1 // Copyright John Maddock 2008.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 //
6 // Wrapper that works with mpfr_class defined in gmpfrxx.h
7 // See http://math.berkeley.edu/~wilken/code/gmpfrxx/
8 // Also requires the gmp and mpfr libraries.
9 //
10
11 #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP
12 #define BOOST_MATH_MPLFR_BINDINGS_HPP
13
14 #include <boost/config.hpp>
15 #include <boost/lexical_cast.hpp>
16
17 #ifdef BOOST_MSVC
18 //
19 // We get a lot of warnings from the gmp, mpfr and gmpfrxx headers,
20 // disable them here, so we only see warnings from *our* code:
21 //
22 #pragma warning(push)
23 #pragma warning(disable: 4127 4800 4512)
24 #endif
25
26 #include <gmpfrxx.h>
27
28 #ifdef BOOST_MSVC
29 #pragma warning(pop)
30 #endif
31
32 #include <boost/math/tools/precision.hpp>
33 #include <boost/math/tools/real_cast.hpp>
34 #include <boost/math/policies/policy.hpp>
35 #include <boost/math/distributions/fwd.hpp>
36 #include <boost/math/special_functions/math_fwd.hpp>
37 #include <boost/math/bindings/detail/big_digamma.hpp>
38 #include <boost/math/bindings/detail/big_lanczos.hpp>
39 #include <boost/math/tools/big_constant.hpp>
40
fabs(const mpfr_class & v)41 inline mpfr_class fabs(const mpfr_class& v)
42 {
43 return abs(v);
44 }
45 template <class T, class U>
fabs(const __gmp_expr<T,U> & v)46 inline mpfr_class fabs(const __gmp_expr<T,U>& v)
47 {
48 return abs(static_cast<mpfr_class>(v));
49 }
50
pow(const mpfr_class & b,const mpfr_class & e)51 inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e)
52 {
53 mpfr_class result;
54 mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);
55 return result;
56 }
57 /*
58 template <class T, class U, class V, class W>
59 inline mpfr_class pow(const __gmp_expr<T,U>& b, const __gmp_expr<V,W>& e)
60 {
61 return pow(static_cast<mpfr_class>(b), static_cast<mpfr_class>(e));
62 }
63 */
ldexp(const mpfr_class & v,int e)64 inline mpfr_class ldexp(const mpfr_class& v, int e)
65 {
66 //int e = mpfr_get_exp(*v.__get_mp());
67 mpfr_class result(v);
68 mpfr_set_exp(result.__get_mp(), e);
69 return result;
70 }
71 template <class T, class U>
ldexp(const __gmp_expr<T,U> & v,int e)72 inline mpfr_class ldexp(const __gmp_expr<T,U>& v, int e)
73 {
74 return ldexp(static_cast<mpfr_class>(v), e);
75 }
76
frexp(const mpfr_class & v,int * expon)77 inline mpfr_class frexp(const mpfr_class& v, int* expon)
78 {
79 int e = mpfr_get_exp(v.__get_mp());
80 mpfr_class result(v);
81 mpfr_set_exp(result.__get_mp(), 0);
82 *expon = e;
83 return result;
84 }
85 template <class T, class U>
frexp(const __gmp_expr<T,U> & v,int * expon)86 inline mpfr_class frexp(const __gmp_expr<T,U>& v, int* expon)
87 {
88 return frexp(static_cast<mpfr_class>(v), expon);
89 }
90
fmod(const mpfr_class & v1,const mpfr_class & v2)91 inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2)
92 {
93 mpfr_class n;
94 if(v1 < 0)
95 n = ceil(v1 / v2);
96 else
97 n = floor(v1 / v2);
98 return v1 - n * v2;
99 }
100 template <class T, class U, class V, class W>
fmod(const __gmp_expr<T,U> & v1,const __gmp_expr<V,W> & v2)101 inline mpfr_class fmod(const __gmp_expr<T,U>& v1, const __gmp_expr<V,W>& v2)
102 {
103 return fmod(static_cast<mpfr_class>(v1), static_cast<mpfr_class>(v2));
104 }
105
106 template <class Policy>
modf(const mpfr_class & v,long long * ipart,const Policy & pol)107 inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol)
108 {
109 *ipart = lltrunc(v, pol);
110 return v - boost::math::tools::real_cast<mpfr_class>(*ipart);
111 }
112 template <class T, class U, class Policy>
modf(const __gmp_expr<T,U> & v,long long * ipart,const Policy & pol)113 inline mpfr_class modf(const __gmp_expr<T,U>& v, long long* ipart, const Policy& pol)
114 {
115 return modf(static_cast<mpfr_class>(v), ipart, pol);
116 }
117
118 template <class Policy>
iround(mpfr_class const & x,const Policy &)119 inline int iround(mpfr_class const& x, const Policy&)
120 {
121 return boost::math::tools::real_cast<int>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
