1 // Boost.Geometry
2
3 // Copyright (c) 2016-2017, Oracle and/or its affiliates.
4 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
5
6 // Use, modification and distribution is subject to the Boost Software License,
7 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
8 // http://www.boost.org/LICENSE_1_0.txt)
9
10 #ifndef BOOST_GEOMETRY_FORMULAS_GEOGRAPHIC_HPP
11 #define BOOST_GEOMETRY_FORMULAS_GEOGRAPHIC_HPP
12
13 #include <boost/geometry/core/coordinate_system.hpp>
14 #include <boost/geometry/core/coordinate_type.hpp>
15 #include <boost/geometry/core/access.hpp>
16 #include <boost/geometry/core/radian_access.hpp>
17
18 #include <boost/geometry/arithmetic/arithmetic.hpp>
19 #include <boost/geometry/arithmetic/cross_product.hpp>
20 #include <boost/geometry/arithmetic/dot_product.hpp>
21 #include <boost/geometry/arithmetic/normalize.hpp>
22
23 #include <boost/geometry/formulas/eccentricity_sqr.hpp>
24 #include <boost/geometry/formulas/flattening.hpp>
25 #include <boost/geometry/formulas/unit_spheroid.hpp>
26
27 #include <boost/geometry/util/math.hpp>
28 #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
29 #include <boost/geometry/util/select_coordinate_type.hpp>
30
31 namespace boost { namespace geometry {
32
33 namespace formula {
34
35 template <typename Point3d, typename PointGeo, typename Spheroid>
geo_to_cart3d(PointGeo const & point_geo,Spheroid const & spheroid)36 inline Point3d geo_to_cart3d(PointGeo const& point_geo, Spheroid const& spheroid)
37 {
38 typedef typename coordinate_type<Point3d>::type calc_t;
39
40 calc_t const c1 = 1;
41 calc_t const e_sqr = eccentricity_sqr<calc_t>(spheroid);
42
43 calc_t const lon = get_as_radian<0>(point_geo);
44 calc_t const lat = get_as_radian<1>(point_geo);
45
46 Point3d res;
47
48 calc_t const sin_lat = sin(lat);
49
50 // "unit" spheroid, a = 1
51 calc_t const N = c1 / math::sqrt(c1 - e_sqr * math::sqr(sin_lat));
52 calc_t const N_cos_lat = N * cos(lat);
53
54 set<0>(res, N_cos_lat * cos(lon));
55 set<1>(res, N_cos_lat * sin(lon));
56 set<2>(res, N * (c1 - e_sqr) * sin_lat);
57
58 return res;
59 }
60
61 template <typename PointGeo, typename Spheroid, typename Point3d>
geo_to_cart3d(PointGeo const & point_geo,Point3d & result,Point3d & north,Point3d & east,Spheroid const & spheroid)62 inline void geo_to_cart3d(PointGeo const& point_geo, Point3d & result, Point3d & north, Point3d & east, Spheroid const& spheroid)
63 {
64 typedef typename coordinate_type<Point3d>::type calc_t;
65
66 calc_t const c1 = 1;
67 calc_t const e_sqr = eccentricity_sqr<calc_t>(spheroid);
68
69 calc_t const lon = get_as_radian<0>(point_geo);
70 calc_t const lat = get_as_radian<1>(point_geo);
71
72 calc_t const sin_lon = sin(lon);
73 calc_t const cos_lon = cos(lon);
74 calc_t const sin_lat = sin(lat);
75 calc_t const cos_lat = cos(lat);
76
77 // "unit" spheroid, a = 1
