1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: flat_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::flat_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of set elements can be done
22 // as an `O(1)` operation. However, `flat_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash set should be a set of type
28 // `flat_hash_set`.
29 #ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
30 #define ABSL_CONTAINER_FLAT_HASH_SET_H_
31
32 #include <type_traits>
33 #include <utility>
34
35 #include "absl/algorithm/container.h"
36 #include "absl/base/macros.h"
37 #include "absl/container/internal/container_memory.h"
38 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
39 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
40 #include "absl/memory/memory.h"
41
42 namespace absl {
43 ABSL_NAMESPACE_BEGIN
44 namespace container_internal {
45 template <typename T>
46 struct FlatHashSetPolicy;
47 } // namespace container_internal
48
49 // -----------------------------------------------------------------------------
50 // absl::flat_hash_set
51 // -----------------------------------------------------------------------------
52 //
53 // An `absl::flat_hash_set<T>` is an unordered associative container which has
54 // been optimized for both speed and memory footprint in most common use cases.
55 // Its interface is similar to that of `std::unordered_set<T>` with the
56 // following notable differences:
57 //
58 // * Requires keys that are CopyConstructible
59 // * Supports heterogeneous lookup, through `find()` and `insert()`, provided
60 // that the set is provided a compatible heterogeneous hashing function and
61 // equality operator.
62 // * Invalidates any references and pointers to elements within the table after
63 // `rehash()`.
64 // * Contains a `capacity()` member function indicating the number of element
65 // slots (open, deleted, and empty) within the hash set.
66 // * Returns `void` from the `erase(iterator)` overload.
67 //
68 // By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
69 // fundamental and Abseil types that support the `absl::Hash` framework have a
70 // compatible equality operator for comparing insertions into `flat_hash_map`.
71 // If your type is not yet supported by the `absl::Hash` framework, see
72 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
73 // types.
74 //
75 // NOTE: A `flat_hash_set` stores its keys directly inside its implementation
76 // array to avoid memory indirection. Because a `flat_hash_set` is designed to
77 // move data when rehashed, set keys will not retain pointer stability. If you
78 // require pointer stability, consider using
79 // `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
80 // you require pointer stability, consider `absl::node_hash_set` instead.
81 //
82 // Example:
83 //
84 // // Create a flat hash set of three strings
85 // absl::flat_hash_set<std::string> ducks =
86 // {"huey", "dewey", "louie"};
87 //
88 // // Insert a new element into the flat hash set
89 // ducks.insert("donald");
90 //
91 // // Force a rehash of the flat hash set
92 // ducks.rehash(0);
93 //
94 // // See if "dewey" is present
95 // if (ducks.contains("dewey")) {
96 // std::cout << "We found dewey!" << std::endl;
97 // }
98 template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
99 class Eq = absl::container_internal::hash_default_eq<T>,
100 class Allocator = std::allocator<T>>
101 class flat_hash_set
102 : public absl::container_internal::raw_hash_set<
103 absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
104 using Base = typename flat_hash_set::raw_hash_set;
105
106 public:
107 // Constructors and Assignment Operators
108 //
109 // A flat_hash_set supports the same overload set as `std::unordered_map`
110 // for construction and assignment:
111 //
112 // * Default constructor
113 //
114 // // No allocation for the table's elements is made.
115 // absl::flat_hash_set<std::string> set1;
116 //
117 // * Initializer List constructor
118 //
119 // absl::flat_hash_set<std::string> set2 =
120 // {{"huey"}, {"dewey"}, {"louie"},};
121 //
122 // * Copy constructor
123 //
124 // absl::flat_hash_set<std::string> set3(set2);
125 //
126 // * Copy assignment operator
127 //
128 // // Hash functor and Comparator are copied as well
129 // absl::flat_hash_set<std::string> set4;
130 // set4 = set3;
131 //
132 // * Move constructor
133 //
134 // // Move is guaranteed efficient
135 // absl::flat_hash_set<std::string> set5(std::move(set4));
136 //
137 // * Move assignment operator
138 //
139 // // May be efficient if allocators are compatible
140 // absl::flat_hash_set<std::string> set6;
141 // set6 = std::move(set5);
142 //
143 // * Range constructor
144 //
145 // std::vector<std::string> v = {"a", "b"};
146 // absl::flat_hash_set<std::string> set7(v.begin(), v.end());
flat_hash_set()147 flat_hash_set() {}
148 using Base::Base;
149
150 // flat_hash_set::begin()
151 //
152 // Returns an iterator to the beginning of the `flat_hash_set`.