122 }
123 template <class T, class U, class Policy>
iround(__gmp_expr<T,U> const & x,const Policy & pol)124 inline int iround(__gmp_expr<T,U> const& x, const Policy& pol)
125 {
126 return iround(static_cast<mpfr_class>(x), pol);
127 }
128
129 template <class Policy>
lround(mpfr_class const & x,const Policy &)130 inline long lround(mpfr_class const& x, const Policy&)
131 {
132 return boost::math::tools::real_cast<long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
133 }
134 template <class T, class U, class Policy>
lround(__gmp_expr<T,U> const & x,const Policy & pol)135 inline long lround(__gmp_expr<T,U> const& x, const Policy& pol)
136 {
137 return lround(static_cast<mpfr_class>(x), pol);
138 }
139
140 template <class Policy>
llround(mpfr_class const & x,const Policy &)141 inline long long llround(mpfr_class const& x, const Policy&)
142 {
143 return boost::math::tools::real_cast<long long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
144 }
145 template <class T, class U, class Policy>
llround(__gmp_expr<T,U> const & x,const Policy & pol)146 inline long long llround(__gmp_expr<T,U> const& x, const Policy& pol)
147 {
148 return llround(static_cast<mpfr_class>(x), pol);
149 }
150
151 template <class Policy>
itrunc(mpfr_class const & x,const Policy &)152 inline int itrunc(mpfr_class const& x, const Policy&)
153 {
154 return boost::math::tools::real_cast<int>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
155 }
156 template <class T, class U, class Policy>
itrunc(__gmp_expr<T,U> const & x,const Policy & pol)157 inline int itrunc(__gmp_expr<T,U> const& x, const Policy& pol)
158 {
159 return itrunc(static_cast<mpfr_class>(x), pol);
160 }
161
162 template <class Policy>
ltrunc(mpfr_class const & x,const Policy &)163 inline long ltrunc(mpfr_class const& x, const Policy&)
164 {
165 return boost::math::tools::real_cast<long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
166 }
167 template <class T, class U, class Policy>
ltrunc(__gmp_expr<T,U> const & x,const Policy & pol)168 inline long ltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
169 {
170 return ltrunc(static_cast<mpfr_class>(x), pol);
171 }
172
173 template <class Policy>
lltrunc(mpfr_class const & x,const Policy &)174 inline long long lltrunc(mpfr_class const& x, const Policy&)
175 {
176 return boost::math::tools::real_cast<long long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
177 }
178 template <class T, class U, class Policy>
lltrunc(__gmp_expr<T,U> const & x,const Policy & pol)179 inline long long lltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
180 {
181 return lltrunc(static_cast<mpfr_class>(x), pol);
182 }
183
184 namespace boost{
185
186 #ifdef BOOST_MATH_USE_FLOAT128
187 template<> struct is_convertible<BOOST_MATH_FLOAT128_TYPE, mpfr_class> : public boost::integral_constant<bool, false>{};
188 #endif
189 template<> struct is_convertible<long long, mpfr_class> : public boost::integral_constant<bool, false>{};
190
191 namespace math{
192
193 #if defined(__GNUC__) && (__GNUC__ < 4)
194 using ::iround;
195 using ::lround;
196 using ::llround;
197 using ::itrunc;
198 using ::ltrunc;
199 using ::lltrunc;
200 using ::modf;
201 #endif
202
203 namespace lanczos{
204
205 struct mpfr_lanczos
206 {
lanczos_sumboost::math::lanczos::mpfr_lanczos207 static mpfr_class lanczos_sum(const mpfr_class& z)
208 {
209 unsigned long p = z.get_dprec();
210 if(p <= 72)
211 return lanczos13UDT::lanczos_sum(z);
212 else if(p <= 120)
213 return lanczos22UDT::lanczos_sum(z);
214 else if(p <= 170)
215 return lanczos31UDT::lanczos_sum(z);
216 else //if(p <= 370) approx 100 digit precision:
217 return lanczos61UDT::lanczos_sum(z);
218 }
lanczos_sum_expG_scaledboost::math::lanczos::mpfr_lanczos219 static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z)
220 {
221 unsigned long p = z.get_dprec();
222 if(p <= 72)
223 return lanczos13UDT::lanczos_sum_expG_scaled(z);
224 else if(p <= 120)
225 return lanczos22UDT::lanczos_sum_expG_scaled(z);
226 else if(p <= 170)
