• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * sparse memory mappings.
4   */
5  #include <linux/mm.h>
6  #include <linux/slab.h>
7  #include <linux/mmzone.h>
8  #include <linux/memblock.h>
9  #include <linux/compiler.h>
10  #include <linux/highmem.h>
11  #include <linux/export.h>
12  #include <linux/spinlock.h>
13  #include <linux/vmalloc.h>
14  #include <linux/swap.h>
15  #include <linux/swapops.h>
16  
17  #include "internal.h"
18  #include <asm/dma.h>
19  
20  /*
21   * Permanent SPARSEMEM data:
22   *
23   * 1) mem_section	- memory sections, mem_map's for valid memory
24   */
25  #ifdef CONFIG_SPARSEMEM_EXTREME
26  struct mem_section **mem_section;
27  #else
28  struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29  	____cacheline_internodealigned_in_smp;
30  #endif
31  EXPORT_SYMBOL(mem_section);
32  
33  #ifdef NODE_NOT_IN_PAGE_FLAGS
34  /*
35   * If we did not store the node number in the page then we have to
36   * do a lookup in the section_to_node_table in order to find which
37   * node the page belongs to.
38   */
39  #if MAX_NUMNODES <= 256
40  static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41  #else
42  static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43  #endif
44  
page_to_nid(const struct page * page)45  int page_to_nid(const struct page *page)
46  {
47  	return section_to_node_table[page_to_section(page)];
48  }
49  EXPORT_SYMBOL(page_to_nid);
50  
set_section_nid(unsigned long section_nr,int nid)51  static void set_section_nid(unsigned long section_nr, int nid)
52  {
53  	section_to_node_table[section_nr] = nid;
54  }
55  #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)56  static inline void set_section_nid(unsigned long section_nr, int nid)
57  {
58  }
59  #endif
60  
61  #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)62  static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63  {
64  	struct mem_section *section = NULL;
65  	unsigned long array_size = SECTIONS_PER_ROOT *
66  				   sizeof(struct mem_section);
67  
68  	if (slab_is_available()) {
69  		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70  	} else {
71  		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72  					      nid);
73  		if (!section)
74  			panic("%s: Failed to allocate %lu bytes nid=%d\n",
75  			      __func__, array_size, nid);
76  	}
77  
78  	return section;
79  }
80  
sparse_index_init(unsigned long section_nr,int nid)81  static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82  {
83  	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84  	struct mem_section *section;
85  
86  	/*
87  	 * An existing section is possible in the sub-section hotplug
88  	 * case. First hot-add instantiates, follow-on hot-add reuses
89  	 * the existing section.
90  	 *
91  	 * The mem_hotplug_lock resolves the apparent race below.
92  	 */
93  	if (mem_section[root])
94  		return 0;
95  
96  	section = sparse_index_alloc(nid);
97  	if (!section)
98  		return -ENOMEM;
99  
100  	mem_section[root] = section;
101  
102  	return 0;
103  }
104  #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)105  static inline int sparse_index_init(unsigned long section_nr, int nid)
106  {
107  	return 0;
108  }
109  #endif
110  
111  #ifdef CONFIG_SPARSEMEM_EXTREME
__section_nr(struct mem_section * ms)112  unsigned long __section_nr(struct mem_section *ms)
113  {
114  	unsigned long root_nr;
115  	struct mem_section *root = NULL;
116  
117  	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118  		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119  		if (!root)
120  			continue;
121  
122  		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123  		     break;
124  	}
125  
126  	VM_BUG_ON(!root);
127  
128  	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129  }
130  #else
__section_nr(struct mem_section * ms)131  unsigned long __section_nr(struct mem_section *ms)
132  {
133  	return (unsigned long)(ms - mem_section[0]);
134  }
135  #endif
136  
137  /*
138   * During early boot, before section_mem_map is used for an actual
139   * mem_map, we use section_mem_map to store the section's NUMA
140   * node.  This keeps us from having to use another data structure.  The
141   * node information is cleared just before we store the real mem_map.
