• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/internal/charconv_bigint.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <string>
20 
21 namespace absl {
22 ABSL_NAMESPACE_BEGIN
23 namespace strings_internal {
24 
25 namespace {
26 
27 // Table containing some large powers of 5, for fast computation.
28 
29 // Constant step size for entries in the kLargePowersOfFive table.  Each entry
30 // is larger than the previous entry by a factor of 5**kLargePowerOfFiveStep
31 // (or 5**27).
32 //
33 // In other words, the Nth entry in the table is 5**(27*N).
34 //
35 // 5**27 is the largest power of 5 that fits in 64 bits.
36 constexpr int kLargePowerOfFiveStep = 27;
37 
38 // The largest legal index into the kLargePowersOfFive table.
39 //
40 // In other words, the largest precomputed power of 5 is 5**(27*20).
41 constexpr int kLargestPowerOfFiveIndex = 20;
42 
43 // Table of powers of (5**27), up to (5**27)**20 == 5**540.
44 //
45 // Used to generate large powers of 5 while limiting the number of repeated
46 // multiplications required.
47 //
48 // clang-format off
49 const uint32_t kLargePowersOfFive[] = {
50 // 5**27 (i=1), start=0, end=2
51   0xfa10079dU, 0x6765c793U,
52 // 5**54 (i=2), start=2, end=6
53   0x97d9f649U, 0x6664242dU, 0x29939b14U, 0x29c30f10U,
54 // 5**81 (i=3), start=6, end=12
55   0xc4f809c5U, 0x7bf3f22aU, 0x67bdae34U, 0xad340517U, 0x369d1b5fU, 0x10de1593U,
56 // 5**108 (i=4), start=12, end=20
57   0x92b260d1U, 0x9efff7c7U, 0x81de0ec6U, 0xaeba5d56U, 0x410664a4U, 0x4f40737aU,
58   0x20d3846fU, 0x06d00f73U,
59 // 5**135 (i=5), start=20, end=30
60   0xff1b172dU, 0x13a1d71cU, 0xefa07617U, 0x7f682d3dU, 0xff8c90c0U, 0x3f0131e7U,
61   0x3fdcb9feU, 0x917b0177U, 0x16c407a7U, 0x02c06b9dU,
62 // 5**162 (i=6), start=30, end=42
63   0x960f7199U, 0x056667ecU, 0xe07aefd8U, 0x80f2b9ccU, 0x8273f5e3U, 0xeb9a214aU,
64   0x40b38005U, 0x0e477ad4U, 0x277d08e6U, 0xfa28b11eU, 0xd3f7d784U, 0x011c835bU,
65 // 5**189 (i=7), start=42, end=56
66   0xf723d9d5U, 0x3282d3f3U, 0xe00857d1U, 0x69659d25U, 0x2cf117cfU, 0x24da6d07U,
67   0x954d1417U, 0x3e5d8cedU, 0x7a8bb766U, 0xfd785ae6U, 0x645436d2U, 0x40c78b34U,
68   0x94151217U, 0x0072e9f7U,
69 // 5**216 (i=8), start=56, end=72
70   0x2b416aa1U, 0x7893c5a7U, 0xe37dc6d4U, 0x2bad2beaU, 0xf0fc846cU, 0x7575ae4bU,
71   0x62587b14U, 0x83b67a34U, 0x02110cdbU, 0xf7992f55U, 0x00deb022U, 0xa4a23becU,
72   0x8af5c5cdU, 0xb85b654fU, 0x818df38bU, 0x002e69d2U,
73 // 5**243 (i=9), start=72, end=90
74   0x3518cbbdU, 0x20b0c15fU, 0x38756c2fU, 0xfb5dc3ddU, 0x22ad2d94U, 0xbf35a952U,
75   0xa699192aU, 0x9a613326U, 0xad2a9cedU, 0xd7f48968U, 0xe87dfb54U, 0xc8f05db6U,