78 calc_t const N = c1 / math::sqrt(c1 - e_sqr * math::sqr(sin_lat));
79 calc_t const N_cos_lat = N * cos_lat;
80
81 set<0>(result, N_cos_lat * cos_lon);
82 set<1>(result, N_cos_lat * sin_lon);
83 set<2>(result, N * (c1 - e_sqr) * sin_lat);
84
85 set<0>(east, -sin_lon);
86 set<1>(east, cos_lon);
87 set<2>(east, 0);
88
89 set<0>(north, -sin_lat * cos_lon);
90 set<1>(north, -sin_lat * sin_lon);
91 set<2>(north, cos_lat);
92 }
93
94 template <typename PointGeo, typename Point3d, typename Spheroid>
cart3d_to_geo(Point3d const & point_3d,Spheroid const & spheroid)95 inline PointGeo cart3d_to_geo(Point3d const& point_3d, Spheroid const& spheroid)
96 {
97 typedef typename coordinate_type<PointGeo>::type coord_t;
98 typedef typename coordinate_type<Point3d>::type calc_t;
99
100 calc_t const c1 = 1;
101 //calc_t const c2 = 2;
102 calc_t const e_sqr = eccentricity_sqr<calc_t>(spheroid);
103
104 calc_t const x = get<0>(point_3d);
105 calc_t const y = get<1>(point_3d);
106 calc_t const z = get<2>(point_3d);
107 calc_t const xy_l = math::sqrt(math::sqr(x) + math::sqr(y));
108
109 calc_t const lonr = atan2(y, x);
110
111 // NOTE: Alternative version
112 // http://www.iag-aig.org/attach/989c8e501d9c5b5e2736955baf2632f5/V60N2_5FT.pdf
113 // calc_t const lonr = c2 * atan2(y, x + xy_l);
114
115 calc_t const latr = atan2(z, (c1 - e_sqr) * xy_l);
116
117 // NOTE: If h is equal to 0 then there is no need to improve value of latitude
118 // because then N_i / (N_i + h_i) = 1
119 // http://www.navipedia.net/index.php/Ellipsoidal_and_Cartesian_Coordinates_Conversion
120
121 PointGeo res;
122
123 set_from_radian<0>(res, lonr);
124 set_from_radian<1>(res, latr);
125
126 coord_t lon = get<0>(res);
127 coord_t lat = get<1>(res);
128
129 math::normalize_spheroidal_coordinates
130 <
131 typename coordinate_system<PointGeo>::type::units,
132 coord_t
133 >(lon, lat);
134
135 set<0>(res, lon);
136 set<1>(res, lat);
137
138 return res;
139 }
140
141 template <typename Point3d, typename Spheroid>
projected_to_xy(Point3d const & point_3d,Spheroid const & spheroid)142 inline Point3d projected_to_xy(Point3d const& point_3d, Spheroid const& spheroid)
143 {
144 typedef typename coordinate_type<Point3d>::type coord_t;
145
146 // len_xy = sqrt(x^2 + y^2)
147 // r = len_xy - |z / tan(lat)|
148 // assuming h = 0
149 // lat = atan2(z, (1 - e^2) * len_xy);
150 // |z / tan(lat)| = (1 - e^2) * len_xy
151 // r = e^2 * len_xy
152 // x_res = r * cos(lon) = e^2 * len_xy * x / len_xy = e^2 * x
153 // y_res = r * sin(lon) = e^2 * len_xy * y / len_xy = e^2 * y
154
155 coord_t const c0 = 0;
156 coord_t const e_sqr = formula::eccentricity_sqr<coord_t>(spheroid);
157
158 Point3d res;
159
160 set<0>(res, e_sqr * get<0>(point_3d));
161 set<1>(res, e_sqr * get<1>(point_3d));
162 set<2>(res, c0);
163
164 return res;
165 }
166
