892 
2893 	/*
2894 	 * Re-check the pte - we dropped the lock
2895 	 */
2896 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2897 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2898 		if (old_page) {
2899 			if (!PageAnon(old_page)) {
2900 				dec_mm_counter_fast(mm,
2901 						mm_counter_file(old_page));
2902 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2903 			}
2904 		} else {
2905 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2906 		}
2907 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2908 		entry = mk_pte(new_page, vma->vm_page_prot);
2909 		entry = pte_sw_mkyoung(entry);
2910 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2911 		/*
2912 		 * Clear the pte entry and flush it first, before updating the
2913 		 * pte with the new entry. This will avoid a race condition
2914 		 * seen in the presence of one thread doing SMC and another
2915 		 * thread doing COW.
2916 		 */
2917 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2918 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2919 		if (vma->vm_flags & VM_PURGEABLE) {
2920 			pr_info("set wp new page %lx purgeable\n", page_to_pfn(new_page));
2921 			SetPagePurgeable(new_page);
2922 			uxpte_set_present(vma, vmf->address);
2923 		}
2924 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2925 		/*
2926 		 * We call the notify macro here because, when using secondary
2927 		 * mmu page tables (such as kvm shadow page tables), we want the
2928 		 * new page to be mapped directly into the secondary page table.
2929 		 */
2930 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2931 		update_mmu_cache(vma, vmf->address, vmf->pte);
2932 		if (old_page) {
2933 			/*
2934 			 * Only after switching the pte to the new page may
2935 			 * we remove the mapcount here. Otherwise another
2936 			 * process may come and find the rmap count decremented
2937 			 * before the pte is switched to the new page, and
2938 			 * "reuse" the old page writing into it while our pte
2939 			 * here still points into it and can be read by other
2940 			 * threads.
2941 			 *
2942 			 * The critical issue is to order this
2943 			 * page_remove_rmap with the ptp_clear_flush above.
2944 			 * Those stores are ordered by (if nothing else,)
2945 			 * the barrier present in the atomic_add_negative
2946 			 * in page_remove_rmap.
2947 			 *
2948 			 * Then the TLB flush in ptep_clear_flush ensures that
2949 			 * no process can access the old page before the
2950 			 * decremented mapcount is visible. And the old page
2951 			 * cannot be reused until after the decremented
2952 			 * mapcount is visible. So transitively, TLBs to
2953 			 * old page will be flushed before it can be reused.
2954 			 */
2955 			page_remove_rmap(old_page, false);
2956 		}
2957 
2958 		/* Free the old page.. */
2959 		new_page = old_page;
2960 		page_copied = 1;
2961 	} else {
2962 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2963 	}
2964 
2965 	if (new_page)
2966 		put_page(new_page);
2967 
2968 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2969 	/*
2970 	 * No need to double call mmu_notifier->invalidate_range() callback as
2971 	 * the above ptep_clear_flush_notify() did already call it.
2972 	 */
2973 	mmu_notifier_invalidate_range_only_end(&range);
2974 	if (old_page) {
2975 		/*
2976 		 * Don't let another task, with possibly unlocked vma,
2977 		 * keep the mlocked page.
2978 		 */
2979 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2980 			lock_page(old_page);	/* LRU manipulation */
2981 			if (PageMlocked(old_page))
2982 				munlock_vma_page(old_page);
2983 			unlock_page(old_page);
2984 		}
2985 		put_page(old_page);
2986 	}
2987 	return page_copied ? VM_FAULT_WRITE : 0;
2988 oom_free_new:
2989 	put_page(new_page);
2990 oom:
2991 	if (old_page)
2992 		put_page(old_page);
2993 	return VM_FAULT_OOM;
2994 }
2995 
2996 /**
2997  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2998  *			  writeable once the page is prepared
2999  *
3000  * @vmf: structure describing the fault
3001  *
3002  * This function handles all that is needed to finish a write page fault in a
3003  * shared mapping due to PTE being read-only once the mapped page is prepared.
3004  * It handles locking of PTE and modifying it.
3005  *
3006  * The function expects the page to be locked or other protection against
3007  * concurrent faults / writeback (such as DAX radix tree locks).
3008  *
3009  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3010  * we acquired PTE lock.
3011  */
finish_mkwrite_fault(struct vm_fault * vmf)3012 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3013 {
3014 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3015 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3016 				       &vmf->ptl);
3017 	/*
3018 	 * We might have raced with another page fault while we released the
3019 	 * pte_offset_map_lock.
3020 	 */
3021 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3022 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3023 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 		return VM_FAULT_NOPAGE;
3025 	}
3026 	wp_page_reuse(vmf);
3027 	return 0;
3028 }
3029 
3030 /*
3031  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3032  * mapping
3033  */
wp_pfn_shared(struct vm_fault * vmf)3034 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3035 {
3036 	struct vm_area_struct *vma = vmf->vma;
3037 
3038 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3039 		vm_fault_t ret;
3040 
3041 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3042 		vmf->flags |= FAULT_FLAG_MKWRITE;
3043 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3044 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3045 			return ret;
3046 		return finish_mkwrite_fault(vmf);
3047 	}
3048 	wp_page_reuse(vmf);
3049 	return VM_FAULT_WRITE;
3050 }
3051 
wp_page_shared(struct vm_fault * vmf)3052 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3053 	__releases(vmf->ptl)
3054 {
3055 	struct vm_area_struct *vma = vmf->vma;
3056 	vm_fault_t ret = VM_FAULT_WRITE;
3057 
3058 	get_page(vmf->page);
3059 
3060 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3061 		vm_fault_t tmp;
3062 
3063 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3064 		tmp = do_page_mkwrite(vmf);
3065 		if (unlikely(!tmp || (tmp &
3066 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3067 			put_page(vmf->page);
3068 			return tmp;
3069 		}
3070 		tmp = finish_mkwrite_fault(vmf);
3071 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3072 			unlock_page(vmf->page);
3073 			put_page(vmf->page);
3074 			return tmp;
3075 		}
3076 	} else {
3077 		wp_page_reuse(vmf);
3078 		lock_page(vmf->page);
3079 	}
3080 	ret |= fault_dirty_shared_page(vmf);
3081 	put_page(vmf->page);
3082 
3083 	return ret;
3084 }
3085 
3086 /*
3087  * This routine handles present pages, when users try to write
3088  * to a shared page. It is done by copying the page to a new address
3089  * and decrementing the shared-page counter for the old page.
3090  *
3091  * Note that this routine assumes that the protection checks have been
3092  * done by the caller (the low-level page fault routine in most cases).
3093  * Thus we can safely just mark it writable once we've done any necessary
3094  * COW.
3095  *
3096  * We also mark the page dirty at this point even though the page will
3097  * change only once the write actually happens. This avoids a few races,
3098  * and potentially makes it more efficient.
3099  *
3100  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3101  * but allow concurrent faults), with pte both mapped and locked.
3102  * We return with mmap_lock still held, but pte unmapped and unlocked.
3103  */
do_wp_page(struct vm_fault * vmf)3104 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3105 	__releases(vmf->ptl)
3106 {
3107 	struct vm_area_struct *vma = vmf->vma;
3108 
3109 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3110 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3111 		return handle_userfault(vmf, VM_UFFD_WP);
3112 	}
3113 
3114 	/*
3115 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3116 	 * is flushed in this case before copying.
3117 	 */
3118 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3119 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3120 		flush_tlb_page(vmf->vma, vmf->address);
3121 
3122 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3123 	if (!vmf->page) {
3124 		/*
3125 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3126 		 * VM_PFNMAP VMA.
3127 		 *
3128 		 * We should not cow pages in a shared writeable mapping.
3129 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3130 		 */
3131 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3132 				     (VM_WRITE|VM_SHARED))
3133 			return wp_pfn_shared(vmf);
3134 
3135 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3136 		return wp_page_copy(vmf);
3137 	}
3138 
3139 	/*
3140 	 * Take out anonymous pages first, anonymous shared vmas are
3141 	 * not dirty accountable.
3142 	 */
3143 	if (PageAnon(vmf->page)) {
3144 		struct page *page = vmf->page;
3145 
3146 		/* PageKsm() doesn't necessarily raise the page refcount */
3147 		if (PageKsm(page) || page_count(page) != 1)
3148 			goto copy;
3149 		if (!trylock_page(page))
3150 			goto copy;
3151 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3152 			unlock_page(page);
3153 			goto copy;
3154 		}
3155 		/*
3156 		 * Ok, we've got the only map reference, and the only
3157 		 * page count reference, and the page is locked,
3158 		 * it's dark out, and we're wearing sunglasses. Hit it.
3159 		 */
3160 		unlock_page(page);
3161 		wp_page_reuse(vmf);
3162 		return VM_FAULT_WRITE;
3163 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3164 					(VM_WRITE|VM_SHARED))) {
3165 		return wp_page_shared(vmf);
3166 	}
3167 copy:
3168 	/*
3169 	 * Ok, we need to copy. Oh, well..
3170 	 */
3171 	get_page(vmf->page);
3172 
3173 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3174 	return wp_page_copy(vmf);
3175 }
3176 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3177 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3178 		unsigned long start_addr, unsigned long end_addr,
3179 		struct zap_details *details)
3180 {
3181 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3182 }
3183 
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3184 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3185 					    struct zap_details *details)
3186 {
3187 	struct vm_area_struct *vma;
3188 	pgoff_t vba, vea, zba, zea;
3189 
3190 	vma_interval_tree_foreach(vma, root,
3191 			details->first_index, details->last_index) {
3192 
3193 		vba = vma->vm_pgoff;
3194 		vea = vba + vma_pages(vma) - 1;
3195 		zba = details->first_index;
3196 		if (zba < vba)
3197 			zba = vba;
3198 		zea = details->last_index;
3199 		if (zea > vea)
3200 			zea = vea;
3201 
3202 		unmap_mapping_range_vma(vma,
3203 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3204 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3205 				details);
3206 	}
3207 }
3208 
3209 /**
3210  * unmap_mapping_page() - Unmap single page from processes.
