• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
2<html>
3<head>
4<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
5<title>Appendices</title>
6<link rel="stylesheet" href="../../../doc/src/boostbook.css" type="text/css">
7<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
8<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
9<link rel="up" href="../proto.html" title="Chapter 32. Boost.Proto">
10<link rel="prev" href="../Transform.html" title="Concept Transform">
11<link rel="next" href="../boost_random.html" title="Chapter 33. Boost.Random">
12</head>
13<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
14<table cellpadding="2" width="100%"><tr>
15<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
16<td align="center"><a href="../../../index.html">Home</a></td>
17<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
18<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
19<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
20<td align="center"><a href="../../../more/index.htm">More</a></td>
21</tr></table>
22<hr>
23<div class="spirit-nav">
24<a accesskey="p" href="../Transform.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../boost_random.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
25</div>
26<div class="section">
27<div class="titlepage"><div><div><h2 class="title" style="clear: both">
28<a name="proto.appendices"></a><a class="link" href="appendices.html" title="Appendices">Appendices</a>
29</h2></div></div></div>
30<div class="toc"><dl class="toc">
31<dt><span class="section"><a href="appendices.html#boost_proto.appendices.release_notes">Appendix A: Release
32      Notes</a></span></dt>
33<dt><span class="section"><a href="appendices.html#boost_proto.appendices.history">Appendix B: History</a></span></dt>
34<dt><span class="section"><a href="appendices.html#boost_proto.appendices.rationale">Appendix C: Rationale</a></span></dt>
35<dt><span class="section"><a href="appendices.html#boost_proto.appendices.implementation">Appendix D: Implementation
36      Notes</a></span></dt>
37<dt><span class="section"><a href="appendices.html#boost_proto.appendices.acknowledgements">Appendix E:
38      Acknowledgements</a></span></dt>
39</dl></div>
40<div class="section">
41<div class="titlepage"><div><div><h3 class="title">
42<a name="boost_proto.appendices.release_notes"></a><a class="link" href="appendices.html#boost_proto.appendices.release_notes" title="Appendix A: Release Notes">Appendix A: Release
43      Notes</a>
44</h3></div></div></div>
45<h5>
46<a name="boost_proto.appendices.release_notes.h0"></a>
47        <span class="phrase"><a name="boost_proto.appendices.release_notes.boost_1_51"></a></span><a class="link" href="appendices.html#boost_proto.appendices.release_notes.boost_1_51">Boost
48        1.51</a>
49      </h5>
50<p>
51        <span class="bold"><strong>Unpacking Expressions</strong></span>
52      </p>
53<p>
54        In Boost 1.51, Proto got simple unpacking patterns. When working with Proto
55        transforms, unpacking expressions are useful for unpacking the children of
56        an expression into a function call or an object constructor, while optionally
57        applying some transformations to each child in turn.
58      </p>
59<p>
60        See the <a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.unpacking_expressions" title="Unpacking Expressions">Unpacking
61        Expressions</a> section for more information.
62      </p>
63<h5>
64<a name="boost_proto.appendices.release_notes.h1"></a>
65        <span class="phrase"><a name="boost_proto.appendices.release_notes.boost_1_44"></a></span><a class="link" href="appendices.html#boost_proto.appendices.release_notes.boost_1_44">Boost
66        1.44</a>
67      </h5>
68<p>
69        <span class="bold"><strong>Behavior Change: proto::and_&lt;&gt;</strong></span>
70      </p>
71<p>
72        In Boost 1.44, the behavior of <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_&lt;&gt;</a></code>
73        as a transform changed. Previously, it only applied the transform associated
74        with the last grammar in the set. Now, it applies all the transforms but
75        only returns the result of the last. That makes it behave like C++'s comma
76        operator. For example, a grammar such as:
77      </p>
78<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special">&lt;</span> <span class="identifier">G0</span><span class="special">,</span> <span class="identifier">G1</span><span class="special">,</span> <span class="identifier">G2</span> <span class="special">&gt;</span>
79</pre>
80<p>
81        when evaluated with an expression <code class="computeroutput"><span class="identifier">e</span></code>
82        now behaves like this:
83      </p>
84<pre class="programlisting"><span class="special">((</span><span class="keyword">void</span><span class="special">)</span><span class="identifier">G0</span><span class="special">()(</span><span class="identifier">e</span><span class="special">),</span> <span class="special">(</span><span class="keyword">void</span><span class="special">)</span><span class="identifier">G1</span><span class="special">()(</span><span class="identifier">e</span><span class="special">),</span> <span class="identifier">G2</span><span class="special">()(</span><span class="identifier">e</span><span class="special">))</span>
85</pre>
86<div class="note"><table border="0" summary="Note">
87<tr>
88<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
89<th align="left">Note</th>
90</tr>
91<tr><td align="left" valign="top"><p>
92          Why the void casts? It's to avoid argument-dependent lookup, which might
93          find an overloaded comma operator.