167 template <typename Point3d, typename Spheroid>
projected_to_surface(Point3d const & direction,Spheroid const & spheroid)168 inline Point3d projected_to_surface(Point3d const& direction, Spheroid const& spheroid)
169 {
170 typedef typename coordinate_type<Point3d>::type coord_t;
171
172 //coord_t const c0 = 0;
173 coord_t const c2 = 2;
174 coord_t const c4 = 4;
175
176 // calculate the point of intersection of a ray and spheroid's surface
177 // the origin is the origin of the coordinate system
178 //(x*x+y*y)/(a*a) + z*z/(b*b) = 1
179 // x = d.x * t
180 // y = d.y * t
181 // z = d.z * t
182 coord_t const dx = get<0>(direction);
183 coord_t const dy = get<1>(direction);
184 coord_t const dz = get<2>(direction);
185
186 //coord_t const a_sqr = math::sqr(get_radius<0>(spheroid));
187 //coord_t const b_sqr = math::sqr(get_radius<2>(spheroid));
188 // "unit" spheroid, a = 1
189 coord_t const a_sqr = 1;
190 coord_t const b_sqr = math::sqr(formula::unit_spheroid_b<coord_t>(spheroid));
191
192 coord_t const param_a = (dx*dx + dy*dy) / a_sqr + dz*dz / b_sqr;
193 coord_t const delta = c4 * param_a;
194 // delta >= 0
195 coord_t const t = math::sqrt(delta) / (c2 * param_a);
196
197 // result = direction * t
198 Point3d result = direction;
199 multiply_value(result, t);
200
201 return result;
202 }
203
204 template <typename Point3d, typename Spheroid>
projected_to_surface(Point3d const & origin,Point3d const & direction,Point3d & result1,Point3d & result2,Spheroid const & spheroid)205 inline bool projected_to_surface(Point3d const& origin, Point3d const& direction, Point3d & result1, Point3d & result2, Spheroid const& spheroid)
206 {
207 typedef typename coordinate_type<Point3d>::type coord_t;
208
209 coord_t const c0 = 0;
210 coord_t const c1 = 1;
211 coord_t const c2 = 2;
212 coord_t const c4 = 4;
213
214 // calculate the point of intersection of a ray and spheroid's surface
215 //(x*x+y*y)/(a*a) + z*z/(b*b) = 1
216 // x = o.x + d.x * t
217 // y = o.y + d.y * t
218 // z = o.z + d.z * t
219 coord_t const ox = get<0>(origin);
220 coord_t const oy = get<1>(origin);
221 coord_t const oz = get<2>(origin);
222 coord_t const dx = get<0>(direction);
223 coord_t const dy = get<1>(direction);
224 coord_t const dz = get<2>(direction);
225
226 //coord_t const a_sqr = math::sqr(get_radius<0>(spheroid));
227 //coord_t const b_sqr = math::sqr(get_radius<2>(spheroid));
228 // "unit" spheroid, a = 1
229 coord_t const a_sqr = 1;
230 coord_t const b_sqr = math::sqr(formula::unit_spheroid_b<coord_t>(spheroid));
231
232 coord_t const param_a = (dx*dx + dy*dy) / a_sqr + dz*dz / b_sqr;
233 coord_t const param_b = c2 * ((ox*dx + oy*dy) / a_sqr + oz*dz / b_sqr);
234 coord_t const param_c = (ox*ox + oy*oy) / a_sqr + oz*oz / b_sqr - c1;
235
236 coord_t const delta = math::sqr(param_b) - c4 * param_a*param_c;
237
238 // equals() ?
