• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: time.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines abstractions for computing with absolute points
20 // in time, durations of time, and formatting and parsing time within a given
21 // time zone. The following abstractions are defined:
22 //
23 //  * `absl::Time` defines an absolute, specific instance in time
24 //  * `absl::Duration` defines a signed, fixed-length span of time
25 //  * `absl::TimeZone` defines geopolitical time zone regions (as collected
26 //     within the IANA Time Zone database (https://www.iana.org/time-zones)).
27 //
28 // Note: Absolute times are distinct from civil times, which refer to the
29 // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping
30 // between absolute and civil times can be specified by use of time zones
31 // (`absl::TimeZone` within this API). That is:
32 //
33 //   Civil Time = F(Absolute Time, Time Zone)
34 //   Absolute Time = G(Civil Time, Time Zone)
35 //
36 // See civil_time.h for abstractions related to constructing and manipulating
37 // civil time.
38 //
39 // Example:
40 //
41 //   absl::TimeZone nyc;
42 //   // LoadTimeZone() may fail so it's always better to check for success.
43 //   if (!absl::LoadTimeZone("America/New_York", &nyc)) {
44 //      // handle error case
45 //   }
46 //
47 //   // My flight leaves NYC on Jan 2, 2017 at 03:04:05
48 //   absl::CivilSecond cs(2017, 1, 2, 3, 4, 5);
49 //   absl::Time takeoff = absl::FromCivil(cs, nyc);
50 //
51 //   absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35);
52 //   absl::Time landing = takeoff + flight_duration;
53 //
54 //   absl::TimeZone syd;
55 //   if (!absl::LoadTimeZone("Australia/Sydney", &syd)) {
56 //      // handle error case
57 //   }
58 //   std::string s = absl::FormatTime(
59 //       "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S",
60 //       landing, syd);
61 
62 #ifndef ABSL_TIME_TIME_H_
63 #define ABSL_TIME_TIME_H_
64 
65 #if !defined(_MSC_VER)
66 #include <sys/time.h>
67 #else
68 // We don't include `winsock2.h` because it drags in `windows.h` and friends,
69 // and they define conflicting macros like OPAQUE, ERROR, and more. This has the
70 // potential to break Abseil users.
71 //
72 // Instead we only forward declare `timeval` and require Windows users include
73 // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is
74 // including 'windows.h' so we are picking the lesser of two evils here.
75 struct timeval;
76 #endif
77 #include <chrono>  // NOLINT(build/c++11)
78 #include <cmath>
79 #include <cstdint>
80 #include <ctime>
81 #include <ostream>
82 #include <string>
83 #include <type_traits>
84 #include <utility>
85 
86 #include "absl/base/macros.h"
87 #include "absl/strings/string_view.h"
88 #include "absl/time/civil_time.h"
89 #include "absl/time/internal/cctz/include/cctz/time_zone.h"
90 
91 namespace absl {
92 ABSL_NAMESPACE_BEGIN
93 
94 class Duration;  // Defined below
95 class Time;      // Defined below
96 class TimeZone;  // Defined below
97 
98 namespace time_internal {
99 int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem);
100 constexpr Time FromUnixDuration(Duration d);
101 constexpr Duration ToUnixDuration(Time t);
102 constexpr int64_t GetRepHi(Duration d);
103 constexpr uint32_t GetRepLo(Duration d);
104 constexpr Duration MakeDuration(int64_t hi, uint32_t lo);
105 constexpr Duration MakeDuration(int64_t hi, int64_t lo);
106 inline Duration MakePosDoubleDuration(double n);
107 constexpr int64_t kTicksPerNanosecond = 4;
108 constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;
109 template <std::intmax_t N>
110 constexpr Duration FromInt64(int64_t v, std::ratio<1, N>);
111 constexpr Duration FromInt64(int64_t v, std::ratio<60>);
112 constexpr Duration FromInt64(int64_t v, std::ratio<3600>);
113 template <typename T>
114 using EnableIfIntegral = typename std::enable_if<
115     std::is_integral<T>::value || std::is_enum<T>::value, int>::type;
116 template <typename T>
117 using EnableIfFloat =
118     typename std::enable_if<std::is_floating_point<T>::value, int>::type;
119 }  // namespace time_internal
120 
121 // Duration
122 //
123 // The `absl::Duration` class represents a signed, fixed-length span of time.
124 // A `Duration` is generated using a unit-specific factory function, or is
125 // the result of subtracting one `absl::Time` from another. Durations behave
126 // like unit-safe integers and they support all the natural integer-like
127 // arithmetic operations. Arithmetic overflows and saturates at +/- infinity.
128 // `Duration` should be passed by value rather than const reference.
129 //
130 // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`,
131 // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for
132 // creation of constexpr `Duration` values
133 //
134 // Examples:
135 //
136 //   constexpr absl::Duration ten_ns = absl::Nanoseconds(10);
137 //   constexpr absl::Duration min = absl::Minutes(1);
138 //   constexpr absl::Duration hour = absl::Hours(1);
139 //   absl::Duration dur = 60 * min;  // dur == hour
140 //   absl::Duration half_sec = absl::Milliseconds(500);
141 //   absl::Duration quarter_sec = 0.25 * absl::Seconds(1);
142 //
143 // `Duration` values can be easily converted to an integral number of units
144 // using the division operator.
145 //
146 // Example:
147 //
148 //   constexpr absl::Duration dur = absl::Milliseconds(1500);
149 //   int64_t ns = dur / absl::Nanoseconds(1);   // ns == 1500000000
150 //   int64_t ms = dur / absl::Milliseconds(1);  // ms == 1500
151 //   int64_t sec = dur / absl::Seconds(1);    // sec == 1 (subseconds truncated)
152 //   int64_t min = dur / absl::Minutes(1);    // min == 0
153 //
154 // See the `IDivDuration()` and `FDivDuration()` functions below for details on
155 // how to access the fractional parts of the quotient.
156 //
157 // Alternatively, conversions can be performed using helpers such as
158 // `ToInt64Microseconds()` and `ToDoubleSeconds()`.
159 class Duration {
160  public:
161   // Value semantics.
Duration()162   constexpr Duration() : rep_hi_(0), rep_lo_(0) {}  // zero-length duration
163 
164   // Copyable.
165 #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1910
166   // Explicitly defining the constexpr copy constructor avoids an MSVC bug.
Duration(const Duration & d)167   constexpr Duration(const Duration& d)
168       : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {}
169 #else
170   constexpr Duration(const Duration& d) = default;
171 #endif
172   Duration& operator=(const Duration& d) = default;
173 
174   // Compound assignment operators.
175   Duration& operator+=(Duration d);
176   Duration& operator-=(Duration d);
177   Duration& operator*=(int64_t r);
178   Duration& operator*=(double r);
179   Duration& operator/=(int64_t r);
180   Duration& operator/=(double r);
181   Duration& operator%=(Duration rhs);
182 
183   // Overloads that forward to either the int64_t or double overloads above.
184   // Integer operands must be representable as int64_t.
185   template <typename T>
186   Duration& operator*=(T r) {
187     int64_t x = r;
188     return *this *= x;
189   }
190   template <typename T>
191   Duration& operator/=(T r) {
192     int64_t x = r;
193     return *this /= x;
194   }
195   Duration& operator*=(float r) { return *this *= static_cast<double>(r); }
196   Duration& operator/=(float r) { return *this /= static_cast<double>(r); }
197 
198   template <typename H>
AbslHashValue(H h,Duration d)199   friend H AbslHashValue(H h, Duration d) {
200     return H::combine(std::move(h), d.rep_hi_, d.rep_lo_);
201   }
202 
203  private:
204   friend constexpr int64_t time_internal::GetRepHi(Duration d);
205   friend constexpr uint32_t time_internal::GetRepLo(Duration d);
206   friend constexpr Duration time_internal::MakeDuration(int64_t hi,
207                                                         uint32_t lo);
Duration(int64_t hi,uint32_t lo)208   constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {}
209   int64_t rep_hi_;
210   uint32_t rep_lo_;
211 };
212 
213 // Relational Operators
214 constexpr bool operator<(Duration lhs, Duration rhs);
215 constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; }
216 constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); }
217 constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); }
218 constexpr bool operator==(Duration lhs, Duration rhs);
219 constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); }
220 
221 // Additive Operators
222 constexpr Duration operator-(Duration d);
223 inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; }
224 inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; }
225 
226 // Multiplicative Operators
227 // Integer operands must be representable as int64_t.
