1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/internal/charconv_bigint.h"
16
17 #include <algorithm>
18 #include <cassert>
19 #include <string>
20
21 namespace absl {
22 ABSL_NAMESPACE_BEGIN
23 namespace strings_internal {
24
25 namespace {
26
27 // Table containing some large powers of 5, for fast computation.
28
29 // Constant step size for entries in the kLargePowersOfFive table. Each entry
30 // is larger than the previous entry by a factor of 5**kLargePowerOfFiveStep
31 // (or 5**27).
32 //
33 // In other words, the Nth entry in the table is 5**(27*N).
34 //
35 // 5**27 is the largest power of 5 that fits in 64 bits.
36 constexpr int kLargePowerOfFiveStep = 27;
37
38 // The largest legal index into the kLargePowersOfFive table.
39 //
40 // In other words, the largest precomputed power of 5 is 5**(27*20).
41 constexpr int kLargestPowerOfFiveIndex = 20;
42
43 // Table of powers of (5**27), up to (5**27)**20 == 5**540.
44 //
45 // Used to generate large powers of 5 while limiting the number of repeated
46 // multiplications required.
47 //
48 // clang-format off
49 const uint32_t kLargePowersOfFive[] = {
50 // 5**27 (i=1), start=0, end=2
51 0xfa10079dU, 0x6765c793U,
52 // 5**54 (i=2), start=2, end=6
53 0x97d9f649U, 0x6664242dU, 0x29939b14U, 0x29c30f10U,
54 // 5**81 (i=3), start=6, end=12
55 0xc4f809c5U, 0x7bf3f22aU, 0x67bdae34U, 0xad340517U, 0x369d1b5fU, 0x10de1593U,
56 // 5**108 (i=4), start=12, end=20
57 0x92b260d1U, 0x9efff7c7U, 0x81de0ec6U, 0xaeba5d56U, 0x410664a4U, 0x4f40737aU,
58 0x20d3846fU, 0x06d00f73U,
59 // 5**135 (i=5), start=20, end=30
60 0xff1b172dU, 0x13a1d71cU, 0xefa07617U, 0x7f682d3dU, 0xff8c90c0U, 0x3f0131e7U,
61 0x3fdcb9feU, 0x917b0177U, 0x16c407a7U, 0x02c06b9dU,
62 // 5**162 (i=6), start=30, end=42
63 0x960f7199U, 0x056667ecU, 0xe07aefd8U, 0x80f2b9ccU, 0x8273f5e3U, 0xeb9a214aU,
64 0x40b38005U, 0x0e477ad4U, 0x277d08e6U, 0xfa28b11eU, 0xd3f7d784U, 0x011c835bU,
65 // 5**189 (i=7), start=42, end=56
66 0xf723d9d5U, 0x3282d3f3U, 0xe00857d1U, 0x69659d25U, 0x2cf117cfU, 0x24da6d07U,
67 0x954d1417U, 0x3e5d8cedU, 0x7a8bb766U, 0xfd785ae6U, 0x645436d2U, 0x40c78b34U,
68 0x94151217U, 0x0072e9f7U,
69 // 5**216 (i=8), start=56, end=72
70 0x2b416aa1U, 0x7893c5a7U, 0xe37dc6d4U, 0x2bad2beaU, 0xf0fc846cU, 0x7575ae4bU,
71 0x62587b14U, 0x83b67a34U, 0x02110cdbU, 0xf7992f55U, 0x00deb022U, 0xa4a23becU,
72 0x8af5c5cdU, 0xb85b654fU, 0x818df38bU, 0x002e69d2U,
73 // 5**243 (i=9), start=72, end=90
74 0x3518cbbdU, 0x20b0c15fU, 0x38756c2fU, 0xfb5dc3ddU, 0x22ad2d94U, 0xbf35a952U,
75 0xa699192aU, 0x9a613326U, 0xad2a9cedU, 0xd7f48968U, 0xe87dfb54U, 0xc8f05db6U,