239 if (delta < c0 || param_a == 0)
240 {
241 return false;
242 }
243
244 // result = origin + direction * t
245
246 coord_t const sqrt_delta = math::sqrt(delta);
247 coord_t const two_a = c2 * param_a;
248
249 coord_t const t1 = (-param_b + sqrt_delta) / two_a;
250 result1 = direction;
251 multiply_value(result1, t1);
252 add_point(result1, origin);
253
254 coord_t const t2 = (-param_b - sqrt_delta) / two_a;
255 result2 = direction;
256 multiply_value(result2, t2);
257 add_point(result2, origin);
258
259 return true;
260 }
261
262 template <typename Point3d, typename Spheroid>
great_elliptic_intersection(Point3d const & a1,Point3d const & a2,Point3d const & b1,Point3d const & b2,Point3d & result,Spheroid const & spheroid)263 inline bool great_elliptic_intersection(Point3d const& a1, Point3d const& a2,
264 Point3d const& b1, Point3d const& b2,
265 Point3d & result,
266 Spheroid const& spheroid)
267 {
268 typedef typename coordinate_type<Point3d>::type coord_t;
269
270 coord_t c0 = 0;
271 coord_t c1 = 1;
272
273 Point3d n1 = cross_product(a1, a2);
274 Point3d n2 = cross_product(b1, b2);
275
276 // intersection direction
277 Point3d id = cross_product(n1, n2);
278 coord_t id_len_sqr = dot_product(id, id);
279
280 if (math::equals(id_len_sqr, c0))
281 {
282 return false;
283 }
284
285 // no need to normalize a1 and a2 because the intersection point on
286 // the opposite side of the globe is at the same distance from the origin
287 coord_t cos_a1i = dot_product(a1, id);
288 coord_t cos_a2i = dot_product(a2, id);
289 coord_t gri = math::detail::greatest(cos_a1i, cos_a2i);
290 Point3d neg_id = id;
291 multiply_value(neg_id, -c1);
292 coord_t cos_a1ni = dot_product(a1, neg_id);
293 coord_t cos_a2ni = dot_product(a2, neg_id);
294 coord_t grni = math::detail::greatest(cos_a1ni, cos_a2ni);
295
296 if (gri >= grni)
297 {
298 result = projected_to_surface(id, spheroid);
299 }
300 else
301 {
302 result = projected_to_surface(neg_id, spheroid);
303 }
304
305 return true;
306 }
307
308 template <typename Point3d1, typename Point3d2>
elliptic_side_value(Point3d1 const & origin,Point3d1 const & norm,Point3d2 const & pt)309 static inline int elliptic_side_value(Point3d1 const& origin, Point3d1 const& norm, Point3d2 const& pt)
310 {
311 typedef typename coordinate_type<Point3d1>::type calc_t;
312 calc_t c0 = 0;
313
314 // vector oposite to pt - origin
315 // only for the purpose of assigning origin
316 Point3d1 vec = origin;
317 subtract_point(vec, pt);
318
319 calc_t d = dot_product(norm, vec);
320
321 // since the vector is opposite the signs are opposite
322 return math::equals(d, c0) ? 0
323 : d < c0 ? 1
324 : -1; // d > 0
325 }
326
327 template <typename Point3d, typename Spheroid>
planes_spheroid_intersection(Point3d const & o1,Point3d const & n1,Point3d const & o2,Point3d const & n2,Point3d & ip1,Point3d & ip2,Spheroid const & spheroid)328 inline bool planes_spheroid_intersection(Point3d const& o1, Point3d const& n1,
329 Point3d const& o2, Point3d const& n2,
330 Point3d & ip1, Point3d & ip2,
331 Spheroid const& spheroid)
332 {
333 typedef typename coordinate_type<Point3d>::type coord_t;
334
335 coord_t c0 = 0;
336 coord_t c1 = 1;
337
338 // Below
339 // n . (p - o) = 0
340 // n . p - n . o = 0
341 // n . p + d = 0
342 // n . p = h
343
344 // intersection direction
345 Point3d id = cross_product(n1, n2);
346
347 if (math::equals(dot_product(id, id), c0))
348 {
349 return false;
350 }
351