153 using Base::begin;
154
155 // flat_hash_set::cbegin()
156 //
157 // Returns a const iterator to the beginning of the `flat_hash_set`.
158 using Base::cbegin;
159
160 // flat_hash_set::cend()
161 //
162 // Returns a const iterator to the end of the `flat_hash_set`.
163 using Base::cend;
164
165 // flat_hash_set::end()
166 //
167 // Returns an iterator to the end of the `flat_hash_set`.
168 using Base::end;
169
170 // flat_hash_set::capacity()
171 //
172 // Returns the number of element slots (assigned, deleted, and empty)
173 // available within the `flat_hash_set`.
174 //
175 // NOTE: this member function is particular to `absl::flat_hash_set` and is
176 // not provided in the `std::unordered_map` API.
177 using Base::capacity;
178
179 // flat_hash_set::empty()
180 //
181 // Returns whether or not the `flat_hash_set` is empty.
182 using Base::empty;
183
184 // flat_hash_set::max_size()
185 //
186 // Returns the largest theoretical possible number of elements within a
187 // `flat_hash_set` under current memory constraints. This value can be thought
188 // of the largest value of `std::distance(begin(), end())` for a
189 // `flat_hash_set<T>`.
190 using Base::max_size;
191
192 // flat_hash_set::size()
193 //
194 // Returns the number of elements currently within the `flat_hash_set`.
195 using Base::size;
196
197 // flat_hash_set::clear()
198 //
199 // Removes all elements from the `flat_hash_set`. Invalidates any references,
200 // pointers, or iterators referring to contained elements.
201 //
202 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
203 // the underlying buffer call `erase(begin(), end())`.
204 using Base::clear;
205
206 // flat_hash_set::erase()
207 //
208 // Erases elements within the `flat_hash_set`. Erasing does not trigger a
209 // rehash. Overloads are listed below.
210 //
211 // void erase(const_iterator pos):
212 //
213 // Erases the element at `position` of the `flat_hash_set`, returning
214 // `void`.
215 //
216 // NOTE: returning `void` in this case is different than that of STL
217 // containers in general and `std::unordered_set` in particular (which
218 // return an iterator to the element following the erased element). If that
219 // iterator is needed, simply post increment the iterator:
220 //
221 // set.erase(it++);
222 //
223 // iterator erase(const_iterator first, const_iterator last):
224 //
225 // Erases the elements in the open interval [`first`, `last`), returning an
226 // iterator pointing to `last`.
227 //
228 // size_type erase(const key_type& key):
229 //
230 // Erases the element with the matching key, if it exists, returning the
231 // number of elements erased (0 or 1).
232 using Base::erase;
233
234 // flat_hash_set::insert()
235 //
236 // Inserts an element of the specified value into the `flat_hash_set`,
237 // returning an iterator pointing to the newly inserted element, provided that
238 // an element with the given key does not already exist. If rehashing occurs
239 // due to the insertion, all iterators are invalidated. Overloads are listed
240 // below.
241 //
242 // std::pair<iterator,bool> insert(const T& value):
243 //
244 // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
245 // iterator to the inserted element (or to the element that prevented the
246 // insertion) and a bool denoting whether the insertion took place.
247 //
248 // std::pair<iterator,bool> insert(T&& value):
249 //
250 // Inserts a moveable value into the `flat_hash_set`. Returns a pair
251 // consisting of an iterator to the inserted element (or to the element that
252 // prevented the insertion) and a bool denoting whether the insertion took
253 // place.
254 //
255 // iterator insert(const_iterator hint, const T& value):
256 // iterator insert(const_iterator hint, T&& value):
257 //
258 // Inserts a value, using the position of `hint` as a non-binding suggestion
259 // for where to begin the insertion search. Returns an iterator to the
260 // inserted element, or to the existing element that prevented the
261 // insertion.
262 //
263 // void insert(InputIterator first, InputIterator last):
264 //
265 // Inserts a range of values [`first`, `last`).
266 //
267 // NOTE: Although the STL does not specify which element may be inserted if
268 // multiple keys compare equivalently, for `flat_hash_set` we guarantee the
269 // first match is inserted.
