• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/distributions.h"
16 
17 #include <cmath>
18 #include <cstdint>
19 #include <random>
20 #include <vector>
21 
22 #include "gtest/gtest.h"
23 #include "absl/random/internal/distribution_test_util.h"
24 #include "absl/random/random.h"
25 
26 namespace {
27 
28 constexpr int kSize = 400000;
29 
30 class RandomDistributionsTest : public testing::Test {};
31 
32 
33 struct Invalid {};
34 
35 template <typename A, typename B>
36 auto InferredUniformReturnT(int)
37     -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
38                               std::declval<A>(), std::declval<B>()));
39 
40 template <typename, typename>
41 Invalid InferredUniformReturnT(...);
42 
43 template <typename TagType, typename A, typename B>
44 auto InferredTaggedUniformReturnT(int)
45     -> decltype(absl::Uniform(std::declval<TagType>(),
46                               std::declval<absl::InsecureBitGen&>(),
47                               std::declval<A>(), std::declval<B>()));
48 
49 template <typename, typename, typename>
50 Invalid InferredTaggedUniformReturnT(...);
51 
52 // Given types <A, B, Expect>, CheckArgsInferType() verifies that
53 //
54 //   absl::Uniform(gen, A{}, B{})
55 //
56 // returns the type "Expect".
57 //
58 // This interface can also be used to assert that a given absl::Uniform()
59 // overload does not exist / will not compile. Given types <A, B>, the
60 // expression
61 //
62 //   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
63 //
64 // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
65 // resolve (via SFINAE) to the overload which returns type "Invalid". This
66 // allows tests to assert that an invocation such as
67 //
68 //   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
69 //
70 // should not compile, since neither type, float nor int, can precisely
71 // represent both endpoint-values. Writing:
72 //
73 //   CheckArgsInferType<float, int, Invalid>()
74 //
75 // will assert that this overload does not exist.
76 template <typename A, typename B, typename Expect>
CheckArgsInferType()77 void CheckArgsInferType() {
78   static_assert(
79       absl::conjunction<
80           std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
81           std::is_same<Expect,
82                        decltype(InferredUniformReturnT<B, A>(0))>>::value,
83       "");
84   static_assert(
85       absl::conjunction<
86           std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
87                                         absl::IntervalOpenOpenTag, A, B>(0))>,
88           std::is_same<Expect,
89                        decltype(InferredTaggedUniformReturnT<
90                                 absl::IntervalOpenOpenTag, B, A>(0))>>::value,
91       "");
92 }
93 
94 template <typename A, typename B, typename ExplicitRet>
95 auto ExplicitUniformReturnT(int) -> decltype(
96     absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
97                                std::declval<A>(), std::declval<B>()));
98 
99 template <typename, typename, typename ExplicitRet>
100 Invalid ExplicitUniformReturnT(...);
101 
102 template <typename TagType, typename A, typename B, typename ExplicitRet>
103 auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
104     std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
105     std::declval<A>(), std::declval<B>()));
106 
107 template <typename, typename, typename, typename ExplicitRet>
108 Invalid ExplicitTaggedUniformReturnT(...);
109 
110 // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
111 //
112 //   absl::Uniform<Expect>(gen, A{}, B{})
113 //
114 // returns the type "Expect", and that the function-overload has the signature
115 //
116 //   Expect(URBG&, Expect, Expect)
117 template <typename A, typename B, typename Expect>
CheckArgsReturnExpectedType()118 void CheckArgsReturnExpectedType() {
119   static_assert(
120       absl::conjunction<
121           std::is_same<Expect,
122                        decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
123           std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
124                                    0))>>::value,
125       "");
126   static_assert(
127       absl::conjunction<
128           std::is_same<Expect,
129                        decltype(ExplicitTaggedUniformReturnT<
130                                 absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
131           std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
132                                         absl::IntervalOpenOpenTag, B, A,
133                                         Expect>(0))>>::value,
134       "");
135 }
136 
TEST_F(RandomDistributionsTest,UniformTypeInference)137 TEST_F(RandomDistributionsTest, UniformTypeInference) {
138   // Infers common types.