228 template <typename T>
229 Duration operator*(Duration lhs, T rhs) {
230   return lhs *= rhs;
231 }
232 template <typename T>
233 Duration operator*(T lhs, Duration rhs) {
234   return rhs *= lhs;
235 }
236 template <typename T>
237 Duration operator/(Duration lhs, T rhs) {
238   return lhs /= rhs;
239 }
240 inline int64_t operator/(Duration lhs, Duration rhs) {
241   return time_internal::IDivDuration(true, lhs, rhs,
242                                      &lhs);  // trunc towards zero
243 }
244 inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; }
245 
246 // IDivDuration()
247 //
248 // Divides a numerator `Duration` by a denominator `Duration`, returning the
249 // quotient and remainder. The remainder always has the same sign as the
250 // numerator. The returned quotient and remainder respect the identity:
251 //
252 //   numerator = denominator * quotient + remainder
253 //
254 // Returned quotients are capped to the range of `int64_t`, with the difference
255 // spilling into the remainder to uphold the above identity. This means that the
256 // remainder returned could differ from the remainder returned by
257 // `Duration::operator%` for huge quotients.
258 //
259 // See also the notes on `InfiniteDuration()` below regarding the behavior of
260 // division involving zero and infinite durations.
261 //
262 // Example:
263 //
264 //   constexpr absl::Duration a =
265 //       absl::Seconds(std::numeric_limits<int64_t>::max());  // big
266 //   constexpr absl::Duration b = absl::Nanoseconds(1);       // small
267 //
268 //   absl::Duration rem = a % b;
269 //   // rem == absl::ZeroDuration()
270 //
271 //   // Here, q would overflow int64_t, so rem accounts for the difference.
272 //   int64_t q = absl::IDivDuration(a, b, &rem);
273 //   // q == std::numeric_limits<int64_t>::max(), rem == a - b * q
IDivDuration(Duration num,Duration den,Duration * rem)274 inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) {
275   return time_internal::IDivDuration(true, num, den,
276                                      rem);  // trunc towards zero
277 }
278 
279 // FDivDuration()
280 //
281 // Divides a `Duration` numerator into a fractional number of units of a
282 // `Duration` denominator.
283 //
284 // See also the notes on `InfiniteDuration()` below regarding the behavior of
285 // division involving zero and infinite durations.
286 //
287 // Example:
288 //
289 //   double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1));
290 //   // d == 1.5
291 double FDivDuration(Duration num, Duration den);
292 
293 // ZeroDuration()
294 //
295 // Returns a zero-length duration. This function behaves just like the default
296 // constructor, but the name helps make the semantics clear at call sites.
ZeroDuration()297 constexpr Duration ZeroDuration() { return Duration(); }
298 
299 // AbsDuration()
300 //
301 // Returns the absolute value of a duration.
AbsDuration(Duration d)302 inline Duration AbsDuration(Duration d) {
303   return (d < ZeroDuration()) ? -d : d;
304 }
305 
306 // Trunc()
307 //
308 // Truncates a duration (toward zero) to a multiple of a non-zero unit.
309 //
310 // Example:
311 //
312 //   absl::Duration d = absl::Nanoseconds(123456789);
313 //   absl::Duration a = absl::Trunc(d, absl::Microseconds(1));  // 123456us
314 Duration Trunc(Duration d, Duration unit);
315 
316 // Floor()
317 //
318 // Floors a duration using the passed duration unit to its largest value not
319 // greater than the duration.
320 //
321 // Example:
322 //
323 //   absl::Duration d = absl::Nanoseconds(123456789);
324 //   absl::Duration b = absl::Floor(d, absl::Microseconds(1));  // 123456us
325 Duration Floor(Duration d, Duration unit);
326 
327 // Ceil()
328 //
329 // Returns the ceiling of a duration using the passed duration unit to its
330 // smallest value not less than the duration.
331 //
332 // Example:
333 //
334 //   absl::Duration d = absl::Nanoseconds(123456789);
335 //   absl::Duration c = absl::Ceil(d, absl::Microseconds(1));   // 123457us
336 Duration Ceil(Duration d, Duration unit);
337 
338 // InfiniteDuration()
339 //
340 // Returns an infinite `Duration`.  To get a `Duration` representing negative
341 // infinity, use `-InfiniteDuration()`.
342 //
343 // Duration arithmetic overflows to +/- infinity and saturates. In general,
344 // arithmetic with `Duration` infinities is similar to IEEE 754 infinities
345 // except where IEEE 754 NaN would be involved, in which case +/-
346 // `InfiniteDuration()` is used in place of a "nan" Duration.
347 //
348 // Examples:
349 //
350 //   constexpr absl::Duration inf = absl::InfiniteDuration();
351 //   const absl::Duration d = ... any finite duration ...
352 //
353 //   inf == inf + inf
354 //   inf == inf + d
355 //   inf == inf - inf
356 //   -inf == d - inf
357 //
358 //   inf == d * 1e100
359 //   inf == inf / 2
360 //   0 == d / inf
361 //   INT64_MAX == inf / d
362 //
363 //   d < inf
364 //   -inf < d
365 //
366 //   // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
367 //   inf == d / 0
368 //   INT64_MAX == d / absl::ZeroDuration()
369 //
370 // The examples involving the `/` operator above also apply to `IDivDuration()`
371 // and `FDivDuration()`.
372 constexpr Duration InfiniteDuration();
373 
374 // Nanoseconds()
375 // Microseconds()
376 // Milliseconds()
377 // Seconds()
378 // Minutes()
379 // Hours()
380 //
381 // Factory functions for constructing `Duration` values from an integral number
382 // of the unit indicated by the factory function's name. The number must be
383 // representable as int64_t.
384 //
385 // NOTE: no "Days()" factory function exists because "a day" is ambiguous.
386 // Civil days are not always 24 hours long, and a 24-hour duration often does
387 // not correspond with a civil day. If a 24-hour duration is needed, use
388 // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay
389 // from civil_time.h.
390 //
391 // Example:
392 //
393 //   absl::Duration a = absl::Seconds(60);
394 //   absl::Duration b = absl::Minutes(1);  // b == a
395 constexpr Duration Nanoseconds(int64_t n);
396 constexpr Duration Microseconds(int64_t n);
397 constexpr Duration Milliseconds(int64_t n);
398 constexpr Duration Seconds(int64_t n);
399 constexpr Duration Minutes(int64_t n);
400 constexpr Duration Hours(int64_t n);
401 
402 // Factory overloads for constructing `Duration` values from a floating-point
403 // number of the unit indicated by the factory function's name. These functions
404 // exist for convenience, but they are not as efficient as the integral
405 // factories, which should be preferred.
406 //
407 // Example:
408 //
409 //   auto a = absl::Seconds(1.5);        // OK
410 //   auto b = absl::Milliseconds(1500);  // BETTER
411 template <typename T, time_internal::EnableIfFloat<T> = 0>
Nanoseconds(T n)412 Duration Nanoseconds(T n) {
413   return n * Nanoseconds(1);
414 }
415 template <typename T, time_internal::EnableIfFloat<T> = 0>
Microseconds(T n)416 Duration Microseconds(T n) {
417   return n * Microseconds(1);
418 }
419 template <typename T, time_internal::EnableIfFloat<T> = 0>
Milliseconds(T n)420 Duration Milliseconds(T n) {
421   return n * Milliseconds(1);
422 }
423 template <typename T, time_internal::EnableIfFloat<T> = 0>
Seconds(T n)424 Duration Seconds(T n) {
425   if (n >= 0) {  // Note: `NaN >= 0` is false.
