1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
3 */
4
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
11 #include <linux/mm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
27
28 /*
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
36 *
37 * Warn if that happens, once per boot.
38 */
warn_setuid_and_fcaps_mixed(const char * fname)39 static void warn_setuid_and_fcaps_mixed(const char *fname)
40 {
41 static int warned;
42 if (!warned) {
43 printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname);
46 warned = 1;
47 }
48 }
49
50 /**
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
55 * @opts: Bitmask of options defined in include/linux/security.h
56 *
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
59 *
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
64 */
cap_capable(const struct cred * cred,struct user_namespace * targ_ns,int cap,unsigned int opts)65 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 int cap, unsigned int opts)
67 {
68 struct user_namespace *ns = targ_ns;
69
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
73 */
74 for (;;) {
75 /* Do we have the necessary capabilities? */
76 if (ns == cred->user_ns)
77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78
79 /*
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
82 */
83 if (ns->level <= cred->user_ns->level)
84 return -EPERM;
85
86 /*
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
89 */
90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 return 0;
92
93 /*
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
96 */
97 ns = ns->parent;
98 }
99
100 /* We never get here */
101 }
102
103 /**
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
107 *
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
110 */
cap_settime(const struct timespec64 * ts,const struct timezone * tz)111 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112 {
113 if (!capable(CAP_SYS_TIME))
114 return -EPERM;
115 return 0;
116 }
117
118 /**
119 * cap_ptrace_access_check - Determine whether the current process may access
120 * another
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
123 *
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
127 * access is allowed.
128 * Else denied.
129 *
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
132 */
cap_ptrace_access_check(struct task_struct * child,unsigned int mode)133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135 int ret = 0;
136 const struct cred *cred, *child_cred;
137 const kernel_cap_t *caller_caps;
138
139 rcu_read_lock();
140 cred = current_cred();
141 child_cred = __task_cred(child);
142 if (mode & PTRACE_MODE_FSCREDS)
143 caller_caps = &cred->cap_effective;
144 else
145 caller_caps = &cred->cap_permitted;
146 if (cred->user_ns == child_cred->user_ns &&
147 cap_issubset(child_cred->cap_permitted, *caller_caps))
148 goto out;
149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152 out:
153 rcu_read_unlock();
154 return ret;
155 }
156
157 /**
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
160 *
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
166 *
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
169 */
cap_ptrace_traceme(struct task_struct * parent)170 int cap_ptrace_traceme(struct task_struct *parent)
171 {
172 int ret = 0;
173 const struct cred *cred, *child_cred;
174
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user_ns == child_cred->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184 out:
185 rcu_read_unlock();
186 return ret;
187 }
188
189 /**
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
195 *
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
198 */
cap_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)199 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
201 {
202 const struct cred *cred;
203
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
212 }
213
214 /*
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
217 */
cap_inh_is_capped(void)218 static inline int cap_inh_is_capped(void)
219 {
220 /* they are so limited unless the current task has the CAP_SETPCAP
221 * capability
222 */
223 if (cap_capable(current_cred(), current_cred()->user_ns,
224 CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 return 0;
226 return 1;
227 }
228
229 /**
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
236 *
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
240 */
cap_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)241 int cap_capset(struct cred *new,
242 const struct cred *old,
243 const kernel_cap_t *effective,
244 const kernel_cap_t *inheritable,
245 const kernel_cap_t *permitted)
246 {
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable,
249 cap_combine(old->cap_inheritable,
250 old->cap_permitted)))
251 /* incapable of using this inheritable set */
252 return -EPERM;
253
254 if (!cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_bset)))
257 /* no new pI capabilities outside bounding set */
258 return -EPERM;
259
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted, old->cap_permitted))
262 return -EPERM;
263
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective, *permitted))
266 return -EPERM;
267
268 new->cap_effective = *effective;
269 new->cap_inheritable = *inheritable;
270 new->cap_permitted = *permitted;
271
272 /*
273 * Mask off ambient bits that are no longer both permitted and
274 * inheritable.
275 */
276 new->cap_ambient = cap_intersect(new->cap_ambient,
277 cap_intersect(*permitted,
278 *inheritable));
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 return -EINVAL;
281 return 0;
282 }
283
284 /**
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287 *
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
291 *
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
294 */
cap_inode_need_killpriv(struct dentry * dentry)295 int cap_inode_need_killpriv(struct dentry *dentry)
296 {
297 struct inode *inode = d_backing_inode(dentry);
298 int error;
299
300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 return error > 0;
302 }
303
304 /**
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
307 *
308 * Erase the privilege-enhancing security markings on an inode.
309 *
310 * Returns 0 if successful, -ve on error.