227 return lanczos31UDT::lanczos_sum_expG_scaled(z);
228 else //if(p <= 370) approx 100 digit precision:
229 return lanczos61UDT::lanczos_sum_expG_scaled(z);
230 }
lanczos_sum_near_1boost::math::lanczos::mpfr_lanczos231 static mpfr_class lanczos_sum_near_1(const mpfr_class& z)
232 {
233 unsigned long p = z.get_dprec();
234 if(p <= 72)
235 return lanczos13UDT::lanczos_sum_near_1(z);
236 else if(p <= 120)
237 return lanczos22UDT::lanczos_sum_near_1(z);
238 else if(p <= 170)
239 return lanczos31UDT::lanczos_sum_near_1(z);
240 else //if(p <= 370) approx 100 digit precision:
241 return lanczos61UDT::lanczos_sum_near_1(z);
242 }
lanczos_sum_near_2boost::math::lanczos::mpfr_lanczos243 static mpfr_class lanczos_sum_near_2(const mpfr_class& z)
244 {
245 unsigned long p = z.get_dprec();
246 if(p <= 72)
247 return lanczos13UDT::lanczos_sum_near_2(z);
248 else if(p <= 120)
249 return lanczos22UDT::lanczos_sum_near_2(z);
250 else if(p <= 170)
251 return lanczos31UDT::lanczos_sum_near_2(z);
252 else //if(p <= 370) approx 100 digit precision:
253 return lanczos61UDT::lanczos_sum_near_2(z);
254 }
gboost::math::lanczos::mpfr_lanczos255 static mpfr_class g()
256 {
257 unsigned long p = mpfr_class::get_dprec();
258 if(p <= 72)
259 return lanczos13UDT::g();
260 else if(p <= 120)
261 return lanczos22UDT::g();
262 else if(p <= 170)
263 return lanczos31UDT::g();
264 else //if(p <= 370) approx 100 digit precision:
265 return lanczos61UDT::g();
266 }
267 };
268
269 template<class Policy>
270 struct lanczos<mpfr_class, Policy>
271 {
272 typedef mpfr_lanczos type;
273 };
274
275 } // namespace lanczos
276
277 namespace constants{
278
279 template <class Real, class Policy>
280 struct construction_traits;
281
282 template <class Policy>
283 struct construction_traits<mpfr_class, Policy>
284 {
285 typedef boost::integral_constant<int, 0> type;
286 };
287
288 }
289
290 namespace tools
291 {
292
293 template <class T, class U>
294 struct promote_arg<__gmp_expr<T,U> >
295 { // If T is integral type, then promote to double.
296 typedef mpfr_class type;
297 };
298
299 template<>
digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (mpfr_class))300 inline int digits<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) BOOST_NOEXCEPT
301 {
302 return mpfr_class::get_dprec();
303 }
304
305 namespace detail{
306
307 template<class I>
convert_to_long_result(mpfr_class const & r,I & result)308 void convert_to_long_result(mpfr_class const& r, I& result)
309 {
310 result = 0;
311 I last_result(0);
312 mpfr_class t(r);
313 double term;
314 do
315 {
316 term = real_cast<double>(t);
317 last_result = result;
318 result += static_cast<I>(term);
319 t -= term;
320 }while(result != last_result);
321 }
322
323 }
324
325 template <>
real_cast(long long t)326 inline mpfr_class real_cast<mpfr_class, long long>(long long t)
327 {
328 mpfr_class result;
329 int expon = 0;
330 int sign = 1;
331 if(t < 0)
332 {
333 sign = -1;
334 t = -t;
335 }
336 while(t)
337 {
338 result += ldexp((double)(t & 0xffffL), expon);
339 expon += 32;
340 t >>= 32;
341 }
342 return result * sign;
343 }
344 template <>
real_cast(mpfr_class t)345 inline unsigned real_cast<unsigned, mpfr_class>(mpfr_class t)
346 {
347 return t.get_ui();
348 }
349 template <>
real_cast(mpfr_class t)350 inline int real_cast<int, mpfr_class>(mpfr_class t)
351 {
352 return t.get_si();
353 }
354 template <>
real_cast(mpfr_class t)355 inline double real_cast<double, mpfr_class>(mpfr_class t)
356 {
357 return t.get_d();
358 }
359 template <>
real_cast(mpfr_class t)360 inline float real_cast<float, mpfr_class>(mpfr_class t)
361 {
362 return static_cast<float>(t.get_d());
363 }
364 template <>
real_cast(mpfr_class t)365 inline long real_cast<long, mpfr_class>(mpfr_class t)
366 {
367 long result;
368 detail::convert_to_long_result(t, result);
369 return result;
370 }
371 template <>
real_cast(mpfr_class t)372 inline long long real_cast<long long, mpfr_class>(mpfr_class t)
373 {
374 long long result;
375 detail::convert_to_long_result(t, result);