426     if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) {
427       return InfiniteDuration();
428     }
429     return time_internal::MakePosDoubleDuration(n);
430   } else {
431     if (std::isnan(n))
432       return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration();
433     if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration();
434     return -time_internal::MakePosDoubleDuration(-n);
435   }
436 }
437 template <typename T, time_internal::EnableIfFloat<T> = 0>
Minutes(T n)438 Duration Minutes(T n) {
439   return n * Minutes(1);
440 }
441 template <typename T, time_internal::EnableIfFloat<T> = 0>
Hours(T n)442 Duration Hours(T n) {
443   return n * Hours(1);
444 }
445 
446 // ToInt64Nanoseconds()
447 // ToInt64Microseconds()
448 // ToInt64Milliseconds()
449 // ToInt64Seconds()
450 // ToInt64Minutes()
451 // ToInt64Hours()
452 //
453 // Helper functions that convert a Duration to an integral count of the
454 // indicated unit. These functions are shorthand for the `IDivDuration()`
455 // function above; see its documentation for details about overflow, etc.
456 //
457 // Example:
458 //
459 //   absl::Duration d = absl::Milliseconds(1500);
460 //   int64_t isec = absl::ToInt64Seconds(d);  // isec == 1
461 int64_t ToInt64Nanoseconds(Duration d);
462 int64_t ToInt64Microseconds(Duration d);
463 int64_t ToInt64Milliseconds(Duration d);
464 int64_t ToInt64Seconds(Duration d);
465 int64_t ToInt64Minutes(Duration d);
466 int64_t ToInt64Hours(Duration d);
467 
468 // ToDoubleNanoSeconds()
469 // ToDoubleMicroseconds()
470 // ToDoubleMilliseconds()
471 // ToDoubleSeconds()
472 // ToDoubleMinutes()
473 // ToDoubleHours()
474 //
475 // Helper functions that convert a Duration to a floating point count of the
476 // indicated unit. These functions are shorthand for the `FDivDuration()`
477 // function above; see its documentation for details about overflow, etc.
478 //
479 // Example:
480 //
481 //   absl::Duration d = absl::Milliseconds(1500);
482 //   double dsec = absl::ToDoubleSeconds(d);  // dsec == 1.5
483 double ToDoubleNanoseconds(Duration d);
484 double ToDoubleMicroseconds(Duration d);
485 double ToDoubleMilliseconds(Duration d);
486 double ToDoubleSeconds(Duration d);
487 double ToDoubleMinutes(Duration d);
488 double ToDoubleHours(Duration d);
489 
490 // FromChrono()
491 //
492 // Converts any of the pre-defined std::chrono durations to an absl::Duration.
493 //
494 // Example:
495 //
496 //   std::chrono::milliseconds ms(123);
497 //   absl::Duration d = absl::FromChrono(ms);
498 constexpr Duration FromChrono(const std::chrono::nanoseconds& d);
499 constexpr Duration FromChrono(const std::chrono::microseconds& d);
500 constexpr Duration FromChrono(const std::chrono::milliseconds& d);
501 constexpr Duration FromChrono(const std::chrono::seconds& d);
502 constexpr Duration FromChrono(const std::chrono::minutes& d);
503 constexpr Duration FromChrono(const std::chrono::hours& d);
504 
505 // ToChronoNanoseconds()
506 // ToChronoMicroseconds()
507 // ToChronoMilliseconds()
508 // ToChronoSeconds()
509 // ToChronoMinutes()
510 // ToChronoHours()
511 //
512 // Converts an absl::Duration to any of the pre-defined std::chrono durations.
513 // If overflow would occur, the returned value will saturate at the min/max
514 // chrono duration value instead.
515 //
516 // Example:
517 //
518 //   absl::Duration d = absl::Microseconds(123);
519 //   auto x = absl::ToChronoMicroseconds(d);
520 //   auto y = absl::ToChronoNanoseconds(d);  // x == y
521 //   auto z = absl::ToChronoSeconds(absl::InfiniteDuration());
522 //   // z == std::chrono::seconds::max()
523 std::chrono::nanoseconds ToChronoNanoseconds(Duration d);
524 std::chrono::microseconds ToChronoMicroseconds(Duration d);
525 std::chrono::milliseconds ToChronoMilliseconds(Duration d);
526 std::chrono::seconds ToChronoSeconds(Duration d);
527 std::chrono::minutes ToChronoMinutes(Duration d);
528 std::chrono::hours ToChronoHours(Duration d);
529 
530 // FormatDuration()
531 //
532 // Returns a string representing the duration in the form "72h3m0.5s".
533 // Returns "inf" or "-inf" for +/- `InfiniteDuration()`.
534 std::string FormatDuration(Duration d);
535 
536 // Output stream operator.
537 inline std::ostream& operator<<(std::ostream& os, Duration d) {
538   return os << FormatDuration(d);
539 }
540 
541 // ParseDuration()
542 //
543 // Parses a duration string consisting of a possibly signed sequence of
544 // decimal numbers, each with an optional fractional part and a unit
545 // suffix.  The valid suffixes are "ns", "us" "ms", "s", "m", and "h".
546 // Simple examples include "300ms", "-1.5h", and "2h45m".  Parses "0" as
547 // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.
548 bool ParseDuration(absl::string_view dur_string, Duration* d);
549 
550 // Support for flag values of type Duration. Duration flags must be specified
551 // in a format that is valid input for absl::ParseDuration().
552 bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error);
553 std::string AbslUnparseFlag(Duration d);
554 ABSL_DEPRECATED("Use AbslParseFlag() instead.")
555 bool ParseFlag(const std::string& text, Duration* dst, std::string* error);
556 ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
557 std::string UnparseFlag(Duration d);
558 
559 // Time
560 //
561 // An `absl::Time` represents a specific instant in time. Arithmetic operators
562 // are provided for naturally expressing time calculations. Instances are
563 // created using `absl::Now()` and the `absl::From*()` factory functions that
564 // accept the gamut of other time representations. Formatting and parsing
565 // functions are provided for conversion to and from strings.  `absl::Time`
566 // should be passed by value rather than const reference.
567 //
568 // `absl::Time` assumes there are 60 seconds in a minute, which means the
569 // underlying time scales must be "smeared" to eliminate leap seconds.
570 // See https://developers.google.com/time/smear.
571 //
572 // Even though `absl::Time` supports a wide range of timestamps, exercise
573 // caution when using values in the distant past. `absl::Time` uses the
574 // Proleptic Gregorian calendar, which extends the Gregorian calendar backward
575 // to dates before its introduction in 1582.
576 // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
577 // for more information. Use the ICU calendar classes to convert a date in
578 // some other calendar (http://userguide.icu-project.org/datetime/calendar).
579 //
580 // Similarly, standardized time zones are a reasonably recent innovation, with
581 // the Greenwich prime meridian being established in 1884. The TZ database
582 // itself does not profess accurate offsets for timestamps prior to 1970. The
583 // breakdown of future timestamps is subject to the whim of regional
584 // governments.
585 //
586 // The `absl::Time` class represents an instant in time as a count of clock
587 // ticks of some granularity (resolution) from some starting point (epoch).
588 //
589 // `absl::Time` uses a resolution that is high enough to avoid loss in
590 // precision, and a range that is wide enough to avoid overflow, when
591 // converting between tick counts in most Google time scales (i.e., resolution
592 // of at least one nanosecond, and range +/-100 billion years).  Conversions
593 // between the time scales are performed by truncating (towards negative
594 // infinity) to the nearest representable point.
595 //
596 // Examples:
597 //
598 //   absl::Time t1 = ...;
599 //   absl::Time t2 = t1 + absl::Minutes(2);
600 //   absl::Duration d = t2 - t1;  // == absl::Minutes(2)
601 //
602 class Time {
603  public:
604   // Value semantics.
605 
606   // Returns the Unix epoch.  However, those reading your code may not know
607   // or expect the Unix epoch as the default value, so make your code more
608   // readable by explicitly initializing all instances before use.
609   //
610   // Example:
611   //   absl::Time t = absl::UnixEpoch();
612   //   absl::Time t = absl::Now();
613   //   absl::Time t = absl::TimeFromTimeval(tv);
614   //   absl::Time t = absl::InfinitePast();
615   constexpr Time() = default;
616 
617   // Copyable.
618   constexpr Time(const Time& t) = default;
619   Time& operator=(const Time& t) = default;
620 
621   // Assignment operators.
622   Time& operator+=(Duration d) {
623     rep_ += d;
624     return *this;
625   }
626   Time& operator-=(Duration d) {
627     rep_ -= d;
628     return *this;
629   }
630 
631   // Time::Breakdown
632   //
633   // The calendar and wall-clock (aka "civil time") components of an
634   // `absl::Time` in a certain `absl::TimeZone`. This struct is not
635   // intended to represent an instant in time. So, rather than passing
636   // a `Time::Breakdown` to a function, pass an `absl::Time` and an
637   // `absl::TimeZone`.