142   */
sparse_encode_early_nid(int nid)143  static inline unsigned long sparse_encode_early_nid(int nid)
144  {
145  	return (nid << SECTION_NID_SHIFT);
146  }
147  
sparse_early_nid(struct mem_section * section)148  static inline int sparse_early_nid(struct mem_section *section)
149  {
150  	return (section->section_mem_map >> SECTION_NID_SHIFT);
151  }
152  
153  /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)154  void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155  						unsigned long *end_pfn)
156  {
157  	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158  
159  	/*
160  	 * Sanity checks - do not allow an architecture to pass
161  	 * in larger pfns than the maximum scope of sparsemem:
162  	 */
163  	if (*start_pfn > max_sparsemem_pfn) {
164  		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165  			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166  			*start_pfn, *end_pfn, max_sparsemem_pfn);
167  		WARN_ON_ONCE(1);
168  		*start_pfn = max_sparsemem_pfn;
169  		*end_pfn = max_sparsemem_pfn;
170  	} else if (*end_pfn > max_sparsemem_pfn) {
171  		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172  			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173  			*start_pfn, *end_pfn, max_sparsemem_pfn);
174  		WARN_ON_ONCE(1);
175  		*end_pfn = max_sparsemem_pfn;
176  	}
177  }
178  
179  /*
180   * There are a number of times that we loop over NR_MEM_SECTIONS,
181   * looking for section_present() on each.  But, when we have very
182   * large physical address spaces, NR_MEM_SECTIONS can also be
183   * very large which makes the loops quite long.
184   *
185   * Keeping track of this gives us an easy way to break out of
186   * those loops early.
187   */
188  unsigned long __highest_present_section_nr;
section_mark_present(struct mem_section * ms)189  static void section_mark_present(struct mem_section *ms)
190  {
191  	unsigned long section_nr = __section_nr(ms);
192  
193  	if (section_nr > __highest_present_section_nr)
194  		__highest_present_section_nr = section_nr;
195  
196  	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197  }
198  
199  #define for_each_present_section_nr(start, section_nr)		\
200  	for (section_nr = next_present_section_nr(start-1);	\
201  	     ((section_nr != -1) &&				\
202  	      (section_nr <= __highest_present_section_nr));	\
203  	     section_nr = next_present_section_nr(section_nr))
204  
first_present_section_nr(void)205  static inline unsigned long first_present_section_nr(void)
206  {
207  	return next_present_section_nr(-1);
208  }
209  
210  #ifdef CONFIG_SPARSEMEM_VMEMMAP
subsection_mask_set(unsigned long * map,unsigned long pfn,unsigned long nr_pages)211  static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212  		unsigned long nr_pages)
213  {
214  	int idx = subsection_map_index(pfn);
215  	int end = subsection_map_index(pfn + nr_pages - 1);
216  
217  	bitmap_set(map, idx, end - idx + 1);
218  }
219  
subsection_map_init(unsigned long pfn,unsigned long nr_pages)220  void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221  {
222  	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223  	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224  
225  	if (!nr_pages)
226  		return;
227  
228  	for (nr = start_sec; nr <= end_sec; nr++) {
229  		struct mem_section *ms;
230  		unsigned long pfns;
231  
232  		pfns = min(nr_pages, PAGES_PER_SECTION
233  				- (pfn & ~PAGE_SECTION_MASK));
234  		ms = __nr_to_section(nr);
235  		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236  
237  		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238  				pfns, subsection_map_index(pfn),
239  				subsection_map_index(pfn + pfns - 1));
240  
241  		pfn += pfns;
242  		nr_pages -= pfns;
243  	}
244  }
245  #else
subsection_map_init(unsigned long pfn,unsigned long nr_pages)246  void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247  {
248  }
249  #endif
250  
251  /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)252  static void __init memory_present(int nid, unsigned long start, unsigned long end)
253  {
254  	unsigned long pfn;
255  
256  #ifdef CONFIG_SPARSEMEM_EXTREME
257  	if (unlikely(!mem_section)) {
258  		unsigned long size, align;
259  
260  		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
261  		align = 1 << (INTERNODE_CACHE_SHIFT);
262  		mem_section = memblock_alloc(size, align);
263  		if (!mem_section)
264  			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265  			      __func__, size, align);
266  	}
267  #endif
268  
269  	start &= PAGE_SECTION_MASK;
270  	mminit_validate_memmodel_limits(&start, &end);
271  	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272  		unsigned long section = pfn_to_section_nr(pfn);
273  		struct mem_section *ms;
274  
275  		sparse_index_init(section, nid);
276  		set_section_nid(section, nid);
277  
278  		ms = __nr_to_section(section);
279  		if (!ms->section_mem_map) {
280  			ms->section_mem_map = sparse_encode_early_nid(nid) |
281  							SECTION_IS_ONLINE;
282  			section_mark_present(ms);
283  		}
284  	}
285  }
286  
287  /*
288   * Mark all memblocks as present using memory_present().