270 //
271 // void insert(std::initializer_list<T> ilist):
272 //
273 // Inserts the elements within the initializer list `ilist`.
274 //
275 // NOTE: Although the STL does not specify which element may be inserted if
276 // multiple keys compare equivalently within the initializer list, for
277 // `flat_hash_set` we guarantee the first match is inserted.
278 using Base::insert;
279
280 // flat_hash_set::emplace()
281 //
282 // Inserts an element of the specified value by constructing it in-place
283 // within the `flat_hash_set`, provided that no element with the given key
284 // already exists.
285 //
286 // The element may be constructed even if there already is an element with the
287 // key in the container, in which case the newly constructed element will be
288 // destroyed immediately.
289 //
290 // If rehashing occurs due to the insertion, all iterators are invalidated.
291 using Base::emplace;
292
293 // flat_hash_set::emplace_hint()
294 //
295 // Inserts an element of the specified value by constructing it in-place
296 // within the `flat_hash_set`, using the position of `hint` as a non-binding
297 // suggestion for where to begin the insertion search, and only inserts
298 // provided that no element with the given key already exists.
299 //
300 // The element may be constructed even if there already is an element with the
301 // key in the container, in which case the newly constructed element will be
302 // destroyed immediately.
303 //
304 // If rehashing occurs due to the insertion, all iterators are invalidated.
305 using Base::emplace_hint;
306
307 // flat_hash_set::extract()
308 //
309 // Extracts the indicated element, erasing it in the process, and returns it
310 // as a C++17-compatible node handle. Overloads are listed below.
311 //
312 // node_type extract(const_iterator position):
313 //
314 // Extracts the element at the indicated position and returns a node handle
315 // owning that extracted data.
316 //
317 // node_type extract(const key_type& x):
318 //
319 // Extracts the element with the key matching the passed key value and
320 // returns a node handle owning that extracted data. If the `flat_hash_set`
321 // does not contain an element with a matching key, this function returns an
322 // empty node handle.
323 using Base::extract;
324
325 // flat_hash_set::merge()
326 //
327 // Extracts elements from a given `source` flat hash map into this
328 // `flat_hash_set`. If the destination `flat_hash_set` already contains an
329 // element with an equivalent key, that element is not extracted.
330 using Base::merge;
331
332 // flat_hash_set::swap(flat_hash_set& other)
333 //
334 // Exchanges the contents of this `flat_hash_set` with those of the `other`
335 // flat hash map, avoiding invocation of any move, copy, or swap operations on
336 // individual elements.
337 //
338 // All iterators and references on the `flat_hash_set` remain valid, excepting
339 // for the past-the-end iterator, which is invalidated.
340 //
341 // `swap()` requires that the flat hash set's hashing and key equivalence
342 // functions be Swappable, and are exchaged using unqualified calls to
343 // non-member `swap()`. If the map's allocator has
344 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
345 // set to `true`, the allocators are also exchanged using an unqualified call
346 // to non-member `swap()`; otherwise, the allocators are not swapped.
347 using Base::swap;
348
349 // flat_hash_set::rehash(count)
350 //
351 // Rehashes the `flat_hash_set`, setting the number of slots to be at least
352 // the passed value. If the new number of slots increases the load factor more
353 // than the current maximum load factor
354 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
355 // will be at least `size()` / `max_load_factor()`.
356 //
357 // To force a rehash, pass rehash(0).
358 //
359 // NOTE: unlike behavior in `std::unordered_set`, references are also
360 // invalidated upon a `rehash()`.
361 using Base::rehash;
362
363 // flat_hash_set::reserve(count)
364 //
365 // Sets the number of slots in the `flat_hash_set` to the number needed to
366 // accommodate at least `count` total elements without exceeding the current
367 // maximum load factor, and may rehash the container if needed.
368 using Base::reserve;
369
370 // flat_hash_set::contains()
371 //
372 // Determines whether an element comparing equal to the given `key` exists
373 // within the `flat_hash_set`, returning `true` if so or `false` otherwise.
374 using Base::contains;
375
376 // flat_hash_set::count(const Key& key) const
377 //
378 // Returns the number of elements comparing equal to the given `key` within
379 // the `flat_hash_set`. note that this function will return either `1` or `0`
380 // since duplicate elements are not allowed within a `flat_hash_set`.