638   //
639   // Deprecated. Use `absl::TimeZone::CivilInfo`.
640   struct
641       Breakdown {
642     int64_t year;          // year (e.g., 2013)
643     int month;           // month of year [1:12]
644     int day;             // day of month [1:31]
645     int hour;            // hour of day [0:23]
646     int minute;          // minute of hour [0:59]
647     int second;          // second of minute [0:59]
648     Duration subsecond;  // [Seconds(0):Seconds(1)) if finite
649     int weekday;         // 1==Mon, ..., 7=Sun
650     int yearday;         // day of year [1:366]
651 
652     // Note: The following fields exist for backward compatibility
653     // with older APIs.  Accessing these fields directly is a sign of
654     // imprudent logic in the calling code.  Modern time-related code
655     // should only access this data indirectly by way of FormatTime().
656     // These fields are undefined for InfiniteFuture() and InfinitePast().
657     int offset;             // seconds east of UTC
658     bool is_dst;            // is offset non-standard?
659     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")
660   };
661 
662   // Time::In()
663   //
664   // Returns the breakdown of this instant in the given TimeZone.
665   //
666   // Deprecated. Use `absl::TimeZone::At(Time)`.
667   Breakdown In(TimeZone tz) const;
668 
669   template <typename H>
AbslHashValue(H h,Time t)670   friend H AbslHashValue(H h, Time t) {
671     return H::combine(std::move(h), t.rep_);
672   }
673 
674  private:
675   friend constexpr Time time_internal::FromUnixDuration(Duration d);
676   friend constexpr Duration time_internal::ToUnixDuration(Time t);
677   friend constexpr bool operator<(Time lhs, Time rhs);
678   friend constexpr bool operator==(Time lhs, Time rhs);
679   friend Duration operator-(Time lhs, Time rhs);
680   friend constexpr Time UniversalEpoch();
681   friend constexpr Time InfiniteFuture();
682   friend constexpr Time InfinitePast();
Time(Duration rep)683   constexpr explicit Time(Duration rep) : rep_(rep) {}
684   Duration rep_;
685 };
686 
687 // Relational Operators
688 constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; }
689 constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; }
690 constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); }
691 constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); }
692 constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; }
693 constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); }
694 
695 // Additive Operators
696 inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; }
697 inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; }
698 inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; }
699 inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; }
700 
701 // UnixEpoch()
702 //
703 // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000".
UnixEpoch()704 constexpr Time UnixEpoch() { return Time(); }
705 
706 // UniversalEpoch()
707 //
708 // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the
709 // epoch of the ICU Universal Time Scale.
UniversalEpoch()710 constexpr Time UniversalEpoch() {
711   // 719162 is the number of days from 0001-01-01 to 1970-01-01,
712   // assuming the Gregorian calendar.
713   return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U));
714 }
715 
716 // InfiniteFuture()
717 //
718 // Returns an `absl::Time` that is infinitely far in the future.
InfiniteFuture()719 constexpr Time InfiniteFuture() {
720   return Time(
721       time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U));
722 }
723 
724 // InfinitePast()
725 //
726 // Returns an `absl::Time` that is infinitely far in the past.
InfinitePast()727 constexpr Time InfinitePast() {
728   return Time(
729       time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U));
730 }
731 
732 // FromUnixNanos()
733 // FromUnixMicros()
734 // FromUnixMillis()
735 // FromUnixSeconds()
736 // FromTimeT()
737 // FromUDate()
738 // FromUniversal()
739 //
740 // Creates an `absl::Time` from a variety of other representations.
741 constexpr Time FromUnixNanos(int64_t ns);
742 constexpr Time FromUnixMicros(int64_t us);
743 constexpr Time FromUnixMillis(int64_t ms);
744 constexpr Time FromUnixSeconds(int64_t s);
745 constexpr Time FromTimeT(time_t t);
746 Time FromUDate(double udate);
747 Time FromUniversal(int64_t universal);
748 
749 // ToUnixNanos()
750 // ToUnixMicros()
751 // ToUnixMillis()
752 // ToUnixSeconds()
753 // ToTimeT()
754 // ToUDate()
755 // ToUniversal()
756 //
757 // Converts an `absl::Time` to a variety of other representations.  Note that
758 // these operations round down toward negative infinity where necessary to
759 // adjust to the resolution of the result type.  Beware of possible time_t
760 // over/underflow in ToTime{T,val,spec}() on 32-bit platforms.
761 int64_t ToUnixNanos(Time t);
762 int64_t ToUnixMicros(Time t);
763 int64_t ToUnixMillis(Time t);
764 int64_t ToUnixSeconds(Time t);
765 time_t ToTimeT(Time t);
766 double ToUDate(Time t);
767 int64_t ToUniversal(Time t);
768 
769 // DurationFromTimespec()
770 // DurationFromTimeval()
771 // ToTimespec()
772 // ToTimeval()
773 // TimeFromTimespec()
774 // TimeFromTimeval()
775 // ToTimespec()
776 // ToTimeval()
777 //
778 // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2)
779 // and select(2)), while others use them as a Time (e.g. clock_gettime(2)
780 // and gettimeofday(2)), so conversion functions are provided for both cases.
781 // The "to timespec/val" direction is easily handled via overloading, but
782 // for "from timespec/val" the desired type is part of the function name.
783 Duration DurationFromTimespec(timespec ts);
784 Duration DurationFromTimeval(timeval tv);
785 timespec ToTimespec(Duration d);
786 timeval ToTimeval(Duration d);
787 Time TimeFromTimespec(timespec ts);
788 Time TimeFromTimeval(timeval tv);
789 timespec ToTimespec(Time t);
790 timeval ToTimeval(Time t);
791 
792 // FromChrono()
793 //
794 // Converts a std::chrono::system_clock::time_point to an absl::Time.
795 //
796 // Example:
797 //
798 //   auto tp = std::chrono::system_clock::from_time_t(123);
799 //   absl::Time t = absl::FromChrono(tp);
800 //   // t == absl::FromTimeT(123)
801 Time FromChrono(const std::chrono::system_clock::time_point& tp);
802 
803 // ToChronoTime()
804 //
805 // Converts an absl::Time to a std::chrono::system_clock::time_point. If
806 // overflow would occur, the returned value will saturate at the min/max time
807 // point value instead.
808 //
809 // Example:
810 //
811 //   absl::Time t = absl::FromTimeT(123);
812 //   auto tp = absl::ToChronoTime(t);
813 //   // tp == std::chrono::system_clock::from_time_t(123);
814 std::chrono::system_clock::time_point ToChronoTime(Time);
815 
816 // Support for flag values of type Time. Time flags must be specified in a
817 // format that matches absl::RFC3339_full. For example:
818 //
819 //   --start_time=2016-01-02T03:04:05.678+08:00
820 //
821 // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required.
822 //
823 // Additionally, if you'd like to specify a time as a count of
824 // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag
825 // and add that duration to absl::UnixEpoch() to get an absl::Time.
826 bool AbslParseFlag(absl::string_view text, Time* t, std::string* error);
827 std::string AbslUnparseFlag(Time t);
828 ABSL_DEPRECATED("Use AbslParseFlag() instead.")
829 bool ParseFlag(const std::string& text, Time* t, std::string* error);
830 ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
831 std::string UnparseFlag(Time t);
832 
833 // TimeZone
834 //
835 // The `absl::TimeZone` is an opaque, small, value-type class representing a
836 // geo-political region within which particular rules are used for converting
837 // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone`
838 // values are named using the TZ identifiers from the IANA Time Zone Database,
839 // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values
840 // are created from factory functions such as `absl::LoadTimeZone()`. Note:
841 // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by
842 // value rather than const reference.