289   * This is a convenience function that is useful to mark all of the systems
290   * memory as present during initialization.
291   */
memblocks_present(void)292  static void __init memblocks_present(void)
293  {
294  	unsigned long start, end;
295  	int i, nid;
296  
297  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
298  		memory_present(nid, start, end);
299  }
300  
301  /*
302   * Subtle, we encode the real pfn into the mem_map such that
303   * the identity pfn - section_mem_map will return the actual
304   * physical page frame number.
305   */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)306  static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
307  {
308  	unsigned long coded_mem_map =
309  		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
310  	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
311  	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
312  	return coded_mem_map;
313  }
314  
315  #ifdef CONFIG_MEMORY_HOTPLUG
316  /*
317   * Decode mem_map from the coded memmap
318   */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)319  struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
320  {
321  	/* mask off the extra low bits of information */
322  	coded_mem_map &= SECTION_MAP_MASK;
323  	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
324  }
325  #endif /* CONFIG_MEMORY_HOTPLUG */
326  
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,struct mem_section_usage * usage,unsigned long flags)327  static void __meminit sparse_init_one_section(struct mem_section *ms,
328  		unsigned long pnum, struct page *mem_map,
329  		struct mem_section_usage *usage, unsigned long flags)
330  {
331  	ms->section_mem_map &= ~SECTION_MAP_MASK;
332  	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333  		| SECTION_HAS_MEM_MAP | flags;
334  	ms->usage = usage;
335  }
336  
usemap_size(void)337  static unsigned long usemap_size(void)
338  {
339  	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340  }
341  
mem_section_usage_size(void)342  size_t mem_section_usage_size(void)
343  {
344  	return sizeof(struct mem_section_usage) + usemap_size();
345  }
346  
347  #ifdef CONFIG_MEMORY_HOTREMOVE
348  static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)349  sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350  					 unsigned long size)
351  {
352  	struct mem_section_usage *usage;
353  	unsigned long goal, limit;
354  	int nid;
355  	/*
356  	 * A page may contain usemaps for other sections preventing the
357  	 * page being freed and making a section unremovable while
358  	 * other sections referencing the usemap remain active. Similarly,
359  	 * a pgdat can prevent a section being removed. If section A
360  	 * contains a pgdat and section B contains the usemap, both
361  	 * sections become inter-dependent. This allocates usemaps
362  	 * from the same section as the pgdat where possible to avoid
363  	 * this problem.
364  	 */
365  	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366  	limit = goal + (1UL << PA_SECTION_SHIFT);
367  	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368  again:
369  	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370  	if (!usage && limit) {
371  		limit = 0;
372  		goto again;
373  	}
374  	return usage;
375  }
376  
check_usemap_section_nr(int nid,struct mem_section_usage * usage)377  static void __init check_usemap_section_nr(int nid,
378  		struct mem_section_usage *usage)
379  {
380  	unsigned long usemap_snr, pgdat_snr;
381  	static unsigned long old_usemap_snr;
382  	static unsigned long old_pgdat_snr;
383  	struct pglist_data *pgdat = NODE_DATA(nid);
384  	int usemap_nid;
385  
386  	/* First call */
387  	if (!old_usemap_snr) {
388  		old_usemap_snr = NR_MEM_SECTIONS;
389  		old_pgdat_snr = NR_MEM_SECTIONS;
390  	}
391  
392  	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393  	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394  	if (usemap_snr == pgdat_snr)
395  		return;
396  
397  	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398  		/* skip redundant message */
399  		return;
400  
401  	old_usemap_snr = usemap_snr;
402  	old_pgdat_snr = pgdat_snr;
403  
404  	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405  	if (usemap_nid != nid) {
406  		pr_info("node %d must be removed before remove section %ld\n",
407  			nid, usemap_snr);
408  		return;
409  	}
410  	/*
411  	 * There is a circular dependency.
412  	 * Some platforms allow un-removable section because they will just
413  	 * gather other removable sections for dynamic partitioning.
414  	 * Just notify un-removable section's number here.