76 0x5ef67531U, 0x31c1ab49U, 0xe202ac9fU, 0x9b2957b5U, 0xa143f6d3U, 0x0012bf07U,
77 // 5**270 (i=10), start=90, end=110
78 0x8b971de9U, 0x21aba2e1U, 0x63944362U, 0x57172336U, 0xd9544225U, 0xfb534166U,
79 0x08c563eeU, 0x14640ee2U, 0x24e40d31U, 0x02b06537U, 0x03887f14U, 0x0285e533U,
80 0xb744ef26U, 0x8be3a6c4U, 0x266979b4U, 0x6761ece2U, 0xd9cb39e4U, 0xe67de319U,
81 0x0d39e796U, 0x00079250U,
82 // 5**297 (i=11), start=110, end=132
83 0x260eb6e5U, 0xf414a796U, 0xee1a7491U, 0xdb9368ebU, 0xf50c105bU, 0x59157750U,
84 0x9ed2fb5cU, 0xf6e56d8bU, 0xeaee8d23U, 0x0f319f75U, 0x2aa134d6U, 0xac2908e9U,
85 0xd4413298U, 0x02f02a55U, 0x989d5a7aU, 0x70dde184U, 0xba8040a7U, 0x03200981U,
86 0xbe03b11cU, 0x3c1c2a18U, 0xd60427a1U, 0x00030ee0U,
87 // 5**324 (i=12), start=132, end=156
88 0xce566d71U, 0xf1c4aa25U, 0x4e93ca53U, 0xa72283d0U, 0x551a73eaU, 0x3d0538e2U,
89 0x8da4303fU, 0x6a58de60U, 0x0e660221U, 0x49cf61a6U, 0x8d058fc1U, 0xb9d1a14cU,
90 0x4bab157dU, 0xc85c6932U, 0x518c8b9eU, 0x9b92b8d0U, 0x0d8a0e21U, 0xbd855df9U,
91 0xb3ea59a1U, 0x8da29289U, 0x4584d506U, 0x3752d80fU, 0xb72569c6U, 0x00013c33U,
92 // 5**351 (i=13), start=156, end=182
93 0x190f354dU, 0x83695cfeU, 0xe5a4d0c7U, 0xb60fb7e8U, 0xee5bbcc4U, 0xb922054cU,
94 0xbb4f0d85U, 0x48394028U, 0x1d8957dbU, 0x0d7edb14U, 0x4ecc7587U, 0x505e9e02U,
95 0x4c87f36bU, 0x99e66bd6U, 0x44b9ed35U, 0x753037d4U, 0xe5fe5f27U, 0x2742c203U,
96 0x13b2ed2bU, 0xdc525d2cU, 0xe6fde59aU, 0x77ffb18fU, 0x13c5752cU, 0x08a84bccU,
97 0x859a4940U, 0x00007fb6U,
98 // 5**378 (i=14), start=182, end=210
99 0x4f98cb39U, 0xa60edbbcU, 0x83b5872eU, 0xa501acffU, 0x9cc76f78U, 0xbadd4c73U,
100 0x43e989faU, 0xca7acf80U, 0x2e0c824fU, 0xb19f4ffcU, 0x092fd81cU, 0xe4eb645bU,
101 0xa1ff84c2U, 0x8a5a83baU, 0xa8a1fae9U, 0x1db43609U, 0xb0fed50bU, 0x0dd7d2bdU,
102 0x7d7accd8U, 0x91fa640fU, 0x37dcc6c5U, 0x1c417fd5U, 0xe4d462adU, 0xe8a43399U,
103 0x131bf9a5U, 0x8df54d29U, 0x36547dc1U, 0x00003395U,
104 // 5**405 (i=15), start=210, end=240
105 0x5bd330f5U, 0x77d21967U, 0x1ac481b7U, 0x6be2f7ceU, 0x7f4792a9U, 0xe84c2c52U,
106 0x84592228U, 0x9dcaf829U, 0xdab44ce1U, 0x3d0c311bU, 0x532e297dU, 0x4704e8b4U,
107 0x9cdc32beU, 0x41e64d9dU, 0x7717bea1U, 0xa824c00dU, 0x08f50b27U, 0x0f198d77U,
108 0x49bbfdf0U, 0x025c6c69U, 0xd4e55cd3U, 0xf083602bU, 0xb9f0fecdU, 0xc0864aeaU,
109 0x9cb98681U, 0xaaf620e9U, 0xacb6df30U, 0x4faafe66U, 0x8af13c3bU, 0x000014d5U,
110 // 5**432 (i=16), start=240, end=272
111 0x682bb941U, 0x89a9f297U, 0xcba75d7bU, 0x404217b1U, 0xb4e519e9U, 0xa1bc162bU,
112 0xf7f5910aU, 0x98715af5U, 0x2ff53e57U, 0xe3ef118cU, 0x490c4543U, 0xbc9b1734U,
