• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // composed_5.cpp
3 // ~~~~~~~~~~~~~~
4 //
5 // Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com)
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See accompanying
8 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9 //
10 
11 #include <boost/asio/io_context.hpp>
12 #include <boost/asio/ip/tcp.hpp>
13 #include <boost/asio/use_future.hpp>
14 #include <boost/asio/write.hpp>
15 #include <functional>
16 #include <iostream>
17 #include <memory>
18 #include <sstream>
19 #include <string>
20 #include <type_traits>
21 #include <utility>
22 
23 using boost::asio::ip::tcp;
24 
25 // NOTE: This example requires the new boost::asio::async_initiate function. For
26 // an example that works with the Networking TS style of completion tokens,
27 // please see an older version of asio.
28 
29 //------------------------------------------------------------------------------
30 
31 // This composed operation automatically serialises a message, using its I/O
32 // streams insertion operator, before sending it on the socket. To do this, it
33 // must allocate a buffer for the encoded message and ensure this buffer's
34 // validity until the underlying async_write operation completes.
35 
36 template <typename T, typename CompletionToken>
async_write_message(tcp::socket & socket,const T & message,CompletionToken && token)37 auto async_write_message(tcp::socket& socket,
38     const T& message, CompletionToken&& token)
39   // The return type of the initiating function is deduced from the combination
40   // of CompletionToken type and the completion handler's signature. When the
41   // completion token is a simple callback, the return type is always void.
42   // In this example, when the completion token is boost::asio::yield_context
43   // (used for stackful coroutines) the return type would be also be void, as
44   // there is no non-error argument to the completion handler. When the
45   // completion token is boost::asio::use_future it would be std::future<void>.
46   //
47   // In C++14 we can omit the return type as it is automatically deduced from
48   // the return type of boost::asio::async_initiate.
49 {
50   // In addition to determining the mechanism by which an asynchronous
51   // operation delivers its result, a completion token also determines the time
52   // when the operation commences. For example, when the completion token is a
53   // simple callback the operation commences before the initiating function
54   // returns. However, if the completion token's delivery mechanism uses a
55   // future, we might instead want to defer initiation of the operation until
56   // the returned future object is waited upon.
57   //
58   // To enable this, when implementing an asynchronous operation we must
59   // package the initiation step as a function object. The initiation function
60   // object's call operator is passed the concrete completion handler produced
61   // by the completion token. This completion handler matches the asynchronous
62   // operation's completion handler signature, which in this example is:
63   //
64   //   void(boost::system::error_code error)
65   //
66   // The initiation function object also receives any additional arguments
67   // required to start the operation. (Note: We could have instead passed these
68   // arguments in the lambda capture set. However, we should prefer to
69   // propagate them as function call arguments as this allows the completion
70   // token to optimise how they are passed. For example, a lazy future which
71   // defers initiation would need to make a decay-copy of the arguments, but
72   // when using a simple callback the arguments can be trivially forwarded
73   // straight through.)
74   auto initiation = [](auto&& completion_handler,
75       tcp::socket& socket, std::unique_ptr<std::string> encoded_message)
76   {
77     // In this example, the composed operation's intermediate completion
78     // handler is implemented as a hand-crafted function object, rather than
79     // using a lambda or std::bind.
80     struct intermediate_completion_handler
81     {
82       // The intermediate completion handler holds a reference to the socket so
83       // that it can obtain the I/O executor (see get_executor below).
84       tcp::socket& socket_;
85 
86       // The allocated buffer for the encoded message. The std::unique_ptr
87       // smart pointer is move-only, and as a consequence our intermediate
88       // completion handler is also move-only.
89       std::unique_ptr<std::string> encoded_message_;
90 
91       // The user-supplied completion handler.
92       typename std::decay<decltype(completion_handler)>::type handler_;
93 
94       // The function call operator matches the completion signature of the
95       // async_write operation.
96       void operator()(const boost::system::error_code& error, std::size_t /*n*/)
97       {
98         // Deallocate the encoded message before calling the user-supplied
99         // completion handler.
100         encoded_message_.reset();
101 
102         // Call the user-supplied handler with the result of the operation.
103         // The arguments must match the completion signature of our composed
104         // operation.