415  	 */
416  	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417  		usemap_snr, pgdat_snr, nid);
418  }
419  #else
420  static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)421  sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422  					 unsigned long size)
423  {
424  	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425  }
426  
check_usemap_section_nr(int nid,struct mem_section_usage * usage)427  static void __init check_usemap_section_nr(int nid,
428  		struct mem_section_usage *usage)
429  {
430  }
431  #endif /* CONFIG_MEMORY_HOTREMOVE */
432  
433  #ifdef CONFIG_SPARSEMEM_VMEMMAP
section_map_size(void)434  static unsigned long __init section_map_size(void)
435  {
436  	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437  }
438  
439  #else
section_map_size(void)440  static unsigned long __init section_map_size(void)
441  {
442  	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
443  }
444  
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap)445  struct page __init *__populate_section_memmap(unsigned long pfn,
446  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447  {
448  	unsigned long size = section_map_size();
449  	struct page *map = sparse_buffer_alloc(size);
450  	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451  
452  	if (map)
453  		return map;
454  
455  	map = memblock_alloc_try_nid_raw(size, size, addr,
456  					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457  	if (!map)
458  		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459  		      __func__, size, PAGE_SIZE, nid, &addr);
460  
461  	return map;
462  }
463  #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
464  
465  static void *sparsemap_buf __meminitdata;
466  static void *sparsemap_buf_end __meminitdata;
467  
sparse_buffer_free(unsigned long size)468  static inline void __meminit sparse_buffer_free(unsigned long size)
469  {
470  	WARN_ON(!sparsemap_buf || size == 0);
471  	memblock_free_early(__pa(sparsemap_buf), size);
472  }
473  
sparse_buffer_init(unsigned long size,int nid)474  static void __init sparse_buffer_init(unsigned long size, int nid)
475  {
476  	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477  	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
478  	/*
479  	 * Pre-allocated buffer is mainly used by __populate_section_memmap
480  	 * and we want it to be properly aligned to the section size - this is
481  	 * especially the case for VMEMMAP which maps memmap to PMDs
482  	 */
483  	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484  					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485  	sparsemap_buf_end = sparsemap_buf + size;
486  }
487  
sparse_buffer_fini(void)488  static void __init sparse_buffer_fini(void)
489  {
490  	unsigned long size = sparsemap_buf_end - sparsemap_buf;
491  
492  	if (sparsemap_buf && size > 0)
493  		sparse_buffer_free(size);
494  	sparsemap_buf = NULL;
495  }
496  
sparse_buffer_alloc(unsigned long size)497  void * __meminit sparse_buffer_alloc(unsigned long size)
498  {
499  	void *ptr = NULL;
500  
501  	if (sparsemap_buf) {
502  		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503  		if (ptr + size > sparsemap_buf_end)
504  			ptr = NULL;
505  		else {
506  			/* Free redundant aligned space */
507  			if ((unsigned long)(ptr - sparsemap_buf) > 0)
508  				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509  			sparsemap_buf = ptr + size;
510  		}
511  	}
512  	return ptr;
513  }
514  
vmemmap_populate_print_last(void)515  void __weak __meminit vmemmap_populate_print_last(void)
516  {
517  }
518  
519  /*
520   * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521   * And number of present sections in this node is map_count.
522   */
sparse_init_nid(int nid,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count)523  static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524  				   unsigned long pnum_end,
525  				   unsigned long map_count)
526  {
527  	struct mem_section_usage *usage;
528  	unsigned long pnum;
529  	struct page *map;
530  
531  	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532  			mem_section_usage_size() * map_count);
533  	if (!usage) {
534  		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535  		goto failed;
536  	}
537  	sparse_buffer_init(map_count * section_map_size(), nid);
538  	for_each_present_section_nr(pnum_begin, pnum) {
539  		unsigned long pfn = section_nr_to_pfn(pnum);
540  
541  		if (pnum >= pnum_end)
542  			break;
543  
544  		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545  				nid, NULL);
546  		if (!map) {
547  			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548  			       __func__, nid);
549  			pnum_begin = pnum;
550  			sparse_buffer_fini();
551  			goto failed;
552  		}
553  		check_usemap_section_nr(nid, usage);
554  		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
555  				SECTION_IS_EARLY);
556  		usage = (void *) usage + mem_section_usage_size();
557  	}
558  	sparse_buffer_fini();
559  	return;
560  failed:
561  	/* We failed to allocate, mark all the following pnums as not present */
562  	for_each_present_section_nr(pnum_begin, pnum) {
563  		struct mem_section *ms;
564  
565  		if (pnum >= pnum_end)
566  			break;
567  		ms = __nr_to_section(pnum);
568  		ms->section_mem_map = 0;
569  	}
570  }
571  
572  /*
573   * Allocate the accumulated non-linear sections, allocate a mem_map
574   * for each and record the physical to section mapping.
