• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# User Guide
2
3## Command Line
4
5[Output Formats](#output-formats)
6
7[Output Files](#output-files)
8
9[Running Benchmarks](#running-benchmarks)
10
11[Running a Subset of Benchmarks](#running-a-subset-of-benchmarks)
12
13[Result Comparison](#result-comparison)
14
15[Extra Context](#extra-context)
16
17## Library
18
19[Runtime and Reporting Considerations](#runtime-and-reporting-considerations)
20
21[Setup/Teardown](#setupteardown)
22
23[Passing Arguments](#passing-arguments)
24
25[Custom Benchmark Name](#custom-benchmark-name)
26
27[Calculating Asymptotic Complexity](#asymptotic-complexity)
28
29[Templated Benchmarks](#templated-benchmarks)
30
31[Fixtures](#fixtures)
32
33[Custom Counters](#custom-counters)
34
35[Multithreaded Benchmarks](#multithreaded-benchmarks)
36
37[CPU Timers](#cpu-timers)
38
39[Manual Timing](#manual-timing)
40
41[Setting the Time Unit](#setting-the-time-unit)
42
43[Random Interleaving](random_interleaving.md)
44
45[User-Requested Performance Counters](perf_counters.md)
46
47[Preventing Optimization](#preventing-optimization)
48
49[Reporting Statistics](#reporting-statistics)
50
51[Custom Statistics](#custom-statistics)
52
53[Using RegisterBenchmark](#using-register-benchmark)
54
55[Exiting with an Error](#exiting-with-an-error)
56
57[A Faster KeepRunning Loop](#a-faster-keep-running-loop)
58
59[Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling)
60
61
62<a name="output-formats" />
63
64## Output Formats
65
66The library supports multiple output formats. Use the
67`--benchmark_format=<console|json|csv>` flag (or set the
68`BENCHMARK_FORMAT=<console|json|csv>` environment variable) to set
69the format type. `console` is the default format.
70
71The Console format is intended to be a human readable format. By default
72the format generates color output. Context is output on stderr and the
73tabular data on stdout. Example tabular output looks like:
74
75```
76Benchmark                               Time(ns)    CPU(ns) Iterations
77----------------------------------------------------------------------
78BM_SetInsert/1024/1                        28928      29349      23853  133.097kB/s   33.2742k items/s
79BM_SetInsert/1024/8                        32065      32913      21375  949.487kB/s   237.372k items/s
80BM_SetInsert/1024/10                       33157      33648      21431  1.13369MB/s   290.225k items/s
81```
82
83The JSON format outputs human readable json split into two top level attributes.
84The `context` attribute contains information about the run in general, including
85information about the CPU and the date.
86The `benchmarks` attribute contains a list of every benchmark run. Example json
87output looks like:
88
89```json
90{
91  "context": {
92    "date": "2015/03/17-18:40:25",
93    "num_cpus": 40,
94    "mhz_per_cpu": 2801,
95    "cpu_scaling_enabled": false,
96    "build_type": "debug"
97  },
98  "benchmarks": [
99    {
100      "name": "BM_SetInsert/1024/1",
101      "iterations": 94877,
102      "real_time": 29275,
103      "cpu_time": 29836,
104      "bytes_per_second": 134066,
105      "items_per_second": 33516
106    },
107    {
108      "name": "BM_SetInsert/1024/8",
109      "iterations": 21609,
110      "real_time": 32317,
111      "cpu_time": 32429,
112      "bytes_per_second": 986770,
113      "items_per_second": 246693
114    },
115    {
116      "name": "BM_SetInsert/1024/10",
117      "iterations": 21393,
118      "real_time": 32724,
119      "cpu_time": 33355,
120      "bytes_per_second": 1199226,
121      "items_per_second": 299807
122    }
123  ]
124}
125```
126
127The CSV format outputs comma-separated values. The `context` is output on stderr
128and the CSV itself on stdout. Example CSV output looks like:
129
130```
131name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
132"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
133"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
134"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
135```
136
137<a name="output-files" />
138
139## Output Files
140
141Write benchmark results to a file with the `--benchmark_out=<filename>` option
142(or set `BENCHMARK_OUT`). Specify the output format with
143`--benchmark_out_format={json|console|csv}` (or set
144`BENCHMARK_OUT_FORMAT={json|console|csv}`). Note that the 'csv' reporter is
145deprecated and the saved `.csv` file
146[is not parsable](https://github.com/google/benchmark/issues/794) by csv
147parsers.
148
149Specifying `--benchmark_out` does not suppress the console output.
150
151<a name="running-benchmarks" />
152
153## Running Benchmarks
154
155Benchmarks are executed by running the produced binaries. Benchmarks binaries,
156by default, accept options that may be specified either through their command
157line interface or by setting environment variables before execution. For every
158`--option_flag=<value>` CLI switch, a corresponding environment variable
159`OPTION_FLAG=<value>` exist and is used as default if set (CLI switches always
160 prevails). A complete list of CLI options is available running benchmarks
161 with the `--help` switch.