3211  * @page: The locked page to be unmapped.
3212  *
3213  * Unmap this page from any userspace process which still has it mmaped.
3214  * Typically, for efficiency, the range of nearby pages has already been
3215  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3216  * truncation or invalidation holds the lock on a page, it may find that
3217  * the page has been remapped again: and then uses unmap_mapping_page()
3218  * to unmap it finally.
3219  */
unmap_mapping_page(struct page * page)3220 void unmap_mapping_page(struct page *page)
3221 {
3222 	struct address_space *mapping = page->mapping;
3223 	struct zap_details details = { };
3224 
3225 	VM_BUG_ON(!PageLocked(page));
3226 	VM_BUG_ON(PageTail(page));
3227 
3228 	details.check_mapping = mapping;
3229 	details.first_index = page->index;
3230 	details.last_index = page->index + thp_nr_pages(page) - 1;
3231 	details.single_page = page;
3232 
3233 	i_mmap_lock_write(mapping);
3234 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3235 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3236 	i_mmap_unlock_write(mapping);
3237 }
3238 
3239 /**
3240  * unmap_mapping_pages() - Unmap pages from processes.
3241  * @mapping: The address space containing pages to be unmapped.
3242  * @start: Index of first page to be unmapped.
3243  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3244  * @even_cows: Whether to unmap even private COWed pages.
3245  *
3246  * Unmap the pages in this address space from any userspace process which
3247  * has them mmaped.  Generally, you want to remove COWed pages as well when
3248  * a file is being truncated, but not when invalidating pages from the page
3249  * cache.
3250  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3251 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3252 		pgoff_t nr, bool even_cows)
3253 {
3254 	struct zap_details details = { };
3255 
3256 	details.check_mapping = even_cows ? NULL : mapping;
3257 	details.first_index = start;
3258 	details.last_index = start + nr - 1;
3259 	if (details.last_index < details.first_index)
3260 		details.last_index = ULONG_MAX;
3261 
3262 	i_mmap_lock_write(mapping);
3263 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3264 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3265 	i_mmap_unlock_write(mapping);
3266 }
3267 
3268 /**
3269  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3270  * address_space corresponding to the specified byte range in the underlying
3271  * file.
3272  *
3273  * @mapping: the address space containing mmaps to be unmapped.
3274  * @holebegin: byte in first page to unmap, relative to the start of
3275  * the underlying file.  This will be rounded down to a PAGE_SIZE
3276  * boundary.  Note that this is different from truncate_pagecache(), which
3277  * must keep the partial page.  In contrast, we must get rid of
3278  * partial pages.
3279  * @holelen: size of prospective hole in bytes.  This will be rounded
3280  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3281  * end of the file.
3282  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3283  * but 0 when invalidating pagecache, don't throw away private data.
3284  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3285 void unmap_mapping_range(struct address_space *mapping,
3286 		loff_t const holebegin, loff_t const holelen, int even_cows)
3287 {
3288 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3289 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3290 
3291 	/* Check for overflow. */
3292 	if (sizeof(holelen) > sizeof(hlen)) {
3293 		long long holeend =
3294 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3295 		if (holeend & ~(long long)ULONG_MAX)
3296 			hlen = ULONG_MAX - hba + 1;
3297 	}
3298 
3299 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3300 }
3301 EXPORT_SYMBOL(unmap_mapping_range);
3302 
3303 /*
3304  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3305  * but allow concurrent faults), and pte mapped but not yet locked.
3306  * We return with pte unmapped and unlocked.
3307  *
3308  * We return with the mmap_lock locked or unlocked in the same cases
3309  * as does filemap_fault().
3310  */
do_swap_page(struct vm_fault * vmf)3311 vm_fault_t do_swap_page(struct vm_fault *vmf)
3312 {
3313 	struct vm_area_struct *vma = vmf->vma;
3314 	struct page *page = NULL, *swapcache;
3315 	swp_entry_t entry;
3316 	pte_t pte;
3317 	int locked;
3318 	int exclusive = 0;
3319 	vm_fault_t ret = 0;
3320 	void *shadow = NULL;
3321 
3322 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3323 		goto out;
3324 
3325 	entry = pte_to_swp_entry(vmf->orig_pte);
3326 	if (unlikely(non_swap_entry(entry))) {
3327 		if (is_migration_entry(entry)) {
3328 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3329 					     vmf->address);
3330 		} else if (is_device_private_entry(entry)) {
3331 			vmf->page = device_private_entry_to_page(entry);
3332 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3333 					vmf->address, &vmf->ptl);
3334 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3335 				spin_unlock(vmf->ptl);
3336 				goto out;
3337 			}
3338 
3339 			/*
3340 			 * Get a page reference while we know the page can't be
3341 			 * freed.
3342 			 */
3343 			get_page(vmf->page);
3344 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3345 			vmf->page->pgmap->ops->migrate_to_ram(vmf);
3346 			put_page(vmf->page);
3347 		} else if (is_hwpoison_entry(entry)) {
3348 			ret = VM_FAULT_HWPOISON;
3349 		} else {
3350 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3351 			ret = VM_FAULT_SIGBUS;
3352 		}
3353 		goto out;
3354 	}
3355 
3356 
3357 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3358 	page = lookup_swap_cache(entry, vma, vmf->address);
3359 	swapcache = page;
3360 
3361 	if (!page) {
3362 		struct swap_info_struct *si = swp_swap_info(entry);
3363 
3364 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3365 		    __swap_count(entry) == 1) {
3366 			/* skip swapcache */
3367 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3368 							vmf->address);
3369 			if (page) {
3370 				int err;
3371 
3372 				__SetPageLocked(page);
3373 				__SetPageSwapBacked(page);
3374 				set_page_private(page, entry.val);
3375 
3376 				/* Tell memcg to use swap ownership records */
3377 				SetPageSwapCache(page);
3378 				err = mem_cgroup_charge(page, vma->vm_mm,
3379 							GFP_KERNEL);
3380 				ClearPageSwapCache(page);
3381 				if (err) {
3382 					ret = VM_FAULT_OOM;
3383 					goto out_page;
3384 				}
3385 
3386 				shadow = get_shadow_from_swap_cache(entry);
3387 				if (shadow)
3388 					workingset_refault(page, shadow);
3389 
3390 				lru_cache_add(page);
3391 				swap_readpage(page, true);
3392 			}
3393 		} else {
3394 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3395 						vmf);
3396 			swapcache = page;
3397 		}
3398 
3399 		if (!page) {
3400 			/*
3401 			 * Back out if somebody else faulted in this pte
3402 			 * while we released the pte lock.
3403 			 */
3404 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3405 					vmf->address, &vmf->ptl);
3406 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3407 				ret = VM_FAULT_OOM;
3408 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3409 			goto unlock;
3410 		}
3411 
3412 		/* Had to read the page from swap area: Major fault */
3413 		ret = VM_FAULT_MAJOR;
3414 		count_vm_event(PGMAJFAULT);
3415 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3416 	} else if (PageHWPoison(page)) {
3417 		/*
3418 		 * hwpoisoned dirty swapcache pages are kept for killing
3419 		 * owner processes (which may be unknown at hwpoison time)
3420 		 */
3421 		ret = VM_FAULT_HWPOISON;
3422 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3423 		goto out_release;
3424 	}
3425 
3426 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3427 
3428 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3429 	if (!locked) {
3430 		ret |= VM_FAULT_RETRY;
3431 		goto out_release;
3432 	}
3433 
3434 	/*
3435 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3436 	 * release the swapcache from under us.  The page pin, and pte_same
3437 	 * test below, are not enough to exclude that.  Even if it is still
3438 	 * swapcache, we need to check that the page's swap has not changed.
3439 	 */
3440 	if (unlikely((!PageSwapCache(page) ||
3441 			page_private(page) != entry.val)) && swapcache)
3442 		goto out_page;
3443 
3444 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3445 	if (unlikely(!page)) {
3446 		ret = VM_FAULT_OOM;
3447 		page = swapcache;
3448 		goto out_page;
3449 	}
3450 
3451 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3452 
3453 	/*
3454 	 * Back out if somebody else already faulted in this pte.
3455 	 */
3456 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3457 			&vmf->ptl);
3458 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3459 		goto out_nomap;
3460 
3461 	if (unlikely(!PageUptodate(page))) {
3462 		ret = VM_FAULT_SIGBUS;
3463 		goto out_nomap;
3464 	}
3465 
3466 	/*
3467 	 * The page isn't present yet, go ahead with the fault.
3468 	 *
3469 	 * Be careful about the sequence of operations here.
3470 	 * To get its accounting right, reuse_swap_page() must be called
3471 	 * while the page is counted on swap but not yet in mapcount i.e.
3472 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3473 	 * must be called after the swap_free(), or it will never succeed.
3474 	 */
3475 
3476 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3477 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3478 	pte = mk_pte(page, vma->vm_page_prot);
3479 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3480 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3481 		vmf->flags &= ~FAULT_FLAG_WRITE;
3482 		ret |= VM_FAULT_WRITE;
3483 		exclusive = RMAP_EXCLUSIVE;
3484 	}
3485 	flush_icache_page(vma, page);
3486 	if (pte_swp_soft_dirty(vmf->orig_pte))
3487 		pte = pte_mksoft_dirty(pte);
3488 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3489 		pte = pte_mkuffd_wp(pte);
3490 		pte = pte_wrprotect(pte);
3491 	}
3492 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3493 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3494 	vmf->orig_pte = pte;
3495 
3496 	/* ksm created a completely new copy */
3497 	if (unlikely(page != swapcache && swapcache)) {
3498 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3499 		lru_cache_add_inactive_or_unevictable(page, vma);
3500 	} else {
3501 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3502 	}
3503 
3504 	swap_free(entry);
3505 	if (mem_cgroup_swap_full(page) ||
3506 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3507 		try_to_free_swap(page);
3508 	unlock_page(page);
3509 	if (page != swapcache && swapcache) {
3510 		/*
3511 		 * Hold the lock to avoid the swap entry to be reused
3512 		 * until we take the PT lock for the pte_same() check
3513 		 * (to avoid false positives from pte_same). For
3514 		 * further safety release the lock after the swap_free
3515 		 * so that the swap count won't change under a
3516 		 * parallel locked swapcache.