139   CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
140   CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
141   CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
142   CheckArgsInferType<int16_t, int16_t, int16_t>();
143   CheckArgsInferType<int32_t, int32_t, int32_t>();
144   CheckArgsInferType<int64_t, int64_t, int64_t>();
145   CheckArgsInferType<float, float, float>();
146   CheckArgsInferType<double, double, double>();
147 
148   // Explicitly-specified return-values override inferences.
149   CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
150   CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
151   CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
152   CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
153   CheckArgsReturnExpectedType<int16_t, int32_t, double>();
154   CheckArgsReturnExpectedType<float, float, double>();
155   CheckArgsReturnExpectedType<int, int, int16_t>();
156 
157   // Properly promotes uint16_t.
158   CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
159   CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
160   CheckArgsInferType<uint16_t, int32_t, int32_t>();
161   CheckArgsInferType<uint16_t, int64_t, int64_t>();
162   CheckArgsInferType<uint16_t, float, float>();
163   CheckArgsInferType<uint16_t, double, double>();
164 
165   // Properly promotes int16_t.
166   CheckArgsInferType<int16_t, int32_t, int32_t>();
167   CheckArgsInferType<int16_t, int64_t, int64_t>();
168   CheckArgsInferType<int16_t, float, float>();
169   CheckArgsInferType<int16_t, double, double>();
170 
171   // Invalid (u)int16_t-pairings do not compile.
172   // See "CheckArgsInferType" comments above, for how this is achieved.
173   CheckArgsInferType<uint16_t, int16_t, Invalid>();
174   CheckArgsInferType<int16_t, uint32_t, Invalid>();
175   CheckArgsInferType<int16_t, uint64_t, Invalid>();
176 
177   // Properly promotes uint32_t.
178   CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
179   CheckArgsInferType<uint32_t, int64_t, int64_t>();
180   CheckArgsInferType<uint32_t, double, double>();
181 
182   // Properly promotes int32_t.
183   CheckArgsInferType<int32_t, int64_t, int64_t>();
184   CheckArgsInferType<int32_t, double, double>();
185 
186   // Invalid (u)int32_t-pairings do not compile.
187   CheckArgsInferType<uint32_t, int32_t, Invalid>();
188   CheckArgsInferType<int32_t, uint64_t, Invalid>();
189   CheckArgsInferType<int32_t, float, Invalid>();
190   CheckArgsInferType<uint32_t, float, Invalid>();
191 
192   // Invalid (u)int64_t-pairings do not compile.
193   CheckArgsInferType<uint64_t, int64_t, Invalid>();
194   CheckArgsInferType<int64_t, float, Invalid>();
195   CheckArgsInferType<int64_t, double, Invalid>();
196 
197   // Properly promotes float.
198   CheckArgsInferType<float, double, double>();
199 }
200 
TEST_F(RandomDistributionsTest,UniformExamples)201 TEST_F(RandomDistributionsTest, UniformExamples) {
202   // Examples.
203   absl::InsecureBitGen gen;
204   EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
205   EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
206   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
207                              static_cast<uint16_t>(0), 1.0f));
208   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
209   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
210   EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
211   EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
212   EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
213 }
214 
TEST_F(RandomDistributionsTest,UniformNoBounds)215 TEST_F(RandomDistributionsTest, UniformNoBounds) {
216   absl::InsecureBitGen gen;
217 
218   absl::Uniform<uint8_t>(gen);
219   absl::Uniform<uint16_t>(gen);
220   absl::Uniform<uint32_t>(gen);
221   absl::Uniform<uint64_t>(gen);
222 }
223 
TEST_F(RandomDistributionsTest,UniformNonsenseRanges)224 TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
225   // The ranges used in this test are undefined behavior.
226   // The results are arbitrary and subject to future changes.