376 return result;
377 }
378
379 template <>
max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (mpfr_class))380 inline mpfr_class max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
381 {
382 static bool has_init = false;
383 static mpfr_class val;
384 if(!has_init)
385 {
386 val = 0.5;
387 mpfr_set_exp(val.__get_mp(), mpfr_get_emax());
388 has_init = true;
389 }
390 return val;
391 }
392
393 template <>
min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (mpfr_class))394 inline mpfr_class min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
395 {
396 static bool has_init = false;
397 static mpfr_class val;
398 if(!has_init)
399 {
400 val = 0.5;
401 mpfr_set_exp(val.__get_mp(), mpfr_get_emin());
402 has_init = true;
403 }
404 return val;
405 }
406
407 template <>
log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (mpfr_class))408 inline mpfr_class log_max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
409 {
410 static bool has_init = false;
411 static mpfr_class val = max_value<mpfr_class>();
412 if(!has_init)
413 {
414 val = log(val);
415 has_init = true;
416 }
417 return val;
418 }
419
420 template <>
log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (mpfr_class))421 inline mpfr_class log_min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
422 {
423 static bool has_init = false;
424 static mpfr_class val = max_value<mpfr_class>();
425 if(!has_init)
426 {
427 val = log(val);
428 has_init = true;
429 }
430 return val;
431 }
432
433 template <>
epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (mpfr_class))434 inline mpfr_class epsilon<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
435 {
436 return ldexp(mpfr_class(1), 1-boost::math::policies::digits<mpfr_class, boost::math::policies::policy<> >());
437 }
438
439 } // namespace tools
440
441 namespace policies{
442
443 template <class T, class U, class Policy>
444 struct evaluation<__gmp_expr<T, U>, Policy>
445 {
446 typedef mpfr_class type;
447 };
448
449 }
450
451 template <class Policy>
skewness(const extreme_value_distribution<mpfr_class,Policy> &)452 inline mpfr_class skewness(const extreme_value_distribution<mpfr_class, Policy>& /*dist*/)
453 {
454 //
455 // This is 12 * sqrt(6) * zeta(3) / pi^3:
456 // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
457 //
458 return boost::lexical_cast<mpfr_class>("1.1395470994046486574927930193898461120875997958366");
459 }
460
461 template <class Policy>
skewness(const rayleigh_distribution<mpfr_class,Policy> &)462 inline mpfr_class skewness(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
463 {
464 // using namespace boost::math::constants;
465 return boost::lexical_cast<mpfr_class>("0.63111065781893713819189935154422777984404221106391");
466 // Computed using NTL at 150 bit, about 50 decimal digits.
467 // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
468 }
469
470 template <class Policy>
kurtosis(const rayleigh_distribution<mpfr_class,Policy> &)471 inline mpfr_class kurtosis(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
472 {
473 // using namespace boost::math::constants;
474 return boost::lexical_cast<mpfr_class>("3.2450893006876380628486604106197544154170667057995");
475 // Computed using NTL at 150 bit, about 50 decimal digits.
476 // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
477 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
478 }
479
480 template <class Policy>
kurtosis_excess(const rayleigh_distribution<mpfr_class,Policy> &)481 inline mpfr_class kurtosis_excess(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
482 {
483 //using namespace boost::math::constants;
484 // Computed using NTL at 150 bit, about 50 decimal digits.
485 return boost::lexical_cast<mpfr_class>("0.2450893006876380628486604106197544154170667057995");
486 // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
487 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
488 } // kurtosis
489
490 namespace detail{
491
492 //
493 // Version of Digamma accurate to ~100 decimal digits.