94        </p></td></tr>
95</table></div>
96<p>
97        <span class="bold"><strong>Behavior Change: proto::as_expr() and proto::as_child()</strong></span>
98      </p>
99<p>
100        The functions <code class="computeroutput"><a class="link" href="../boost/proto/as_expr.html" title="Function as_expr">proto::as_expr()</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/as_child.html" title="Function as_child">proto::as_child()</a></code>
101        are used to guarantee that an object is a Proto expression by turning it
102        into one if it is not already, using an optionally specified domain. In previous
103        releases, when these functions were passed a Proto expression in a domain
104        different to the one specified, they would apply the specified domain's generator,
105        resulting in a twice-wrapped expression. This behavior was surprising to
106        some users.
107      </p>
108<p>
109        The new behavior of these two functions is to always leave Proto expressions
110        alone, regardless of the expressions' domains.
111      </p>
112<p>
113        <span class="bold"><strong>Behavior Change: proto::(pod_)generator&lt;&gt; and
114        proto::basic_expr&lt;&gt;</strong></span>
115      </p>
116<p>
117        Users familiar with Proto's extension mechanism have probably used either
118        <code class="computeroutput"><a class="link" href="../boost/proto/generator.html" title="Struct template generator">proto::generator&lt;&gt;</a></code> or <code class="computeroutput"><a class="link" href="../boost/proto/pod_generator.html" title="Struct template pod_generator">proto::pod_generator&lt;&gt;</a></code>
119        with a wrapper template when defining their domain. In the past, Proto would
120        instantiate your wrapper template with instances of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>.
121        In Boost 1.44, Proto now instantiates your wrapper template with instances
122        of a new type: <code class="computeroutput"><a class="link" href="../boost/proto/basic_expr.html" title="Struct template basic_expr">proto::basic_expr&lt;&gt;</a></code>.
123      </p>
124<p>
125        For instance:
126      </p>
127<pre class="programlisting"><span class="comment">// An expression wrapper</span>
128<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
129<span class="keyword">struct</span> <span class="identifier">my_expr_wrapper</span><span class="special">;</span>
130
131<span class="comment">// A domain</span>
132<span class="keyword">struct</span> <span class="identifier">my_domain</span>
133  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span> <span class="identifier">my_expr_wrapper</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
134<span class="special">{};</span>
135
136<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
137<span class="keyword">struct</span> <span class="identifier">my_expr_wrapper</span>
138  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">my_expr_wrapper</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">my_domain</span><span class="special">&gt;</span>
139<span class="special">{</span>
140  <span class="comment">// Before 1.44, Expr was an instance of proto::expr&lt;&gt;</span>
141  <span class="comment">// In 1.44, Expr is an instance of proto::basic_expr&lt;&gt;</span>
142<span class="special">};</span>
143</pre>
144<p>
145        The motivation for this change was to improve compile times. <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>
146        is an expensive type to instantiate because it defines a host of member functions.
147        When defining your own expression wrapper, the instance of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>
148        sits as a hidden data member function in your wrapper and the members of
149        <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> go unused. Therefore,
150        the cost of those member functions is wasted. In contrast, <code class="computeroutput"><a class="link" href="../boost/proto/basic_expr.html" title="Struct template basic_expr">proto::basic_expr&lt;&gt;</a></code>
151        is a very lightweight type with no member functions at all.
152      </p>
153<p>
154        The vast majority of programs should recompile without any source changes.
155        However, if somewhere you are assuming that you will be given instances specifically
156        of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>, your code will break.
157      </p>
158<p>
159        <span class="bold"><strong>New Feature: Sub-domains</strong></span>
160      </p>
161<p>
162        In Boost 1.44, Proto introduces an important new feature called "sub-domains".
163        This gives you a way to spcify that one domain is compatible with another
164        such that expressions in one domain can be freely mixed with expressions
165        in another. You can define one domain to be the sub-domain of another by
166        using the third template parameter of <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain&lt;&gt;</a></code>.