3517 		 */
3518 		unlock_page(swapcache);
3519 		put_page(swapcache);
3520 	}
3521 
3522 	if (vmf->flags & FAULT_FLAG_WRITE) {
3523 		ret |= do_wp_page(vmf);
3524 		if (ret & VM_FAULT_ERROR)
3525 			ret &= VM_FAULT_ERROR;
3526 		goto out;
3527 	}
3528 
3529 	/* No need to invalidate - it was non-present before */
3530 	update_mmu_cache(vma, vmf->address, vmf->pte);
3531 unlock:
3532 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3533 out:
3534 	return ret;
3535 out_nomap:
3536 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3537 out_page:
3538 	unlock_page(page);
3539 out_release:
3540 	put_page(page);
3541 	if (page != swapcache && swapcache) {
3542 		unlock_page(swapcache);
3543 		put_page(swapcache);
3544 	}
3545 	return ret;
3546 }
3547 
3548 /*
3549  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3550  * but allow concurrent faults), and pte mapped but not yet locked.
3551  * We return with mmap_lock still held, but pte unmapped and unlocked.
3552  */
do_anonymous_page(struct vm_fault * vmf)3553 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3554 {
3555 	struct vm_area_struct *vma = vmf->vma;
3556 	struct page *page;
3557 	vm_fault_t ret = 0;
3558 	pte_t entry;
3559 
3560 	/* File mapping without ->vm_ops ? */
3561 	if (vma->vm_flags & VM_SHARED)
3562 		return VM_FAULT_SIGBUS;
3563 
3564 	/*
3565 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3566 	 * pte_offset_map() on pmds where a huge pmd might be created
3567 	 * from a different thread.
3568 	 *
3569 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3570 	 * parallel threads are excluded by other means.
3571 	 *
3572 	 * Here we only have mmap_read_lock(mm).
3573 	 */
3574 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3575 		return VM_FAULT_OOM;
3576 
3577 	/* See the comment in pte_alloc_one_map() */
3578 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3579 		return 0;
3580 
3581 	/* use extra page table for userexpte */
3582 	if (vma->vm_flags & VM_USEREXPTE) {
3583 		if (do_uxpte_page_fault(vmf, &entry))
3584 			goto oom;
3585 		else
3586 			goto got_page;
3587 	}
3588 
3589 	/* Use the zero-page for reads */
3590 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3591 			!mm_forbids_zeropage(vma->vm_mm)) {
3592 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3593 						vma->vm_page_prot));
3594 got_page:
3595 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3596 				vmf->address, &vmf->ptl);
3597 		if (!pte_none(*vmf->pte)) {
3598 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3599 			goto unlock;
3600 		}
3601 		ret = check_stable_address_space(vma->vm_mm);
3602 		if (ret)
3603 			goto unlock;
3604 		/* Deliver the page fault to userland, check inside PT lock */
3605 		if (userfaultfd_missing(vma)) {
3606 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3607 			return handle_userfault(vmf, VM_UFFD_MISSING);
3608 		}
3609 		goto setpte;
3610 	}
3611 
3612 	/* Allocate our own private page. */
3613 	if (unlikely(anon_vma_prepare(vma)))
3614 		goto oom;
3615 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3616 	if (!page)
3617 		goto oom;
3618 
3619 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3620 		goto oom_free_page;
3621 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3622 
3623 	/*
3624 	 * The memory barrier inside __SetPageUptodate makes sure that
3625 	 * preceding stores to the page contents become visible before
3626 	 * the set_pte_at() write.
3627 	 */
3628 	__SetPageUptodate(page);
3629 
3630 	entry = mk_pte(page, vma->vm_page_prot);
3631 	entry = pte_sw_mkyoung(entry);
3632 	if (vma->vm_flags & VM_WRITE)
3633 		entry = pte_mkwrite(pte_mkdirty(entry));
3634 
3635 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3636 			&vmf->ptl);
3637 	if (!pte_none(*vmf->pte)) {
3638 		update_mmu_cache(vma, vmf->address, vmf->pte);
3639 		goto release;
3640 	}
3641 
3642 	ret = check_stable_address_space(vma->vm_mm);
3643 	if (ret)
3644 		goto release;
3645 
3646 	/* Deliver the page fault to userland, check inside PT lock */
3647 	if (userfaultfd_missing(vma)) {
3648 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3649 		put_page(page);
3650 		return handle_userfault(vmf, VM_UFFD_MISSING);
3651 	}
3652 
3653 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3654 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3655 	if (vma->vm_flags & VM_PURGEABLE)
3656 		SetPagePurgeable(page);
3657 
3658 	lru_cache_add_inactive_or_unevictable(page, vma);
3659 setpte:
3660 	if (vma->vm_flags & VM_PURGEABLE)
3661 		uxpte_set_present(vma, vmf->address);
3662 
3663 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3664 
3665 	/* No need to invalidate - it was non-present before */
3666 	update_mmu_cache(vma, vmf->address, vmf->pte);
3667 unlock:
3668 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3669 	return ret;
3670 release:
3671 	put_page(page);
3672 	goto unlock;
3673 oom_free_page:
3674 	put_page(page);
3675 oom:
3676 	return VM_FAULT_OOM;
3677 }
3678 
3679 /*
3680  * The mmap_lock must have been held on entry, and may have been
3681  * released depending on flags and vma->vm_ops->fault() return value.
3682  * See filemap_fault() and __lock_page_retry().
3683  */
__do_fault(struct vm_fault * vmf)3684 static vm_fault_t __do_fault(struct vm_fault *vmf)
3685 {
3686 	struct vm_area_struct *vma = vmf->vma;
3687 	vm_fault_t ret;
3688 
3689 	/*
3690 	 * Preallocate pte before we take page_lock because this might lead to
3691 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3692 	 *				lock_page(A)
3693 	 *				SetPageWriteback(A)
3694 	 *				unlock_page(A)
3695 	 * lock_page(B)
3696 	 *				lock_page(B)
3697 	 * pte_alloc_one
3698 	 *   shrink_page_list
3699 	 *     wait_on_page_writeback(A)
3700 	 *				SetPageWriteback(B)
3701 	 *				unlock_page(B)
3702 	 *				# flush A, B to clear the writeback
3703 	 */
3704 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3705 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3706 		if (!vmf->prealloc_pte)
3707 			return VM_FAULT_OOM;
3708 		smp_wmb(); /* See comment in __pte_alloc() */
3709 	}
3710 
3711 	ret = vma->vm_ops->fault(vmf);
3712 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3713 			    VM_FAULT_DONE_COW)))
3714 		return ret;
3715 
3716 	if (unlikely(PageHWPoison(vmf->page))) {
3717 		if (ret & VM_FAULT_LOCKED)
3718 			unlock_page(vmf->page);
3719 		put_page(vmf->page);
3720 		vmf->page = NULL;
3721 		return VM_FAULT_HWPOISON;
3722 	}
3723 
3724 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3725 		lock_page(vmf->page);
3726 	else
3727 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3728 
3729 	return ret;
3730 }
3731 
3732 /*
3733  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3734  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3735  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3736  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3737  */
pmd_devmap_trans_unstable(pmd_t * pmd)3738 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3739 {
3740 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3741 }
3742 
pte_alloc_one_map(struct vm_fault * vmf)3743 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3744 {
3745 	struct vm_area_struct *vma = vmf->vma;
3746 
3747 	if (!pmd_none(*vmf->pmd))
3748 		goto map_pte;
3749 	if (vmf->prealloc_pte) {
3750 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3751 		if (unlikely(!pmd_none(*vmf->pmd))) {
3752 			spin_unlock(vmf->ptl);
3753 			goto map_pte;
3754 		}
3755 
3756 		mm_inc_nr_ptes(vma->vm_mm);
3757 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3758 		spin_unlock(vmf->ptl);
3759 		vmf->prealloc_pte = NULL;
3760 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3761 		return VM_FAULT_OOM;
3762 	}
3763 map_pte:
3764 	/*
3765 	 * If a huge pmd materialized under us just retry later.  Use
3766 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3767 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3768 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3769 	 * running immediately after a huge pmd fault in a different thread of
3770 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3771 	 * All we have to ensure is that it is a regular pmd that we can walk
3772 	 * with pte_offset_map() and we can do that through an atomic read in
3773 	 * C, which is what pmd_trans_unstable() provides.
3774 	 */
3775 	if (pmd_devmap_trans_unstable(vmf->pmd))
3776 		return VM_FAULT_NOPAGE;
3777 
3778 	/*
3779 	 * At this point we know that our vmf->pmd points to a page of ptes
3780 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3781 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3782 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3783 	 * be valid and we will re-check to make sure the vmf->pte isn't
3784 	 * pte_none() under vmf->ptl protection when we return to
3785 	 * alloc_set_pte().
3786 	 */
3787 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3788 			&vmf->ptl);
3789 	return 0;
3790 }
3791 
3792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)3793 static void deposit_prealloc_pte(struct vm_fault *vmf)
3794 {
3795 	struct vm_area_struct *vma = vmf->vma;
3796 
3797 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3798 	/*
3799 	 * We are going to consume the prealloc table,
3800 	 * count that as nr_ptes.