76   0x5ef67531U, 0x31c1ab49U, 0xe202ac9fU, 0x9b2957b5U, 0xa143f6d3U, 0x0012bf07U,
77 // 5**270 (i=10), start=90, end=110
78   0x8b971de9U, 0x21aba2e1U, 0x63944362U, 0x57172336U, 0xd9544225U, 0xfb534166U,
79   0x08c563eeU, 0x14640ee2U, 0x24e40d31U, 0x02b06537U, 0x03887f14U, 0x0285e533U,
80   0xb744ef26U, 0x8be3a6c4U, 0x266979b4U, 0x6761ece2U, 0xd9cb39e4U, 0xe67de319U,
81   0x0d39e796U, 0x00079250U,
82 // 5**297 (i=11), start=110, end=132
83   0x260eb6e5U, 0xf414a796U, 0xee1a7491U, 0xdb9368ebU, 0xf50c105bU, 0x59157750U,
84   0x9ed2fb5cU, 0xf6e56d8bU, 0xeaee8d23U, 0x0f319f75U, 0x2aa134d6U, 0xac2908e9U,
85   0xd4413298U, 0x02f02a55U, 0x989d5a7aU, 0x70dde184U, 0xba8040a7U, 0x03200981U,
86   0xbe03b11cU, 0x3c1c2a18U, 0xd60427a1U, 0x00030ee0U,
87 // 5**324 (i=12), start=132, end=156
88   0xce566d71U, 0xf1c4aa25U, 0x4e93ca53U, 0xa72283d0U, 0x551a73eaU, 0x3d0538e2U,
89   0x8da4303fU, 0x6a58de60U, 0x0e660221U, 0x49cf61a6U, 0x8d058fc1U, 0xb9d1a14cU,
90   0x4bab157dU, 0xc85c6932U, 0x518c8b9eU, 0x9b92b8d0U, 0x0d8a0e21U, 0xbd855df9U,
91   0xb3ea59a1U, 0x8da29289U, 0x4584d506U, 0x3752d80fU, 0xb72569c6U, 0x00013c33U,
92 // 5**351 (i=13), start=156, end=182
93   0x190f354dU, 0x83695cfeU, 0xe5a4d0c7U, 0xb60fb7e8U, 0xee5bbcc4U, 0xb922054cU,
94   0xbb4f0d85U, 0x48394028U, 0x1d8957dbU, 0x0d7edb14U, 0x4ecc7587U, 0x505e9e02U,
95   0x4c87f36bU, 0x99e66bd6U, 0x44b9ed35U, 0x753037d4U, 0xe5fe5f27U, 0x2742c203U,
96   0x13b2ed2bU, 0xdc525d2cU, 0xe6fde59aU, 0x77ffb18fU, 0x13c5752cU, 0x08a84bccU,
97   0x859a4940U, 0x00007fb6U,
98 // 5**378 (i=14), start=182, end=210
99   0x4f98cb39U, 0xa60edbbcU, 0x83b5872eU, 0xa501acffU, 0x9cc76f78U, 0xbadd4c73U,
100   0x43e989faU, 0xca7acf80U, 0x2e0c824fU, 0xb19f4ffcU, 0x092fd81cU, 0xe4eb645bU,
101   0xa1ff84c2U, 0x8a5a83baU, 0xa8a1fae9U, 0x1db43609U, 0xb0fed50bU, 0x0dd7d2bdU,
102   0x7d7accd8U, 0x91fa640fU, 0x37dcc6c5U, 0x1c417fd5U, 0xe4d462adU, 0xe8a43399U,
103   0x131bf9a5U, 0x8df54d29U, 0x36547dc1U, 0x00003395U,
104 // 5**405 (i=15), start=210, end=240
105   0x5bd330f5U, 0x77d21967U, 0x1ac481b7U, 0x6be2f7ceU, 0x7f4792a9U, 0xe84c2c52U,
106   0x84592228U, 0x9dcaf829U, 0xdab44ce1U, 0x3d0c311bU, 0x532e297dU, 0x4704e8b4U,
107   0x9cdc32beU, 0x41e64d9dU, 0x7717bea1U, 0xa824c00dU, 0x08f50b27U, 0x0f198d77U,
108   0x49bbfdf0U, 0x025c6c69U, 0xd4e55cd3U, 0xf083602bU, 0xb9f0fecdU, 0xc0864aeaU,
109   0x9cb98681U, 0xaaf620e9U, 0xacb6df30U, 0x4faafe66U, 0x8af13c3bU, 0x000014d5U,
110 // 5**432 (i=16), start=240, end=272
111   0x682bb941U, 0x89a9f297U, 0xcba75d7bU, 0x404217b1U, 0xb4e519e9U, 0xa1bc162bU,
112   0xf7f5910aU, 0x98715af5U, 0x2ff53e57U, 0xe3ef118cU, 0x490c4543U, 0xbc9b1734U,