311 */
cap_inode_killpriv(struct dentry * dentry)312 int cap_inode_killpriv(struct dentry *dentry)
313 {
314 int error;
315
316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 if (error == -EOPNOTSUPP)
318 error = 0;
319 return error;
320 }
321
rootid_owns_currentns(kuid_t kroot)322 static bool rootid_owns_currentns(kuid_t kroot)
323 {
324 struct user_namespace *ns;
325
326 if (!uid_valid(kroot))
327 return false;
328
329 for (ns = current_user_ns(); ; ns = ns->parent) {
330 if (from_kuid(ns, kroot) == 0)
331 return true;
332 if (ns == &init_user_ns)
333 break;
334 }
335
336 return false;
337 }
338
sansflags(__u32 m)339 static __u32 sansflags(__u32 m)
340 {
341 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
342 }
343
is_v2header(size_t size,const struct vfs_cap_data * cap)344 static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
345 {
346 if (size != XATTR_CAPS_SZ_2)
347 return false;
348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
349 }
350
is_v3header(size_t size,const struct vfs_cap_data * cap)351 static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
352 {
353 if (size != XATTR_CAPS_SZ_3)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
356 }
357
358 /*
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
361 *
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
364 *
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
367 * so that's good.
368 */
cap_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)369 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 bool alloc)
371 {
372 int size, ret;
373 kuid_t kroot;
374 u32 nsmagic, magic;
375 uid_t root, mappedroot;
376 char *tmpbuf = NULL;
377 struct vfs_cap_data *cap;
378 struct vfs_ns_cap_data *nscap = NULL;
379 struct dentry *dentry;
380 struct user_namespace *fs_ns;
381
382 if (strcmp(name, "capability") != 0)
383 return -EOPNOTSUPP;
384
385 dentry = d_find_any_alias(inode);
386 if (!dentry)
387 return -EINVAL;
388
389 size = sizeof(struct vfs_ns_cap_data);
390 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
391 &tmpbuf, size, GFP_NOFS);
392 dput(dentry);
393
394 if (ret < 0 || !tmpbuf)
395 return ret;
396
397 fs_ns = inode->i_sb->s_user_ns;
398 cap = (struct vfs_cap_data *) tmpbuf;
399 if (is_v2header((size_t) ret, cap)) {
400 root = 0;
401 } else if (is_v3header((size_t) ret, cap)) {
402 nscap = (struct vfs_ns_cap_data *) tmpbuf;
403 root = le32_to_cpu(nscap->rootid);
404 } else {
405 size = -EINVAL;
406 goto out_free;
407 }
408
409 kroot = make_kuid(fs_ns, root);
410
411 /* If the root kuid maps to a valid uid in current ns, then return
412 * this as a nscap. */
413 mappedroot = from_kuid(current_user_ns(), kroot);
414 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
415 size = sizeof(struct vfs_ns_cap_data);
416 if (alloc) {
417 if (!nscap) {
418 /* v2 -> v3 conversion */
419 nscap = kzalloc(size, GFP_ATOMIC);
420 if (!nscap) {
421 size = -ENOMEM;
422 goto out_free;
423 }
424 nsmagic = VFS_CAP_REVISION_3;
425 magic = le32_to_cpu(cap->magic_etc);
426 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
427 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
428 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
429 nscap->magic_etc = cpu_to_le32(nsmagic);
430 } else {
431 /* use allocated v3 buffer */
432 tmpbuf = NULL;
433 }
434 nscap->rootid = cpu_to_le32(mappedroot);
435 *buffer = nscap;
436 }
437 goto out_free;
438 }
439
440 if (!rootid_owns_currentns(kroot)) {
441 size = -EOVERFLOW;
442 goto out_free;
443 }
444
445 /* This comes from a parent namespace. Return as a v2 capability */
446 size = sizeof(struct vfs_cap_data);
447 if (alloc) {
448 if (nscap) {
449 /* v3 -> v2 conversion */
450 cap = kzalloc(size, GFP_ATOMIC);
451 if (!cap) {
452 size = -ENOMEM;
453 goto out_free;
454 }
455 magic = VFS_CAP_REVISION_2;
456 nsmagic = le32_to_cpu(nscap->magic_etc);
457 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
458 magic |= VFS_CAP_FLAGS_EFFECTIVE;
459 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
460 cap->magic_etc = cpu_to_le32(magic);
461 } else {
462 /* use unconverted v2 */
463 tmpbuf = NULL;
464 }
465 *buffer = cap;
466 }
467 out_free:
468 kfree(tmpbuf);
469 return size;
470 }
471
rootid_from_xattr(const void * value,size_t size,struct user_namespace * task_ns)472 static kuid_t rootid_from_xattr(const void *value, size_t size,
473 struct user_namespace *task_ns)
474 {
475 const struct vfs_ns_cap_data *nscap = value;
476 uid_t rootid = 0;
477
478 if (size == XATTR_CAPS_SZ_3)
479 rootid = le32_to_cpu(nscap->rootid);
480
481 return make_kuid(task_ns, rootid);
482 }
483
validheader(size_t size,const struct vfs_cap_data * cap)484 static bool validheader(size_t size, const struct vfs_cap_data *cap)
485 {
486 return is_v2header(size, cap) || is_v3header(size, cap);
487 }
488
489 /*
490 * User requested a write of security.capability. If needed, update the
491 * xattr to change from v2 to v3, or to fixup the v3 rootid.