381 using Base::count;
382
383 // flat_hash_set::equal_range()
384 //
385 // Returns a closed range [first, last], defined by a `std::pair` of two
386 // iterators, containing all elements with the passed key in the
387 // `flat_hash_set`.
388 using Base::equal_range;
389
390 // flat_hash_set::find()
391 //
392 // Finds an element with the passed `key` within the `flat_hash_set`.
393 using Base::find;
394
395 // flat_hash_set::bucket_count()
396 //
397 // Returns the number of "buckets" within the `flat_hash_set`. Note that
398 // because a flat hash map contains all elements within its internal storage,
399 // this value simply equals the current capacity of the `flat_hash_set`.
400 using Base::bucket_count;
401
402 // flat_hash_set::load_factor()
403 //
404 // Returns the current load factor of the `flat_hash_set` (the average number
405 // of slots occupied with a value within the hash map).
406 using Base::load_factor;
407
408 // flat_hash_set::max_load_factor()
409 //
410 // Manages the maximum load factor of the `flat_hash_set`. Overloads are
411 // listed below.
412 //
413 // float flat_hash_set::max_load_factor()
414 //
415 // Returns the current maximum load factor of the `flat_hash_set`.
416 //
417 // void flat_hash_set::max_load_factor(float ml)
418 //
419 // Sets the maximum load factor of the `flat_hash_set` to the passed value.
420 //
421 // NOTE: This overload is provided only for API compatibility with the STL;
422 // `flat_hash_set` will ignore any set load factor and manage its rehashing
423 // internally as an implementation detail.
424 using Base::max_load_factor;
425
426 // flat_hash_set::get_allocator()
427 //
428 // Returns the allocator function associated with this `flat_hash_set`.
429 using Base::get_allocator;
430
431 // flat_hash_set::hash_function()
432 //
433 // Returns the hashing function used to hash the keys within this
434 // `flat_hash_set`.
435 using Base::hash_function;
436
437 // flat_hash_set::key_eq()
438 //
439 // Returns the function used for comparing keys equality.
440 using Base::key_eq;
441 };
442
443 // erase_if(flat_hash_set<>, Pred)
444 //
445 // Erases all elements that satisfy the predicate `pred` from the container `c`.
446 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(flat_hash_set<T,H,E,A> & c,Predicate pred)447 void erase_if(flat_hash_set<T, H, E, A>& c, Predicate pred) {
448 container_internal::EraseIf(pred, &c);
449 }
450
451 namespace container_internal {
452
453 template <class T>
454 struct FlatHashSetPolicy {
455 using slot_type = T;
456 using key_type = T;
457 using init_type = T;
458 using constant_iterators = std::true_type;
459
460 template <class Allocator, class... Args>
constructFlatHashSetPolicy461 static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
462 absl::allocator_traits<Allocator>::construct(*alloc, slot,
463 std::forward<Args>(args)...);
464 }
465
466 template <class Allocator>
destroyFlatHashSetPolicy467 static void destroy(Allocator* alloc, slot_type* slot) {
468 absl::allocator_traits<Allocator>::destroy(*alloc, slot);
469 }
470
471 template <class Allocator>
transferFlatHashSetPolicy472 static void transfer(Allocator* alloc, slot_type* new_slot,
473 slot_type* old_slot) {
474 construct(alloc, new_slot, std::move(*old_slot));
475 destroy(alloc, old_slot);
476 }
477
elementFlatHashSetPolicy478 static T& element(slot_type* slot) { return *slot; }
479
480 template <class F, class... Args>
decltypeFlatHashSetPolicy481 static decltype(absl::container_internal::DecomposeValue(
482 std::declval<F>(), std::declval<Args>()...))
483 apply(F&& f, Args&&... args) {
484 return absl::container_internal::DecomposeValue(
485 std::forward<F>(f), std::forward<Args>(args)...);
486 }
487
space_usedFlatHashSetPolicy488 static size_t space_used(const T*) { return 0; }
489 };
490 } // namespace container_internal
491
492 namespace container_algorithm_internal {
493
494 // Specialization of trait in absl/algorithm/container.h
495 template <class Key, class Hash, class KeyEqual, class Allocator>
496 struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>>
497 : std::true_type {};
498
499 } // namespace container_algorithm_internal
500
501 ABSL_NAMESPACE_END
502 } // namespace absl
503
504 #endif // ABSL_CONTAINER_FLAT_HASH_SET_H_
505