162
163<a name="running-a-subset-of-benchmarks" />
164
165## Running a Subset of Benchmarks
166
167The `--benchmark_filter=<regex>` option (or `BENCHMARK_FILTER=<regex>`
168environment variable) can be used to only run the benchmarks that match
169the specified `<regex>`. For example:
170
171```bash
172$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
173Run on (1 X 2300 MHz CPU )
1742016-06-25 19:34:24
175Benchmark              Time           CPU Iterations
176----------------------------------------------------
177BM_memcpy/32          11 ns         11 ns   79545455
178BM_memcpy/32k       2181 ns       2185 ns     324074
179BM_memcpy/32          12 ns         12 ns   54687500
180BM_memcpy/32k       1834 ns       1837 ns     357143
181```
182
183<a name="result-comparison" />
184
185## Result comparison
186
187It is possible to compare the benchmarking results.
188See [Additional Tooling Documentation](tools.md)
189
190<a name="extra-context" />
191
192## Extra Context
193
194Sometimes it's useful to add extra context to the content printed before the
195results. By default this section includes information about the CPU on which
196the benchmarks are running. If you do want to add more context, you can use
197the `benchmark_context` command line flag:
198
199```bash
200$ ./run_benchmarks --benchmark_context=pwd=`pwd`
201Run on (1 x 2300 MHz CPU)
202pwd: /home/user/benchmark/
203Benchmark              Time           CPU Iterations
204----------------------------------------------------
205BM_memcpy/32          11 ns         11 ns   79545455
206BM_memcpy/32k       2181 ns       2185 ns     324074
207```
208
209You can get the same effect with the API:
210
211```c++
212  benchmark::AddCustomContext("foo", "bar");
213```
214
215Note that attempts to add a second value with the same key will fail with an
216error message.
217
218<a name="runtime-and-reporting-considerations" />
219
220## Runtime and Reporting Considerations
221
222When the benchmark binary is executed, each benchmark function is run serially.
223The number of iterations to run is determined dynamically by running the
224benchmark a few times and measuring the time taken and ensuring that the
225ultimate result will be statistically stable. As such, faster benchmark
226functions will be run for more iterations than slower benchmark functions, and
227the number of iterations is thus reported.
228
229In all cases, the number of iterations for which the benchmark is run is
230governed by the amount of time the benchmark takes. Concretely, the number of
231iterations is at least one, not more than 1e9, until CPU time is greater than
232the minimum time, or the wallclock time is 5x minimum time. The minimum time is
233set per benchmark by calling `MinTime` on the registered benchmark object.
234
235Average timings are then reported over the iterations run. If multiple
236repetitions are requested using the `--benchmark_repetitions` command-line
237option, or at registration time, the benchmark function will be run several
238times and statistical results across these repetitions will also be reported.
239
240As well as the per-benchmark entries, a preamble in the report will include
241information about the machine on which the benchmarks are run.
242
243<a name="setup-teardown" />
244
245## Setup/Teardown
246
247Global setup/teardown specific to each benchmark can be done by
248passing a callback to Setup/Teardown:
249
250The setup/teardown callbacks will be invoked once for each benchmark.
251If the benchmark is multi-threaded (will run in k threads), they will be invoked exactly once before
252each run with k threads.
253If the benchmark uses different size groups of threads, the above will be true for each size group.
254
255Eg.,
256
257```c++
258static void DoSetup(const benchmark::State& state) {
259}
260
261static void DoTeardown(const benchmark::State& state) {
262}
263
264static void BM_func(benchmark::State& state) {...}
265
266BENCHMARK(BM_func)->Arg(1)->Arg(3)->Threads(16)->Threads(32)->Setup(DoSetup)->Teardown(DoTeardown);
267
268```
269
270In this example, `DoSetup` and `DoTearDown` will be invoked 4 times each,
271specifically, once for each of this family:
272 - BM_func_Arg_1_Threads_16, BM_func_Arg_1_Threads_32
273 - BM_func_Arg_3_Threads_16, BM_func_Arg_3_Threads_32
274
275<a name="passing-arguments" />
276
277## Passing Arguments
278
279Sometimes a family of benchmarks can be implemented with just one routine that
280takes an extra argument to specify which one of the family of benchmarks to
281run. For example, the following code defines a family of benchmarks for
282measuring the speed of `memcpy()` calls of different lengths:
283
284```c++
285static void BM_memcpy(benchmark::State& state) {
286  char* src = new char[state.range(0)];
287  char* dst = new char[state.range(0)];
288  memset(src, 'x', state.range(0));
289  for (auto _ : state)
290    memcpy(dst, src, state.range(0));
291  state.SetBytesProcessed(int64_t(state.iterations()) *
292                          int64_t(state.range(0)));
293  delete[] src;
294  delete[] dst;
295}
296BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
297```
298
299The preceding code is quite repetitive, and can be replaced with the following
300short-hand. The following invocation will pick a few appropriate arguments in
301the specified range and will generate a benchmark for each such argument.
302
303```c++
304BENCHMARK(BM_memcpy)->Range(8, 8<<10);
305```
306
307By default the arguments in the range are generated in multiples of eight and
308the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
309range multiplier is changed to multiples of two.