492 *
493 * If all is ok, we return the new size, on error return < 0.
494 */
cap_convert_nscap(struct dentry * dentry,void ** ivalue,size_t size)495 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
496 {
497 struct vfs_ns_cap_data *nscap;
498 uid_t nsrootid;
499 const struct vfs_cap_data *cap = *ivalue;
500 __u32 magic, nsmagic;
501 struct inode *inode = d_backing_inode(dentry);
502 struct user_namespace *task_ns = current_user_ns(),
503 *fs_ns = inode->i_sb->s_user_ns;
504 kuid_t rootid;
505 size_t newsize;
506
507 if (!*ivalue)
508 return -EINVAL;
509 if (!validheader(size, cap))
510 return -EINVAL;
511 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
512 return -EPERM;
513 if (size == XATTR_CAPS_SZ_2)
514 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
515 /* user is privileged, just write the v2 */
516 return size;
517
518 rootid = rootid_from_xattr(*ivalue, size, task_ns);
519 if (!uid_valid(rootid))
520 return -EINVAL;
521
522 nsrootid = from_kuid(fs_ns, rootid);
523 if (nsrootid == -1)
524 return -EINVAL;
525
526 newsize = sizeof(struct vfs_ns_cap_data);
527 nscap = kmalloc(newsize, GFP_ATOMIC);
528 if (!nscap)
529 return -ENOMEM;
530 nscap->rootid = cpu_to_le32(nsrootid);
531 nsmagic = VFS_CAP_REVISION_3;
532 magic = le32_to_cpu(cap->magic_etc);
533 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
534 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
535 nscap->magic_etc = cpu_to_le32(nsmagic);
536 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
537
538 kvfree(*ivalue);
539 *ivalue = nscap;
540 return newsize;
541 }
542
543 /*
544 * Calculate the new process capability sets from the capability sets attached
545 * to a file.
546 */
bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data * caps,struct linux_binprm * bprm,bool * effective,bool * has_fcap)547 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
548 struct linux_binprm *bprm,
549 bool *effective,
550 bool *has_fcap)
551 {
552 struct cred *new = bprm->cred;
553 unsigned i;
554 int ret = 0;
555
556 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
557 *effective = true;
558
559 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
560 *has_fcap = true;
561
562 CAP_FOR_EACH_U32(i) {
563 __u32 permitted = caps->permitted.cap[i];
564 __u32 inheritable = caps->inheritable.cap[i];
565
566 /*
567 * pP' = (X & fP) | (pI & fI)
568 * The addition of pA' is handled later.
569 */
570 new->cap_permitted.cap[i] =
571 (new->cap_bset.cap[i] & permitted) |
572 (new->cap_inheritable.cap[i] & inheritable);
573
574 if (permitted & ~new->cap_permitted.cap[i])
575 /* insufficient to execute correctly */
576 ret = -EPERM;
577 }
578
579 /*
580 * For legacy apps, with no internal support for recognizing they
581 * do not have enough capabilities, we return an error if they are
582 * missing some "forced" (aka file-permitted) capabilities.
583 */
584 return *effective ? ret : 0;
585 }
586
587 /*
588 * Extract the on-exec-apply capability sets for an executable file.
589 */
get_vfs_caps_from_disk(const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)590 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
591 {
592 struct inode *inode = d_backing_inode(dentry);
593 __u32 magic_etc;
594 unsigned tocopy, i;
595 int size;
596 struct vfs_ns_cap_data data, *nscaps = &data;
597 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
598 kuid_t rootkuid;
599 struct user_namespace *fs_ns;
600
601 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
602
603 if (!inode)
604 return -ENODATA;
605
606 fs_ns = inode->i_sb->s_user_ns;
607 size = __vfs_getxattr((struct dentry *)dentry, inode,
608 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
609 if (size == -ENODATA || size == -EOPNOTSUPP)
610 /* no data, that's ok */
611 return -ENODATA;
612
613 if (size < 0)
614 return size;
615
616 if (size < sizeof(magic_etc))
617 return -EINVAL;
618
619 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
620
621 rootkuid = make_kuid(fs_ns, 0);
622 switch (magic_etc & VFS_CAP_REVISION_MASK) {
623 case VFS_CAP_REVISION_1:
624 if (size != XATTR_CAPS_SZ_1)
625 return -EINVAL;
626 tocopy = VFS_CAP_U32_1;
627 break;
628 case VFS_CAP_REVISION_2:
629 if (size != XATTR_CAPS_SZ_2)
630 return -EINVAL;
631 tocopy = VFS_CAP_U32_2;
632 break;
633 case VFS_CAP_REVISION_3:
634 if (size != XATTR_CAPS_SZ_3)
635 return -EINVAL;
636 tocopy = VFS_CAP_U32_3;
637 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
638 break;
639
640 default:
641 return -EINVAL;
642 }
643 /* Limit the caps to the mounter of the filesystem
644 * or the more limited uid specified in the xattr.