167      </p>
168<p>
169        For instance:
170      </p>
171<pre class="programlisting"><span class="comment">// Not shown: define some expression</span>
172<span class="comment">// generators genA and genB</span>
173
174<span class="keyword">struct</span> <span class="identifier">A</span>
175  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">genA</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
176<span class="special">{};</span>
177
178<span class="comment">// Define a domain B that is the sub-domain</span>
179<span class="comment">// of domain A.</span>
180<span class="keyword">struct</span> <span class="identifier">B</span>
181  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">genB</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">A</span> <span class="special">&gt;</span>
182<span class="special">{};</span>
183</pre>
184<p>
185        Expressions in domains <code class="computeroutput"><span class="identifier">A</span></code>
186        and <code class="computeroutput"><span class="identifier">B</span></code> can have different
187        wrappers (hence, different interfaces), but they can be combined into larger
188        expressions. Without a sub-domain relationship, this would have been an error.
189        The domain of the resulting expression in this case would be <code class="computeroutput"><span class="identifier">A</span></code>.
190      </p>
191<p>
192        The complete description of sub-domains can be found in the reference sections
193        for <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain&lt;&gt;</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/deduce_domain.html" title="Struct deduce_domain">proto::deduce_domain</a></code>.
194      </p>
195<p>
196        <span class="bold"><strong>New Feature: Domain-specific as_expr() and as_child()</strong></span>
197      </p>
198<p>
199        Proto has always allowed users to customize expressions post-hoc by specifying
200        a Generator when defining their domain. But it has never allowed users to
201        control how Proto assembles sub-expressions in the first place. As of Boost
202        1.44, users now have this power.
203      </p>
204<p>
205        Users defining their own domain can now specify how <code class="computeroutput"><a class="link" href="../boost/proto/as_expr.html" title="Function as_expr">proto::as_expr()</a></code>
206        and <code class="computeroutput"><a class="link" href="../boost/proto/as_child.html" title="Function as_child">proto::as_child()</a></code> work in their domain. They
207        can do this easily by defining nested class templates named <code class="computeroutput"><span class="identifier">as_expr</span></code> and/or <code class="computeroutput"><span class="identifier">as_child</span></code>
208        within their domain class.
209      </p>
210<p>
211        For example:
212      </p>
213<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">my_domain</span>
214  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">my_generator</span> <span class="special">&gt;</span>
215<span class="special">{</span>
216  <span class="keyword">typedef</span>
217      <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">my_generator</span> <span class="special">&gt;</span>
218  <span class="identifier">base_domain</span><span class="special">;</span>
219
220  <span class="comment">// For my_domain, as_child does the same as</span>
221  <span class="comment">// what as_expr does by default.</span>
222  <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
223  <span class="keyword">struct</span> <span class="identifier">as_child</span>
224    <span class="special">:</span> <span class="identifier">base_domain</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>
225  <span class="special">{};</span>
226<span class="special">};</span>
227</pre>
228<p>
229        In the above example, <code class="computeroutput"><span class="identifier">my_domain</span><span class="special">::</span><span class="identifier">as_child</span><span class="special">&lt;&gt;</span></code> simply defers to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;&gt;</span></code>. This has the nice effect of causing
230        all terminals to be captured by value instead of by reference, and to likewise
231        store child expressions by value. The result is that expressions in <code class="computeroutput"><span class="identifier">my_domain</span></code> are safe to store in <code class="computeroutput"><span class="keyword">auto</span></code> variables because they will not have
232        dangling references to intermediate temporary expressions. (Naturally, it
233        also means that expression construction has extra runtime overhead of copying
234        that the compiler may or may not be able to optimize away.)