843 //
844 // For more on the fundamental concepts of time zones, absolute times, and civil
845 // times, see https://github.com/google/cctz#fundamental-concepts
846 //
847 // Examples:
848 //
849 //   absl::TimeZone utc = absl::UTCTimeZone();
850 //   absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60);
851 //   absl::TimeZone loc = absl::LocalTimeZone();
852 //   absl::TimeZone lax;
853 //   if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) {
854 //     // handle error case
855 //   }
856 //
857 // See also:
858 // - https://github.com/google/cctz
859 // - https://www.iana.org/time-zones
860 // - https://en.wikipedia.org/wiki/Zoneinfo
861 class TimeZone {
862  public:
TimeZone(time_internal::cctz::time_zone tz)863   explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {}
864   TimeZone() = default;  // UTC, but prefer UTCTimeZone() to be explicit.
865 
866   // Copyable.
867   TimeZone(const TimeZone&) = default;
868   TimeZone& operator=(const TimeZone&) = default;
869 
time_zone()870   explicit operator time_internal::cctz::time_zone() const { return cz_; }
871 
name()872   std::string name() const { return cz_.name(); }
873 
874   // TimeZone::CivilInfo
875   //
876   // Information about the civil time corresponding to an absolute time.
877   // This struct is not intended to represent an instant in time. So, rather
878   // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time`
879   // and an `absl::TimeZone`.
880   struct CivilInfo {
881     CivilSecond cs;
882     Duration subsecond;
883 
884     // Note: The following fields exist for backward compatibility
885     // with older APIs.  Accessing these fields directly is a sign of
886     // imprudent logic in the calling code.  Modern time-related code
887     // should only access this data indirectly by way of FormatTime().
888     // These fields are undefined for InfiniteFuture() and InfinitePast().
889     int offset;             // seconds east of UTC
890     bool is_dst;            // is offset non-standard?
891     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")
892   };
893 
894   // TimeZone::At(Time)
895   //
896   // Returns the civil time for this TimeZone at a certain `absl::Time`.
897   // If the input time is infinite, the output civil second will be set to
898   // CivilSecond::max() or min(), and the subsecond will be infinite.
899   //
900   // Example:
901   //
902   //   const auto epoch = lax.At(absl::UnixEpoch());
903   //   // epoch.cs == 1969-12-31 16:00:00
904   //   // epoch.subsecond == absl::ZeroDuration()
905   //   // epoch.offset == -28800
906   //   // epoch.is_dst == false
907   //   // epoch.abbr == "PST"
908   CivilInfo At(Time t) const;
909 
910   // TimeZone::TimeInfo
911   //
912   // Information about the absolute times corresponding to a civil time.
913   // (Subseconds must be handled separately.)
914   //
915   // It is possible for a caller to pass a civil-time value that does
916   // not represent an actual or unique instant in time (due to a shift
917   // in UTC offset in the TimeZone, which results in a discontinuity in
918   // the civil-time components). For example, a daylight-saving-time
919   // transition skips or repeats civil times---in the United States,
920   // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15
921   // occurred twice---so requests for such times are not well-defined.
922   // To account for these possibilities, `absl::TimeZone::TimeInfo` is
923   // richer than just a single `absl::Time`.
924   struct TimeInfo {
925     enum CivilKind {
926       UNIQUE,    // the civil time was singular (pre == trans == post)
927       SKIPPED,   // the civil time did not exist (pre >= trans > post)
928       REPEATED,  // the civil time was ambiguous (pre < trans <= post)
929     } kind;
930     Time pre;    // time calculated using the pre-transition offset
931     Time trans;  // when the civil-time discontinuity occurred
932     Time post;   // time calculated using the post-transition offset
933   };
934 
935   // TimeZone::At(CivilSecond)
936   //
937   // Returns an `absl::TimeInfo` containing the absolute time(s) for this
938   // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or
939   // repeated, returns times calculated using the pre-transition and post-
940   // transition UTC offsets, plus the transition time itself.
941   //
942   // Examples:
943   //
944   //   // A unique civil time
945   //   const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0));
946   //   // jan01.kind == TimeZone::TimeInfo::UNIQUE
947   //   // jan01.pre    is 2011-01-01 00:00:00 -0800
948   //   // jan01.trans  is 2011-01-01 00:00:00 -0800
949   //   // jan01.post   is 2011-01-01 00:00:00 -0800
950   //
951   //   // A Spring DST transition, when there is a gap in civil time
952   //   const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0));
953   //   // mar13.kind == TimeZone::TimeInfo::SKIPPED
954   //   // mar13.pre   is 2011-03-13 03:15:00 -0700
955   //   // mar13.trans is 2011-03-13 03:00:00 -0700
956   //   // mar13.post  is 2011-03-13 01:15:00 -0800
957   //
958   //   // A Fall DST transition, when civil times are repeated
959   //   const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0));
960   //   // nov06.kind == TimeZone::TimeInfo::REPEATED
961   //   // nov06.pre   is 2011-11-06 01:15:00 -0700
962   //   // nov06.trans is 2011-11-06 01:00:00 -0800
963   //   // nov06.post  is 2011-11-06 01:15:00 -0800
964   TimeInfo At(CivilSecond ct) const;
965 
966   // TimeZone::NextTransition()
967   // TimeZone::PrevTransition()
968   //
969   // Finds the time of the next/previous offset change in this time zone.
970   //
971   // By definition, `NextTransition(t, &trans)` returns false when `t` is
972   // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false
973   // when `t` is `InfinitePast()`. If the zone has no transitions, the
974   // result will also be false no matter what the argument.
975   //
976   // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)`
977   // returns true and sets `trans` to the first recorded transition. Chains
978   // of calls to `NextTransition()/PrevTransition()` will eventually return
979   // false, but it is unspecified exactly when `NextTransition(t, &trans)`
980   // jumps to false, or what time is set by `PrevTransition(t, &trans)` for
981   // a very distant `t`.
982   //
983   // Note: Enumeration of time-zone transitions is for informational purposes
984   // only. Modern time-related code should not care about when offset changes
985   // occur.
986   //
987   // Example:
988   //   absl::TimeZone nyc;
989   //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... }
990   //   const auto now = absl::Now();
991   //   auto t = absl::InfinitePast();
992   //   absl::TimeZone::CivilTransition trans;
993   //   while (t <= now && nyc.NextTransition(t, &trans)) {
994   //     // transition: trans.from -> trans.to
995   //     t = nyc.At(trans.to).trans;
996   //   }
997   struct CivilTransition {
998     CivilSecond from;  // the civil time we jump from
999     CivilSecond to;    // the civil time we jump to
1000   };
1001   bool NextTransition(Time t, CivilTransition* trans) const;
1002   bool PrevTransition(Time t, CivilTransition* trans) const;
1003 
1004   template <typename H>
AbslHashValue(H h,TimeZone tz)1005   friend H AbslHashValue(H h, TimeZone tz) {
1006     return H::combine(std::move(h), tz.cz_);
1007   }
1008 
1009  private:
1010   friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; }
1011   friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; }
1012   friend std::ostream& operator<<(std::ostream& os, TimeZone tz) {
1013     return os << tz.name();
1014   }
1015 
1016   time_internal::cctz::time_zone cz_;
1017 };
1018 
1019 // LoadTimeZone()
1020 //
1021 // Loads the named zone. May perform I/O on the initial load of the named
1022 // zone. If the name is invalid, or some other kind of error occurs, returns
1023 // `false` and `*tz` is set to the UTC time zone.
LoadTimeZone(absl::string_view name,TimeZone * tz)1024 inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) {
1025   if (name == "localtime") {
1026     *tz = TimeZone(time_internal::cctz::local_time_zone());
1027     return true;
1028   }
1029   time_internal::cctz::time_zone cz;
1030   const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz);
1031   *tz = TimeZone(cz);
1032   return b;
1033 }
1034 
1035 // FixedTimeZone()
1036 //
1037 // Returns a TimeZone that is a fixed offset (seconds east) from UTC.
1038 // Note: If the absolute value of the offset is greater than 24 hours
1039 // you'll get UTC (i.e., no offset) instead.
FixedTimeZone(int seconds)1040 inline TimeZone FixedTimeZone(int seconds) {
1041   return TimeZone(
1042       time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds)));
1043 }
1044 
1045 // UTCTimeZone()
1046 //
1047 // Convenience method returning the UTC time zone.
UTCTimeZone()1048 inline TimeZone UTCTimeZone() {
1049   return TimeZone(time_internal::cctz::utc_time_zone());
1050 }
1051 
1052 // LocalTimeZone()
1053 //
1054 // Convenience method returning the local time zone, or UTC if there is
1055 // no configured local zone.  Warning: Be wary of using LocalTimeZone(),
1056 // and particularly so in a server process, as the zone configured for the
1057 // local machine should be irrelevant.  Prefer an explicit zone name.