494 //
495 template <class Policy>
digamma_imp(mpfr_class x,const boost::integral_constant<int,0> *,const Policy & pol)496 mpfr_class digamma_imp(mpfr_class x, const boost::integral_constant<int, 0>* , const Policy& pol)
497 {
498 //
499 // This handles reflection of negative arguments, and all our
500 // empfr_classor handling, then forwards to the T-specific approximation.
501 //
502 BOOST_MATH_STD_USING // ADL of std functions.
503
504 mpfr_class result = 0;
505 //
506 // Check for negative arguments and use reflection:
507 //
508 if(x < 0)
509 {
510 // Reflect:
511 x = 1 - x;
512 // Argument reduction for tan:
513 mpfr_class remainder = x - floor(x);
514 // Shift to negative if > 0.5:
515 if(remainder > 0.5)
516 {
517 remainder -= 1;
518 }
519 //
520 // check for evaluation at a negative pole:
521 //
522 if(remainder == 0)
523 {
524 return policies::raise_pole_error<mpfr_class>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
525 }
526 result = constants::pi<mpfr_class>() / tan(constants::pi<mpfr_class>() * remainder);
527 }
528 result += big_digamma(x);
529 return result;
530 }
531 //
532 // Specialisations of this function provides the initial
533 // starting guess for Halley iteration:
534 //
535 template <class Policy>
erf_inv_imp(const mpfr_class & p,const mpfr_class & q,const Policy &,const boost::integral_constant<int,64> *)536 inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const boost::integral_constant<int, 64>*)
537 {
538 BOOST_MATH_STD_USING // for ADL of std names.
539
540 mpfr_class result = 0;
541
542 if(p <= 0.5)
543 {
544 //
545 // Evaluate inverse erf using the rational approximation:
546 //
547 // x = p(p+10)(Y+R(p))
548 //
549 // Where Y is a constant, and R(p) is optimised for a low
550 // absolute empfr_classor compared to |Y|.
551 //
552 // double: Max empfr_classor found: 2.001849e-18
553 // long double: Max empfr_classor found: 1.017064e-20
554 // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21
555 //
556 static const float Y = 0.0891314744949340820313f;
557 static const mpfr_class P[] = {
558 -0.000508781949658280665617,
559 -0.00836874819741736770379,
560 0.0334806625409744615033,
561 -0.0126926147662974029034,
562 -0.0365637971411762664006,
563 0.0219878681111168899165,
564 0.00822687874676915743155,
565 -0.00538772965071242932965
566 };
567 static const mpfr_class Q[] = {
568 1,
569 -0.970005043303290640362,
570 -1.56574558234175846809,
571 1.56221558398423026363,
572 0.662328840472002992063,
573 -0.71228902341542847553,
574 -0.0527396382340099713954,
575 0.0795283687341571680018,
576 -0.00233393759374190016776,
577 0.000886216390456424707504
578 };
579 mpfr_class g = p * (p + 10);
580 mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
581 result = g * Y + g * r;
582 }
583 else if(q >= 0.25)
584 {
585 //
586 // Rational approximation for 0.5 > q >= 0.25
587 //
588 // x = sqrt(-2*log(q)) / (Y + R(q))
589 //
590 // Where Y is a constant, and R(q) is optimised for a low
591 // absolute empfr_classor compared to Y.
592 //
593 // double : Max empfr_classor found: 7.403372e-17
594 // long double : Max empfr_classor found: 6.084616e-20
595 // Maximum Deviation Found (empfr_classor term) 4.811e-20
596 //
597 static const float Y = 2.249481201171875f;
598 static const mpfr_class P[] = {
599 -0.202433508355938759655,
600 0.105264680699391713268,
601 8.37050328343119927838,
602 17.6447298408374015486,
603 -18.8510648058714251895,
604 -44.6382324441786960818,
605 17.445385985570866523,
606 21.1294655448340526258,
607 -3.67192254707729348546
608 };
609 static const mpfr_class Q[] = {
610 1,
611 6.24264124854247537712,
612 3.9713437953343869095,
613 -28.6608180499800029974,
614 -20.1432634680485188801,
615 48.5609213108739935468,
616 10.8268667355460159008,
617 -22.6436933413139721736,
618 1.72114765761200282724
619 };
620 mpfr_class g = sqrt(-2 * log(q));
621 mpfr_class xs = q - 0.25;
622 mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
623 result = g / (Y + r);
624 }
625 else
626 {
627 //
628 // For q < 0.25 we have a series of rational approximations all
629 // of the general form:
630 //
631 // let: x = sqrt(-log(q))
632 //
633 // Then the result is given by:
634 //
635 // x(Y+R(x-B))
636 //
637 // where Y is a constant, B is the lowest value of x for which
638 // the approximation is valid, and R(x-B) is optimised for a low
639 // absolute empfr_classor compared to Y.