235      </p>
236<h5>
237<a name="boost_proto.appendices.release_notes.h2"></a>
238        <span class="phrase"><a name="boost_proto.appendices.release_notes.boost_1_43"></a></span><a class="link" href="appendices.html#boost_proto.appendices.release_notes.boost_1_43">Boost
239        1.43</a>
240      </h5>
241<p>
242        In Boost 1.43, the recommended usage of <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
243        changed slightly. The new usage looks like this:
244      </p>
245<pre class="programlisting"><span class="comment">// my_expr is an expression extension of the Expr parameter</span>
246<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
247<span class="keyword">struct</span> <span class="identifier">my_expr</span>
248  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">my_expr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">my_domain</span><span class="special">&gt;</span>
249<span class="special">{</span>
250    <span class="identifier">my_expr</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
251      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">my_expr</span><span class="special">,</span> <span class="identifier">my_domain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">)</span>
252    <span class="special">{}</span>
253
254    <span class="comment">// NEW: use the following macro to bring</span>
255    <span class="comment">// proto::extends::operator= into scope.</span>
256    <span class="identifier">BOOST_PROTO_EXTENDS_USING_ASSIGN</span><span class="special">(</span><span class="identifier">my_expr</span><span class="special">)</span>
257<span class="special">};</span>
258</pre>
259<p>
260        The new thing is the use of the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO__1_3_33_5_10_8.html" title="Macro BOOST_PROTO_EXTENDS_USING_ASSIGN">BOOST_PROTO_EXTENDS_USING_ASSIGN</a></code>()</code>
261        macro. To allow assignment operators to build expression trees, <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code> overloads the assignment
262        operator. However, for the <code class="computeroutput"><span class="identifier">my_expr</span></code>
263        template, the compiler generates a default copy assignment operator that
264        hides the ones in <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>. This is often not desired
265        (although it depends on the syntax you want to allow).
266      </p>
267<p>
268        Previously, the recommended usage was to do this:
269      </p>
270<pre class="programlisting"><span class="comment">// my_expr is an expression extension of the Expr parameter</span>
271<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
272<span class="keyword">struct</span> <span class="identifier">my_expr</span>
273  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">my_expr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">my_domain</span><span class="special">&gt;</span>
274<span class="special">{</span>
275    <span class="identifier">my_expr</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
276      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">my_expr</span><span class="special">,</span> <span class="identifier">my_domain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">)</span>
277    <span class="special">{}</span>
278
279    <span class="comment">// OLD: don't do it like this anymore.</span>
280    <span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">my_expr</span><span class="special">,</span> <span class="identifier">my_domain</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">=;</span>
281<span class="special">};</span>
282</pre>
283<p>
284        While this works in the majority of cases, it still doesn't suppress the
285        implicit generation of the default assignment operator. As a result, expressions
286        of the form <code class="computeroutput"><span class="identifier">a</span> <span class="special">=</span>
287        <span class="identifier">b</span></code> could either build an expression
288        template or do a copy assignment depending on whether the types of <code class="computeroutput"><span class="identifier">a</span></code> and <code class="computeroutput"><span class="identifier">b</span></code>
289        happen to be the same. That can lead to subtle bugs, so the behavior was
290        changed.
291      </p>
292<p>
293        The <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO__1_3_33_5_10_8.html" title="Macro BOOST_PROTO_EXTENDS_USING_ASSIGN">BOOST_PROTO_EXTENDS_USING_ASSIGN</a></code>()</code>
294        brings into scope the assignment operators defined in <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
295        as well as suppresses the generation of the copy assignment operator.
296      </p>
297<p>
298        Also note that the <code class="computeroutput"><a class="link" href="../boost/proto/literal.html" title="Struct template literal">proto::literal&lt;&gt;</a></code> class template, which
299        uses <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>, has been chaged to use
300        <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO__1_3_33_5_10_8.html" title="Macro BOOST_PROTO_EXTENDS_USING_ASSIGN">BOOST_PROTO_EXTENDS_USING_ASSIGN</a></code>()</code>.
301        The implications are highlighted in the sample code below:
302      </p>
303<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">a</span><span class="special">(</span><span class="number">1</span><span class="special">),</span> <span class="identifier">b</span><span class="special">(</span><span class="number">2</span><span class="special">);</span> <span class="comment">// two non-const proto literals</span>
304<span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">c</span><span class="special">(</span><span class="number">3</span><span class="special">);</span> <span class="comment">// a const proto literal</span>
305
306<span class="identifier">a</span> <span class="special">=</span> <span class="identifier">b</span><span class="special">;</span> <span class="comment">// No-op. Builds an expression tree and discards it.</span>
307       <span class="comment">// Same behavior in 1.42 and 1.43.</span>
308
309<span class="identifier">a</span> <span class="special">=</span> <span class="identifier">c</span><span class="special">;</span> <span class="comment">// CHANGE! In 1.42, this performed copy assignment, causing</span>
310       <span class="comment">// a's value to change to 3. In 1.43, the behavior is now</span>
311       <span class="comment">// the same as above: build and discard an expression tree.</span>
312</pre>
313</div>
314<div class="section">
315<div class="titlepage"><div><div><h3 class="title">
316<a name="boost_proto.appendices.history"></a><a class="link" href="appendices.html#boost_proto.appendices.history" title="Appendix B: History">Appendix B: History</a>
317</h3></div></div></div>
318<div class="variablelist">
319<p class="title"><b></b></p>
320<dl class="variablelist">
321<dt><span class="term">August 13, 2010</span></dt>
322<dd><p>
323              Boost 1.44: Proto gets sub-domains and per-domain control of <code class="computeroutput"><a class="link" href="../boost/proto/as_expr.html" title="Function as_expr">proto::as_expr()</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/as_child.html" title="Function as_child">proto::as_child()</a></code> to meet the needs
324              of Phoenix3.