310
311```c++
312BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
313```
314
315Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
316
317The preceding code shows a method of defining a sparse range.  The following
318example shows a method of defining a dense range. It is then used to benchmark
319the performance of `std::vector` initialization for uniformly increasing sizes.
320
321```c++
322static void BM_DenseRange(benchmark::State& state) {
323  for(auto _ : state) {
324    std::vector<int> v(state.range(0), state.range(0));
325    benchmark::DoNotOptimize(v.data());
326    benchmark::ClobberMemory();
327  }
328}
329BENCHMARK(BM_DenseRange)->DenseRange(0, 1024, 128);
330```
331
332Now arguments generated are [ 0, 128, 256, 384, 512, 640, 768, 896, 1024 ].
333
334You might have a benchmark that depends on two or more inputs. For example, the
335following code defines a family of benchmarks for measuring the speed of set
336insertion.
337
338```c++
339static void BM_SetInsert(benchmark::State& state) {
340  std::set<int> data;
341  for (auto _ : state) {
342    state.PauseTiming();
343    data = ConstructRandomSet(state.range(0));
344    state.ResumeTiming();
345    for (int j = 0; j < state.range(1); ++j)
346      data.insert(RandomNumber());
347  }
348}
349BENCHMARK(BM_SetInsert)
350    ->Args({1<<10, 128})
351    ->Args({2<<10, 128})
352    ->Args({4<<10, 128})
353    ->Args({8<<10, 128})
354    ->Args({1<<10, 512})
355    ->Args({2<<10, 512})
356    ->Args({4<<10, 512})
357    ->Args({8<<10, 512});
358```
359
360The preceding code is quite repetitive, and can be replaced with the following
361short-hand. The following macro will pick a few appropriate arguments in the
362product of the two specified ranges and will generate a benchmark for each such
363pair.
364
365{% raw %}
366```c++
367BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
368```
369{% endraw %}
370
371Some benchmarks may require specific argument values that cannot be expressed
372with `Ranges`. In this case, `ArgsProduct` offers the ability to generate a
373benchmark input for each combination in the product of the supplied vectors.
374
375{% raw %}
376```c++
377BENCHMARK(BM_SetInsert)
378    ->ArgsProduct({{1<<10, 3<<10, 8<<10}, {20, 40, 60, 80}})
379// would generate the same benchmark arguments as
380BENCHMARK(BM_SetInsert)
381    ->Args({1<<10, 20})
382    ->Args({3<<10, 20})
383    ->Args({8<<10, 20})
384    ->Args({3<<10, 40})
385    ->Args({8<<10, 40})
386    ->Args({1<<10, 40})
387    ->Args({1<<10, 60})
388    ->Args({3<<10, 60})
389    ->Args({8<<10, 60})
390    ->Args({1<<10, 80})
391    ->Args({3<<10, 80})
392    ->Args({8<<10, 80});
393```
394{% endraw %}
395
396For the most common scenarios, helper methods for creating a list of
397integers for a given sparse or dense range are provided.
398
399```c++
400BENCHMARK(BM_SetInsert)
401    ->ArgsProduct({
402      benchmark::CreateRange(8, 128, /*multi=*/2),
403      benchmark::CreateDenseRange(1, 4, /*step=*/1)
404    })
405// would generate the same benchmark arguments as
406BENCHMARK(BM_SetInsert)
407    ->ArgsProduct({
408      {8, 16, 32, 64, 128},
409      {1, 2, 3, 4}
410    });
411```
412
413For more complex patterns of inputs, passing a custom function to `Apply` allows
414programmatic specification of an arbitrary set of arguments on which to run the
415benchmark. The following example enumerates a dense range on one parameter,
416and a sparse range on the second.
417
418```c++
419static void CustomArguments(benchmark::internal::Benchmark* b) {
420  for (int i = 0; i <= 10; ++i)
421    for (int j = 32; j <= 1024*1024; j *= 8)
422      b->Args({i, j});
423}
424BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
425```
426
427### Passing Arbitrary Arguments to a Benchmark
428
429In C++11 it is possible to define a benchmark that takes an arbitrary number
430of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
431macro creates a benchmark that invokes `func`  with the `benchmark::State` as
432the first argument followed by the specified `args...`.
433The `test_case_name` is appended to the name of the benchmark and
434should describe the values passed.
435
436```c++
437template <class ...ExtraArgs>
438void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
439  [...]
440}
441// Registers a benchmark named "BM_takes_args/int_string_test" that passes
442// the specified values to `extra_args`.
443BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
444```
445
446Note that elements of `...args` may refer to global variables. Users should
447avoid modifying global state inside of a benchmark.
448
449<a name="asymptotic-complexity" />
450
451## Calculating Asymptotic Complexity (Big O)
452
453Asymptotic complexity might be calculated for a family of benchmarks. The
454following code will calculate the coefficient for the high-order term in the
455running time and the normalized root-mean square error of string comparison.
456
457```c++
458static void BM_StringCompare(benchmark::State& state) {
459  std::string s1(state.range(0), '-');
460  std::string s2(state.range(0), '-');
461  for (auto _ : state) {
462    benchmark::DoNotOptimize(s1.compare(s2));
463  }
464  state.SetComplexityN(state.range(0));
465}
466BENCHMARK(BM_StringCompare)
467    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
468```
469
470As shown in the following invocation, asymptotic complexity might also be
471calculated automatically.