645 */
646 if (!rootid_owns_currentns(rootkuid))
647 return -ENODATA;
648
649 CAP_FOR_EACH_U32(i) {
650 if (i >= tocopy)
651 break;
652 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
653 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
654 }
655
656 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
657 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
658
659 cpu_caps->rootid = rootkuid;
660
661 return 0;
662 }
663
664 /*
665 * Attempt to get the on-exec apply capability sets for an executable file from
666 * its xattrs and, if present, apply them to the proposed credentials being
667 * constructed by execve().
668 */
get_file_caps(struct linux_binprm * bprm,struct file * file,bool * effective,bool * has_fcap)669 static int get_file_caps(struct linux_binprm *bprm, struct file *file,
670 bool *effective, bool *has_fcap)
671 {
672 int rc = 0;
673 struct cpu_vfs_cap_data vcaps;
674
675 cap_clear(bprm->cred->cap_permitted);
676
677 if (!file_caps_enabled)
678 return 0;
679
680 if (!mnt_may_suid(file->f_path.mnt))
681 return 0;
682
683 /*
684 * This check is redundant with mnt_may_suid() but is kept to make
685 * explicit that capability bits are limited to s_user_ns and its
686 * descendants.
687 */
688 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
689 return 0;
690
691 rc = get_vfs_caps_from_disk(file->f_path.dentry, &vcaps);
692 if (rc < 0) {
693 if (rc == -EINVAL)
694 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
695 bprm->filename);
696 else if (rc == -ENODATA)
697 rc = 0;
698 goto out;
699 }
700
701 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
702
703 out:
704 if (rc)
705 cap_clear(bprm->cred->cap_permitted);
706
707 return rc;
708 }
709
root_privileged(void)710 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
711
__is_real(kuid_t uid,struct cred * cred)712 static inline bool __is_real(kuid_t uid, struct cred *cred)
713 { return uid_eq(cred->uid, uid); }
714
__is_eff(kuid_t uid,struct cred * cred)715 static inline bool __is_eff(kuid_t uid, struct cred *cred)
716 { return uid_eq(cred->euid, uid); }
717
__is_suid(kuid_t uid,struct cred * cred)718 static inline bool __is_suid(kuid_t uid, struct cred *cred)
719 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
720
721 /*
722 * handle_privileged_root - Handle case of privileged root
723 * @bprm: The execution parameters, including the proposed creds
724 * @has_fcap: Are any file capabilities set?
725 * @effective: Do we have effective root privilege?
726 * @root_uid: This namespace' root UID WRT initial USER namespace
727 *
728 * Handle the case where root is privileged and hasn't been neutered by
729 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
730 * set UID root and nothing is changed. If we are root, cap_permitted is
731 * updated. If we have become set UID root, the effective bit is set.
732 */
handle_privileged_root(struct linux_binprm * bprm,bool has_fcap,bool * effective,kuid_t root_uid)733 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
734 bool *effective, kuid_t root_uid)
735 {
736 const struct cred *old = current_cred();
737 struct cred *new = bprm->cred;
738
739 if (!root_privileged())
740 return;
741 /*
742 * If the legacy file capability is set, then don't set privs
743 * for a setuid root binary run by a non-root user. Do set it
744 * for a root user just to cause least surprise to an admin.
745 */
746 if (has_fcap && __is_suid(root_uid, new)) {
747 warn_setuid_and_fcaps_mixed(bprm->filename);
748 return;
749 }
750 /*
751 * To support inheritance of root-permissions and suid-root
752 * executables under compatibility mode, we override the
753 * capability sets for the file.
754 */
755 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
756 /* pP' = (cap_bset & ~0) | (pI & ~0) */
757 new->cap_permitted = cap_combine(old->cap_bset,
758 old->cap_inheritable);
759 }
760 /*
761 * If only the real uid is 0, we do not set the effective bit.
762 */
763 if (__is_eff(root_uid, new))
764 *effective = true;
765 }
766
767 #define __cap_gained(field, target, source) \
768 !cap_issubset(target->cap_##field, source->cap_##field)
769 #define __cap_grew(target, source, cred) \
770 !cap_issubset(cred->cap_##target, cred->cap_##source)
771 #define __cap_full(field, cred) \
772 cap_issubset(CAP_FULL_SET, cred->cap_##field)
773
__is_setuid(struct cred * new,const struct cred * old)774 static inline bool __is_setuid(struct cred *new, const struct cred *old)
775 { return !uid_eq(new->euid, old->uid); }
776
__is_setgid(struct cred * new,const struct cred * old)777 static inline bool __is_setgid(struct cred *new, const struct cred *old)
778 { return !gid_eq(new->egid, old->gid); }
779
780 /*
781 * 1) Audit candidate if current->cap_effective is set
782 *
783 * We do not bother to audit if 3 things are true:
784 * 1) cap_effective has all caps
785 * 2) we became root *OR* are were already root
786 * 3) root is supposed to have all caps (SECURE_NOROOT)
787 * Since this is just a normal root execing a process.