113 0x2affbe4dU, 0x4cedcb4cU, 0xfb14e99eU, 0x35e34212U, 0xece39c24U, 0x07673ab3U,
114 0xe73115ddU, 0xd15d38e7U, 0x093eed3bU, 0xf8e7eac5U, 0x78a8cc80U, 0x25227aacU,
115 0x3f590551U, 0x413da1cbU, 0xdf643a55U, 0xab65ad44U, 0xd70b23d7U, 0xc672cd76U,
116 0x3364ea62U, 0x0000086aU,
117 // 5**459 (i=17), start=272, end=306
118 0x22f163ddU, 0x23cf07acU, 0xbe2af6c2U, 0xf412f6f6U, 0xc3ff541eU, 0x6eeaf7deU,
119 0xa47047e0U, 0x408cda92U, 0x0f0eeb08U, 0x56deba9dU, 0xcfc6b090U, 0x8bbbdf04U,
120 0x3933cdb3U, 0x9e7bb67dU, 0x9f297035U, 0x38946244U, 0xee1d37bbU, 0xde898174U,
121 0x63f3559dU, 0x705b72fbU, 0x138d27d9U, 0xf8603a78U, 0x735eec44U, 0xe30987d5U,
122 0xc6d38070U, 0x9cfe548eU, 0x9ff01422U, 0x7c564aa8U, 0x91cc60baU, 0xcbc3565dU,
123 0x7550a50bU, 0x6909aeadU, 0x13234c45U, 0x00000366U,
124 // 5**486 (i=18), start=306, end=342
125 0x17954989U, 0x3a7d7709U, 0x98042de5U, 0xa9011443U, 0x45e723c2U, 0x269ffd6fU,
126 0x58852a46U, 0xaaa1042aU, 0x2eee8153U, 0xb2b6c39eU, 0xaf845b65U, 0xf6c365d7U,
127 0xe4cffb2bU, 0xc840e90cU, 0xabea8abbU, 0x5c58f8d2U, 0x5c19fa3aU, 0x4670910aU,
128 0x4449f21cU, 0xefa645b3U, 0xcc427decU, 0x083c3d73U, 0x467cb413U, 0x6fe10ae4U,
129 0x3caffc72U, 0x9f8da55eU, 0x5e5c8ea7U, 0x490594bbU, 0xf0871b0bU, 0xdd89816cU,
130 0x8e931df8U, 0xe85ce1c9U, 0xcca090a5U, 0x575fa16bU, 0x6b9f106cU, 0x0000015fU,
131 // 5**513 (i=19), start=342, end=380
132 0xee20d805U, 0x57bc3c07U, 0xcdea624eU, 0xd3f0f52dU, 0x9924b4f4U, 0xcf968640U,
133 0x61d41962U, 0xe87fb464U, 0xeaaf51c7U, 0x564c8b60U, 0xccda4028U, 0x529428bbU,
134 0x313a1fa8U, 0x96bd0f94U, 0x7a82ebaaU, 0xad99e7e9U, 0xf2668cd4U, 0xbe33a45eU,
135 0xfd0db669U, 0x87ee369fU, 0xd3ec20edU, 0x9c4d7db7U, 0xdedcf0d8U, 0x7cd2ca64U,
136 0xe25a6577U, 0x61003fd4U, 0xe56f54ccU, 0x10b7c748U, 0x40526e5eU, 0x7300ae87U,
137 0x5c439261U, 0x2c0ff469U, 0xbf723f12U, 0xb2379b61U, 0xbf59b4f5U, 0xc91b1c3fU,
138 0xf0046d27U, 0x0000008dU,
139 // 5**540 (i=20), start=380, end=420
140 0x525c9e11U, 0xf4e0eb41U, 0xebb2895dU, 0x5da512f9U, 0x7d9b29d4U, 0x452f4edcU,
141 0x0b90bc37U, 0x341777cbU, 0x63d269afU, 0x1da77929U, 0x0a5c1826U, 0x77991898U,
142 0x5aeddf86U, 0xf853a877U, 0x538c31ccU, 0xe84896daU, 0xb7a0010bU, 0x17ef4de5U,
143 0xa52a2adeU, 0x029fd81cU, 0x987ce701U, 0x27fefd77U, 0xdb46c66fU, 0x5d301900U,
144 0x496998c0U, 0xbb6598b9U, 0x5eebb607U, 0xe547354aU, 0xdf4a2f7eU, 0xf06c4955U,
145 0x96242ffaU, 0x1775fb27U, 0xbecc58ceU, 0xebf2a53bU, 0x3eaad82aU, 0xf41137baU,
146 0x573e6fbaU, 0xfb4866b8U, 0x54002148U, 0x00000039U,
147 };
148 // clang-format on
149
150 // Returns a pointer to the big integer data for (5**27)**i. i must be
151 // between 1 and 20, inclusive.