3801 	 */
3802 	mm_inc_nr_ptes(vma->vm_mm);
3803 	vmf->prealloc_pte = NULL;
3804 }
3805 
do_set_pmd(struct vm_fault * vmf,struct page * page)3806 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3807 {
3808 	struct vm_area_struct *vma = vmf->vma;
3809 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3810 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3811 	pmd_t entry;
3812 	int i;
3813 	vm_fault_t ret = VM_FAULT_FALLBACK;
3814 
3815 	if (!transhuge_vma_suitable(vma, haddr))
3816 		return ret;
3817 
3818 	page = compound_head(page);
3819 	if (compound_order(page) != HPAGE_PMD_ORDER)
3820 		return ret;
3821 
3822 	/*
3823 	 * Archs like ppc64 need additonal space to store information
3824 	 * related to pte entry. Use the preallocated table for that.
3825 	 */
3826 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3827 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3828 		if (!vmf->prealloc_pte)
3829 			return VM_FAULT_OOM;
3830 		smp_wmb(); /* See comment in __pte_alloc() */
3831 	}
3832 
3833 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3834 	if (unlikely(!pmd_none(*vmf->pmd)))
3835 		goto out;
3836 
3837 	for (i = 0; i < HPAGE_PMD_NR; i++)
3838 		flush_icache_page(vma, page + i);
3839 
3840 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3841 	if (write)
3842 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3843 
3844 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3845 	page_add_file_rmap(page, true);
3846 	/*
3847 	 * deposit and withdraw with pmd lock held
3848 	 */
3849 	if (arch_needs_pgtable_deposit())
3850 		deposit_prealloc_pte(vmf);
3851 
3852 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3853 
3854 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3855 
3856 	/* fault is handled */
3857 	ret = 0;
3858 	count_vm_event(THP_FILE_MAPPED);
3859 out:
3860 	spin_unlock(vmf->ptl);
3861 	return ret;
3862 }
3863 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3864 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3865 {
3866 	BUILD_BUG();
3867 	return 0;
3868 }
3869 #endif
3870 
3871 /**
3872  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3873  * mapping. If needed, the function allocates page table or use pre-allocated.
3874  *
3875  * @vmf: fault environment
3876  * @page: page to map
3877  *
3878  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3879  * return.
3880  *
3881  * Target users are page handler itself and implementations of
3882  * vm_ops->map_pages.
3883  *
3884  * Return: %0 on success, %VM_FAULT_ code in case of error.
3885  */
alloc_set_pte(struct vm_fault * vmf,struct page * page)3886 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3887 {
3888 	struct vm_area_struct *vma = vmf->vma;
3889 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3890 	pte_t entry;
3891 	vm_fault_t ret;
3892 
3893 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3894 		ret = do_set_pmd(vmf, page);
3895 		if (ret != VM_FAULT_FALLBACK)
3896 			return ret;
3897 	}
3898 
3899 	if (!vmf->pte) {
3900 		ret = pte_alloc_one_map(vmf);
3901 		if (ret)
3902 			return ret;
3903 	}
3904 
3905 	/* Re-check under ptl */
3906 	if (unlikely(!pte_none(*vmf->pte))) {
3907 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3908 		return VM_FAULT_NOPAGE;
3909 	}
3910 
3911 	flush_icache_page(vma, page);
3912 	entry = mk_pte(page, vma->vm_page_prot);
3913 	entry = pte_sw_mkyoung(entry);
3914 	if (write)
3915 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3916 	/* copy-on-write page */
3917 	if (write && !(vma->vm_flags & VM_SHARED)) {
3918 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3919 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3920 		lru_cache_add_inactive_or_unevictable(page, vma);
3921 	} else {
3922 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3923 		page_add_file_rmap(page, false);
3924 	}
3925 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3926 
3927 	/* no need to invalidate: a not-present page won't be cached */
3928 	update_mmu_cache(vma, vmf->address, vmf->pte);
3929 
3930 	return 0;
3931 }
3932 
3933 
3934 /**
3935  * finish_fault - finish page fault once we have prepared the page to fault
3936  *
3937  * @vmf: structure describing the fault
3938  *
3939  * This function handles all that is needed to finish a page fault once the
3940  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3941  * given page, adds reverse page mapping, handles memcg charges and LRU
3942  * addition.
3943  *
3944  * The function expects the page to be locked and on success it consumes a
3945  * reference of a page being mapped (for the PTE which maps it).
3946  *
3947  * Return: %0 on success, %VM_FAULT_ code in case of error.
3948  */
finish_fault(struct vm_fault * vmf)3949 vm_fault_t finish_fault(struct vm_fault *vmf)
3950 {
3951 	struct page *page;
3952 	vm_fault_t ret = 0;
3953 
3954 	/* Did we COW the page? */
3955 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3956 	    !(vmf->vma->vm_flags & VM_SHARED))
3957 		page = vmf->cow_page;
3958 	else
3959 		page = vmf->page;
3960 
3961 	/*
3962 	 * check even for read faults because we might have lost our CoWed
3963 	 * page
3964 	 */
3965 	if (!(vmf->vma->vm_flags & VM_SHARED))
3966 		ret = check_stable_address_space(vmf->vma->vm_mm);
3967 	if (!ret)
3968 		ret = alloc_set_pte(vmf, page);
3969 	if (vmf->pte)
3970 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3971 	return ret;
3972 }
3973 
3974 static unsigned long fault_around_bytes __read_mostly =
3975 	rounddown_pow_of_two(65536);
3976 
3977 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3978 static int fault_around_bytes_get(void *data, u64 *val)
3979 {
3980 	*val = fault_around_bytes;
3981 	return 0;
3982 }
3983 
3984 /*
3985  * fault_around_bytes must be rounded down to the nearest page order as it's
3986  * what do_fault_around() expects to see.
3987  */
fault_around_bytes_set(void * data,u64 val)3988 static int fault_around_bytes_set(void *data, u64 val)
3989 {
3990 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3991 		return -EINVAL;
3992 	if (val > PAGE_SIZE)
3993 		fault_around_bytes = rounddown_pow_of_two(val);
3994 	else
3995 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3996 	return 0;
3997 }
3998 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3999 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4000 
fault_around_debugfs(void)4001 static int __init fault_around_debugfs(void)
4002 {
4003 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4004 				   &fault_around_bytes_fops);
4005 	return 0;
4006 }
4007 late_initcall(fault_around_debugfs);
4008 #endif
4009 
4010 /*
4011  * do_fault_around() tries to map few pages around the fault address. The hope
4012  * is that the pages will be needed soon and this will lower the number of
4013  * faults to handle.
4014  *
4015  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4016  * not ready to be mapped: not up-to-date, locked, etc.
4017  *
4018  * This function is called with the page table lock taken. In the split ptlock
4019  * case the page table lock only protects only those entries which belong to
4020  * the page table corresponding to the fault address.
4021  *
4022  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4023  * only once.
4024  *
4025  * fault_around_bytes defines how many bytes we'll try to map.
4026  * do_fault_around() expects it to be set to a power of two less than or equal
4027  * to PTRS_PER_PTE.
4028  *
4029  * The virtual address of the area that we map is naturally aligned to
4030  * fault_around_bytes rounded down to the machine page size
4031  * (and therefore to page order).  This way it's easier to guarantee
4032  * that we don't cross page table boundaries.
4033  */
do_fault_around(struct vm_fault * vmf)4034 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4035 {
4036 	unsigned long address = vmf->address, nr_pages, mask;
4037 	pgoff_t start_pgoff = vmf->pgoff;
4038 	pgoff_t end_pgoff;
4039 	int off;
4040 	vm_fault_t ret = 0;
4041 
4042 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4043 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4044 
4045 	vmf->address = max(address & mask, vmf->vma->vm_start);
4046 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4047 	start_pgoff -= off;
4048 
4049 	/*
4050 	 *  end_pgoff is either the end of the page table, the end of
4051 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4052 	 */
4053 	end_pgoff = start_pgoff -
4054 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4055 		PTRS_PER_PTE - 1;
4056 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4057 			start_pgoff + nr_pages - 1);
4058 
4059 	if (pmd_none(*vmf->pmd)) {
4060 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4061 		if (!vmf->prealloc_pte)
4062 			goto out;
4063 		smp_wmb(); /* See comment in __pte_alloc() */
4064 	}
4065 
4066 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4067 
4068 	/* Huge page is mapped? Page fault is solved */
4069 	if (pmd_trans_huge(*vmf->pmd)) {
4070 		ret = VM_FAULT_NOPAGE;
4071 		goto out;
4072 	}
4073 
4074 	/* ->map_pages() haven't done anything useful. Cold page cache? */
4075 	if (!vmf->pte)
4076 		goto out;
4077 
4078 	/* check if the page fault is solved */
4079 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4080 	if (!pte_none(*vmf->pte))
4081 		ret = VM_FAULT_NOPAGE;
4082 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4083 out:
4084 	vmf->address = address;
4085 	vmf->pte = NULL;
4086 	return ret;
4087 }
4088 
do_read_fault(struct vm_fault * vmf)4089 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4090 {
4091 	struct vm_area_struct *vma = vmf->vma;
4092 	vm_fault_t ret = 0;
4093 
4094 	/*
4095 	 * Let's call ->map_pages() first and use ->fault() as fallback
4096 	 * if page by the offset is not ready to be mapped (cold cache or
4097 	 * something).