325            </p></dd>
326<dt><span class="term">August 11, 2008</span></dt>
327<dd><p>
328              Proto v4 is merged to Boost trunk with more powerful transform protocol.
329            </p></dd>
330<dt><span class="term">April 7, 2008</span></dt>
331<dd><p>
332              Proto is accepted into Boost.
333            </p></dd>
334<dt><span class="term">March 1, 2008</span></dt>
335<dd><p>
336              Proto's Boost review begins.
337            </p></dd>
338<dt><span class="term">January 11, 2008</span></dt>
339<dd><p>
340              Boost.Proto v3 brings separation of grammars and transforms and a "round"
341              lambda syntax for defining transforms in-place.
342            </p></dd>
343<dt><span class="term">April 15, 2007</span></dt>
344<dd><p>
345              Boost.Xpressive is ported from Proto compilers to Proto transforms.
346              Support for old Proto compilers is dropped.
347            </p></dd>
348<dt><span class="term">April 4, 2007</span></dt>
349<dd><p>
350              Preliminary submission of Proto to Boost.
351            </p></dd>
352<dt><span class="term">December 11, 2006</span></dt>
353<dd><p>
354              The idea for transforms that decorate grammar rules is born in a private
355              email discussion with Joel de Guzman and Hartmut Kaiser. The first
356              transforms are committed to CVS 5 days later on December 16.
357            </p></dd>
358<dt><span class="term">November 1, 2006</span></dt>
359<dd><p>
360              The idea for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code> and the whole grammar facility
361              is hatched during a discussion with Hartmut Kaiser on the spirit-devel
362              list. The first version of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code> is checked into CVS 3 days
363              later. Message is <a href="http://osdir.com/ml/parsers.spirit.devel/2006-11/msg00003.html" target="_top">here</a>.
364            </p></dd>
365<dt><span class="term">October 28, 2006</span></dt>
366<dd><p>
367              Proto is reborn, this time with a uniform expression types that are
368              POD. Announcement is <a href="http://lists.boost.org/Archives/boost/2006/10/112453.php" target="_top">here</a>.
369            </p></dd>
370<dt><span class="term">April 20, 2005</span></dt>
371<dd><p>
372              Proto is born as a major refactorization of Boost.Xpressive's meta-programming.
373              Proto offers expression types, operator overloads and "compilers",
374              an early formulation of what later became transforms. Announcement
375              is <a href="http://lists.boost.org/Archives/boost/2005/04/85256.php" target="_top">here</a>.
376            </p></dd>
377</dl>
378</div>
379</div>
380<div class="section">
381<div class="titlepage"><div><div><h3 class="title">
382<a name="boost_proto.appendices.rationale"></a><a class="link" href="appendices.html#boost_proto.appendices.rationale" title="Appendix C: Rationale">Appendix C: Rationale</a>
383</h3></div></div></div>
384<div class="toc"><dl class="toc">
385<dt><span class="section"><a href="appendices.html#boost_proto.appendices.rationale.static_initialization">Static
386        Initialization</a></span></dt>
387<dt><span class="section"><a href="appendices.html#boost_proto.appendices.rationale.preprocessor">Why
388        Not Reuse MPL, Fusion, et cetera?</a></span></dt>
389</dl></div>
390<div class="section">
391<div class="titlepage"><div><div><h4 class="title">
392<a name="boost_proto.appendices.rationale.static_initialization"></a><a class="link" href="appendices.html#boost_proto.appendices.rationale.static_initialization" title="Static Initialization">Static
393        Initialization</a>
394</h4></div></div></div>
395<p>
396          Proto expression types are PODs (Plain Old Data), and do not have constructors.
397          They are brace-initialized, as follows:
398        </p>
399<pre class="programlisting"><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_i</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">};</span>
400</pre>
401<p>
402          The reason is so that expression objects like <code class="computeroutput"><span class="identifier">_i</span></code>
403          above can be <span class="emphasis"><em>statically initialized</em></span>. Why is static
404          initialization important? The terminals of many embedded domain-specific
405          languages are likely to be global const objects, like <code class="computeroutput"><span class="identifier">_1</span></code>
406          and <code class="computeroutput"><span class="identifier">_2</span></code> from the Boost Lambda
407          Library. Were these object to require run-time initialization, it might
408          be possible to use these objects before they are initialized. That would
409          be bad. Statically initialized objects cannot be misused that way.