113   0x2affbe4dU, 0x4cedcb4cU, 0xfb14e99eU, 0x35e34212U, 0xece39c24U, 0x07673ab3U,
114   0xe73115ddU, 0xd15d38e7U, 0x093eed3bU, 0xf8e7eac5U, 0x78a8cc80U, 0x25227aacU,
115   0x3f590551U, 0x413da1cbU, 0xdf643a55U, 0xab65ad44U, 0xd70b23d7U, 0xc672cd76U,
116   0x3364ea62U, 0x0000086aU,
117 // 5**459 (i=17), start=272, end=306
118   0x22f163ddU, 0x23cf07acU, 0xbe2af6c2U, 0xf412f6f6U, 0xc3ff541eU, 0x6eeaf7deU,
119   0xa47047e0U, 0x408cda92U, 0x0f0eeb08U, 0x56deba9dU, 0xcfc6b090U, 0x8bbbdf04U,
120   0x3933cdb3U, 0x9e7bb67dU, 0x9f297035U, 0x38946244U, 0xee1d37bbU, 0xde898174U,
121   0x63f3559dU, 0x705b72fbU, 0x138d27d9U, 0xf8603a78U, 0x735eec44U, 0xe30987d5U,
122   0xc6d38070U, 0x9cfe548eU, 0x9ff01422U, 0x7c564aa8U, 0x91cc60baU, 0xcbc3565dU,
123   0x7550a50bU, 0x6909aeadU, 0x13234c45U, 0x00000366U,
124 // 5**486 (i=18), start=306, end=342
125   0x17954989U, 0x3a7d7709U, 0x98042de5U, 0xa9011443U, 0x45e723c2U, 0x269ffd6fU,
126   0x58852a46U, 0xaaa1042aU, 0x2eee8153U, 0xb2b6c39eU, 0xaf845b65U, 0xf6c365d7U,
127   0xe4cffb2bU, 0xc840e90cU, 0xabea8abbU, 0x5c58f8d2U, 0x5c19fa3aU, 0x4670910aU,
128   0x4449f21cU, 0xefa645b3U, 0xcc427decU, 0x083c3d73U, 0x467cb413U, 0x6fe10ae4U,
129   0x3caffc72U, 0x9f8da55eU, 0x5e5c8ea7U, 0x490594bbU, 0xf0871b0bU, 0xdd89816cU,
130   0x8e931df8U, 0xe85ce1c9U, 0xcca090a5U, 0x575fa16bU, 0x6b9f106cU, 0x0000015fU,
131 // 5**513 (i=19), start=342, end=380
132   0xee20d805U, 0x57bc3c07U, 0xcdea624eU, 0xd3f0f52dU, 0x9924b4f4U, 0xcf968640U,
133   0x61d41962U, 0xe87fb464U, 0xeaaf51c7U, 0x564c8b60U, 0xccda4028U, 0x529428bbU,
134   0x313a1fa8U, 0x96bd0f94U, 0x7a82ebaaU, 0xad99e7e9U, 0xf2668cd4U, 0xbe33a45eU,
135   0xfd0db669U, 0x87ee369fU, 0xd3ec20edU, 0x9c4d7db7U, 0xdedcf0d8U, 0x7cd2ca64U,
136   0xe25a6577U, 0x61003fd4U, 0xe56f54ccU, 0x10b7c748U, 0x40526e5eU, 0x7300ae87U,
137   0x5c439261U, 0x2c0ff469U, 0xbf723f12U, 0xb2379b61U, 0xbf59b4f5U, 0xc91b1c3fU,
138   0xf0046d27U, 0x0000008dU,
139 // 5**540 (i=20), start=380, end=420
140   0x525c9e11U, 0xf4e0eb41U, 0xebb2895dU, 0x5da512f9U, 0x7d9b29d4U, 0x452f4edcU,
141   0x0b90bc37U, 0x341777cbU, 0x63d269afU, 0x1da77929U, 0x0a5c1826U, 0x77991898U,
142   0x5aeddf86U, 0xf853a877U, 0x538c31ccU, 0xe84896daU, 0xb7a0010bU, 0x17ef4de5U,
143   0xa52a2adeU, 0x029fd81cU, 0x987ce701U, 0x27fefd77U, 0xdb46c66fU, 0x5d301900U,
144   0x496998c0U, 0xbb6598b9U, 0x5eebb607U, 0xe547354aU, 0xdf4a2f7eU, 0xf06c4955U,
145   0x96242ffaU, 0x1775fb27U, 0xbecc58ceU, 0xebf2a53bU, 0x3eaad82aU, 0xf41137baU,
146   0x573e6fbaU, 0xfb4866b8U, 0x54002148U, 0x00000039U,
147 };
148 // clang-format on
149 
150 // Returns a pointer to the big integer data for (5**27)**i.  i must be
151 // between 1 and 20, inclusive.