640 //
641 // Note that almost all code will really go through the first
642 // or maybe second approximation. After than we're dealing with very
643 // small input values indeed: 80 and 128 bit long double's go all the
644 // way down to ~ 1e-5000 so the "tail" is rather long...
645 //
646 mpfr_class x = sqrt(-log(q));
647 if(x < 3)
648 {
649 // Max empfr_classor found: 1.089051e-20
650 static const float Y = 0.807220458984375f;
651 static const mpfr_class P[] = {
652 -0.131102781679951906451,
653 -0.163794047193317060787,
654 0.117030156341995252019,
655 0.387079738972604337464,
656 0.337785538912035898924,
657 0.142869534408157156766,
658 0.0290157910005329060432,
659 0.00214558995388805277169,
660 -0.679465575181126350155e-6,
661 0.285225331782217055858e-7,
662 -0.681149956853776992068e-9
663 };
664 static const mpfr_class Q[] = {
665 1,
666 3.46625407242567245975,
667 5.38168345707006855425,
668 4.77846592945843778382,
669 2.59301921623620271374,
670 0.848854343457902036425,
671 0.152264338295331783612,
672 0.01105924229346489121
673 };
674 mpfr_class xs = x - 1.125;
675 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
676 result = Y * x + R * x;
677 }
678 else if(x < 6)
679 {
680 // Max empfr_classor found: 8.389174e-21
681 static const float Y = 0.93995571136474609375f;
682 static const mpfr_class P[] = {
683 -0.0350353787183177984712,
684 -0.00222426529213447927281,
685 0.0185573306514231072324,
686 0.00950804701325919603619,
687 0.00187123492819559223345,
688 0.000157544617424960554631,
689 0.460469890584317994083e-5,
690 -0.230404776911882601748e-9,
691 0.266339227425782031962e-11
692 };
693 static const mpfr_class Q[] = {
694 1,
695 1.3653349817554063097,
696 0.762059164553623404043,
697 0.220091105764131249824,
698 0.0341589143670947727934,
699 0.00263861676657015992959,
700 0.764675292302794483503e-4
701 };
702 mpfr_class xs = x - 3;
703 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
704 result = Y * x + R * x;
705 }
706 else if(x < 18)
707 {
708 // Max empfr_classor found: 1.481312e-19
709 static const float Y = 0.98362827301025390625f;
710 static const mpfr_class P[] = {
711 -0.0167431005076633737133,
712 -0.00112951438745580278863,
713 0.00105628862152492910091,
714 0.000209386317487588078668,
715 0.149624783758342370182e-4,
716 0.449696789927706453732e-6,
717 0.462596163522878599135e-8,
718 -0.281128735628831791805e-13,
719 0.99055709973310326855e-16
720 };
721 static const mpfr_class Q[] = {
722 1,
723 0.591429344886417493481,
724 0.138151865749083321638,
725 0.0160746087093676504695,
726 0.000964011807005165528527,
727 0.275335474764726041141e-4,
728 0.282243172016108031869e-6
729 };
730 mpfr_class xs = x - 6;
731 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
732 result = Y * x + R * x;
733 }
734 else if(x < 44)
735 {
736 // Max empfr_classor found: 5.697761e-20
737 static const float Y = 0.99714565277099609375f;
738 static const mpfr_class P[] = {
739 -0.0024978212791898131227,
740 -0.779190719229053954292e-5,
741 0.254723037413027451751e-4,
742 0.162397777342510920873e-5,
743 0.396341011304801168516e-7,
744 0.411632831190944208473e-9,
745 0.145596286718675035587e-11,
746 -0.116765012397184275695e-17
747 };
748 static const mpfr_class Q[] = {
749 1,
750 0.207123112214422517181,
751 0.0169410838120975906478,
752 0.000690538265622684595676,
753 0.145007359818232637924e-4,
754 0.144437756628144157666e-6,
755 0.509761276599778486139e-9
756 };
757 mpfr_class xs = x - 18;
758 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
759 result = Y * x + R * x;
760 }
761 else
762 {