LargePowerOfFiveData(int i)152 const uint32_t* LargePowerOfFiveData(int i) {
153 return kLargePowersOfFive + i * (i - 1);
154 }
155
156 // Returns the size of the big integer data for (5**27)**i, in words. i must be
157 // between 1 and 20, inclusive.
LargePowerOfFiveSize(int i)158 int LargePowerOfFiveSize(int i) { return 2 * i; }
159 } // namespace
160
161 ABSL_DLL const uint32_t kFiveToNth[14] = {
162 1, 5, 25, 125, 625, 3125, 15625,
163 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125,
164 };
165
166 ABSL_DLL const uint32_t kTenToNth[10] = {
167 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
168 };
169
170 template <int max_words>
ReadFloatMantissa(const ParsedFloat & fp,int significant_digits)171 int BigUnsigned<max_words>::ReadFloatMantissa(const ParsedFloat& fp,
172 int significant_digits) {
173 SetToZero();
174 assert(fp.type == FloatType::kNumber);
175
176 if (fp.subrange_begin == nullptr) {
177 // We already exactly parsed the mantissa, so no more work is necessary.
178 words_[0] = fp.mantissa & 0xffffffffu;
179 words_[1] = fp.mantissa >> 32;
180 if (words_[1]) {
181 size_ = 2;
182 } else if (words_[0]) {
183 size_ = 1;
184 }
185 return fp.exponent;
186 }
187 int exponent_adjust =
188 ReadDigits(fp.subrange_begin, fp.subrange_end, significant_digits);
189 return fp.literal_exponent + exponent_adjust;
190 }
191
192 template <int max_words>
ReadDigits(const char * begin,const char * end,int significant_digits)193 int BigUnsigned<max_words>::ReadDigits(const char* begin, const char* end,
194 int significant_digits) {
195 assert(significant_digits <= Digits10() + 1);
196 SetToZero();
197
198 bool after_decimal_point = false;
199 // Discard any leading zeroes before the decimal point
200 while (begin < end && *begin == '0') {
201 ++begin;
202 }
203 int dropped_digits = 0;
204 // Discard any trailing zeroes. These may or may not be after the decimal
205 // point.
206 while (begin < end && *std::prev(end) == '0') {
207 --end;
208 ++dropped_digits;
209 }
210 if (begin < end && *std::prev(end) == '.') {
211 // If the string ends in '.', either before or after dropping zeroes, then
212 // drop the decimal point and look for more digits to drop.
213 dropped_digits = 0;
214 --end;
215 while (begin < end && *std::prev(end) == '0') {
216 --end;
217 ++dropped_digits;
218 }
219 } else if (dropped_digits) {
220 // We dropped digits, and aren't sure if they're before or after the decimal
221 // point. Figure that out now.
222 const char* dp = std::find(begin, end, '.');
223 if (dp != end) {
224 // The dropped trailing digits were after the decimal point, so don't
225 // count them.
226 dropped_digits = 0;
227 }
228 }
229 // Any non-fraction digits we dropped need to be accounted for in our exponent
230 // adjustment.
231 int exponent_adjust = dropped_digits;
232
233 uint32_t queued = 0;
234 int digits_queued = 0;
235 for (; begin != end && significant_digits > 0; ++begin) {
236 if (*begin == '.') {
237 after_decimal_point = true;
238 continue;
239 }
240 if (after_decimal_point) {
241 // For each fractional digit we emit in our parsed integer, adjust our
242 // decimal exponent to compensate.