LocalTimeZone()1058 inline TimeZone LocalTimeZone() {
1059   return TimeZone(time_internal::cctz::local_time_zone());
1060 }
1061 
1062 // ToCivilSecond()
1063 // ToCivilMinute()
1064 // ToCivilHour()
1065 // ToCivilDay()
1066 // ToCivilMonth()
1067 // ToCivilYear()
1068 //
1069 // Helpers for TimeZone::At(Time) to return particularly aligned civil times.
1070 //
1071 // Example:
1072 //
1073 //   absl::Time t = ...;
1074 //   absl::TimeZone tz = ...;
1075 //   const auto cd = absl::ToCivilDay(t, tz);
ToCivilSecond(Time t,TimeZone tz)1076 inline CivilSecond ToCivilSecond(Time t, TimeZone tz) {
1077   return tz.At(t).cs;  // already a CivilSecond
1078 }
ToCivilMinute(Time t,TimeZone tz)1079 inline CivilMinute ToCivilMinute(Time t, TimeZone tz) {
1080   return CivilMinute(tz.At(t).cs);
1081 }
ToCivilHour(Time t,TimeZone tz)1082 inline CivilHour ToCivilHour(Time t, TimeZone tz) {
1083   return CivilHour(tz.At(t).cs);
1084 }
ToCivilDay(Time t,TimeZone tz)1085 inline CivilDay ToCivilDay(Time t, TimeZone tz) {
1086   return CivilDay(tz.At(t).cs);
1087 }
ToCivilMonth(Time t,TimeZone tz)1088 inline CivilMonth ToCivilMonth(Time t, TimeZone tz) {
1089   return CivilMonth(tz.At(t).cs);
1090 }
ToCivilYear(Time t,TimeZone tz)1091 inline CivilYear ToCivilYear(Time t, TimeZone tz) {
1092   return CivilYear(tz.At(t).cs);
1093 }
1094 
1095 // FromCivil()
1096 //
1097 // Helper for TimeZone::At(CivilSecond) that provides "order-preserving
1098 // semantics." If the civil time maps to a unique time, that time is
1099 // returned. If the civil time is repeated in the given time zone, the
1100 // time using the pre-transition offset is returned. Otherwise, the
1101 // civil time is skipped in the given time zone, and the transition time
1102 // is returned. This means that for any two civil times, ct1 and ct2,
1103 // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case
1104 // being when two non-existent civil times map to the same transition time.
1105 //
1106 // Note: Accepts civil times of any alignment.
FromCivil(CivilSecond ct,TimeZone tz)1107 inline Time FromCivil(CivilSecond ct, TimeZone tz) {
1108   const auto ti = tz.At(ct);
1109   if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans;
1110   return ti.pre;
1111 }
1112 
1113 // TimeConversion
1114 //
1115 // An `absl::TimeConversion` represents the conversion of year, month, day,
1116 // hour, minute, and second values (i.e., a civil time), in a particular
1117 // `absl::TimeZone`, to a time instant (an absolute time), as returned by
1118 // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`.
1119 //
1120 // Deprecated. Use `absl::TimeZone::TimeInfo`.
1121 struct
1122     TimeConversion {
1123   Time pre;    // time calculated using the pre-transition offset
1124   Time trans;  // when the civil-time discontinuity occurred
1125   Time post;   // time calculated using the post-transition offset
1126 
1127   enum Kind {
1128     UNIQUE,    // the civil time was singular (pre == trans == post)
1129     SKIPPED,   // the civil time did not exist
1130     REPEATED,  // the civil time was ambiguous
1131   };
1132   Kind kind;
1133 
1134   bool normalized;  // input values were outside their valid ranges
1135 };
1136 
1137 // ConvertDateTime()
1138 //
1139 // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes
1140 // the civil time as six, separate values (YMDHMS).
1141 //
1142 // The input month, day, hour, minute, and second values can be outside
1143 // of their valid ranges, in which case they will be "normalized" during
1144 // the conversion.
1145 //
1146 // Example:
1147 //
1148 //   // "October 32" normalizes to "November 1".
1149 //   absl::TimeConversion tc =
1150 //       absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax);
1151 //   // tc.kind == TimeConversion::UNIQUE && tc.normalized == true
1152 //   // absl::ToCivilDay(tc.pre, tz).month() == 11
1153 //   // absl::ToCivilDay(tc.pre, tz).day() == 1
1154 //
1155 // Deprecated. Use `absl::TimeZone::At(CivilSecond)`.
1156 TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour,
1157                                int min, int sec, TimeZone tz);
1158 
1159 // FromDateTime()
1160 //
1161 // A convenience wrapper for `absl::ConvertDateTime()` that simply returns
1162 // the "pre" `absl::Time`.  That is, the unique result, or the instant that
1163 // is correct using the pre-transition offset (as if the transition never
1164 // happened).
1165 //
1166 // Example:
1167 //
1168 //   absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax);
1169 //   // t = 2017-09-26 09:30:00 -0700
1170 //
1171 // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the
1172 // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil
1173 // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`.
FromDateTime(int64_t year,int mon,int day,int hour,int min,int sec,TimeZone tz)1174 inline Time FromDateTime(int64_t year, int mon, int day, int hour,
1175                          int min, int sec, TimeZone tz) {
1176   return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre;
1177 }
1178 
1179 // FromTM()
1180 //
1181 // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and
1182 // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3)
1183 // for a description of the expected values of the tm fields. If the indicated
1184 // time instant is not unique (see `absl::TimeZone::At(absl::CivilSecond)`
1185 // above), the `tm_isdst` field is consulted to select the desired instant
1186 // (`tm_isdst` > 0 means DST, `tm_isdst` == 0 means no DST, `tm_isdst` < 0
1187 // means use the post-transition offset).
1188 Time FromTM(const struct tm& tm, TimeZone tz);
1189 
1190 // ToTM()
1191 //
1192 // Converts the given `absl::Time` to a struct tm using the given time zone.
1193 // See ctime(3) for a description of the values of the tm fields.
1194 struct tm ToTM(Time t, TimeZone tz);
1195 
1196 // RFC3339_full
1197 // RFC3339_sec
1198 //
1199 // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings,
1200 // with trailing zeros trimmed or with fractional seconds omitted altogether.
1201 //
1202 // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and
1203 // time with UTC offset.  Also note the use of "%Y": RFC3339 mandates that
1204 // years have exactly four digits, but we allow them to take their natural
1205 // width.
1206 ABSL_DLL extern const char RFC3339_full[];  // %Y-%m-%d%ET%H:%M:%E*S%Ez
1207 ABSL_DLL extern const char RFC3339_sec[];   // %Y-%m-%d%ET%H:%M:%S%Ez
1208 
1209 // RFC1123_full
1210 // RFC1123_no_wday
1211 //
1212 // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings.
1213 ABSL_DLL extern const char RFC1123_full[];     // %a, %d %b %E4Y %H:%M:%S %z
1214 ABSL_DLL extern const char RFC1123_no_wday[];  // %d %b %E4Y %H:%M:%S %z
1215 
1216 // FormatTime()
1217 //
1218 // Formats the given `absl::Time` in the `absl::TimeZone` according to the
1219 // provided format string. Uses strftime()-like formatting options, with
1220 // the following extensions:
1221 //
1222 //   - %Ez  - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm)
1223 //   - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss)
1224 //   - %E#S - Seconds with # digits of fractional precision
1225 //   - %E*S - Seconds with full fractional precision (a literal '*')
1226 //   - %E#f - Fractional seconds with # digits of precision
1227 //   - %E*f - Fractional seconds with full precision (a literal '*')
1228 //   - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999)
1229 //   - %ET  - The RFC3339 "date-time" separator "T"
1230 //
1231 // Note that %E0S behaves like %S, and %E0f produces no characters.  In
1232 // contrast %E*f always produces at least one digit, which may be '0'.
1233 //
1234 // Note that %Y produces as many characters as it takes to fully render the
1235 // year.  A year outside of [-999:9999] when formatted with %E4Y will produce
1236 // more than four characters, just like %Y.