472
473```c++
474BENCHMARK(BM_StringCompare)
475    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
476```
477
478The following code will specify asymptotic complexity with a lambda function,
479that might be used to customize high-order term calculation.
480
481```c++
482BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
483    ->Range(1<<10, 1<<18)->Complexity([](benchmark::IterationCount n)->double{return n; });
484```
485
486<a name="custom-benchmark-name" />
487
488## Custom Benchmark Name
489
490You can change the benchmark's name as follows:
491
492```c++
493BENCHMARK(BM_memcpy)->Name("memcpy")->RangeMultiplier(2)->Range(8, 8<<10);
494```
495
496The invocation will execute the benchmark as before using `BM_memcpy` but changes
497the prefix in the report to `memcpy`.
498
499<a name="templated-benchmarks" />
500
501## Templated Benchmarks
502
503This example produces and consumes messages of size `sizeof(v)` `range_x`
504times. It also outputs throughput in the absence of multiprogramming.
505
506```c++
507template <class Q> void BM_Sequential(benchmark::State& state) {
508  Q q;
509  typename Q::value_type v;
510  for (auto _ : state) {
511    for (int i = state.range(0); i--; )
512      q.push(v);
513    for (int e = state.range(0); e--; )
514      q.Wait(&v);
515  }
516  // actually messages, not bytes:
517  state.SetBytesProcessed(
518      static_cast<int64_t>(state.iterations())*state.range(0));
519}
520// C++03
521BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
522
523// C++11 or newer, you can use the BENCHMARK macro with template parameters:
524BENCHMARK(BM_Sequential<WaitQueue<int>>)->Range(1<<0, 1<<10);
525
526```
527
528Three macros are provided for adding benchmark templates.
529
530```c++
531#ifdef BENCHMARK_HAS_CXX11
532#define BENCHMARK(func<...>) // Takes any number of parameters.
533#else // C++ < C++11
534#define BENCHMARK_TEMPLATE(func, arg1)
535#endif
536#define BENCHMARK_TEMPLATE1(func, arg1)
537#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
538```
539
540<a name="fixtures" />
541
542## Fixtures
543
544Fixture tests are created by first defining a type that derives from
545`::benchmark::Fixture` and then creating/registering the tests using the
546following macros:
547
548* `BENCHMARK_F(ClassName, Method)`
549* `BENCHMARK_DEFINE_F(ClassName, Method)`
550* `BENCHMARK_REGISTER_F(ClassName, Method)`
551
552For Example:
553
554```c++
555class MyFixture : public benchmark::Fixture {
556public:
557  void SetUp(const ::benchmark::State& state) {
558  }
559
560  void TearDown(const ::benchmark::State& state) {
561  }
562};
563
564BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
565   for (auto _ : st) {
566     ...
567  }
568}
569
570BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
571   for (auto _ : st) {
572     ...
573  }
574}
575/* BarTest is NOT registered */
576BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
577/* BarTest is now registered */
578```
579
580### Templated Fixtures
581
582Also you can create templated fixture by using the following macros:
583
584* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
585* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
586
587For example:
588
589```c++
590template<typename T>
591class MyFixture : public benchmark::Fixture {};
592
593BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
594   for (auto _ : st) {
595     ...
596  }
597}
598
599BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
600   for (auto _ : st) {
601     ...
602  }
603}
604
605BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
606```
607
608<a name="custom-counters" />
609
610## Custom Counters
611
612You can add your own counters with user-defined names. The example below
613will add columns "Foo", "Bar" and "Baz" in its output:
614
615```c++
616static void UserCountersExample1(benchmark::State& state) {
617  double numFoos = 0, numBars = 0, numBazs = 0;
618  for (auto _ : state) {
619    // ... count Foo,Bar,Baz events
620  }
621  state.counters["Foo"] = numFoos;
622  state.counters["Bar"] = numBars;
623  state.counters["Baz"] = numBazs;
624}
625```
626
627The `state.counters` object is a `std::map` with `std::string` keys
628and `Counter` values. The latter is a `double`-like class, via an implicit
629conversion to `double&`. Thus you can use all of the standard arithmetic
630assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
631
632In multithreaded benchmarks, each counter is set on the calling thread only.
633When the benchmark finishes, the counters from each thread will be summed;
634the resulting sum is the value which will be shown for the benchmark.
635
636The `Counter` constructor accepts three parameters: the value as a `double`
637; a bit flag which allows you to show counters as rates, and/or as per-thread
638iteration, and/or as per-thread averages, and/or iteration invariants,
639and/or finally inverting the result; and a flag specifying the 'unit' - i.e.
640is 1k a 1000 (default, `benchmark::Counter::OneK::kIs1000`), or 1024
641(`benchmark::Counter::OneK::kIs1024`)?
642
643```c++
644  // sets a simple counter
645  state.counters["Foo"] = numFoos;
646
647  // Set the counter as a rate. It will be presented divided
648  // by the duration of the benchmark.
649  // Meaning: per one second, how many 'foo's are processed?