LargePowerOfFiveData(int i)152 const uint32_t* LargePowerOfFiveData(int i) {
153   return kLargePowersOfFive + i * (i - 1);
154 }
155 
156 // Returns the size of the big integer data for (5**27)**i, in words.  i must be
157 // between 1 and 20, inclusive.
LargePowerOfFiveSize(int i)158 int LargePowerOfFiveSize(int i) { return 2 * i; }
159 }  // namespace
160 
161 ABSL_DLL const uint32_t kFiveToNth[14] = {
162     1,     5,      25,      125,     625,      3125,      15625,
163     78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125,
164 };
165 
166 ABSL_DLL const uint32_t kTenToNth[10] = {
167     1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
168 };
169 
170 template <int max_words>
ReadFloatMantissa(const ParsedFloat & fp,int significant_digits)171 int BigUnsigned<max_words>::ReadFloatMantissa(const ParsedFloat& fp,
172                                               int significant_digits) {
173   SetToZero();
174   assert(fp.type == FloatType::kNumber);
175 
176   if (fp.subrange_begin == nullptr) {
177     // We already exactly parsed the mantissa, so no more work is necessary.
178     words_[0] = fp.mantissa & 0xffffffffu;
179     words_[1] = fp.mantissa >> 32;
180     if (words_[1]) {
181       size_ = 2;
182     } else if (words_[0]) {
183       size_ = 1;
184     }
185     return fp.exponent;
186   }
187   int exponent_adjust =
188       ReadDigits(fp.subrange_begin, fp.subrange_end, significant_digits);
189   return fp.literal_exponent + exponent_adjust;
190 }
191 
192 template <int max_words>
ReadDigits(const char * begin,const char * end,int significant_digits)193 int BigUnsigned<max_words>::ReadDigits(const char* begin, const char* end,
194                                        int significant_digits) {
195   assert(significant_digits <= Digits10() + 1);
196   SetToZero();
197 
198   bool after_decimal_point = false;
199   // Discard any leading zeroes before the decimal point
200   while (begin < end && *begin == '0') {
201     ++begin;
202   }
203   int dropped_digits = 0;
204   // Discard any trailing zeroes.  These may or may not be after the decimal
205   // point.
206   while (begin < end && *std::prev(end) == '0') {
207     --end;
208     ++dropped_digits;
209   }
210   if (begin < end && *std::prev(end) == '.') {
211     // If the string ends in '.', either before or after dropping zeroes, then
212     // drop the decimal point and look for more digits to drop.
213     dropped_digits = 0;
214     --end;
215     while (begin < end && *std::prev(end) == '0') {
216       --end;
217       ++dropped_digits;
218     }
219   } else if (dropped_digits) {
220     // We dropped digits, and aren't sure if they're before or after the decimal
221     // point.  Figure that out now.
222     const char* dp = std::find(begin, end, '.');
223     if (dp != end) {
224       // The dropped trailing digits were after the decimal point, so don't
225       // count them.
226       dropped_digits = 0;
227     }
228   }
229   // Any non-fraction digits we dropped need to be accounted for in our exponent
230   // adjustment.
231   int exponent_adjust = dropped_digits;
232 
233   uint32_t queued = 0;
234   int digits_queued = 0;
235   for (; begin != end && significant_digits > 0; ++begin) {
236     if (*begin == '.') {
237       after_decimal_point = true;
238       continue;
239     }
240     if (after_decimal_point) {
241       // For each fractional digit we emit in our parsed integer, adjust our
242       // decimal exponent to compensate.