227   absl::InsecureBitGen gen;
228 
229   // <uint>
230   EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
231   EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
232   EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
233   EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
234 
235   constexpr auto m = (std::numeric_limits<uint64_t>::max)();
236 
237   EXPECT_EQ(m, absl::Uniform(gen, m, m));
238   EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
239   EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
240   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
241   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
242   EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
243 
244   // <int>
245   EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
246   EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
247   EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
248   EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
249 
250   constexpr auto l = (std::numeric_limits<int64_t>::min)();
251   constexpr auto r = (std::numeric_limits<int64_t>::max)();
252 
253   EXPECT_EQ(l, absl::Uniform(gen, l, l));
254   EXPECT_EQ(r, absl::Uniform(gen, r, r));
255   EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
256   EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
257   EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
258   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
259   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
260   EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
261 
262   // <double>
263   const double e = std::nextafter(1.0, 2.0);  // 1 + epsilon
264   const double f = std::nextafter(1.0, 0.0);  // 1 - epsilon
265   const double g = std::numeric_limits<double>::denorm_min();
266 
267   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
268   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
269   EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
270 
271   EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
272   EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
273   EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
274 }
275 
276 // TODO(lar): Validate properties of non-default interval-semantics.
TEST_F(RandomDistributionsTest,UniformReal)277 TEST_F(RandomDistributionsTest, UniformReal) {
278   std::vector<double> values(kSize);
279 
280   absl::InsecureBitGen gen;
281   for (int i = 0; i < kSize; i++) {
282     values[i] = absl::Uniform(gen, 0, 1.0);
283   }
284 
285   const auto moments =
286       absl::random_internal::ComputeDistributionMoments(values);
287   EXPECT_NEAR(0.5, moments.mean, 0.02);
288   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
289   EXPECT_NEAR(0.0, moments.skewness, 0.02);
290   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
291 }
292 
TEST_F(RandomDistributionsTest,UniformInt)293 TEST_F(RandomDistributionsTest, UniformInt) {
294   std::vector<double> values(kSize);
295 
296   absl::InsecureBitGen gen;
297   for (int i = 0; i < kSize; i++) {
298     const int64_t kMax = 1000000000000ll;
299     int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
300     // convert to double.
301     values[i] = static_cast<double>(j) / static_cast<double>(kMax);
302   }
303 
304   const auto moments =
305       absl::random_internal::ComputeDistributionMoments(values);
306   EXPECT_NEAR(0.5, moments.mean, 0.02);
307   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
308   EXPECT_NEAR(0.0, moments.skewness, 0.02);
309   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
310 
311   /*
312   // NOTE: These are not supported by absl::Uniform, which is specialized
313   // on integer and real valued types.
314 
315   enum E { E0, E1 };    // enum
316   enum S : int { S0, S1 };    // signed enum
317   enum U : unsigned int { U0, U1 };  // unsigned enum
318 
319   absl::Uniform(gen, E0, E1);
320   absl::Uniform(gen, S0, S1);
321   absl::Uniform(gen, U0, U1);
322   */
323 }
324 
TEST_F(RandomDistributionsTest,Exponential)325 TEST_F(RandomDistributionsTest, Exponential) {
326   std::vector<double> values(kSize);
327 
328   absl::InsecureBitGen gen;
329   for (int i = 0; i < kSize; i++) {
330     values[i] = absl::Exponential<double>(gen);
331   }
332 
333   const auto moments =
334       absl::random_internal::ComputeDistributionMoments(values);
335   EXPECT_NEAR(1.0, moments.mean, 0.02);