243 --exponent_adjust;
244 }
245 int digit = (*begin - '0');
246 --significant_digits;
247 if (significant_digits == 0 && std::next(begin) != end &&
248 (digit == 0 || digit == 5)) {
249 // If this is the very last significant digit, but insignificant digits
250 // remain, we know that the last of those remaining significant digits is
251 // nonzero. (If it wasn't, we would have stripped it before we got here.)
252 // So if this final digit is a 0 or 5, adjust it upward by 1.
253 //
254 // This adjustment is what allows incredibly large mantissas ending in
255 // 500000...000000000001 to correctly round up, rather than to nearest.
256 ++digit;
257 }
258 queued = 10 * queued + digit;
259 ++digits_queued;
260 if (digits_queued == kMaxSmallPowerOfTen) {
261 MultiplyBy(kTenToNth[kMaxSmallPowerOfTen]);
262 AddWithCarry(0, queued);
263 queued = digits_queued = 0;
264 }
265 }
266 // Encode any remaining digits.
267 if (digits_queued) {
268 MultiplyBy(kTenToNth[digits_queued]);
269 AddWithCarry(0, queued);
270 }
271
272 // If any insignificant digits remain, we will drop them. But if we have not
273 // yet read the decimal point, then we have to adjust the exponent to account
274 // for the dropped digits.
275 if (begin < end && !after_decimal_point) {
276 // This call to std::find will result in a pointer either to the decimal
277 // point, or to the end of our buffer if there was none.
278 //
279 // Either way, [begin, decimal_point) will contain the set of dropped digits
280 // that require an exponent adjustment.
281 const char* decimal_point = std::find(begin, end, '.');
282 exponent_adjust += (decimal_point - begin);
283 }
284 return exponent_adjust;
285 }
286
287 template <int max_words>
FiveToTheNth(int n)288 /* static */ BigUnsigned<max_words> BigUnsigned<max_words>::FiveToTheNth(
289 int n) {
290 BigUnsigned answer(1u);
291
292 // Seed from the table of large powers, if possible.
293 bool first_pass = true;
294 while (n >= kLargePowerOfFiveStep) {
295 int big_power =
296 std::min(n / kLargePowerOfFiveStep, kLargestPowerOfFiveIndex);
297 if (first_pass) {
298 // just copy, rather than multiplying by 1
299 std::copy(
300 LargePowerOfFiveData(big_power),
301 LargePowerOfFiveData(big_power) + LargePowerOfFiveSize(big_power),
302 answer.words_);
303 answer.size_ = LargePowerOfFiveSize(big_power);
304 first_pass = false;
305 } else {
306 answer.MultiplyBy(LargePowerOfFiveSize(big_power),
307 LargePowerOfFiveData(big_power));
308 }
309 n -= kLargePowerOfFiveStep * big_power;
310 }
311 answer.MultiplyByFiveToTheNth(n);
312 return answer;
313 }
314
315 template <int max_words>
MultiplyStep(int original_size,const uint32_t * other_words,int other_size,int step)316 void BigUnsigned<max_words>::MultiplyStep(int original_size,
317 const uint32_t* other_words,
318 int other_size, int step) {
319 int this_i = std::min(original_size - 1, step);
320 int other_i = step - this_i;
321
322 uint64_t this_word = 0;
323 uint64_t carry = 0;
324 for (; this_i >= 0 && other_i < other_size; --this_i, ++other_i) {
325 uint64_t product = words_[this_i];
326 product *= other_words[other_i];
327 this_word += product;
328 carry += (this_word >> 32);
329 this_word &= 0xffffffff;
330 }
331 AddWithCarry(step + 1, carry);
332 words_[step] = this_word & 0xffffffff;
333 if (this_word > 0 && size_ <= step) {
334 size_ = step + 1;
335 }
336 }
337
338 template <int max_words>
ToString() const339 std::string BigUnsigned<max_words>::ToString() const {
340 BigUnsigned<max_words> copy = *this;
341 std::string result;
342 // Build result in reverse order
343 while (copy.size() > 0) {
344 int next_digit = copy.DivMod<10>();
345 result.push_back('0' + next_digit);
346 }
347 if (result.empty()) {
348 result.push_back('0');
349 }
350 std::reverse(result.begin(), result.end());
351 return result;
352 }
353
354 template class BigUnsigned<4>;
355 template class BigUnsigned<84>;
356
357 } // namespace strings_internal
358 ABSL_NAMESPACE_END
359 } // namespace absl
360