650  state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
651
652  // Set the counter as a rate. It will be presented divided
653  // by the duration of the benchmark, and the result inverted.
654  // Meaning: how many seconds it takes to process one 'foo'?
655  state.counters["FooInvRate"] = Counter(numFoos, benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
656
657  // Set the counter as a thread-average quantity. It will
658  // be presented divided by the number of threads.
659  state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
660
661  // There's also a combined flag:
662  state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
663
664  // This says that we process with the rate of state.range(0) bytes every iteration:
665  state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024);
666```
667
668When you're compiling in C++11 mode or later you can use `insert()` with
669`std::initializer_list`:
670
671{% raw %}
672```c++
673  // With C++11, this can be done:
674  state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
675  // ... instead of:
676  state.counters["Foo"] = numFoos;
677  state.counters["Bar"] = numBars;
678  state.counters["Baz"] = numBazs;
679```
680{% endraw %}
681
682### Counter Reporting
683
684When using the console reporter, by default, user counters are printed at
685the end after the table, the same way as ``bytes_processed`` and
686``items_processed``. This is best for cases in which there are few counters,
687or where there are only a couple of lines per benchmark. Here's an example of
688the default output:
689
690```
691------------------------------------------------------------------------------
692Benchmark                        Time           CPU Iterations UserCounters...
693------------------------------------------------------------------------------
694BM_UserCounter/threads:8      2248 ns      10277 ns      68808 Bar=16 Bat=40 Baz=24 Foo=8
695BM_UserCounter/threads:1      9797 ns       9788 ns      71523 Bar=2 Bat=5 Baz=3 Foo=1024m
696BM_UserCounter/threads:2      4924 ns       9842 ns      71036 Bar=4 Bat=10 Baz=6 Foo=2
697BM_UserCounter/threads:4      2589 ns      10284 ns      68012 Bar=8 Bat=20 Baz=12 Foo=4
698BM_UserCounter/threads:8      2212 ns      10287 ns      68040 Bar=16 Bat=40 Baz=24 Foo=8
699BM_UserCounter/threads:16     1782 ns      10278 ns      68144 Bar=32 Bat=80 Baz=48 Foo=16
700BM_UserCounter/threads:32     1291 ns      10296 ns      68256 Bar=64 Bat=160 Baz=96 Foo=32
701BM_UserCounter/threads:4      2615 ns      10307 ns      68040 Bar=8 Bat=20 Baz=12 Foo=4
702BM_Factorial                    26 ns         26 ns   26608979 40320
703BM_Factorial/real_time          26 ns         26 ns   26587936 40320
704BM_CalculatePiRange/1           16 ns         16 ns   45704255 0
705BM_CalculatePiRange/8           73 ns         73 ns    9520927 3.28374
706BM_CalculatePiRange/64         609 ns        609 ns    1140647 3.15746
707BM_CalculatePiRange/512       4900 ns       4901 ns     142696 3.14355
708```
709
710If this doesn't suit you, you can print each counter as a table column by
711passing the flag `--benchmark_counters_tabular=true` to the benchmark
712application. This is best for cases in which there are a lot of counters, or
713a lot of lines per individual benchmark. Note that this will trigger a
714reprinting of the table header any time the counter set changes between
715individual benchmarks. Here's an example of corresponding output when
716`--benchmark_counters_tabular=true` is passed:
717
718```
719---------------------------------------------------------------------------------------
720Benchmark                        Time           CPU Iterations    Bar   Bat   Baz   Foo
721---------------------------------------------------------------------------------------
722BM_UserCounter/threads:8      2198 ns       9953 ns      70688     16    40    24     8
723BM_UserCounter/threads:1      9504 ns       9504 ns      73787      2     5     3     1
724BM_UserCounter/threads:2      4775 ns       9550 ns      72606      4    10     6     2
725BM_UserCounter/threads:4      2508 ns       9951 ns      70332      8    20    12     4
726BM_UserCounter/threads:8      2055 ns       9933 ns      70344     16    40    24     8
727BM_UserCounter/threads:16     1610 ns       9946 ns      70720     32    80    48    16
728BM_UserCounter/threads:32     1192 ns       9948 ns      70496     64   160    96    32
729BM_UserCounter/threads:4      2506 ns       9949 ns      70332      8    20    12     4
730--------------------------------------------------------------
731Benchmark                        Time           CPU Iterations
732--------------------------------------------------------------
733BM_Factorial                    26 ns         26 ns   26392245 40320
734BM_Factorial/real_time          26 ns         26 ns   26494107 40320
735BM_CalculatePiRange/1           15 ns         15 ns   45571597 0
736BM_CalculatePiRange/8           74 ns         74 ns    9450212 3.28374
737BM_CalculatePiRange/64         595 ns        595 ns    1173901 3.15746
738BM_CalculatePiRange/512       4752 ns       4752 ns     147380 3.14355
739BM_CalculatePiRange/4k       37970 ns      37972 ns      18453 3.14184
740BM_CalculatePiRange/32k     303733 ns     303744 ns       2305 3.14162
741BM_CalculatePiRange/256k   2434095 ns    2434186 ns        288 3.1416
742BM_CalculatePiRange/1024k  9721140 ns    9721413 ns         71 3.14159
743BM_CalculatePi/threads:8      2255 ns       9943 ns      70936
744```
745
746Note above the additional header printed when the benchmark changes from
747``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
748not have the same counter set as ``BM_UserCounter``.