575   */
sparse_init(void)576  void __init sparse_init(void)
577  {
578  	unsigned long pnum_end, pnum_begin, map_count = 1;
579  	int nid_begin;
580  
581  	memblocks_present();
582  
583  	pnum_begin = first_present_section_nr();
584  	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
585  
586  	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
587  	set_pageblock_order();
588  
589  	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
590  		int nid = sparse_early_nid(__nr_to_section(pnum_end));
591  
592  		if (nid == nid_begin) {
593  			map_count++;
594  			continue;
595  		}
596  		/* Init node with sections in range [pnum_begin, pnum_end) */
597  		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
598  		nid_begin = nid;
599  		pnum_begin = pnum_end;
600  		map_count = 1;
601  	}
602  	/* cover the last node */
603  	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
604  	vmemmap_populate_print_last();
605  }
606  
607  #ifdef CONFIG_MEMORY_HOTPLUG
608  
609  /* Mark all memory sections within the pfn range as online */
online_mem_sections(unsigned long start_pfn,unsigned long end_pfn)610  void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
611  {
612  	unsigned long pfn;
613  
614  	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
615  		unsigned long section_nr = pfn_to_section_nr(pfn);
616  		struct mem_section *ms;
617  
618  		/* onlining code should never touch invalid ranges */
619  		if (WARN_ON(!valid_section_nr(section_nr)))
620  			continue;
621  
622  		ms = __nr_to_section(section_nr);
623  		ms->section_mem_map |= SECTION_IS_ONLINE;
624  	}
625  }
626  
627  #ifdef CONFIG_MEMORY_HOTREMOVE
628  /* Mark all memory sections within the pfn range as offline */
offline_mem_sections(unsigned long start_pfn,unsigned long end_pfn)629  void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
630  {
631  	unsigned long pfn;
632  
633  	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
634  		unsigned long section_nr = pfn_to_section_nr(pfn);
635  		struct mem_section *ms;
636  
637  		/*
638  		 * TODO this needs some double checking. Offlining code makes
639  		 * sure to check pfn_valid but those checks might be just bogus
640  		 */
641  		if (WARN_ON(!valid_section_nr(section_nr)))
642  			continue;
643  
644  		ms = __nr_to_section(section_nr);
645  		ms->section_mem_map &= ~SECTION_IS_ONLINE;
646  	}
647  }
648  #endif
649  
650  #ifdef CONFIG_SPARSEMEM_VMEMMAP
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap)651  static struct page * __meminit populate_section_memmap(unsigned long pfn,
652  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
653  {
654  	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
655  }
656  
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)657  static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
658  		struct vmem_altmap *altmap)
659  {
660  	unsigned long start = (unsigned long) pfn_to_page(pfn);
661  	unsigned long end = start + nr_pages * sizeof(struct page);
662  
663  	vmemmap_free(start, end, altmap);
664  }
free_map_bootmem(struct page * memmap)665  static void free_map_bootmem(struct page *memmap)
666  {
667  	unsigned long start = (unsigned long)memmap;
668  	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
669  
670  	vmemmap_free(start, end, NULL);
671  }
672  
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)673  static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
674  {
675  	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
676  	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
677  	struct mem_section *ms = __pfn_to_section(pfn);
678  	unsigned long *subsection_map = ms->usage
679  		? &ms->usage->subsection_map[0] : NULL;
680  
681  	subsection_mask_set(map, pfn, nr_pages);
682  	if (subsection_map)
683  		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
684  
685  	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
686  				"section already deactivated (%#lx + %ld)\n",
687  				pfn, nr_pages))
688  		return -EINVAL;
689  
690  	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
691  	return 0;
692  }
693  
is_subsection_map_empty(struct mem_section * ms)694  static bool is_subsection_map_empty(struct mem_section *ms)
695  {
696  	return bitmap_empty(&ms->usage->subsection_map[0],
697  			    SUBSECTIONS_PER_SECTION);
698  }
699  
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)700  static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
701  {
702  	struct mem_section *ms = __pfn_to_section(pfn);
703  	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
704  	unsigned long *subsection_map;
705  	int rc = 0;