4098 	 */
4099 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4100 		ret = do_fault_around(vmf);
4101 		if (ret)
4102 			return ret;
4103 	}
4104 
4105 	ret = __do_fault(vmf);
4106 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4107 		return ret;
4108 
4109 	ret |= finish_fault(vmf);
4110 	unlock_page(vmf->page);
4111 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4112 		put_page(vmf->page);
4113 	return ret;
4114 }
4115 
do_cow_fault(struct vm_fault * vmf)4116 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4117 {
4118 	struct vm_area_struct *vma = vmf->vma;
4119 	vm_fault_t ret;
4120 
4121 	if (unlikely(anon_vma_prepare(vma)))
4122 		return VM_FAULT_OOM;
4123 
4124 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4125 	if (!vmf->cow_page)
4126 		return VM_FAULT_OOM;
4127 
4128 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4129 		put_page(vmf->cow_page);
4130 		return VM_FAULT_OOM;
4131 	}
4132 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4133 
4134 	ret = __do_fault(vmf);
4135 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4136 		goto uncharge_out;
4137 	if (ret & VM_FAULT_DONE_COW)
4138 		return ret;
4139 
4140 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4141 	__SetPageUptodate(vmf->cow_page);
4142 
4143 	ret |= finish_fault(vmf);
4144 	unlock_page(vmf->page);
4145 	put_page(vmf->page);
4146 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4147 		goto uncharge_out;
4148 	return ret;
4149 uncharge_out:
4150 	put_page(vmf->cow_page);
4151 	return ret;
4152 }
4153 
do_shared_fault(struct vm_fault * vmf)4154 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4155 {
4156 	struct vm_area_struct *vma = vmf->vma;
4157 	vm_fault_t ret, tmp;
4158 
4159 	ret = __do_fault(vmf);
4160 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4161 		return ret;
4162 
4163 	/*
4164 	 * Check if the backing address space wants to know that the page is
4165 	 * about to become writable
4166 	 */
4167 	if (vma->vm_ops->page_mkwrite) {
4168 		unlock_page(vmf->page);
4169 		tmp = do_page_mkwrite(vmf);
4170 		if (unlikely(!tmp ||
4171 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4172 			put_page(vmf->page);
4173 			return tmp;
4174 		}
4175 	}
4176 
4177 	ret |= finish_fault(vmf);
4178 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4179 					VM_FAULT_RETRY))) {
4180 		unlock_page(vmf->page);
4181 		put_page(vmf->page);
4182 		return ret;
4183 	}
4184 
4185 	ret |= fault_dirty_shared_page(vmf);
4186 	return ret;
4187 }
4188 
4189 /*
4190  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4191  * but allow concurrent faults).
4192  * The mmap_lock may have been released depending on flags and our
4193  * return value.  See filemap_fault() and __lock_page_or_retry().
4194  * If mmap_lock is released, vma may become invalid (for example
4195  * by other thread calling munmap()).
4196  */
do_fault(struct vm_fault * vmf)4197 static vm_fault_t do_fault(struct vm_fault *vmf)
4198 {
4199 	struct vm_area_struct *vma = vmf->vma;
4200 	struct mm_struct *vm_mm = vma->vm_mm;
4201 	vm_fault_t ret;
4202 
4203 	/*
4204 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4205 	 */
4206 	if (!vma->vm_ops->fault) {
4207 		/*
4208 		 * If we find a migration pmd entry or a none pmd entry, which
4209 		 * should never happen, return SIGBUS
4210 		 */
4211 		if (unlikely(!pmd_present(*vmf->pmd)))
4212 			ret = VM_FAULT_SIGBUS;
4213 		else {
4214 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4215 						       vmf->pmd,
4216 						       vmf->address,
4217 						       &vmf->ptl);
4218 			/*
4219 			 * Make sure this is not a temporary clearing of pte
4220 			 * by holding ptl and checking again. A R/M/W update
4221 			 * of pte involves: take ptl, clearing the pte so that
4222 			 * we don't have concurrent modification by hardware
4223 			 * followed by an update.
4224 			 */
4225 			if (unlikely(pte_none(*vmf->pte)))
4226 				ret = VM_FAULT_SIGBUS;
4227 			else
4228 				ret = VM_FAULT_NOPAGE;
4229 
4230 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4231 		}
4232 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4233 		ret = do_read_fault(vmf);
4234 	else if (!(vma->vm_flags & VM_SHARED))
4235 		ret = do_cow_fault(vmf);
4236 	else
4237 		ret = do_shared_fault(vmf);
4238 
4239 	/* preallocated pagetable is unused: free it */
4240 	if (vmf->prealloc_pte) {
4241 		pte_free(vm_mm, vmf->prealloc_pte);
4242 		vmf->prealloc_pte = NULL;
4243 	}
4244 	return ret;
4245 }
4246 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4247 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4248 				unsigned long addr, int page_nid,
4249 				int *flags)
4250 {
4251 	get_page(page);
4252 
4253 	count_vm_numa_event(NUMA_HINT_FAULTS);
4254 	if (page_nid == numa_node_id()) {
4255 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4256 		*flags |= TNF_FAULT_LOCAL;
4257 	}
4258 
4259 	return mpol_misplaced(page, vma, addr);
4260 }
4261 
do_numa_page(struct vm_fault * vmf)4262 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4263 {
4264 	struct vm_area_struct *vma = vmf->vma;
4265 	struct page *page = NULL;
4266 	int page_nid = NUMA_NO_NODE;
4267 	int last_cpupid;
4268 	int target_nid;
4269 	bool migrated = false;
4270 	pte_t pte, old_pte;
4271 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4272 	int flags = 0;
4273 
4274 	/*
4275 	 * The "pte" at this point cannot be used safely without
4276 	 * validation through pte_unmap_same(). It's of NUMA type but
4277 	 * the pfn may be screwed if the read is non atomic.
4278 	 */
4279 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4280 	spin_lock(vmf->ptl);
4281 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4282 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4283 		goto out;
4284 	}
4285 
4286 	/*
4287 	 * Make it present again, Depending on how arch implementes non
4288 	 * accessible ptes, some can allow access by kernel mode.
4289 	 */
4290 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4291 	pte = pte_modify(old_pte, vma->vm_page_prot);
4292 	pte = pte_mkyoung(pte);
4293 	if (was_writable)
4294 		pte = pte_mkwrite(pte);
4295 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4296 	update_mmu_cache(vma, vmf->address, vmf->pte);
4297 
4298 	page = vm_normal_page(vma, vmf->address, pte);
4299 	if (!page) {
4300 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4301 		return 0;
4302 	}
4303 
4304 	/* TODO: handle PTE-mapped THP */
4305 	if (PageCompound(page)) {
4306 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4307 		return 0;
4308 	}
4309 
4310 	/*
4311 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4312 	 * much anyway since they can be in shared cache state. This misses
4313 	 * the case where a mapping is writable but the process never writes
4314 	 * to it but pte_write gets cleared during protection updates and
4315 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4316 	 * background writeback, dirty balancing and application behaviour.
4317 	 */
4318 	if (!pte_write(pte))
4319 		flags |= TNF_NO_GROUP;
4320 
4321 	/*
4322 	 * Flag if the page is shared between multiple address spaces. This
4323 	 * is later used when determining whether to group tasks together
4324 	 */
4325 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4326 		flags |= TNF_SHARED;
4327 
4328 	last_cpupid = page_cpupid_last(page);
4329 	page_nid = page_to_nid(page);
4330 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4331 			&flags);
4332 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4333 	if (target_nid == NUMA_NO_NODE) {
4334 		put_page(page);
4335 		goto out;
4336 	}
4337 
4338 	/* Migrate to the requested node */
4339 	migrated = migrate_misplaced_page(page, vma, target_nid);
4340 	if (migrated) {
4341 		page_nid = target_nid;
4342 		flags |= TNF_MIGRATED;
4343 	} else
4344 		flags |= TNF_MIGRATE_FAIL;
4345 
4346 out:
4347 	if (page_nid != NUMA_NO_NODE)
4348 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4349 	return 0;
4350 }
4351 
create_huge_pmd(struct vm_fault * vmf)4352 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4353 {
4354 	if (vma_is_anonymous(vmf->vma))
4355 		return do_huge_pmd_anonymous_page(vmf);
4356 	if (vmf->vma->vm_ops->huge_fault)
4357 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4358 	return VM_FAULT_FALLBACK;
4359 }
4360 
4361 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)4362 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4363 {
4364 	if (vma_is_anonymous(vmf->vma)) {
4365 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4366 			return handle_userfault(vmf, VM_UFFD_WP);
4367 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4368 	}
4369 	if (vmf->vma->vm_ops->huge_fault) {
4370 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4371 
4372 		if (!(ret & VM_FAULT_FALLBACK))
4373 			return ret;
4374 	}
4375 
4376 	/* COW or write-notify handled on pte level: split pmd. */
4377 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4378 
4379 	return VM_FAULT_FALLBACK;
4380 }
4381 
create_huge_pud(struct vm_fault * vmf)4382 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4383 {
4384 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4385 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4386 	/* No support for anonymous transparent PUD pages yet */
4387 	if (vma_is_anonymous(vmf->vma))
4388 		goto split;
4389 	if (vmf->vma->vm_ops->huge_fault) {
4390 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4391 
4392 		if (!(ret & VM_FAULT_FALLBACK))
4393 			return ret;
4394 	}
4395 split:
4396 	/* COW or write-notify not handled on PUD level: split pud.*/
4397 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4398 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4399 	return VM_FAULT_FALLBACK;
4400 }
4401 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4402 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4403 {
4404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4405 	/* No support for anonymous transparent PUD pages yet */
4406 	if (vma_is_anonymous(vmf->vma))
4407 		return VM_FAULT_FALLBACK;
4408 	if (vmf->vma->vm_ops->huge_fault)
4409 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4410 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4411 	return VM_FAULT_FALLBACK;
4412 }
4413 
4414 /*
4415  * These routines also need to handle stuff like marking pages dirty
4416  * and/or accessed for architectures that don't do it in hardware (most
4417  * RISC architectures).  The early dirtying is also good on the i386.