410        </p>
411</div>
412<div class="section">
413<div class="titlepage"><div><div><h4 class="title">
414<a name="boost_proto.appendices.rationale.preprocessor"></a><a class="link" href="appendices.html#boost_proto.appendices.rationale.preprocessor" title="Why Not Reuse MPL, Fusion, et cetera?">Why
415        Not Reuse MPL, Fusion, et cetera?</a>
416</h4></div></div></div>
417<p>
418          Anyone who has peeked at Proto's source code has probably wondered, "Why
419          all the dirty preprocessor gunk? Couldn't this have been all implemented
420          cleanly on top of libraries like MPL and Fusion?" The answer is that
421          Proto could have been implemented this way, and in fact was at one point.
422          The problem is that template metaprogramming (TMP) makes for longer compile
423          times. As a foundation upon which other TMP-heavy libraries will be built,
424          Proto itself should be as lightweight as possible. That is achieved by
425          prefering preprocessor metaprogramming to template metaprogramming. Expanding
426          a macro is far more efficient than instantiating a template. In some cases,
427          the "clean" version takes 10x longer to compile than the "dirty"
428          version.
429        </p>
430<p>
431          The "clean and slow" version of Proto can still be found at http://svn.boost.org/svn/boost/branches/proto/v3.
432          Anyone who is interested can download it and verify that it is, in fact,
433          unusably slow to compile. Note that this branch's development was abandoned,
434          and it does not conform exactly with Proto's current interface.
435        </p>
436</div>
437</div>
438<div class="section">
439<div class="titlepage"><div><div><h3 class="title">
440<a name="boost_proto.appendices.implementation"></a><a class="link" href="appendices.html#boost_proto.appendices.implementation" title="Appendix D: Implementation Notes">Appendix D: Implementation
441      Notes</a>
442</h3></div></div></div>
443<div class="toc"><dl class="toc">
444<dt><span class="section"><a href="appendices.html#boost_proto.appendices.implementation.sfinae">Quick-n-Dirty
445        Type Categorization</a></span></dt>
446<dt><span class="section"><a href="appendices.html#boost_proto.appendices.implementation.function_arity">Detecting
447        the Arity of Function Objects</a></span></dt>
448</dl></div>
449<div class="section">
450<div class="titlepage"><div><div><h4 class="title">
451<a name="boost_proto.appendices.implementation.sfinae"></a><a class="link" href="appendices.html#boost_proto.appendices.implementation.sfinae" title="Quick-n-Dirty Type Categorization">Quick-n-Dirty
452        Type Categorization</a>
453</h4></div></div></div>
454<p>
455          Much has already been written about dispatching on type traits using SFINAE
456          (Substitution Failure Is Not An Error) techniques in C++. There is a Boost
457          library, Boost.Enable_if, to make the technique idiomatic. Proto dispatches
458          on type traits extensively, but it doesn't use <code class="computeroutput"><span class="identifier">enable_if</span><span class="special">&lt;&gt;</span></code> very often. Rather, it dispatches
459          based on the presence or absence of nested types, often typedefs for void.
460        </p>
461<p>
462          Consider the implementation of <code class="computeroutput"><span class="identifier">is_expr</span><span class="special">&lt;&gt;</span></code>. It could have been written as
463          something like this:
464        </p>
465<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
466<span class="keyword">struct</span> <span class="identifier">is_expr</span>
467  <span class="special">:</span> <span class="identifier">is_base_and_derived</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">some_expr_base</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span>
468<span class="special">{};</span>
469</pre>
470<p>
471          Rather, it is implemented as this:
472        </p>
473<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Void</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">&gt;</span>
474<span class="keyword">struct</span> <span class="identifier">is_expr</span>
475  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
476<span class="special">{};</span>
477
478<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
479<span class="keyword">struct</span> <span class="identifier">is_expr</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">T</span><span class="special">::</span><span class="identifier">proto_is_expr_</span><span class="special">&gt;</span>
480  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
481<span class="special">{};</span>
482</pre>
483<p>
484          This relies on the fact that the specialization will be preferred if <code class="computeroutput"><span class="identifier">T</span></code> has a nested <code class="computeroutput"><span class="identifier">proto_is_expr_</span></code>
485          that is a typedef for <code class="computeroutput"><span class="keyword">void</span></code>.