788 *
789 * Number 1 above might fail if you don't have a full bset, but I think
790 * that is interesting information to audit.
791 *
792 * A number of other conditions require logging:
793 * 2) something prevented setuid root getting all caps
794 * 3) non-setuid root gets fcaps
795 * 4) non-setuid root gets ambient
796 */
nonroot_raised_pE(struct cred * new,const struct cred * old,kuid_t root,bool has_fcap)797 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
798 kuid_t root, bool has_fcap)
799 {
800 bool ret = false;
801
802 if ((__cap_grew(effective, ambient, new) &&
803 !(__cap_full(effective, new) &&
804 (__is_eff(root, new) || __is_real(root, new)) &&
805 root_privileged())) ||
806 (root_privileged() &&
807 __is_suid(root, new) &&
808 !__cap_full(effective, new)) ||
809 (!__is_setuid(new, old) &&
810 ((has_fcap &&
811 __cap_gained(permitted, new, old)) ||
812 __cap_gained(ambient, new, old))))
813
814 ret = true;
815
816 return ret;
817 }
818
819 /**
820 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
821 * @bprm: The execution parameters, including the proposed creds
822 * @file: The file to pull the credentials from
823 *
824 * Set up the proposed credentials for a new execution context being
825 * constructed by execve(). The proposed creds in @bprm->cred is altered,
826 * which won't take effect immediately. Returns 0 if successful, -ve on error.
827 */
cap_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)828 int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
829 {
830 /* Process setpcap binaries and capabilities for uid 0 */
831 const struct cred *old = current_cred();
832 struct cred *new = bprm->cred;
833 bool effective = false, has_fcap = false, is_setid;
834 int ret;
835 kuid_t root_uid;
836
837 if (WARN_ON(!cap_ambient_invariant_ok(old)))
838 return -EPERM;
839
840 ret = get_file_caps(bprm, file, &effective, &has_fcap);
841 if (ret < 0)
842 return ret;
843
844 root_uid = make_kuid(new->user_ns, 0);
845
846 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
847
848 /* if we have fs caps, clear dangerous personality flags */
849 if (__cap_gained(permitted, new, old))
850 bprm->per_clear |= PER_CLEAR_ON_SETID;
851
852 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
853 * credentials unless they have the appropriate permit.
854 *
855 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
856 */
857 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
858
859 if ((is_setid || __cap_gained(permitted, new, old)) &&
860 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
861 !ptracer_capable(current, new->user_ns))) {
862 /* downgrade; they get no more than they had, and maybe less */
863 if (!ns_capable(new->user_ns, CAP_SETUID) ||
864 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
865 new->euid = new->uid;
866 new->egid = new->gid;
867 }
868 new->cap_permitted = cap_intersect(new->cap_permitted,
869 old->cap_permitted);
870 }
871
872 new->suid = new->fsuid = new->euid;
873 new->sgid = new->fsgid = new->egid;
874
875 /* File caps or setid cancels ambient. */
876 if (has_fcap || is_setid)
877 cap_clear(new->cap_ambient);
878
879 /*
880 * Now that we've computed pA', update pP' to give:
881 * pP' = (X & fP) | (pI & fI) | pA'
882 */
883 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
884
885 /*
886 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
887 * this is the same as pE' = (fE ? pP' : 0) | pA'.
888 */
889 if (effective)
890 new->cap_effective = new->cap_permitted;
891 else
892 new->cap_effective = new->cap_ambient;
893
894 if (WARN_ON(!cap_ambient_invariant_ok(new)))
895 return -EPERM;
896
897 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
898 ret = audit_log_bprm_fcaps(bprm, new, old);
899 if (ret < 0)
900 return ret;
901 }
902
903 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
904
905 if (WARN_ON(!cap_ambient_invariant_ok(new)))
906 return -EPERM;
907
908 /* Check for privilege-elevated exec. */
909 if (is_setid ||
910 (!__is_real(root_uid, new) &&
911 (effective ||
912 __cap_grew(permitted, ambient, new))))
913 bprm->secureexec = 1;
914
915 return 0;
916 }
917
918 /**
919 * cap_inode_setxattr - Determine whether an xattr may be altered
920 * @dentry: The inode/dentry being altered
921 * @name: The name of the xattr to be changed
922 * @value: The value that the xattr will be changed to
923 * @size: The size of value
924 * @flags: The replacement flag
925 *
926 * Determine whether an xattr may be altered or set on an inode, returning 0 if
927 * permission is granted, -ve if denied.