243       --exponent_adjust;
244     }
245     int digit = (*begin - '0');
246     --significant_digits;
247     if (significant_digits == 0 && std::next(begin) != end &&
248         (digit == 0 || digit == 5)) {
249       // If this is the very last significant digit, but insignificant digits
250       // remain, we know that the last of those remaining significant digits is
251       // nonzero.  (If it wasn't, we would have stripped it before we got here.)
252       // So if this final digit is a 0 or 5, adjust it upward by 1.
253       //
254       // This adjustment is what allows incredibly large mantissas ending in
255       // 500000...000000000001 to correctly round up, rather than to nearest.
256       ++digit;
257     }
258     queued = 10 * queued + digit;
259     ++digits_queued;
260     if (digits_queued == kMaxSmallPowerOfTen) {
261       MultiplyBy(kTenToNth[kMaxSmallPowerOfTen]);
262       AddWithCarry(0, queued);
263       queued = digits_queued = 0;
264     }
265   }
266   // Encode any remaining digits.
267   if (digits_queued) {
268     MultiplyBy(kTenToNth[digits_queued]);
269     AddWithCarry(0, queued);
270   }
271 
272   // If any insignificant digits remain, we will drop them.  But if we have not
273   // yet read the decimal point, then we have to adjust the exponent to account
274   // for the dropped digits.
275   if (begin < end && !after_decimal_point) {
276     // This call to std::find will result in a pointer either to the decimal
277     // point, or to the end of our buffer if there was none.
278     //
279     // Either way, [begin, decimal_point) will contain the set of dropped digits
280     // that require an exponent adjustment.
281     const char* decimal_point = std::find(begin, end, '.');
282     exponent_adjust += (decimal_point - begin);
283   }
284   return exponent_adjust;
285 }
286 
287 template <int max_words>
FiveToTheNth(int n)288 /* static */ BigUnsigned<max_words> BigUnsigned<max_words>::FiveToTheNth(
289     int n) {
290   BigUnsigned answer(1u);
291 
292   // Seed from the table of large powers, if possible.
293   bool first_pass = true;
294   while (n >= kLargePowerOfFiveStep) {
295     int big_power =
296         std::min(n / kLargePowerOfFiveStep, kLargestPowerOfFiveIndex);
297     if (first_pass) {
298       // just copy, rather than multiplying by 1
299       std::copy(
300           LargePowerOfFiveData(big_power),
301           LargePowerOfFiveData(big_power) + LargePowerOfFiveSize(big_power),
302           answer.words_);
303       answer.size_ = LargePowerOfFiveSize(big_power);
304       first_pass = false;
305     } else {
306       answer.MultiplyBy(LargePowerOfFiveSize(big_power),
307                         LargePowerOfFiveData(big_power));
308     }
309     n -= kLargePowerOfFiveStep * big_power;
310   }
311   answer.MultiplyByFiveToTheNth(n);
312   return answer;
313 }
314 
315 template <int max_words>
MultiplyStep(int original_size,const uint32_t * other_words,int other_size,int step)316 void BigUnsigned<max_words>::MultiplyStep(int original_size,
317                                           const uint32_t* other_words,
318                                           int other_size, int step) {
319   int this_i = std::min(original_size - 1, step);
320   int other_i = step - this_i;
321 
322   uint64_t this_word = 0;
323   uint64_t carry = 0;
324   for (; this_i >= 0 && other_i < other_size; --this_i, ++other_i) {
325     uint64_t product = words_[this_i];
326     product *= other_words[other_i];
327     this_word += product;
328     carry += (this_word >> 32);
329     this_word &= 0xffffffff;
330   }
331   AddWithCarry(step + 1, carry);
332   words_[step] = this_word & 0xffffffff;
333   if (this_word > 0 && size_ <= step) {
334     size_ = step + 1;
335   }
336 }
337 
338 template <int max_words>
ToString() const339 std::string BigUnsigned<max_words>::ToString() const {
340   BigUnsigned<max_words> copy = *this;
341   std::string result;
342   // Build result in reverse order
343   while (copy.size() > 0) {
344     int next_digit = copy.DivMod<10>();
345     result.push_back('0' + next_digit);
346   }
347   if (result.empty()) {
348     result.push_back('0');
349   }
350   std::reverse(result.begin(), result.end());
351   return result;
352 }
353 
354 template class BigUnsigned<4>;
355 template class BigUnsigned<84>;
356 
357 }  // namespace strings_internal
358 ABSL_NAMESPACE_END
359 }  // namespace absl
360