105         handler_(error);
106       }
107 
108       // It is essential to the correctness of our composed operation that we
109       // preserve the executor of the user-supplied completion handler. With a
110       // hand-crafted function object we can do this by defining a nested type
111       // executor_type and member function get_executor. These obtain the
112       // completion handler's associated executor, and default to the I/O
113       // executor - in this case the executor of the socket - if the completion
114       // handler does not have its own.
115       using executor_type = boost::asio::associated_executor_t<
116           typename std::decay<decltype(completion_handler)>::type,
117           tcp::socket::executor_type>;
118 
119       executor_type get_executor() const noexcept
120       {
121         return boost::asio::get_associated_executor(
122             handler_, socket_.get_executor());
123       }
124 
125       // Although not necessary for correctness, we may also preserve the
126       // allocator of the user-supplied completion handler. This is achieved by
127       // defining a nested type allocator_type and member function
128       // get_allocator. These obtain the completion handler's associated
129       // allocator, and default to std::allocator<void> if the completion
130       // handler does not have its own.
131       using allocator_type = boost::asio::associated_allocator_t<
132           typename std::decay<decltype(completion_handler)>::type,
133           std::allocator<void>>;
134 
135       allocator_type get_allocator() const noexcept
136       {
137         return boost::asio::get_associated_allocator(
138             handler_, std::allocator<void>{});
139       }
140     };
141 
142     // Initiate the underlying async_write operation using our intermediate
143     // completion handler.
144     auto encoded_message_buffer = boost::asio::buffer(*encoded_message);
145     boost::asio::async_write(socket, encoded_message_buffer,
146         intermediate_completion_handler{socket, std::move(encoded_message),
147           std::forward<decltype(completion_handler)>(completion_handler)});
148   };
149 
150   // Encode the message and copy it into an allocated buffer. The buffer will
151   // be maintained for the lifetime of the asynchronous operation.
152   std::ostringstream os;
153   os << message;
154   std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
155 
156   // The boost::asio::async_initiate function takes:
157   //
158   // - our initiation function object,
159   // - the completion token,
160   // - the completion handler signature, and
161   // - any additional arguments we need to initiate the operation.
162   //
163   // It then asks the completion token to create a completion handler (i.e. a
164   // callback) with the specified signature, and invoke the initiation function
165   // object with this completion handler as well as the additional arguments.
166   // The return value of async_initiate is the result of our operation's
167   // initiating function.
168   //
169   // Note that we wrap non-const reference arguments in std::reference_wrapper
170   // to prevent incorrect decay-copies of these objects.
171   return boost::asio::async_initiate<
172     CompletionToken, void(boost::system::error_code)>(
173       initiation, token, std::ref(socket),
174       std::move(encoded_message));
175 }
176 
177 //------------------------------------------------------------------------------
178 
test_callback()179 void test_callback()
180 {
181   boost::asio::io_context io_context;
182 
183   tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
184   tcp::socket socket = acceptor.accept();
185 
186   // Test our asynchronous operation using a lambda as a callback.
187   async_write_message(socket, 123456,
188       [](const boost::system::error_code& error)
189       {
190         if (!error)
191         {
192           std::cout << "Message sent\n";
193         }
194         else
195         {
196           std::cout << "Error: " << error.message() << "\n";
197         }
198       });
199 
200   io_context.run();
201 }
202 
203 //------------------------------------------------------------------------------
204 
test_future()205 void test_future()
206 {
207   boost::asio::io_context io_context;
208 
209   tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
210   tcp::socket socket = acceptor.accept();
211 
212   // Test our asynchronous operation using the use_future completion token.
213   // This token causes the operation's initiating function to return a future,
214   // which may be used to synchronously wait for the result of the operation.
215   std::future<void> f = async_write_message(
216       socket, 654.321, boost::asio::use_future);
217 
218   io_context.run();
219 
220   try
221   {
222     // Get the result of the operation.
223     f.get();
224     std::cout << "Message sent\n";
225   }
226   catch (const std::exception& e)
227   {
228     std::cout << "Exception: " << e.what() << "\n";
229   }
230 }
231 
232 //------------------------------------------------------------------------------
233 
main()234 int main()
235 {
236   test_callback();
237   test_future();
238 }
239