928 *
929 * This is used to make sure security xattrs don't get updated or set by those
930 * who aren't privileged to do so.
931 */
cap_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)932 int cap_inode_setxattr(struct dentry *dentry, const char *name,
933 const void *value, size_t size, int flags)
934 {
935 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
936
937 /* Ignore non-security xattrs */
938 if (strncmp(name, XATTR_SECURITY_PREFIX,
939 XATTR_SECURITY_PREFIX_LEN) != 0)
940 return 0;
941
942 /*
943 * For XATTR_NAME_CAPS the check will be done in
944 * cap_convert_nscap(), called by setxattr()
945 */
946 if (strcmp(name, XATTR_NAME_CAPS) == 0)
947 return 0;
948
949 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
950 return -EPERM;
951 return 0;
952 }
953
954 /**
955 * cap_inode_removexattr - Determine whether an xattr may be removed
956 * @dentry: The inode/dentry being altered
957 * @name: The name of the xattr to be changed
958 *
959 * Determine whether an xattr may be removed from an inode, returning 0 if
960 * permission is granted, -ve if denied.
961 *
962 * This is used to make sure security xattrs don't get removed by those who
963 * aren't privileged to remove them.
964 */
cap_inode_removexattr(struct dentry * dentry,const char * name)965 int cap_inode_removexattr(struct dentry *dentry, const char *name)
966 {
967 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
968
969 /* Ignore non-security xattrs */
970 if (strncmp(name, XATTR_SECURITY_PREFIX,
971 XATTR_SECURITY_PREFIX_LEN) != 0)
972 return 0;
973
974 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
975 /* security.capability gets namespaced */
976 struct inode *inode = d_backing_inode(dentry);
977 if (!inode)
978 return -EINVAL;
979 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
980 return -EPERM;
981 return 0;
982 }
983
984 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
985 return -EPERM;
986 return 0;
987 }
988
989 /*
990 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
991 * a process after a call to setuid, setreuid, or setresuid.
992 *
993 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
994 * {r,e,s}uid != 0, the permitted and effective capabilities are
995 * cleared.
996 *
997 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
998 * capabilities of the process are cleared.
999 *
1000 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1001 * capabilities are set to the permitted capabilities.
1002 *
1003 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1004 * never happen.
1005 *
1006 * -astor
1007 *
1008 * cevans - New behaviour, Oct '99
1009 * A process may, via prctl(), elect to keep its capabilities when it
1010 * calls setuid() and switches away from uid==0. Both permitted and
1011 * effective sets will be retained.
1012 * Without this change, it was impossible for a daemon to drop only some
1013 * of its privilege. The call to setuid(!=0) would drop all privileges!
1014 * Keeping uid 0 is not an option because uid 0 owns too many vital
1015 * files..
1016 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1017 */
cap_emulate_setxuid(struct cred * new,const struct cred * old)1018 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1019 {
1020 kuid_t root_uid = make_kuid(old->user_ns, 0);
1021
1022 if ((uid_eq(old->uid, root_uid) ||
1023 uid_eq(old->euid, root_uid) ||
1024 uid_eq(old->suid, root_uid)) &&
1025 (!uid_eq(new->uid, root_uid) &&
1026 !uid_eq(new->euid, root_uid) &&
1027 !uid_eq(new->suid, root_uid))) {
1028 if (!issecure(SECURE_KEEP_CAPS)) {
1029 cap_clear(new->cap_permitted);
1030 cap_clear(new->cap_effective);
1031 }
1032
1033 /*
1034 * Pre-ambient programs expect setresuid to nonroot followed
1035 * by exec to drop capabilities. We should make sure that
1036 * this remains the case.
1037 */
1038 cap_clear(new->cap_ambient);
1039 }
1040 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1041 cap_clear(new->cap_effective);
1042 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1043 new->cap_effective = new->cap_permitted;
1044 }
1045
1046 /**
1047 * cap_task_fix_setuid - Fix up the results of setuid() call
1048 * @new: The proposed credentials
1049 * @old: The current task's current credentials
1050 * @flags: Indications of what has changed
1051 *
1052 * Fix up the results of setuid() call before the credential changes are
1053 * actually applied, returning 0 to grant the changes, -ve to deny them.
1054 */
cap_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1055 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1056 {
1057 switch (flags) {
1058 case LSM_SETID_RE:
1059 case LSM_SETID_ID:
1060 case LSM_SETID_RES:
1061 /* juggle the capabilities to follow [RES]UID changes unless
1062 * otherwise suppressed */
1063 if (!issecure(SECURE_NO_SETUID_FIXUP))
1064 cap_emulate_setxuid(new, old);
1065 break;
1066
1067 case LSM_SETID_FS:
1068 /* juggle the capabilties to follow FSUID changes, unless
1069 * otherwise suppressed
1070 *
1071 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1072 * if not, we might be a bit too harsh here.