486          All Proto expression types have such a nested typedef.
487        </p>
488<p>
489          Why does Proto do it this way? The reason is because, after running extensive
490          benchmarks while trying to improve compile times, I have found that this
491          approach compiles faster. It requires exactly one template instantiation.
492          The other approach requires at least 2: <code class="computeroutput"><span class="identifier">is_expr</span><span class="special">&lt;&gt;</span></code> and <code class="computeroutput"><span class="identifier">is_base_and_derived</span><span class="special">&lt;&gt;</span></code>, plus whatever templates <code class="computeroutput"><span class="identifier">is_base_and_derived</span><span class="special">&lt;&gt;</span></code>
493          may instantiate.
494        </p>
495</div>
496<div class="section">
497<div class="titlepage"><div><div><h4 class="title">
498<a name="boost_proto.appendices.implementation.function_arity"></a><a class="link" href="appendices.html#boost_proto.appendices.implementation.function_arity" title="Detecting the Arity of Function Objects">Detecting
499        the Arity of Function Objects</a>
500</h4></div></div></div>
501<p>
502          In several places, Proto needs to know whether or not a function object
503          <code class="computeroutput"><span class="identifier">Fun</span></code> can be called with
504          certain parameters and take a fallback action if not. This happens in
505          <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
506          and in the <code class="computeroutput"><a class="link" href="../boost/proto/call.html" title="Struct template call">proto::call&lt;&gt;</a></code> transform. How does
507          Proto know? It involves some tricky metaprogramming. Here's how.
508        </p>
509<p>
510          Another way of framing the question is by trying to implement the following
511          <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code>
512          Boolean metafunction, which checks to see if a function object <code class="computeroutput"><span class="identifier">Fun</span></code> can be called with parameters of
513          type <code class="computeroutput"><span class="identifier">A</span></code> and <code class="computeroutput"><span class="identifier">B</span></code>:
514        </p>
515<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Fun</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">B</span><span class="special">&gt;</span>
516<span class="keyword">struct</span> <span class="identifier">can_be_called</span><span class="special">;</span>
517</pre>
518<p>
519          First, we define the following <code class="computeroutput"><span class="identifier">dont_care</span></code>
520          struct, which has an implicit conversion from anything. And not just any
521          implicit conversion; it has a ellipsis conversion, which is the worst possible
522          conversion for the purposes of overload resolution:
523        </p>
524<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">dont_care</span>
525<span class="special">{</span>
526    <span class="identifier">dont_care</span><span class="special">(...);</span>
527<span class="special">};</span>
528</pre>
529<p>
530          We also need some private type known only to us with an overloaded comma
531          operator (!), and some functions that detect the presence of this type
532          and return types with different sizes, as follows:
533        </p>
534<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">private_type</span>
535<span class="special">{</span>
536    <span class="identifier">private_type</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="keyword">operator</span><span class="special">,(</span><span class="keyword">int</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
537<span class="special">};</span>
538
539<span class="keyword">typedef</span> <span class="keyword">char</span> <span class="identifier">yes_type</span><span class="special">;</span>      <span class="comment">// sizeof(yes_type) == 1</span>
540<span class="keyword">typedef</span> <span class="keyword">char</span> <span class="special">(&amp;</span><span class="identifier">no_type</span><span class="special">)[</span><span class="number">2</span><span class="special">];</span> <span class="comment">// sizeof(no_type)  == 2</span>
541
542<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
543<span class="identifier">no_type</span> <span class="identifier">is_private_type</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;);</span>
544
545<span class="identifier">yes_type</span> <span class="identifier">is_private_type</span><span class="special">(</span><span class="identifier">private_type</span> <span class="keyword">const</span> <span class="special">&amp;);</span>
546</pre>
547<p>
548          Next, we implement a binary function object wrapper with a very strange
549          conversion operator, whose meaning will become clear later.