1237 //
1238 // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z)
1239 // so that the result uniquely identifies a time instant.
1240 //
1241 // Example:
1242 //
1243 //   absl::CivilSecond cs(2013, 1, 2, 3, 4, 5);
1244 //   absl::Time t = absl::FromCivil(cs, lax);
1245 //   std::string f = absl::FormatTime("%H:%M:%S", t, lax);  // "03:04:05"
1246 //   f = absl::FormatTime("%H:%M:%E3S", t, lax);  // "03:04:05.000"
1247 //
1248 // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned
1249 // string will be exactly "infinite-future". If the given `absl::Time` is
1250 // `absl::InfinitePast()`, the returned string will be exactly "infinite-past".
1251 // In both cases the given format string and `absl::TimeZone` are ignored.
1252 //
1253 std::string FormatTime(absl::string_view format, Time t, TimeZone tz);
1254 
1255 // Convenience functions that format the given time using the RFC3339_full
1256 // format.  The first overload uses the provided TimeZone, while the second
1257 // uses LocalTimeZone().
1258 std::string FormatTime(Time t, TimeZone tz);
1259 std::string FormatTime(Time t);
1260 
1261 // Output stream operator.
1262 inline std::ostream& operator<<(std::ostream& os, Time t) {
1263   return os << FormatTime(t);
1264 }
1265 
1266 // ParseTime()
1267 //
1268 // Parses an input string according to the provided format string and
1269 // returns the corresponding `absl::Time`. Uses strftime()-like formatting
1270 // options, with the same extensions as FormatTime(), but with the
1271 // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f.  %Ez
1272 // and %E*z also accept the same inputs, which (along with %z) includes
1273 // 'z' and 'Z' as synonyms for +00:00.  %ET accepts either 'T' or 't'.
1274 //
1275 // %Y consumes as many numeric characters as it can, so the matching data
1276 // should always be terminated with a non-numeric.  %E4Y always consumes
1277 // exactly four characters, including any sign.
1278 //
1279 // Unspecified fields are taken from the default date and time of ...
1280 //
1281 //   "1970-01-01 00:00:00.0 +0000"
1282 //
1283 // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time
1284 // that represents "1970-01-01 15:45:00.0 +0000".
1285 //
1286 // Note that since ParseTime() returns time instants, it makes the most sense
1287 // to parse fully-specified date/time strings that include a UTC offset (%z,
1288 // %Ez, or %E*z).
1289 //
1290 // Note also that `absl::ParseTime()` only heeds the fields year, month, day,
1291 // hour, minute, (fractional) second, and UTC offset.  Other fields, like
1292 // weekday (%a or %A), while parsed for syntactic validity, are ignored
1293 // in the conversion.
1294 //
1295 // Date and time fields that are out-of-range will be treated as errors
1296 // rather than normalizing them like `absl::CivilSecond` does.  For example,
1297 // it is an error to parse the date "Oct 32, 2013" because 32 is out of range.
1298 //
1299 // A leap second of ":60" is normalized to ":00" of the following minute
1300 // with fractional seconds discarded.  The following table shows how the
1301 // given seconds and subseconds will be parsed:
1302 //
1303 //   "59.x" -> 59.x  // exact
1304 //   "60.x" -> 00.0  // normalized
1305 //   "00.x" -> 00.x  // exact
1306 //
1307 // Errors are indicated by returning false and assigning an error message
1308 // to the "err" out param if it is non-null.
1309 //
1310 // Note: If the input string is exactly "infinite-future", the returned
1311 // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned.
1312 // If the input string is "infinite-past", the returned `absl::Time` will be
1313 // `absl::InfinitePast()` and `true` will be returned.
1314 //
1315 bool ParseTime(absl::string_view format, absl::string_view input, Time* time,
1316                std::string* err);
1317 
1318 // Like ParseTime() above, but if the format string does not contain a UTC
1319 // offset specification (%z/%Ez/%E*z) then the input is interpreted in the
1320 // given TimeZone.  This means that the input, by itself, does not identify a
1321 // unique instant.  Being time-zone dependent, it also admits the possibility
1322 // of ambiguity or non-existence, in which case the "pre" time (as defined
1323 // by TimeZone::TimeInfo) is returned.  For these reasons we recommend that
1324 // all date/time strings include a UTC offset so they're context independent.
1325 bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz,
1326                Time* time, std::string* err);
1327 
1328 // ============================================================================
1329 // Implementation Details Follow
1330 // ============================================================================
1331 
1332 namespace time_internal {
1333 
1334 // Creates a Duration with a given representation.
1335 // REQUIRES: hi,lo is a valid representation of a Duration as specified
1336 // in time/duration.cc.
1337 constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) {
1338   return Duration(hi, lo);
1339 }
1340 
MakeDuration(int64_t hi,int64_t lo)1341 constexpr Duration MakeDuration(int64_t hi, int64_t lo) {
1342   return MakeDuration(hi, static_cast<uint32_t>(lo));
1343 }
1344 
1345 // Make a Duration value from a floating-point number, as long as that number
1346 // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as
1347 // it's positive and can be converted to int64_t without risk of UB.
MakePosDoubleDuration(double n)1348 inline Duration MakePosDoubleDuration(double n) {
1349   const int64_t int_secs = static_cast<int64_t>(n);
1350   const uint32_t ticks = static_cast<uint32_t>(
1351       (n - static_cast<double>(int_secs)) * kTicksPerSecond + 0.5);
1352   return ticks < kTicksPerSecond
1353              ? MakeDuration(int_secs, ticks)
1354              : MakeDuration(int_secs + 1, ticks - kTicksPerSecond);
1355 }
1356 
1357 // Creates a normalized Duration from an almost-normalized (sec,ticks)
1358 // pair. sec may be positive or negative.  ticks must be in the range
1359 // -kTicksPerSecond < *ticks < kTicksPerSecond.  If ticks is negative it
1360 // will be normalized to a positive value in the resulting Duration.
MakeNormalizedDuration(int64_t sec,int64_t ticks)1361 constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) {
1362   return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond)
1363                      : MakeDuration(sec, ticks);
1364 }
1365 
1366 // Provide access to the Duration representation.
GetRepHi(Duration d)1367 constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; }
GetRepLo(Duration d)1368 constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; }
1369 
1370 // Returns true iff d is positive or negative infinity.
IsInfiniteDuration(Duration d)1371 constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; }
1372 
1373 // Returns an infinite Duration with the opposite sign.
1374 // REQUIRES: IsInfiniteDuration(d)
OppositeInfinity(Duration d)1375 constexpr Duration OppositeInfinity(Duration d) {
1376   return GetRepHi(d) < 0
1377              ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)
1378              : MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U);
1379 }
1380 
1381 // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow.
NegateAndSubtractOne(int64_t n)1382 constexpr int64_t NegateAndSubtractOne(int64_t n) {
1383   // Note: Good compilers will optimize this expression to ~n when using
1384   // a two's-complement representation (which is required for int64_t).
1385   return (n < 0) ? -(n + 1) : (-n) - 1;
1386 }
1387 
1388 // Map between a Time and a Duration since the Unix epoch.  Note that these
1389 // functions depend on the above mentioned choice of the Unix epoch for the
1390 // Time representation (and both need to be Time friends).  Without this
1391 // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively.
FromUnixDuration(Duration d)1392 constexpr Time FromUnixDuration(Duration d) { return Time(d); }
ToUnixDuration(Time t)1393 constexpr Duration ToUnixDuration(Time t) { return t.rep_; }
1394 
1395 template <std::intmax_t N>
FromInt64(int64_t v,std::ratio<1,N>)1396 constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) {
1397   static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio");
1398   // Subsecond ratios cannot overflow.
1399   return MakeNormalizedDuration(
1400       v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);
1401 }
FromInt64(int64_t v,std::ratio<60>)1402 constexpr Duration FromInt64(int64_t v, std::ratio<60>) {
1403   return (v <= (std::numeric_limits<int64_t>::max)() / 60 &&
1404           v >= (std::numeric_limits<int64_t>::min)() / 60)
1405              ? MakeDuration(v * 60)
1406              : v > 0 ? InfiniteDuration() : -InfiniteDuration();
1407 }
FromInt64(int64_t v,std::ratio<3600>)1408 constexpr Duration FromInt64(int64_t v, std::ratio<3600>) {
1409   return (v <= (std::numeric_limits<int64_t>::max)() / 3600 &&
1410           v >= (std::numeric_limits<int64_t>::min)() / 3600)
1411              ? MakeDuration(v * 3600)
1412              : v > 0 ? InfiniteDuration() : -InfiniteDuration();
1413 }
1414 
1415 // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is
1416 // valid. That is, if a T can be assigned to an int64_t without narrowing.