749
750<a name="multithreaded-benchmarks"/>
751
752## Multithreaded Benchmarks
753
754In a multithreaded test (benchmark invoked by multiple threads simultaneously),
755it is guaranteed that none of the threads will start until all have reached
756the start of the benchmark loop, and all will have finished before any thread
757exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
758API) As such, any global setup or teardown can be wrapped in a check against the thread
759index:
760
761```c++
762static void BM_MultiThreaded(benchmark::State& state) {
763  if (state.thread_index() == 0) {
764    // Setup code here.
765  }
766  for (auto _ : state) {
767    // Run the test as normal.
768  }
769  if (state.thread_index() == 0) {
770    // Teardown code here.
771  }
772}
773BENCHMARK(BM_MultiThreaded)->Threads(2);
774```
775
776If the benchmarked code itself uses threads and you want to compare it to
777single-threaded code, you may want to use real-time ("wallclock") measurements
778for latency comparisons:
779
780```c++
781BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
782```
783
784Without `UseRealTime`, CPU time is used by default.
785
786<a name="cpu-timers" />
787
788## CPU Timers
789
790By default, the CPU timer only measures the time spent by the main thread.
791If the benchmark itself uses threads internally, this measurement may not
792be what you are looking for. Instead, there is a way to measure the total
793CPU usage of the process, by all the threads.
794
795```c++
796void callee(int i);
797
798static void MyMain(int size) {
799#pragma omp parallel for
800  for(int i = 0; i < size; i++)
801    callee(i);
802}
803
804static void BM_OpenMP(benchmark::State& state) {
805  for (auto _ : state)
806    MyMain(state.range(0));
807}
808
809// Measure the time spent by the main thread, use it to decide for how long to
810// run the benchmark loop. Depending on the internal implementation detail may
811// measure to anywhere from near-zero (the overhead spent before/after work
812// handoff to worker thread[s]) to the whole single-thread time.
813BENCHMARK(BM_OpenMP)->Range(8, 8<<10);
814
815// Measure the user-visible time, the wall clock (literally, the time that
816// has passed on the clock on the wall), use it to decide for how long to
817// run the benchmark loop. This will always be meaningful, an will match the
818// time spent by the main thread in single-threaded case, in general decreasing
819// with the number of internal threads doing the work.
820BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime();
821
822// Measure the total CPU consumption, use it to decide for how long to
823// run the benchmark loop. This will always measure to no less than the
824// time spent by the main thread in single-threaded case.
825BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime();
826
827// A mixture of the last two. Measure the total CPU consumption, but use the
828// wall clock to decide for how long to run the benchmark loop.
829BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime();
830```
831
832### Controlling Timers
833
834Normally, the entire duration of the work loop (`for (auto _ : state) {}`)
835is measured. But sometimes, it is necessary to do some work inside of
836that loop, every iteration, but without counting that time to the benchmark time.
837That is possible, although it is not recommended, since it has high overhead.
838
839{% raw %}
840```c++
841static void BM_SetInsert_With_Timer_Control(benchmark::State& state) {
842  std::set<int> data;
843  for (auto _ : state) {
844    state.PauseTiming(); // Stop timers. They will not count until they are resumed.
845    data = ConstructRandomSet(state.range(0)); // Do something that should not be measured
846    state.ResumeTiming(); // And resume timers. They are now counting again.
847    // The rest will be measured.
848    for (int j = 0; j < state.range(1); ++j)
849      data.insert(RandomNumber());
850  }
851}
852BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}});
853```
854{% endraw %}
855
856<a name="manual-timing" />
857
858## Manual Timing
859
860For benchmarking something for which neither CPU time nor real-time are
861correct or accurate enough, completely manual timing is supported using
862the `UseManualTime` function.
863
864When `UseManualTime` is used, the benchmarked code must call
865`SetIterationTime` once per iteration of the benchmark loop to
866report the manually measured time.
867
868An example use case for this is benchmarking GPU execution (e.g. OpenCL
869or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
870be accurately measured using CPU time or real-time. Instead, they can be
871measured accurately using a dedicated API, and these measurement results
872can be reported back with `SetIterationTime`.
873
874```c++
875static void BM_ManualTiming(benchmark::State& state) {
876  int microseconds = state.range(0);
877  std::chrono::duration<double, std::micro> sleep_duration {
878    static_cast<double>(microseconds)
879  };
880
881  for (auto _ : state) {
882    auto start = std::chrono::high_resolution_clock::now();
883    // Simulate some useful workload with a sleep
884    std::this_thread::sleep_for(sleep_duration);
885    auto end = std::chrono::high_resolution_clock::now();
886
887    auto elapsed_seconds =
888      std::chrono::duration_cast<std::chrono::duration<double>>(
889        end - start);
890
891    state.SetIterationTime(elapsed_seconds.count());
892  }
893}
894BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
895```
896
897<a name="setting-the-time-unit" />
898
899## Setting the Time Unit
900
901If a benchmark runs a few milliseconds it may be hard to visually compare the
902measured times, since the output data is given in nanoseconds per default. In
903order to manually set the time unit, you can specify it manually:
904
905```c++
906BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
907```
908
909<a name="preventing-optimization" />
910
911## Preventing Optimization
912
913To prevent a value or expression from being optimized away by the compiler
914the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
915functions can be used.