763 // Max empfr_classor found: 1.279746e-20
764 static const float Y = 0.99941349029541015625f;
765 static const mpfr_class P[] = {
766 -0.000539042911019078575891,
767 -0.28398759004727721098e-6,
768 0.899465114892291446442e-6,
769 0.229345859265920864296e-7,
770 0.225561444863500149219e-9,
771 0.947846627503022684216e-12,
772 0.135880130108924861008e-14,
773 -0.348890393399948882918e-21
774 };
775 static const mpfr_class Q[] = {
776 1,
777 0.0845746234001899436914,
778 0.00282092984726264681981,
779 0.468292921940894236786e-4,
780 0.399968812193862100054e-6,
781 0.161809290887904476097e-8,
782 0.231558608310259605225e-11
783 };
784 mpfr_class xs = x - 44;
785 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
786 result = Y * x + R * x;
787 }
788 }
789 return result;
790 }
791
bessel_i0(mpfr_class x)792 inline mpfr_class bessel_i0(mpfr_class x)
793 {
794 static const mpfr_class P1[] = {
795 boost::lexical_cast<mpfr_class>("-2.2335582639474375249e+15"),
796 boost::lexical_cast<mpfr_class>("-5.5050369673018427753e+14"),
797 boost::lexical_cast<mpfr_class>("-3.2940087627407749166e+13"),
798 boost::lexical_cast<mpfr_class>("-8.4925101247114157499e+11"),
799 boost::lexical_cast<mpfr_class>("-1.1912746104985237192e+10"),
800 boost::lexical_cast<mpfr_class>("-1.0313066708737980747e+08"),
801 boost::lexical_cast<mpfr_class>("-5.9545626019847898221e+05"),
802 boost::lexical_cast<mpfr_class>("-2.4125195876041896775e+03"),
803 boost::lexical_cast<mpfr_class>("-7.0935347449210549190e+00"),
804 boost::lexical_cast<mpfr_class>("-1.5453977791786851041e-02"),
805 boost::lexical_cast<mpfr_class>("-2.5172644670688975051e-05"),
806 boost::lexical_cast<mpfr_class>("-3.0517226450451067446e-08"),
807 boost::lexical_cast<mpfr_class>("-2.6843448573468483278e-11"),
808 boost::lexical_cast<mpfr_class>("-1.5982226675653184646e-14"),
809 boost::lexical_cast<mpfr_class>("-5.2487866627945699800e-18"),
810 };
811 static const mpfr_class Q1[] = {
812 boost::lexical_cast<mpfr_class>("-2.2335582639474375245e+15"),
813 boost::lexical_cast<mpfr_class>("7.8858692566751002988e+12"),
814 boost::lexical_cast<mpfr_class>("-1.2207067397808979846e+10"),
815 boost::lexical_cast<mpfr_class>("1.0377081058062166144e+07"),
816 boost::lexical_cast<mpfr_class>("-4.8527560179962773045e+03"),
817 boost::lexical_cast<mpfr_class>("1.0"),
818 };
819 static const mpfr_class P2[] = {
820 boost::lexical_cast<mpfr_class>("-2.2210262233306573296e-04"),
821 boost::lexical_cast<mpfr_class>("1.3067392038106924055e-02"),
822 boost::lexical_cast<mpfr_class>("-4.4700805721174453923e-01"),
823 boost::lexical_cast<mpfr_class>("5.5674518371240761397e+00"),
824 boost::lexical_cast<mpfr_class>("-2.3517945679239481621e+01"),
825 boost::lexical_cast<mpfr_class>("3.1611322818701131207e+01"),
826 boost::lexical_cast<mpfr_class>("-9.6090021968656180000e+00"),
827 };
828 static const mpfr_class Q2[] = {
829 boost::lexical_cast<mpfr_class>("-5.5194330231005480228e-04"),
830 boost::lexical_cast<mpfr_class>("3.2547697594819615062e-02"),
831 boost::lexical_cast<mpfr_class>("-1.1151759188741312645e+00"),
832 boost::lexical_cast<mpfr_class>("1.3982595353892851542e+01"),
833 boost::lexical_cast<mpfr_class>("-6.0228002066743340583e+01"),
834 boost::lexical_cast<mpfr_class>("8.5539563258012929600e+01"),
835 boost::lexical_cast<mpfr_class>("-3.1446690275135491500e+01"),
836 boost::lexical_cast<mpfr_class>("1.0"),
837 };
838 mpfr_class value, factor, r;
839
840 BOOST_MATH_STD_USING
841 using namespace boost::math::tools;
842
843 if (x < 0)
844 {
845 x = -x; // even function
846 }
847 if (x == 0)
848 {