4418  *
4419  * There is also a hook called "update_mmu_cache()" that architectures
4420  * with external mmu caches can use to update those (ie the Sparc or
4421  * PowerPC hashed page tables that act as extended TLBs).
4422  *
4423  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4424  * concurrent faults).
4425  *
4426  * The mmap_lock may have been released depending on flags and our return value.
4427  * See filemap_fault() and __lock_page_or_retry().
4428  */
handle_pte_fault(struct vm_fault * vmf)4429 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4430 {
4431 	pte_t entry;
4432 
4433 	if (unlikely(pmd_none(*vmf->pmd))) {
4434 		/*
4435 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4436 		 * want to allocate huge page, and if we expose page table
4437 		 * for an instant, it will be difficult to retract from
4438 		 * concurrent faults and from rmap lookups.
4439 		 */
4440 		vmf->pte = NULL;
4441 	} else {
4442 		/* See comment in pte_alloc_one_map() */
4443 		if (pmd_devmap_trans_unstable(vmf->pmd))
4444 			return 0;
4445 		/*
4446 		 * A regular pmd is established and it can't morph into a huge
4447 		 * pmd from under us anymore at this point because we hold the
4448 		 * mmap_lock read mode and khugepaged takes it in write mode.
4449 		 * So now it's safe to run pte_offset_map().
4450 		 */
4451 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4452 		vmf->orig_pte = *vmf->pte;
4453 
4454 		/*
4455 		 * some architectures can have larger ptes than wordsize,
4456 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4457 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4458 		 * accesses.  The code below just needs a consistent view
4459 		 * for the ifs and we later double check anyway with the
4460 		 * ptl lock held. So here a barrier will do.
4461 		 */
4462 		barrier();
4463 		if (pte_none(vmf->orig_pte)) {
4464 			pte_unmap(vmf->pte);
4465 			vmf->pte = NULL;
4466 		}
4467 	}
4468 
4469 	if (!vmf->pte) {
4470 		if (vma_is_anonymous(vmf->vma))
4471 			return do_anonymous_page(vmf);
4472 		else
4473 			return do_fault(vmf);
4474 	}
4475 
4476 	if (!pte_present(vmf->orig_pte))
4477 		return do_swap_page(vmf);
4478 
4479 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4480 		return do_numa_page(vmf);
4481 
4482 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4483 	spin_lock(vmf->ptl);
4484 	entry = vmf->orig_pte;
4485 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4486 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4487 		goto unlock;
4488 	}
4489 	if (vmf->flags & FAULT_FLAG_WRITE) {
4490 		if (!pte_write(entry))
4491 			return do_wp_page(vmf);
4492 		entry = pte_mkdirty(entry);
4493 	}
4494 	entry = pte_mkyoung(entry);
4495 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4496 				vmf->flags & FAULT_FLAG_WRITE)) {
4497 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4498 	} else {
4499 		/* Skip spurious TLB flush for retried page fault */
4500 		if (vmf->flags & FAULT_FLAG_TRIED)
4501 			goto unlock;
4502 		/*
4503 		 * This is needed only for protection faults but the arch code
4504 		 * is not yet telling us if this is a protection fault or not.
4505 		 * This still avoids useless tlb flushes for .text page faults
4506 		 * with threads.
4507 		 */
4508 		if (vmf->flags & FAULT_FLAG_WRITE)
4509 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4510 	}
4511 unlock:
4512 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4513 	return 0;
4514 }
4515 
4516 /*
4517  * By the time we get here, we already hold the mm semaphore
4518  *
4519  * The mmap_lock may have been released depending on flags and our
4520  * return value.  See filemap_fault() and __lock_page_or_retry().
4521  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4522 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4523 		unsigned long address, unsigned int flags)
4524 {
4525 	struct vm_fault vmf = {
4526 		.vma = vma,
4527 		.address = address & PAGE_MASK,
4528 		.flags = flags,
4529 		.pgoff = linear_page_index(vma, address),
4530 		.gfp_mask = __get_fault_gfp_mask(vma),
4531 	};
4532 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4533 	struct mm_struct *mm = vma->vm_mm;
4534 	pgd_t *pgd;
4535 	p4d_t *p4d;
4536 	vm_fault_t ret;
4537 
4538 	pgd = pgd_offset(mm, address);
4539 	p4d = p4d_alloc(mm, pgd, address);
4540 	if (!p4d)
4541 		return VM_FAULT_OOM;
4542 
4543 	vmf.pud = pud_alloc(mm, p4d, address);
4544 	if (!vmf.pud)
4545 		return VM_FAULT_OOM;
4546 retry_pud:
4547 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4548 		ret = create_huge_pud(&vmf);
4549 		if (!(ret & VM_FAULT_FALLBACK))
4550 			return ret;
4551 	} else {
4552 		pud_t orig_pud = *vmf.pud;
4553 
4554 		barrier();
4555 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4556 
4557 			/* NUMA case for anonymous PUDs would go here */
4558 
4559 			if (dirty && !pud_write(orig_pud)) {
4560 				ret = wp_huge_pud(&vmf, orig_pud);
4561 				if (!(ret & VM_FAULT_FALLBACK))
4562 					return ret;
4563 			} else {
4564 				huge_pud_set_accessed(&vmf, orig_pud);
4565 				return 0;
4566 			}
4567 		}
4568 	}
4569 
4570 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4571 	if (!vmf.pmd)
4572 		return VM_FAULT_OOM;
4573 
4574 	/* Huge pud page fault raced with pmd_alloc? */
4575 	if (pud_trans_unstable(vmf.pud))
4576 		goto retry_pud;
4577 
4578 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4579 		ret = create_huge_pmd(&vmf);
4580 		if (!(ret & VM_FAULT_FALLBACK))
4581 			return ret;
4582 	} else {
4583 		pmd_t orig_pmd = *vmf.pmd;
4584 
4585 		barrier();
4586 		if (unlikely(is_swap_pmd(orig_pmd))) {
4587 			VM_BUG_ON(thp_migration_supported() &&
4588 					  !is_pmd_migration_entry(orig_pmd));
4589 			if (is_pmd_migration_entry(orig_pmd))
4590 				pmd_migration_entry_wait(mm, vmf.pmd);
4591 			return 0;
4592 		}
4593 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4594 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4595 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4596 
4597 			if (dirty && !pmd_write(orig_pmd)) {
4598 				ret = wp_huge_pmd(&vmf, orig_pmd);
4599 				if (!(ret & VM_FAULT_FALLBACK))
4600 					return ret;
4601 			} else {
4602 				huge_pmd_set_accessed(&vmf, orig_pmd);
4603 				return 0;
4604 			}
4605 		}
4606 	}
4607 
4608 	return handle_pte_fault(&vmf);
4609 }
4610 
4611 /**
4612  * mm_account_fault - Do page fault accountings
4613  *
4614  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4615  *        of perf event counters, but we'll still do the per-task accounting to
4616  *        the task who triggered this page fault.
4617  * @address: the faulted address.
4618  * @flags: the fault flags.
4619  * @ret: the fault retcode.
4620  *
4621  * This will take care of most of the page fault accountings.  Meanwhile, it
4622  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4623  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4624  * still be in per-arch page fault handlers at the entry of page fault.
4625  */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4626 static inline void mm_account_fault(struct pt_regs *regs,
4627 				    unsigned long address, unsigned int flags,
4628 				    vm_fault_t ret)
4629 {
4630 	bool major;
4631 
4632 	/*
4633 	 * We don't do accounting for some specific faults:
4634 	 *
4635 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4636 	 *   includes arch_vma_access_permitted() failing before reaching here.
4637 	 *   So this is not a "this many hardware page faults" counter.  We
4638 	 *   should use the hw profiling for that.
4639 	 *
4640 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4641 	 *   once they're completed.
4642 	 */
4643 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4644 		return;
4645 
4646 	/*
4647 	 * We define the fault as a major fault when the final successful fault
4648 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4649 	 * handle it immediately previously).
4650 	 */
4651 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4652 
4653 	if (major)
4654 		current->maj_flt++;
4655 	else
4656 		current->min_flt++;
4657 
4658 	/*
4659 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4660 	 * accounting for the per thread fault counters who triggered the
4661 	 * fault, and we skip the perf event updates.
4662 	 */
4663 	if (!regs)
4664 		return;
4665 
4666 	if (major)
4667 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4668 	else
4669 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4670 }
4671 
4672 /*
4673  * By the time we get here, we already hold the mm semaphore
4674  *
4675  * The mmap_lock may have been released depending on flags and our
4676  * return value.  See filemap_fault() and __lock_page_or_retry().
4677  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)4678 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4679 			   unsigned int flags, struct pt_regs *regs)
4680 {
4681 	vm_fault_t ret;
4682 
4683 	__set_current_state(TASK_RUNNING);
4684 
4685 	count_vm_event(PGFAULT);
4686 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4687 
4688 	/* do counter updates before entering really critical section. */
4689 	check_sync_rss_stat(current);
4690 
4691 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4692 					    flags & FAULT_FLAG_INSTRUCTION,
4693 					    flags & FAULT_FLAG_REMOTE))
4694 		return VM_FAULT_SIGSEGV;
4695 
4696 	/*
4697 	 * Enable the memcg OOM handling for faults triggered in user
4698 	 * space.  Kernel faults are handled more gracefully.
4699 	 */
4700 	if (flags & FAULT_FLAG_USER)
4701 		mem_cgroup_enter_user_fault();
4702 
4703 	if (unlikely(is_vm_hugetlb_page(vma)))
4704 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4705 	else
4706 		ret = __handle_mm_fault(vma, address, flags);
4707 
4708 	if (flags & FAULT_FLAG_USER) {
4709 		mem_cgroup_exit_user_fault();
4710 		/*
4711 		 * The task may have entered a memcg OOM situation but
4712 		 * if the allocation error was handled gracefully (no
4713 		 * VM_FAULT_OOM), there is no need to kill anything.