336   EXPECT_NEAR(1.0, moments.variance, 0.025);
337   EXPECT_NEAR(2.0, moments.skewness, 0.1);
338   EXPECT_LT(5.0, moments.kurtosis);
339 }
340 
TEST_F(RandomDistributionsTest,PoissonDefault)341 TEST_F(RandomDistributionsTest, PoissonDefault) {
342   std::vector<double> values(kSize);
343 
344   absl::InsecureBitGen gen;
345   for (int i = 0; i < kSize; i++) {
346     values[i] = absl::Poisson<int64_t>(gen);
347   }
348 
349   const auto moments =
350       absl::random_internal::ComputeDistributionMoments(values);
351   EXPECT_NEAR(1.0, moments.mean, 0.02);
352   EXPECT_NEAR(1.0, moments.variance, 0.02);
353   EXPECT_NEAR(1.0, moments.skewness, 0.025);
354   EXPECT_LT(2.0, moments.kurtosis);
355 }
356 
TEST_F(RandomDistributionsTest,PoissonLarge)357 TEST_F(RandomDistributionsTest, PoissonLarge) {
358   constexpr double kMean = 100000000.0;
359   std::vector<double> values(kSize);
360 
361   absl::InsecureBitGen gen;
362   for (int i = 0; i < kSize; i++) {
363     values[i] = absl::Poisson<int64_t>(gen, kMean);
364   }
365 
366   const auto moments =
367       absl::random_internal::ComputeDistributionMoments(values);
368   EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
369   EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
370   EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
371   EXPECT_LT(2.0, moments.kurtosis);
372 }
373 
TEST_F(RandomDistributionsTest,Bernoulli)374 TEST_F(RandomDistributionsTest, Bernoulli) {
375   constexpr double kP = 0.5151515151;
376   std::vector<double> values(kSize);
377 
378   absl::InsecureBitGen gen;
379   for (int i = 0; i < kSize; i++) {
380     values[i] = absl::Bernoulli(gen, kP);
381   }
382 
383   const auto moments =
384       absl::random_internal::ComputeDistributionMoments(values);
385   EXPECT_NEAR(kP, moments.mean, 0.01);
386 }
387 
TEST_F(RandomDistributionsTest,Beta)388 TEST_F(RandomDistributionsTest, Beta) {
389   constexpr double kAlpha = 2.0;
390   constexpr double kBeta = 3.0;
391   std::vector<double> values(kSize);
392 
393   absl::InsecureBitGen gen;
394   for (int i = 0; i < kSize; i++) {
395     values[i] = absl::Beta(gen, kAlpha, kBeta);
396   }
397 
398   const auto moments =
399       absl::random_internal::ComputeDistributionMoments(values);
400   EXPECT_NEAR(0.4, moments.mean, 0.01);
401 }
402 
TEST_F(RandomDistributionsTest,Zipf)403 TEST_F(RandomDistributionsTest, Zipf) {
404   std::vector<double> values(kSize);
405 
406   absl::InsecureBitGen gen;
407   for (int i = 0; i < kSize; i++) {
408     values[i] = absl::Zipf<int64_t>(gen, 100);
409   }
410 
411   // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
412   // Given the parameter v = 1, this gives the following function:
413   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
414   const auto moments =
415       absl::random_internal::ComputeDistributionMoments(values);
416   EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
417 }
418 
TEST_F(RandomDistributionsTest,Gaussian)419 TEST_F(RandomDistributionsTest, Gaussian) {
420   std::vector<double> values(kSize);
421 
422   absl::InsecureBitGen gen;
423   for (int i = 0; i < kSize; i++) {
424     values[i] = absl::Gaussian<double>(gen);
425   }
426 
427   const auto moments =
428       absl::random_internal::ComputeDistributionMoments(values);
429   EXPECT_NEAR(0.0, moments.mean, 0.02);
430   EXPECT_NEAR(1.0, moments.variance, 0.04);
431   EXPECT_NEAR(0, moments.skewness, 0.2);
432   EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
433 }
434 
TEST_F(RandomDistributionsTest,LogUniform)435 TEST_F(RandomDistributionsTest, LogUniform) {
436   std::vector<double> values(kSize);
437 
438   absl::InsecureBitGen gen;
439   for (int i = 0; i < kSize; i++) {
440     values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
441   }
442 
443   // The mean is the sum of the fractional means of the uniform distributions:
444   // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
445   // [64..127][128..255][256..511][512..1023]
446   const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
447                        64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
448                       (2.0 * 11.0);
449 
450   const auto moments =
451       absl::random_internal::ComputeDistributionMoments(values);
452   EXPECT_NEAR(mean, moments.mean, 2) << moments;
453 }
454 
455 }  // namespace
456