916
917```c++
918static void BM_test(benchmark::State& state) {
919  for (auto _ : state) {
920      int x = 0;
921      for (int i=0; i < 64; ++i) {
922        benchmark::DoNotOptimize(x += i);
923      }
924  }
925}
926```
927
928`DoNotOptimize(<expr>)` forces the  *result* of `<expr>` to be stored in either
929memory or a register. For GNU based compilers it acts as read/write barrier
930for global memory. More specifically it forces the compiler to flush pending
931writes to memory and reload any other values as necessary.
932
933Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
934in any way. `<expr>` may even be removed entirely when the result is already
935known. For example:
936
937```c++
938  /* Example 1: `<expr>` is removed entirely. */
939  int foo(int x) { return x + 42; }
940  while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
941
942  /*  Example 2: Result of '<expr>' is only reused */
943  int bar(int) __attribute__((const));
944  while (...) DoNotOptimize(bar(0)); // Optimized to:
945  // int __result__ = bar(0);
946  // while (...) DoNotOptimize(__result__);
947```
948
949The second tool for preventing optimizations is `ClobberMemory()`. In essence
950`ClobberMemory()` forces the compiler to perform all pending writes to global
951memory. Memory managed by block scope objects must be "escaped" using
952`DoNotOptimize(...)` before it can be clobbered. In the below example
953`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
954away.
955
956```c++
957static void BM_vector_push_back(benchmark::State& state) {
958  for (auto _ : state) {
959    std::vector<int> v;
960    v.reserve(1);
961    benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
962    v.push_back(42);
963    benchmark::ClobberMemory(); // Force 42 to be written to memory.
964  }
965}
966```
967
968Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
969
970<a name="reporting-statistics" />
971
972## Statistics: Reporting the Mean, Median and Standard Deviation / Coefficient of variation of Repeated Benchmarks
973
974By default each benchmark is run once and that single result is reported.
975However benchmarks are often noisy and a single result may not be representative
976of the overall behavior. For this reason it's possible to repeatedly rerun the
977benchmark.
978
979The number of runs of each benchmark is specified globally by the
980`--benchmark_repetitions` flag or on a per benchmark basis by calling
981`Repetitions` on the registered benchmark object. When a benchmark is run more
982than once the mean, median, standard deviation and coefficient of variation
983of the runs will be reported.
984
985Additionally the `--benchmark_report_aggregates_only={true|false}`,
986`--benchmark_display_aggregates_only={true|false}` flags or
987`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be
988used to change how repeated tests are reported. By default the result of each
989repeated run is reported. When `report aggregates only` option is `true`,
990only the aggregates (i.e. mean, median, standard deviation and coefficient
991of variation, maybe complexity measurements if they were requested) of the runs
992is reported, to both the reporters - standard output (console), and the file.
993However when only the `display aggregates only` option is `true`,
994only the aggregates are displayed in the standard output, while the file
995output still contains everything.
996Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a
997registered benchmark object overrides the value of the appropriate flag for that
998benchmark.
999
1000<a name="custom-statistics" />
1001
1002## Custom Statistics
1003
1004While having these aggregates is nice, this may not be enough for everyone.
1005For example you may want to know what the largest observation is, e.g. because
1006you have some real-time constraints. This is easy. The following code will
1007specify a custom statistic to be calculated, defined by a lambda function.
1008
1009```c++
1010void BM_spin_empty(benchmark::State& state) {
1011  for (auto _ : state) {
1012    for (int x = 0; x < state.range(0); ++x) {
1013      benchmark::DoNotOptimize(x);
1014    }
1015  }
1016}
1017
1018BENCHMARK(BM_spin_empty)
1019  ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
1020    return *(std::max_element(std::begin(v), std::end(v)));
1021  })
1022  ->Arg(512);
1023```
1024
1025While usually the statistics produce values in time units,
1026you can also produce percentages:
1027
1028```c++
1029void BM_spin_empty(benchmark::State& state) {
1030  for (auto _ : state) {
1031    for (int x = 0; x < state.range(0); ++x) {
1032      benchmark::DoNotOptimize(x);
1033    }
1034  }
1035}
1036
1037BENCHMARK(BM_spin_empty)
1038  ->ComputeStatistics("ratio", [](const std::vector<double>& v) -> double {
1039    return std::begin(v) / std::end(v);
1040  }, benchmark::StatisticUnit::Percentage)
1041  ->Arg(512);
1042```
1043
1044<a name="using-register-benchmark" />
1045
1046## Using RegisterBenchmark(name, fn, args...)
1047
1048The `RegisterBenchmark(name, func, args...)` function provides an alternative
1049way to create and register benchmarks.