706  
707  	subsection_mask_set(map, pfn, nr_pages);
708  
709  	subsection_map = &ms->usage->subsection_map[0];
710  
711  	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
712  		rc = -EINVAL;
713  	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
714  		rc = -EEXIST;
715  	else
716  		bitmap_or(subsection_map, map, subsection_map,
717  				SUBSECTIONS_PER_SECTION);
718  
719  	return rc;
720  }
721  #else
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap)722  struct page * __meminit populate_section_memmap(unsigned long pfn,
723  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
724  {
725  	return kvmalloc_node(array_size(sizeof(struct page),
726  					PAGES_PER_SECTION), GFP_KERNEL, nid);
727  }
728  
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)729  static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
730  		struct vmem_altmap *altmap)
731  {
732  	kvfree(pfn_to_page(pfn));
733  }
734  
free_map_bootmem(struct page * memmap)735  static void free_map_bootmem(struct page *memmap)
736  {
737  	unsigned long maps_section_nr, removing_section_nr, i;
738  	unsigned long magic, nr_pages;
739  	struct page *page = virt_to_page(memmap);
740  
741  	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
742  		>> PAGE_SHIFT;
743  
744  	for (i = 0; i < nr_pages; i++, page++) {
745  		magic = (unsigned long) page->freelist;
746  
747  		BUG_ON(magic == NODE_INFO);
748  
749  		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
750  		removing_section_nr = page_private(page);
751  
752  		/*
753  		 * When this function is called, the removing section is
754  		 * logical offlined state. This means all pages are isolated
755  		 * from page allocator. If removing section's memmap is placed
756  		 * on the same section, it must not be freed.
757  		 * If it is freed, page allocator may allocate it which will
758  		 * be removed physically soon.
759  		 */
760  		if (maps_section_nr != removing_section_nr)
761  			put_page_bootmem(page);
762  	}
763  }
764  
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)765  static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
766  {
767  	return 0;
768  }
769  
is_subsection_map_empty(struct mem_section * ms)770  static bool is_subsection_map_empty(struct mem_section *ms)
771  {
772  	return true;
773  }
774  
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)775  static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
776  {
777  	return 0;
778  }
779  #endif /* CONFIG_SPARSEMEM_VMEMMAP */
780  
781  /*
782   * To deactivate a memory region, there are 3 cases to handle across
783   * two configurations (SPARSEMEM_VMEMMAP={y,n}):
784   *
785   * 1. deactivation of a partial hot-added section (only possible in
786   *    the SPARSEMEM_VMEMMAP=y case).
787   *      a) section was present at memory init.
788   *      b) section was hot-added post memory init.
789   * 2. deactivation of a complete hot-added section.
790   * 3. deactivation of a complete section from memory init.
791   *
792   * For 1, when subsection_map does not empty we will not be freeing the
793   * usage map, but still need to free the vmemmap range.
794   *
795   * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
796   */
section_deactivate(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)797  static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
798  		struct vmem_altmap *altmap)
799  {
800  	struct mem_section *ms = __pfn_to_section(pfn);
801  	bool section_is_early = early_section(ms);
802  	struct page *memmap = NULL;
803  	bool empty;
804  
805  	if (clear_subsection_map(pfn, nr_pages))
806  		return;
807  
808  	empty = is_subsection_map_empty(ms);
809  	if (empty) {
810  		unsigned long section_nr = pfn_to_section_nr(pfn);
811  
812  		/*
813  		 * When removing an early section, the usage map is kept (as the
814  		 * usage maps of other sections fall into the same page). It
815  		 * will be re-used when re-adding the section - which is then no
816  		 * longer an early section. If the usage map is PageReserved, it
817  		 * was allocated during boot.
818  		 */
819  		if (!PageReserved(virt_to_page(ms->usage))) {
820  			kfree(ms->usage);
821  			ms->usage = NULL;
822  		}
823  		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
824  		/*
825  		 * Mark the section invalid so that valid_section()
826  		 * return false. This prevents code from dereferencing
827  		 * ms->usage array.
828  		 */
829  		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
830  	}
831  
832  	/*
833  	 * The memmap of early sections is always fully populated. See
834  	 * section_activate() and pfn_valid() .