1073 */
1074 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1075 kuid_t root_uid = make_kuid(old->user_ns, 0);
1076 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1077 new->cap_effective =
1078 cap_drop_fs_set(new->cap_effective);
1079
1080 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1081 new->cap_effective =
1082 cap_raise_fs_set(new->cap_effective,
1083 new->cap_permitted);
1084 }
1085 break;
1086
1087 default:
1088 return -EINVAL;
1089 }
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * Rationale: code calling task_setscheduler, task_setioprio, and
1096 * task_setnice, assumes that
1097 * . if capable(cap_sys_nice), then those actions should be allowed
1098 * . if not capable(cap_sys_nice), but acting on your own processes,
1099 * then those actions should be allowed
1100 * This is insufficient now since you can call code without suid, but
1101 * yet with increased caps.
1102 * So we check for increased caps on the target process.
1103 */
cap_safe_nice(struct task_struct * p)1104 static int cap_safe_nice(struct task_struct *p)
1105 {
1106 int is_subset, ret = 0;
1107
1108 rcu_read_lock();
1109 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1110 current_cred()->cap_permitted);
1111 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1112 ret = -EPERM;
1113 rcu_read_unlock();
1114
1115 return ret;
1116 }
1117
1118 /**
1119 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1120 * @p: The task to affect
1121 *
1122 * Detemine if the requested scheduler policy change is permitted for the
1123 * specified task, returning 0 if permission is granted, -ve if denied.
1124 */
cap_task_setscheduler(struct task_struct * p)1125 int cap_task_setscheduler(struct task_struct *p)
1126 {
1127 return cap_safe_nice(p);
1128 }
1129
1130 /**
1131 * cap_task_ioprio - Detemine if I/O priority change is permitted
1132 * @p: The task to affect
1133 * @ioprio: The I/O priority to set
1134 *
1135 * Detemine if the requested I/O priority change is permitted for the specified
1136 * task, returning 0 if permission is granted, -ve if denied.
1137 */
cap_task_setioprio(struct task_struct * p,int ioprio)1138 int cap_task_setioprio(struct task_struct *p, int ioprio)
1139 {
1140 return cap_safe_nice(p);
1141 }
1142
1143 /**
1144 * cap_task_ioprio - Detemine if task priority change is permitted
1145 * @p: The task to affect
1146 * @nice: The nice value to set
1147 *
1148 * Detemine if the requested task priority change is permitted for the
1149 * specified task, returning 0 if permission is granted, -ve if denied.
1150 */
cap_task_setnice(struct task_struct * p,int nice)1151 int cap_task_setnice(struct task_struct *p, int nice)
1152 {
1153 return cap_safe_nice(p);
1154 }
1155
1156 /*
1157 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1158 * the current task's bounding set. Returns 0 on success, -ve on error.
1159 */
cap_prctl_drop(unsigned long cap)1160 static int cap_prctl_drop(unsigned long cap)
1161 {
1162 struct cred *new;
1163
1164 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1165 return -EPERM;
1166 if (!cap_valid(cap))
1167 return -EINVAL;
1168
1169 new = prepare_creds();
1170 if (!new)
1171 return -ENOMEM;
1172 cap_lower(new->cap_bset, cap);
1173 return commit_creds(new);
1174 }
1175
1176 /**
1177 * cap_task_prctl - Implement process control functions for this security module
1178 * @option: The process control function requested
1179 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1180 *
1181 * Allow process control functions (sys_prctl()) to alter capabilities; may
1182 * also deny access to other functions not otherwise implemented here.
1183 *
1184 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1185 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1186 * modules will consider performing the function.
1187 */
cap_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1188 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1189 unsigned long arg4, unsigned long arg5)
1190 {
1191 const struct cred *old = current_cred();
1192 struct cred *new;
1193
1194 switch (option) {
1195 case PR_CAPBSET_READ:
1196 if (!cap_valid(arg2))
1197 return -EINVAL;
1198 return !!cap_raised(old->cap_bset, arg2);
1199
1200 case PR_CAPBSET_DROP:
1201 return cap_prctl_drop(arg2);
1202
1203 /*
1204 * The next four prctl's remain to assist with transitioning a
1205 * system from legacy UID=0 based privilege (when filesystem
1206 * capabilities are not in use) to a system using filesystem
1207 * capabilities only - as the POSIX.1e draft intended.
1208 *
1209 * Note:
1210 *
1211 * PR_SET_SECUREBITS =
1212 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1213 * | issecure_mask(SECURE_NOROOT)
1214 * | issecure_mask(SECURE_NOROOT_LOCKED)
1215 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1216 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1217 *
1218 * will ensure that the current process and all of its
1219 * children will be locked into a pure
1220 * capability-based-privilege environment.