1050`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
1051pointer to a new benchmark with the specified `name` that invokes
1052`func(st, args...)` where `st` is a `benchmark::State` object.
1053
1054Unlike the `BENCHMARK` registration macros, which can only be used at the global
1055scope, the `RegisterBenchmark` can be called anywhere. This allows for
1056benchmark tests to be registered programmatically.
1057
1058Additionally `RegisterBenchmark` allows any callable object to be registered
1059as a benchmark. Including capturing lambdas and function objects.
1060
1061For Example:
1062```c++
1063auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
1064
1065int main(int argc, char** argv) {
1066  for (auto& test_input : { /* ... */ })
1067      benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
1068  benchmark::Initialize(&argc, argv);
1069  benchmark::RunSpecifiedBenchmarks();
1070  benchmark::Shutdown();
1071}
1072```
1073
1074<a name="exiting-with-an-error" />
1075
1076## Exiting with an Error
1077
1078When errors caused by external influences, such as file I/O and network
1079communication, occur within a benchmark the
1080`State::SkipWithError(const char* msg)` function can be used to skip that run
1081of benchmark and report the error. Note that only future iterations of the
1082`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
1083Users must explicitly exit the loop, otherwise all iterations will be performed.
1084Users may explicitly return to exit the benchmark immediately.
1085
1086The `SkipWithError(...)` function may be used at any point within the benchmark,
1087including before and after the benchmark loop. Moreover, if `SkipWithError(...)`
1088has been used, it is not required to reach the benchmark loop and one may return
1089from the benchmark function early.
1090
1091For example:
1092
1093```c++
1094static void BM_test(benchmark::State& state) {
1095  auto resource = GetResource();
1096  if (!resource.good()) {
1097    state.SkipWithError("Resource is not good!");
1098    // KeepRunning() loop will not be entered.
1099  }
1100  while (state.KeepRunning()) {
1101    auto data = resource.read_data();
1102    if (!resource.good()) {
1103      state.SkipWithError("Failed to read data!");
1104      break; // Needed to skip the rest of the iteration.
1105    }
1106    do_stuff(data);
1107  }
1108}
1109
1110static void BM_test_ranged_fo(benchmark::State & state) {
1111  auto resource = GetResource();
1112  if (!resource.good()) {
1113    state.SkipWithError("Resource is not good!");
1114    return; // Early return is allowed when SkipWithError() has been used.
1115  }
1116  for (auto _ : state) {
1117    auto data = resource.read_data();
1118    if (!resource.good()) {
1119      state.SkipWithError("Failed to read data!");
1120      break; // REQUIRED to prevent all further iterations.
1121    }
1122    do_stuff(data);
1123  }
1124}
1125```
1126<a name="a-faster-keep-running-loop" />
1127
1128## A Faster KeepRunning Loop
1129
1130In C++11 mode, a ranged-based for loop should be used in preference to
1131the `KeepRunning` loop for running the benchmarks. For example:
1132
1133```c++
1134static void BM_Fast(benchmark::State &state) {
1135  for (auto _ : state) {
1136    FastOperation();
1137  }
1138}
1139BENCHMARK(BM_Fast);
1140```
1141
1142The reason the ranged-for loop is faster than using `KeepRunning`, is
1143because `KeepRunning` requires a memory load and store of the iteration count
1144ever iteration, whereas the ranged-for variant is able to keep the iteration count
1145in a register.
1146
1147For example, an empty inner loop of using the ranged-based for method looks like:
1148
1149```asm
1150# Loop Init
1151  mov rbx, qword ptr [r14 + 104]
1152  call benchmark::State::StartKeepRunning()
1153  test rbx, rbx
1154  je .LoopEnd
1155.LoopHeader: # =>This Inner Loop Header: Depth=1
1156  add rbx, -1
1157  jne .LoopHeader
1158.LoopEnd:
1159```
1160
1161Compared to an empty `KeepRunning` loop, which looks like:
1162
1163```asm
1164.LoopHeader: # in Loop: Header=BB0_3 Depth=1
1165  cmp byte ptr [rbx], 1
1166  jne .LoopInit
1167.LoopBody: # =>This Inner Loop Header: Depth=1
1168  mov rax, qword ptr [rbx + 8]
1169  lea rcx, [rax + 1]
1170  mov qword ptr [rbx + 8], rcx
1171  cmp rax, qword ptr [rbx + 104]
1172  jb .LoopHeader
1173  jmp .LoopEnd
1174.LoopInit:
1175  mov rdi, rbx
1176  call benchmark::State::StartKeepRunning()
1177  jmp .LoopBody
1178.LoopEnd:
1179```
1180
1181Unless C++03 compatibility is required, the ranged-for variant of writing
1182the benchmark loop should be preferred.
1183
1184<a name="disabling-cpu-frequency-scaling" />
1185
1186## Disabling CPU Frequency Scaling
1187
1188If you see this error:
1189
1190```
1191***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
1192```
1193
1194you might want to disable the CPU frequency scaling while running the benchmark:
1195
1196```bash
1197sudo cpupower frequency-set --governor performance
1198./mybench
1199sudo cpupower frequency-set --governor powersave
1200```
1201