849 return static_cast<mpfr_class>(1);
850 }
851 if (x <= 15) // x in (0, 15]
852 {
853 mpfr_class y = x * x;
854 value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
855 }
856 else // x in (15, \infty)
857 {
858 mpfr_class y = 1 / x - mpfr_class(1) / 15;
859 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
860 factor = exp(x) / sqrt(x);
861 value = factor * r;
862 }
863
864 return value;
865 }
866
bessel_i1(mpfr_class x)867 inline mpfr_class bessel_i1(mpfr_class x)
868 {
869 static const mpfr_class P1[] = {
870 static_cast<mpfr_class>("-1.4577180278143463643e+15"),
871 static_cast<mpfr_class>("-1.7732037840791591320e+14"),
872 static_cast<mpfr_class>("-6.9876779648010090070e+12"),
873 static_cast<mpfr_class>("-1.3357437682275493024e+11"),
874 static_cast<mpfr_class>("-1.4828267606612366099e+09"),
875 static_cast<mpfr_class>("-1.0588550724769347106e+07"),
876 static_cast<mpfr_class>("-5.1894091982308017540e+04"),
877 static_cast<mpfr_class>("-1.8225946631657315931e+02"),
878 static_cast<mpfr_class>("-4.7207090827310162436e-01"),
879 static_cast<mpfr_class>("-9.1746443287817501309e-04"),
880 static_cast<mpfr_class>("-1.3466829827635152875e-06"),
881 static_cast<mpfr_class>("-1.4831904935994647675e-09"),
882 static_cast<mpfr_class>("-1.1928788903603238754e-12"),
883 static_cast<mpfr_class>("-6.5245515583151902910e-16"),
884 static_cast<mpfr_class>("-1.9705291802535139930e-19"),
885 };
886 static const mpfr_class Q1[] = {
887 static_cast<mpfr_class>("-2.9154360556286927285e+15"),
888 static_cast<mpfr_class>("9.7887501377547640438e+12"),
889 static_cast<mpfr_class>("-1.4386907088588283434e+10"),
890 static_cast<mpfr_class>("1.1594225856856884006e+07"),
891 static_cast<mpfr_class>("-5.1326864679904189920e+03"),
892 static_cast<mpfr_class>("1.0"),
893 };
894 static const mpfr_class P2[] = {
895 static_cast<mpfr_class>("1.4582087408985668208e-05"),
896 static_cast<mpfr_class>("-8.9359825138577646443e-04"),
897 static_cast<mpfr_class>("2.9204895411257790122e-02"),
898 static_cast<mpfr_class>("-3.4198728018058047439e-01"),
899 static_cast<mpfr_class>("1.3960118277609544334e+00"),
900 static_cast<mpfr_class>("-1.9746376087200685843e+00"),
901 static_cast<mpfr_class>("8.5591872901933459000e-01"),
902 static_cast<mpfr_class>("-6.0437159056137599999e-02"),
903 };
904 static const mpfr_class Q2[] = {
905 static_cast<mpfr_class>("3.7510433111922824643e-05"),
906 static_cast<mpfr_class>("-2.2835624489492512649e-03"),
907 static_cast<mpfr_class>("7.4212010813186530069e-02"),
908 static_cast<mpfr_class>("-8.5017476463217924408e-01"),
909 static_cast<mpfr_class>("3.2593714889036996297e+00"),
910 static_cast<mpfr_class>("-3.8806586721556593450e+00"),
911 static_cast<mpfr_class>("1.0"),
912 };
913 mpfr_class value, factor, r, w;
914
915 BOOST_MATH_STD_USING
916 using namespace boost::math::tools;
917
918 w = abs(x);
919 if (x == 0)
920 {
921 return static_cast<mpfr_class>(0);
922 }
923 if (w <= 15) // w in (0, 15]
924 {
925 mpfr_class y = x * x;
926 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
927 factor = w;
928 value = factor * r;
929 }
930 else // w in (15, \infty)
931 {
932 mpfr_class y = 1 / w - mpfr_class(1) / 15;
933 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
934 factor = exp(w) / sqrt(w);
935 value = factor * r;
936 }
937
938 if (x < 0)
939 {
940 value *= -value; // odd function
941 }
942 return value;
943 }
944
945 } // namespace detail
946
947 }
948
949 template<> struct is_convertible<long double, mpfr_class> : public boost::false_type{};
950
951 }
952
953 #endif // BOOST_MATH_MPLFR_BINDINGS_HPP
954
955