835  	 */
836  	if (!section_is_early)
837  		depopulate_section_memmap(pfn, nr_pages, altmap);
838  	else if (memmap)
839  		free_map_bootmem(memmap);
840  
841  	if (empty)
842  		ms->section_mem_map = (unsigned long)NULL;
843  }
844  
section_activate(int nid,unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)845  static struct page * __meminit section_activate(int nid, unsigned long pfn,
846  		unsigned long nr_pages, struct vmem_altmap *altmap)
847  {
848  	struct mem_section *ms = __pfn_to_section(pfn);
849  	struct mem_section_usage *usage = NULL;
850  	struct page *memmap;
851  	int rc = 0;
852  
853  	if (!ms->usage) {
854  		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
855  		if (!usage)
856  			return ERR_PTR(-ENOMEM);
857  		ms->usage = usage;
858  	}
859  
860  	rc = fill_subsection_map(pfn, nr_pages);
861  	if (rc) {
862  		if (usage)
863  			ms->usage = NULL;
864  		kfree(usage);
865  		return ERR_PTR(rc);
866  	}
867  
868  	/*
869  	 * The early init code does not consider partially populated
870  	 * initial sections, it simply assumes that memory will never be
871  	 * referenced.  If we hot-add memory into such a section then we
872  	 * do not need to populate the memmap and can simply reuse what
873  	 * is already there.
874  	 */
875  	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
876  		return pfn_to_page(pfn);
877  
878  	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
879  	if (!memmap) {
880  		section_deactivate(pfn, nr_pages, altmap);
881  		return ERR_PTR(-ENOMEM);
882  	}
883  
884  	return memmap;
885  }
886  
887  /**
888   * sparse_add_section - add a memory section, or populate an existing one
889   * @nid: The node to add section on
890   * @start_pfn: start pfn of the memory range
891   * @nr_pages: number of pfns to add in the section
892   * @altmap: device page map
893   *
894   * This is only intended for hotplug.
895   *
896   * Note that only VMEMMAP supports sub-section aligned hotplug,
897   * the proper alignment and size are gated by check_pfn_span().
898   *
899   *
900   * Return:
901   * * 0		- On success.
902   * * -EEXIST	- Section has been present.
903   * * -ENOMEM	- Out of memory.
904   */
sparse_add_section(int nid,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap)905  int __meminit sparse_add_section(int nid, unsigned long start_pfn,
906  		unsigned long nr_pages, struct vmem_altmap *altmap)
907  {
908  	unsigned long section_nr = pfn_to_section_nr(start_pfn);
909  	struct mem_section *ms;
910  	struct page *memmap;
911  	int ret;
912  
913  	ret = sparse_index_init(section_nr, nid);
914  	if (ret < 0)
915  		return ret;
916  
917  	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
918  	if (IS_ERR(memmap))
919  		return PTR_ERR(memmap);
920  
921  	/*
922  	 * Poison uninitialized struct pages in order to catch invalid flags
923  	 * combinations.
924  	 */
925  	page_init_poison(memmap, sizeof(struct page) * nr_pages);
926  
927  	ms = __nr_to_section(section_nr);
928  	set_section_nid(section_nr, nid);
929  	section_mark_present(ms);
930  
931  	/* Align memmap to section boundary in the subsection case */
932  	if (section_nr_to_pfn(section_nr) != start_pfn)
933  		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
934  	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
935  
936  	return 0;
937  }
938  
939  #ifdef CONFIG_MEMORY_FAILURE
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)940  static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
941  {
942  	int i;
943  
944  	/*
945  	 * A further optimization is to have per section refcounted
946  	 * num_poisoned_pages.  But that would need more space per memmap, so
947  	 * for now just do a quick global check to speed up this routine in the
948  	 * absence of bad pages.
949  	 */
950  	if (atomic_long_read(&num_poisoned_pages) == 0)
951  		return;
952  
953  	for (i = 0; i < nr_pages; i++) {
954  		if (PageHWPoison(&memmap[i])) {
955  			num_poisoned_pages_dec();
956  			ClearPageHWPoison(&memmap[i]);
957  		}
958  	}
959  }
960  #else
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)961  static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
962  {
963  }
964  #endif
965  
sparse_remove_section(struct mem_section * ms,unsigned long pfn,unsigned long nr_pages,unsigned long map_offset,struct vmem_altmap * altmap)966  void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
967  		unsigned long nr_pages, unsigned long map_offset,
968  		struct vmem_altmap *altmap)
969  {
970  	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
971  			nr_pages - map_offset);
972  	section_deactivate(pfn, nr_pages, altmap);
973  }
974  #endif /* CONFIG_MEMORY_HOTPLUG */
975