4714 		 * Just clean up the OOM state peacefully.
4715 		 */
4716 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4717 			mem_cgroup_oom_synchronize(false);
4718 	}
4719 
4720 	mm_account_fault(regs, address, flags, ret);
4721 
4722 	return ret;
4723 }
4724 EXPORT_SYMBOL_GPL(handle_mm_fault);
4725 
4726 #ifndef __PAGETABLE_P4D_FOLDED
4727 /*
4728  * Allocate p4d page table.
4729  * We've already handled the fast-path in-line.
4730  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4731 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4732 {
4733 	p4d_t *new = p4d_alloc_one(mm, address);
4734 	if (!new)
4735 		return -ENOMEM;
4736 
4737 	smp_wmb(); /* See comment in __pte_alloc */
4738 
4739 	spin_lock(&mm->page_table_lock);
4740 	if (pgd_present(*pgd))		/* Another has populated it */
4741 		p4d_free(mm, new);
4742 	else
4743 		pgd_populate(mm, pgd, new);
4744 	spin_unlock(&mm->page_table_lock);
4745 	return 0;
4746 }
4747 #endif /* __PAGETABLE_P4D_FOLDED */
4748 
4749 #ifndef __PAGETABLE_PUD_FOLDED
4750 /*
4751  * Allocate page upper directory.
4752  * We've already handled the fast-path in-line.
4753  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4754 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4755 {
4756 	pud_t *new = pud_alloc_one(mm, address);
4757 	if (!new)
4758 		return -ENOMEM;
4759 
4760 	smp_wmb(); /* See comment in __pte_alloc */
4761 
4762 	spin_lock(&mm->page_table_lock);
4763 	if (!p4d_present(*p4d)) {
4764 		mm_inc_nr_puds(mm);
4765 		p4d_populate(mm, p4d, new);
4766 	} else	/* Another has populated it */
4767 		pud_free(mm, new);
4768 	spin_unlock(&mm->page_table_lock);
4769 	return 0;
4770 }
4771 #endif /* __PAGETABLE_PUD_FOLDED */
4772 
4773 #ifndef __PAGETABLE_PMD_FOLDED
4774 /*
4775  * Allocate page middle directory.
4776  * We've already handled the fast-path in-line.
4777  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4778 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4779 {
4780 	spinlock_t *ptl;
4781 	pmd_t *new = pmd_alloc_one(mm, address);
4782 	if (!new)
4783 		return -ENOMEM;
4784 
4785 	smp_wmb(); /* See comment in __pte_alloc */
4786 
4787 	ptl = pud_lock(mm, pud);
4788 	if (!pud_present(*pud)) {
4789 		mm_inc_nr_pmds(mm);
4790 		pud_populate(mm, pud, new);
4791 	} else	/* Another has populated it */
4792 		pmd_free(mm, new);
4793 	spin_unlock(ptl);
4794 	return 0;
4795 }
4796 #endif /* __PAGETABLE_PMD_FOLDED */
4797 
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4798 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4799 			  struct mmu_notifier_range *range, pte_t **ptepp,
4800 			  pmd_t **pmdpp, spinlock_t **ptlp)
4801 {
4802 	pgd_t *pgd;
4803 	p4d_t *p4d;
4804 	pud_t *pud;
4805 	pmd_t *pmd;
4806 	pte_t *ptep;
4807 
4808 	pgd = pgd_offset(mm, address);
4809 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4810 		goto out;
4811 
4812 	p4d = p4d_offset(pgd, address);
4813 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4814 		goto out;
4815 
4816 	pud = pud_offset(p4d, address);
4817 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4818 		goto out;
4819 
4820 	pmd = pmd_offset(pud, address);
4821 	VM_BUG_ON(pmd_trans_huge(*pmd));
4822 
4823 	if (pmd_huge(*pmd)) {
4824 		if (!pmdpp)
4825 			goto out;
4826 
4827 		if (range) {
4828 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4829 						NULL, mm, address & PMD_MASK,
4830 						(address & PMD_MASK) + PMD_SIZE);
4831 			mmu_notifier_invalidate_range_start(range);
4832 		}
4833 		*ptlp = pmd_lock(mm, pmd);
4834 		if (pmd_huge(*pmd)) {
4835 			*pmdpp = pmd;
4836 			return 0;
4837 		}
4838 		spin_unlock(*ptlp);
4839 		if (range)
4840 			mmu_notifier_invalidate_range_end(range);
4841 	}
4842 
4843 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4844 		goto out;
4845 
4846 	if (range) {
4847 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4848 					address & PAGE_MASK,
4849 					(address & PAGE_MASK) + PAGE_SIZE);
4850 		mmu_notifier_invalidate_range_start(range);
4851 	}
4852 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4853 	if (!pte_present(*ptep))
4854 		goto unlock;
4855 	*ptepp = ptep;
4856 	return 0;
4857 unlock:
4858 	pte_unmap_unlock(ptep, *ptlp);
4859 	if (range)
4860 		mmu_notifier_invalidate_range_end(range);
4861 out:
4862 	return -EINVAL;
4863 }
4864 
4865 /**
4866  * follow_pte - look up PTE at a user virtual address
4867  * @mm: the mm_struct of the target address space
4868  * @address: user virtual address
4869  * @ptepp: location to store found PTE
4870  * @ptlp: location to store the lock for the PTE
4871  *
4872  * On a successful return, the pointer to the PTE is stored in @ptepp;
4873  * the corresponding lock is taken and its location is stored in @ptlp.
4874  * The contents of the PTE are only stable until @ptlp is released;
4875  * any further use, if any, must be protected against invalidation
4876  * with MMU notifiers.
4877  *
4878  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4879  * should be taken for read.
4880  *
4881  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4882  * it is not a good general-purpose API.
4883  *
4884  * Return: zero on success, -ve otherwise.
4885  */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4886 int follow_pte(struct mm_struct *mm, unsigned long address,
4887 	       pte_t **ptepp, spinlock_t **ptlp)
4888 {
4889 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4890 }
4891 EXPORT_SYMBOL_GPL(follow_pte);
4892 
4893 /**
4894  * follow_pfn - look up PFN at a user virtual address
4895  * @vma: memory mapping
4896  * @address: user virtual address
4897  * @pfn: location to store found PFN
4898  *
4899  * Only IO mappings and raw PFN mappings are allowed.
4900  *
4901  * This function does not allow the caller to read the permissions
4902  * of the PTE.  Do not use it.
4903  *
4904  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4905  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4906 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4907 	unsigned long *pfn)
4908 {
4909 	int ret = -EINVAL;
4910 	spinlock_t *ptl;
4911 	pte_t *ptep;
4912 
4913 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4914 		return ret;
4915 
4916 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4917 	if (ret)
4918 		return ret;
4919 	*pfn = pte_pfn(*ptep);
4920 	pte_unmap_unlock(ptep, ptl);
4921 	return 0;
4922 }
4923 EXPORT_SYMBOL(follow_pfn);
4924 
4925 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4926 int follow_phys(struct vm_area_struct *vma,
4927 		unsigned long address, unsigned int flags,
4928 		unsigned long *prot, resource_size_t *phys)
4929 {
4930 	int ret = -EINVAL;
4931 	pte_t *ptep, pte;
4932 	spinlock_t *ptl;
4933 
4934 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4935 		goto out;
4936 
4937 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4938 		goto out;
4939 	pte = *ptep;
4940 
4941 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4942 		goto unlock;
4943 
4944 	*prot = pgprot_val(pte_pgprot(pte));
4945 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4946 
4947 	ret = 0;
4948 unlock:
4949 	pte_unmap_unlock(ptep, ptl);
4950 out:
4951 	return ret;
4952 }
4953 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4954 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4955 			void *buf, int len, int write)
4956 {
4957 	resource_size_t phys_addr;
4958 	unsigned long prot = 0;
4959 	void __iomem *maddr;
4960 	int offset = addr & (PAGE_SIZE-1);
4961 
4962 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4963 		return -EINVAL;
4964 
4965 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4966 	if (!maddr)
4967 		return -ENOMEM;
4968 
4969 	if (write)
4970 		memcpy_toio(maddr + offset, buf, len);
4971 	else
4972 		memcpy_fromio(buf, maddr + offset, len);
4973 	iounmap(maddr);
4974 
4975 	return len;
4976 }
4977 EXPORT_SYMBOL_GPL(generic_access_phys);
4978 #endif
4979 
4980 /*
4981  * Access another process' address space as given in mm.  If non-NULL, use the
4982  * given task for page fault accounting.
4983  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4984 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4985 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4986 {
4987 	struct vm_area_struct *vma;
4988 	void *old_buf = buf;
4989 	int write = gup_flags & FOLL_WRITE;
4990 
4991 	if (mmap_read_lock_killable(mm))
4992 		return 0;
4993 
4994 	/* ignore errors, just check how much was successfully transferred */
4995 	while (len) {
4996 		int bytes, ret, offset;
4997 		void *maddr;
4998 		struct page *page = NULL;
4999 
5000 		ret = get_user_pages_remote(mm, addr, 1,
5001 				gup_flags, &page, &vma, NULL);
5002 		if (ret <= 0) {
5003 #ifndef CONFIG_HAVE_IOREMAP_PROT
5004 			break;
5005 #else
5006 			/*
5007 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5008 			 * we can access using slightly different code.