352 coord_t dot_n1_n2 = dot_product(n1, n2);
353 coord_t dot_n1_n2_sqr = math::sqr(dot_n1_n2);
354
355 coord_t h1 = dot_product(n1, o1);
356 coord_t h2 = dot_product(n2, o2);
357
358 coord_t denom = c1 - dot_n1_n2_sqr;
359 coord_t C1 = (h1 - h2 * dot_n1_n2) / denom;
360 coord_t C2 = (h2 - h1 * dot_n1_n2) / denom;
361
362 // C1 * n1 + C2 * n2
363 Point3d C1_n1 = n1;
364 multiply_value(C1_n1, C1);
365 Point3d C2_n2 = n2;
366 multiply_value(C2_n2, C2);
367 Point3d io = C1_n1;
368 add_point(io, C2_n2);
369
370 if (! projected_to_surface(io, id, ip1, ip2, spheroid))
371 {
372 return false;
373 }
374
375 return true;
376 }
377
378
379 template <typename Point3d, typename Spheroid>
experimental_elliptic_plane(Point3d const & p1,Point3d const & p2,Point3d & v1,Point3d & v2,Point3d & origin,Point3d & normal,Spheroid const & spheroid)380 inline void experimental_elliptic_plane(Point3d const& p1, Point3d const& p2,
381 Point3d & v1, Point3d & v2,
382 Point3d & origin, Point3d & normal,
383 Spheroid const& spheroid)
384 {
385 typedef typename coordinate_type<Point3d>::type coord_t;
386
387 Point3d xy1 = projected_to_xy(p1, spheroid);
388 Point3d xy2 = projected_to_xy(p2, spheroid);
389
390 // origin = (xy1 + xy2) / 2
391 origin = xy1;
392 add_point(origin, xy2);
393 multiply_value(origin, coord_t(0.5));
394
395 // v1 = p1 - origin
396 v1 = p1;
397 subtract_point(v1, origin);
398 // v2 = p2 - origin
399 v2 = p2;
400 subtract_point(v2, origin);
401
402 normal = cross_product(v1, v2);
403 }
404
405 template <typename Point3d, typename Spheroid>
experimental_elliptic_plane(Point3d const & p1,Point3d const & p2,Point3d & origin,Point3d & normal,Spheroid const & spheroid)406 inline void experimental_elliptic_plane(Point3d const& p1, Point3d const& p2,
407 Point3d & origin, Point3d & normal,
408 Spheroid const& spheroid)
409 {
410 Point3d v1, v2;
411 experimental_elliptic_plane(p1, p2, v1, v2, origin, normal, spheroid);
412 }
413
414 template <typename Point3d, typename Spheroid>
experimental_elliptic_intersection(Point3d const & a1,Point3d const & a2,Point3d const & b1,Point3d const & b2,Point3d & result,Spheroid const & spheroid)415 inline bool experimental_elliptic_intersection(Point3d const& a1, Point3d const& a2,
416 Point3d const& b1, Point3d const& b2,
417 Point3d & result,
418 Spheroid const& spheroid)
419 {
420 typedef typename coordinate_type<Point3d>::type coord_t;
421
422 coord_t c0 = 0;
423 coord_t c1 = 1;
424
425 Point3d a1v, a2v, o1, n1;
426 experimental_elliptic_plane(a1, a2, a1v, a2v, o1, n1, spheroid);
427 Point3d b1v, b2v, o2, n2;
428 experimental_elliptic_plane(b1, b2, b1v, b2v, o2, n2, spheroid);
429
430 if (! detail::vec_normalize(n1) || ! detail::vec_normalize(n2))
431 {
432 return false;
433 }
434
435 Point3d ip1_s, ip2_s;
436 if (! planes_spheroid_intersection(o1, n1, o2, n2, ip1_s, ip2_s, spheroid))
437 {
438 return false;
439 }
440
441 // NOTE: simplified test, may not work in all cases
442 coord_t dot_a1i1 = dot_product(a1, ip1_s);
443 coord_t dot_a2i1 = dot_product(a2, ip1_s);
444 coord_t gri1 = math::detail::greatest(dot_a1i1, dot_a2i1);
445 coord_t dot_a1i2 = dot_product(a1, ip2_s);
446 coord_t dot_a2i2 = dot_product(a2, ip2_s);
447 coord_t gri2 = math::detail::greatest(dot_a1i2, dot_a2i2);
448
449 result = gri1 >= gri2 ? ip1_s : ip2_s;
450
451 return true;
452 }
453
454 } // namespace formula
455
456 }} // namespace boost::geometry
457
458 #endif // BOOST_GEOMETRY_FORMULAS_GEOGRAPHIC_HPP
459