1221 */
1222 case PR_SET_SECUREBITS:
1223 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1224 & (old->securebits ^ arg2)) /*[1]*/
1225 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1226 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1227 || (cap_capable(current_cred(),
1228 current_cred()->user_ns,
1229 CAP_SETPCAP,
1230 CAP_OPT_NONE) != 0) /*[4]*/
1231 /*
1232 * [1] no changing of bits that are locked
1233 * [2] no unlocking of locks
1234 * [3] no setting of unsupported bits
1235 * [4] doing anything requires privilege (go read about
1236 * the "sendmail capabilities bug")
1237 */
1238 )
1239 /* cannot change a locked bit */
1240 return -EPERM;
1241
1242 new = prepare_creds();
1243 if (!new)
1244 return -ENOMEM;
1245 new->securebits = arg2;
1246 return commit_creds(new);
1247
1248 case PR_GET_SECUREBITS:
1249 return old->securebits;
1250
1251 case PR_GET_KEEPCAPS:
1252 return !!issecure(SECURE_KEEP_CAPS);
1253
1254 case PR_SET_KEEPCAPS:
1255 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1256 return -EINVAL;
1257 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1258 return -EPERM;
1259
1260 new = prepare_creds();
1261 if (!new)
1262 return -ENOMEM;
1263 if (arg2)
1264 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1265 else
1266 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1267 return commit_creds(new);
1268
1269 case PR_CAP_AMBIENT:
1270 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1271 if (arg3 | arg4 | arg5)
1272 return -EINVAL;
1273
1274 new = prepare_creds();
1275 if (!new)
1276 return -ENOMEM;
1277 cap_clear(new->cap_ambient);
1278 return commit_creds(new);
1279 }
1280
1281 if (((!cap_valid(arg3)) | arg4 | arg5))
1282 return -EINVAL;
1283
1284 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1285 return !!cap_raised(current_cred()->cap_ambient, arg3);
1286 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1287 arg2 != PR_CAP_AMBIENT_LOWER) {
1288 return -EINVAL;
1289 } else {
1290 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1291 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1292 !cap_raised(current_cred()->cap_inheritable,
1293 arg3) ||
1294 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1295 return -EPERM;
1296
1297 new = prepare_creds();
1298 if (!new)
1299 return -ENOMEM;
1300 if (arg2 == PR_CAP_AMBIENT_RAISE)
1301 cap_raise(new->cap_ambient, arg3);
1302 else
1303 cap_lower(new->cap_ambient, arg3);
1304 return commit_creds(new);
1305 }
1306
1307 default:
1308 /* No functionality available - continue with default */
1309 return -ENOSYS;
1310 }
1311 }
1312
1313 /**
1314 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1315 * @mm: The VM space in which the new mapping is to be made
1316 * @pages: The size of the mapping
1317 *
1318 * Determine whether the allocation of a new virtual mapping by the current
1319 * task is permitted, returning 1 if permission is granted, 0 if not.
1320 */
cap_vm_enough_memory(struct mm_struct * mm,long pages)1321 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1322 {
1323 int cap_sys_admin = 0;
1324
1325 if (cap_capable(current_cred(), &init_user_ns,
1326 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1327 cap_sys_admin = 1;
1328
1329 return cap_sys_admin;
1330 }
1331
1332 /*
1333 * cap_mmap_addr - check if able to map given addr
1334 * @addr: address attempting to be mapped
1335 *
1336 * If the process is attempting to map memory below dac_mmap_min_addr they need
1337 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1338 * capability security module. Returns 0 if this mapping should be allowed
1339 * -EPERM if not.
1340 */
cap_mmap_addr(unsigned long addr)1341 int cap_mmap_addr(unsigned long addr)
1342 {
1343 int ret = 0;
1344
1345 if (addr < dac_mmap_min_addr) {
1346 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1347 CAP_OPT_NONE);
1348 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1349 if (ret == 0)
1350 current->flags |= PF_SUPERPRIV;
1351 }
1352 return ret;
1353 }
1354
cap_mmap_file(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags)1355 int cap_mmap_file(struct file *file, unsigned long reqprot,
1356 unsigned long prot, unsigned long flags)
1357 {
1358 return 0;
1359 }
1360
1361 #ifdef CONFIG_SECURITY
1362
1363 static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1364 LSM_HOOK_INIT(capable, cap_capable),
1365 LSM_HOOK_INIT(settime, cap_settime),
1366 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1367 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1368 LSM_HOOK_INIT(capget, cap_capget),
1369 LSM_HOOK_INIT(capset, cap_capset),
1370 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1371 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1372 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1373 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1374 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1375 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1376 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1377 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1378 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1379 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1380 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1381 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1382 };
1383
capability_init(void)1384 static int __init capability_init(void)
1385 {
1386 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1387 "capability");
1388 return 0;
1389 }
1390
1391 DEFINE_LSM(capability) = {
1392 .name = "capability",
1393 .order = LSM_ORDER_FIRST,
1394 .init = capability_init,
1395 };
1396
1397 #endif /* CONFIG_SECURITY */
1398