5009 			 */
5010 			vma = find_vma(mm, addr);
5011 			if (!vma || vma->vm_start > addr)
5012 				break;
5013 			if (vma->vm_ops && vma->vm_ops->access)
5014 				ret = vma->vm_ops->access(vma, addr, buf,
5015 							  len, write);
5016 			if (ret <= 0)
5017 				break;
5018 			bytes = ret;
5019 #endif
5020 		} else {
5021 			bytes = len;
5022 			offset = addr & (PAGE_SIZE-1);
5023 			if (bytes > PAGE_SIZE-offset)
5024 				bytes = PAGE_SIZE-offset;
5025 
5026 			maddr = kmap(page);
5027 			if (write) {
5028 				copy_to_user_page(vma, page, addr,
5029 						  maddr + offset, buf, bytes);
5030 				set_page_dirty_lock(page);
5031 			} else {
5032 				copy_from_user_page(vma, page, addr,
5033 						    buf, maddr + offset, bytes);
5034 			}
5035 			kunmap(page);
5036 			put_page(page);
5037 		}
5038 		len -= bytes;
5039 		buf += bytes;
5040 		addr += bytes;
5041 	}
5042 	mmap_read_unlock(mm);
5043 
5044 	return buf - old_buf;
5045 }
5046 
5047 /**
5048  * access_remote_vm - access another process' address space
5049  * @mm:		the mm_struct of the target address space
5050  * @addr:	start address to access
5051  * @buf:	source or destination buffer
5052  * @len:	number of bytes to transfer
5053  * @gup_flags:	flags modifying lookup behaviour
5054  *
5055  * The caller must hold a reference on @mm.
5056  *
5057  * Return: number of bytes copied from source to destination.
5058  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5059 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5060 		void *buf, int len, unsigned int gup_flags)
5061 {
5062 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5063 }
5064 
5065 /*
5066  * Access another process' address space.
5067  * Source/target buffer must be kernel space,
5068  * Do not walk the page table directly, use get_user_pages
5069  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5070 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5071 		void *buf, int len, unsigned int gup_flags)
5072 {
5073 	struct mm_struct *mm;
5074 	int ret;
5075 
5076 	mm = get_task_mm(tsk);
5077 	if (!mm)
5078 		return 0;
5079 
5080 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5081 
5082 	mmput(mm);
5083 
5084 	return ret;
5085 }
5086 EXPORT_SYMBOL_GPL(access_process_vm);
5087 
5088 /*
5089  * Print the name of a VMA.
5090  */
print_vma_addr(char * prefix,unsigned long ip)5091 void print_vma_addr(char *prefix, unsigned long ip)
5092 {
5093 	struct mm_struct *mm = current->mm;
5094 	struct vm_area_struct *vma;
5095 
5096 	/*
5097 	 * we might be running from an atomic context so we cannot sleep
5098 	 */
5099 	if (!mmap_read_trylock(mm))
5100 		return;
5101 
5102 	vma = find_vma(mm, ip);
5103 	if (vma && vma->vm_file) {
5104 		struct file *f = vma->vm_file;
5105 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5106 		if (buf) {
5107 			char *p;
5108 
5109 			p = file_path(f, buf, PAGE_SIZE);
5110 			if (IS_ERR(p))
5111 				p = "?";
5112 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5113 					vma->vm_start,
5114 					vma->vm_end - vma->vm_start);
5115 			free_page((unsigned long)buf);
5116 		}
5117 	}
5118 	mmap_read_unlock(mm);
5119 }
5120 
5121 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5122 void __might_fault(const char *file, int line)
5123 {
5124 	/*
5125 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5126 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5127 	 * get paged out, therefore we'll never actually fault, and the
5128 	 * below annotations will generate false positives.
5129 	 */
5130 	if (uaccess_kernel())
5131 		return;
5132 	if (pagefault_disabled())
5133 		return;
5134 	__might_sleep(file, line, 0);
5135 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5136 	if (current->mm)
5137 		might_lock_read(&current->mm->mmap_lock);
5138 #endif
5139 }
5140 EXPORT_SYMBOL(__might_fault);
5141 #endif
5142 
5143 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5144 /*
5145  * Process all subpages of the specified huge page with the specified
5146  * operation.  The target subpage will be processed last to keep its
5147  * cache lines hot.
5148  */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5149 static inline void process_huge_page(
5150 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5151 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5152 	void *arg)
5153 {
5154 	int i, n, base, l;
5155 	unsigned long addr = addr_hint &
5156 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5157 
5158 	/* Process target subpage last to keep its cache lines hot */
5159 	might_sleep();
5160 	n = (addr_hint - addr) / PAGE_SIZE;
5161 	if (2 * n <= pages_per_huge_page) {
5162 		/* If target subpage in first half of huge page */
5163 		base = 0;
5164 		l = n;
5165 		/* Process subpages at the end of huge page */
5166 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5167 			cond_resched();
5168 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5169 		}
5170 	} else {
5171 		/* If target subpage in second half of huge page */
5172 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5173 		l = pages_per_huge_page - n;
5174 		/* Process subpages at the begin of huge page */
5175 		for (i = 0; i < base; i++) {
5176 			cond_resched();
5177 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5178 		}
5179 	}
5180 	/*
5181 	 * Process remaining subpages in left-right-left-right pattern
5182 	 * towards the target subpage
5183 	 */
5184 	for (i = 0; i < l; i++) {
5185 		int left_idx = base + i;
5186 		int right_idx = base + 2 * l - 1 - i;
5187 
5188 		cond_resched();
5189 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5190 		cond_resched();
5191 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5192 	}
5193 }
5194 
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5195 static void clear_gigantic_page(struct page *page,
5196 				unsigned long addr,
5197 				unsigned int pages_per_huge_page)
5198 {
5199 	int i;
5200 	struct page *p = page;
5201 
5202 	might_sleep();
5203 	for (i = 0; i < pages_per_huge_page;
5204 	     i++, p = mem_map_next(p, page, i)) {
5205 		cond_resched();
5206 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5207 	}
5208 }
5209 
clear_subpage(unsigned long addr,int idx,void * arg)5210 static void clear_subpage(unsigned long addr, int idx, void *arg)
5211 {
5212 	struct page *page = arg;
5213 
5214 	clear_user_highpage(page + idx, addr);
5215 }
5216 
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5217 void clear_huge_page(struct page *page,
5218 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5219 {
5220 	unsigned long addr = addr_hint &
5221 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5222 
5223 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5224 		clear_gigantic_page(page, addr, pages_per_huge_page);
5225 		return;
5226 	}
5227 
5228 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5229 }
5230 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5231 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5232 				    unsigned long addr,
5233 				    struct vm_area_struct *vma,
5234 				    unsigned int pages_per_huge_page)
5235 {
5236 	int i;
5237 	struct page *dst_base = dst;
5238 	struct page *src_base = src;
5239 
5240 	for (i = 0; i < pages_per_huge_page; ) {
5241 		cond_resched();
5242 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5243 
5244 		i++;
5245 		dst = mem_map_next(dst, dst_base, i);
5246 		src = mem_map_next(src, src_base, i);
5247 	}
5248 }
5249 
5250 struct copy_subpage_arg {
5251 	struct page *dst;
5252 	struct page *src;
5253 	struct vm_area_struct *vma;
5254 };
5255 
copy_subpage(unsigned long addr,int idx,void * arg)5256 static void copy_subpage(unsigned long addr, int idx, void *arg)
5257 {
5258 	struct copy_subpage_arg *copy_arg = arg;
5259 
5260 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5261 			   addr, copy_arg->vma);
5262 }
5263 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5264 void copy_user_huge_page(struct page *dst, struct page *src,
5265 			 unsigned long addr_hint, struct vm_area_struct *vma,
5266 			 unsigned int pages_per_huge_page)
5267 {
5268 	unsigned long addr = addr_hint &
5269 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5270 	struct copy_subpage_arg arg = {
5271 		.dst = dst,
5272 		.src = src,
5273 		.vma = vma,
5274 	};
5275 
5276 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5277 		copy_user_gigantic_page(dst, src, addr, vma,
5278 					pages_per_huge_page);
5279 		return;
5280 	}
5281 
5282 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5283 }
5284 
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5285 long copy_huge_page_from_user(struct page *dst_page,
5286 				const void __user *usr_src,
5287 				unsigned int pages_per_huge_page,
5288 				bool allow_pagefault)
5289 {
5290 	void *src = (void *)usr_src;
5291 	void *page_kaddr;
5292 	unsigned long i, rc = 0;
5293 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5294 	struct page *subpage = dst_page;
5295 
5296 	for (i = 0; i < pages_per_huge_page;
5297 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5298 		if (allow_pagefault)
5299 			page_kaddr = kmap(subpage);
5300 		else
5301 			page_kaddr = kmap_atomic(subpage);
5302 		rc = copy_from_user(page_kaddr,
5303 				(const void __user *)(src + i * PAGE_SIZE),
5304 				PAGE_SIZE);
5305 		if (allow_pagefault)
5306 			kunmap(subpage);
5307 		else
5308 			kunmap_atomic(page_kaddr);
5309 
5310 		ret_val -= (PAGE_SIZE - rc);
5311 		if (rc)
5312 			break;
5313 
5314 		cond_resched();
5315 	}
5316 	return ret_val;
5317 }
5318 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5319 
5320 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5321 
5322 static struct kmem_cache *page_ptl_cachep;
5323 
ptlock_cache_init(void)5324 void __init ptlock_cache_init(void)
5325 {
5326 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5327 			SLAB_PANIC, NULL);
5328 }
5329 
ptlock_alloc(struct page * page)5330 bool ptlock_alloc(struct page *page)
5331 {
5332 	spinlock_t *ptl;
5333 
5334 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5335 	if (!ptl)
5336 		return false;
5337 	page->ptl = ptl;
5338 	return true;
5339 }
5340 
ptlock_free(struct page * page)5341 void ptlock_free(struct page *page)
5342 {
5343 	kmem_cache_free(page_ptl_cachep, page->ptl);
5344 }
5345 #endif
5346