1417 template <typename T>
1418 constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) {
1419   return true;
1420 }
1421 template <typename T>
1422 constexpr auto IsValidRep64(char) -> bool {
1423   return false;
1424 }
1425 
1426 // Converts a std::chrono::duration to an absl::Duration.
1427 template <typename Rep, typename Period>
FromChrono(const std::chrono::duration<Rep,Period> & d)1428 constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) {
1429   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
1430   return FromInt64(int64_t{d.count()}, Period{});
1431 }
1432 
1433 template <typename Ratio>
ToInt64(Duration d,Ratio)1434 int64_t ToInt64(Duration d, Ratio) {
1435   // Note: This may be used on MSVC, which may have a system_clock period of
1436   // std::ratio<1, 10 * 1000 * 1000>
1437   return ToInt64Seconds(d * Ratio::den / Ratio::num);
1438 }
1439 // Fastpath implementations for the 6 common duration units.
ToInt64(Duration d,std::nano)1440 inline int64_t ToInt64(Duration d, std::nano) {
1441   return ToInt64Nanoseconds(d);
1442 }
ToInt64(Duration d,std::micro)1443 inline int64_t ToInt64(Duration d, std::micro) {
1444   return ToInt64Microseconds(d);
1445 }
ToInt64(Duration d,std::milli)1446 inline int64_t ToInt64(Duration d, std::milli) {
1447   return ToInt64Milliseconds(d);
1448 }
ToInt64(Duration d,std::ratio<1>)1449 inline int64_t ToInt64(Duration d, std::ratio<1>) {
1450   return ToInt64Seconds(d);
1451 }
ToInt64(Duration d,std::ratio<60>)1452 inline int64_t ToInt64(Duration d, std::ratio<60>) {
1453   return ToInt64Minutes(d);
1454 }
ToInt64(Duration d,std::ratio<3600>)1455 inline int64_t ToInt64(Duration d, std::ratio<3600>) {
1456   return ToInt64Hours(d);
1457 }
1458 
1459 // Converts an absl::Duration to a chrono duration of type T.
1460 template <typename T>
ToChronoDuration(Duration d)1461 T ToChronoDuration(Duration d) {
1462   using Rep = typename T::rep;
1463   using Period = typename T::period;
1464   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
1465   if (time_internal::IsInfiniteDuration(d))
1466     return d < ZeroDuration() ? (T::min)() : (T::max)();
1467   const auto v = ToInt64(d, Period{});
1468   if (v > (std::numeric_limits<Rep>::max)()) return (T::max)();
1469   if (v < (std::numeric_limits<Rep>::min)()) return (T::min)();
1470   return T{v};
1471 }
1472 
1473 }  // namespace time_internal
1474 
Nanoseconds(int64_t n)1475 constexpr Duration Nanoseconds(int64_t n) {
1476   return time_internal::FromInt64(n, std::nano{});
1477 }
Microseconds(int64_t n)1478 constexpr Duration Microseconds(int64_t n) {
1479   return time_internal::FromInt64(n, std::micro{});
1480 }
Milliseconds(int64_t n)1481 constexpr Duration Milliseconds(int64_t n) {
1482   return time_internal::FromInt64(n, std::milli{});
1483 }
Seconds(int64_t n)1484 constexpr Duration Seconds(int64_t n) {
1485   return time_internal::FromInt64(n, std::ratio<1>{});
1486 }
Minutes(int64_t n)1487 constexpr Duration Minutes(int64_t n) {
1488   return time_internal::FromInt64(n, std::ratio<60>{});
1489 }
Hours(int64_t n)1490 constexpr Duration Hours(int64_t n) {
1491   return time_internal::FromInt64(n, std::ratio<3600>{});
1492 }
1493 
1494 constexpr bool operator<(Duration lhs, Duration rhs) {
1495   return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)
1496              ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs)
1497              : time_internal::GetRepHi(lhs) ==
1498                        (std::numeric_limits<int64_t>::min)()
1499                    ? time_internal::GetRepLo(lhs) + 1 <
1500                          time_internal::GetRepLo(rhs) + 1
1501                    : time_internal::GetRepLo(lhs) <
1502                          time_internal::GetRepLo(rhs);
1503 }
1504 
1505 constexpr bool operator==(Duration lhs, Duration rhs) {
1506   return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) &&
1507          time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs);
1508 }
1509 
1510 constexpr Duration operator-(Duration d) {
1511   // This is a little interesting because of the special cases.
1512   //
1513   // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're
1514   // dealing with an integral number of seconds, and the only special case is
1515   // the maximum negative finite duration, which can't be negated.
1516   //
1517   // Infinities stay infinite, and just change direction.
1518   //
1519   // Finally we're in the case where rep_lo_ is non-zero, and we can borrow
1520   // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1
1521   // is safe).
1522   return time_internal::GetRepLo(d) == 0
1523              ? time_internal::GetRepHi(d) ==
1524                        (std::numeric_limits<int64_t>::min)()
1525                    ? InfiniteDuration()
1526                    : time_internal::MakeDuration(-time_internal::GetRepHi(d))
1527              : time_internal::IsInfiniteDuration(d)
1528                    ? time_internal::OppositeInfinity(d)
1529                    : time_internal::MakeDuration(
1530                          time_internal::NegateAndSubtractOne(
1531                              time_internal::GetRepHi(d)),
1532                          time_internal::kTicksPerSecond -
1533                              time_internal::GetRepLo(d));
1534 }
1535 
InfiniteDuration()1536 constexpr Duration InfiniteDuration() {
1537   return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),
1538                                      ~0U);
1539 }
1540 
FromChrono(const std::chrono::nanoseconds & d)1541 constexpr Duration FromChrono(const std::chrono::nanoseconds& d) {
1542   return time_internal::FromChrono(d);
1543 }
FromChrono(const std::chrono::microseconds & d)1544 constexpr Duration FromChrono(const std::chrono::microseconds& d) {
1545   return time_internal::FromChrono(d);
1546 }
FromChrono(const std::chrono::milliseconds & d)1547 constexpr Duration FromChrono(const std::chrono::milliseconds& d) {
1548   return time_internal::FromChrono(d);
1549 }
FromChrono(const std::chrono::seconds & d)1550 constexpr Duration FromChrono(const std::chrono::seconds& d) {
1551   return time_internal::FromChrono(d);
1552 }
FromChrono(const std::chrono::minutes & d)1553 constexpr Duration FromChrono(const std::chrono::minutes& d) {
1554   return time_internal::FromChrono(d);
1555 }
FromChrono(const std::chrono::hours & d)1556 constexpr Duration FromChrono(const std::chrono::hours& d) {
1557   return time_internal::FromChrono(d);
1558 }
1559 
FromUnixNanos(int64_t ns)1560 constexpr Time FromUnixNanos(int64_t ns) {
1561   return time_internal::FromUnixDuration(Nanoseconds(ns));
1562 }
1563 
FromUnixMicros(int64_t us)1564 constexpr Time FromUnixMicros(int64_t us) {
1565   return time_internal::FromUnixDuration(Microseconds(us));
1566 }
1567 
FromUnixMillis(int64_t ms)1568 constexpr Time FromUnixMillis(int64_t ms) {
1569   return time_internal::FromUnixDuration(Milliseconds(ms));
1570 }
1571 
FromUnixSeconds(int64_t s)1572 constexpr Time FromUnixSeconds(int64_t s) {
1573   return time_internal::FromUnixDuration(Seconds(s));
1574 }
1575 
FromTimeT(time_t t)1576 constexpr Time FromTimeT(time_t t) {
1577   return time_internal::FromUnixDuration(Seconds(t));
1578 }
1579 
1580 ABSL_NAMESPACE_END
1581 }  // namespace absl
1582 
1583 #endif  // ABSL_TIME_TIME_H_
1584