550        </p>
551<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Fun</span><span class="special">&gt;</span>
552<span class="keyword">struct</span> <span class="identifier">funwrap2</span> <span class="special">:</span> <span class="identifier">Fun</span>
553<span class="special">{</span>
554    <span class="identifier">funwrap2</span><span class="special">();</span>
555    <span class="keyword">typedef</span> <span class="identifier">private_type</span> <span class="keyword">const</span> <span class="special">&amp;(*</span><span class="identifier">pointer_to_function</span><span class="special">)(</span><span class="identifier">dont_care</span><span class="special">,</span> <span class="identifier">dont_care</span><span class="special">);</span>
556    <span class="keyword">operator</span> <span class="identifier">pointer_to_function</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
557<span class="special">};</span>
558</pre>
559<p>
560          With all of these bits and pieces, we can implement <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code> as follows:
561        </p>
562<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Fun</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">B</span><span class="special">&gt;</span>
563<span class="keyword">struct</span> <span class="identifier">can_be_called</span>
564<span class="special">{</span>
565    <span class="keyword">static</span> <span class="identifier">funwrap2</span><span class="special">&lt;</span><span class="identifier">Fun</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">fun</span><span class="special">;</span>
566    <span class="keyword">static</span> <span class="identifier">A</span> <span class="special">&amp;</span><span class="identifier">a</span><span class="special">;</span>
567    <span class="keyword">static</span> <span class="identifier">B</span> <span class="special">&amp;</span><span class="identifier">b</span><span class="special">;</span>
568
569    <span class="keyword">static</span> <span class="keyword">bool</span> <span class="keyword">const</span> <span class="identifier">value</span> <span class="special">=</span> <span class="special">(</span>
570        <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">no_type</span><span class="special">)</span> <span class="special">==</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">is_private_type</span><span class="special">(</span> <span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">),</span> <span class="number">0</span><span class="special">)</span> <span class="special">))</span>
571    <span class="special">);</span>
572
573    <span class="keyword">typedef</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">bool_</span><span class="special">&lt;</span><span class="identifier">value</span><span class="special">&gt;</span> <span class="identifier">type</span><span class="special">;</span>
574<span class="special">};</span>
575</pre>
576<p>
577          The idea is to make it so that <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">)</span></code> will
578          always compile by adding our own binary function overload, but doing it
579          in such a way that we can detect whether our overload was selected or not.
580          And we rig it so that our overload is selected if there is really no better
581          option. What follows is a description of how <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code> works.
582        </p>
583<p>
584          We wrap <code class="computeroutput"><span class="identifier">Fun</span></code> in a type that
585          has an implicit conversion to a pointer to a binary function. An object
586          <code class="computeroutput"><span class="identifier">fun</span></code> of class type can be
587          invoked as <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> if it has such a conversion operator,
588          but since it involves a user-defined conversion operator, it is less preferred
589          than an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>, which requires no such conversion.
590        </p>
591<p>
592          The function pointer can accept any two arguments by virtue of the <code class="computeroutput"><span class="identifier">dont_care</span></code> type. The conversion sequence
593          for each argument is guaranteed to be the worst possible conversion sequence:
594          an implicit conversion through an ellipsis, and a user-defined conversion
595          to <code class="computeroutput"><span class="identifier">dont_care</span></code>. In total,
596          it means that <code class="computeroutput"><span class="identifier">funwrap2</span><span class="special">&lt;</span><span class="identifier">Fun</span><span class="special">&gt;()(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code>
597          will always compile, but it will select our overload only if there really
598          is no better option.
599        </p>
600<p>
601          If there is a better option --- for example if <code class="computeroutput"><span class="identifier">Fun</span></code>
602          has an overloaded function call operator such as <code class="computeroutput"><span class="keyword">void</span>
603          <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">A</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">B</span> <span class="identifier">b</span><span class="special">)</span></code> ---
604          then <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> will resolve to that one instead. The
605          question now is how to detect which function got picked by overload resolution.
606        </p>
607<p>
608          Notice how <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> appears in <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code>: <code class="computeroutput"><span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">),</span> <span class="number">0</span><span class="special">)</span></code>.
609          Why do we use the comma operator there? The reason is because we are using
610          this expression as the argument to a function. If the return type of <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> is <code class="computeroutput"><span class="keyword">void</span></code>,
611          it cannot legally be used as an argument to a function. The comma operator
612          sidesteps the issue.
613        </p>
614<p>
615          This should also make plain the purpose of the overloaded comma operator
616          in <code class="computeroutput"><span class="identifier">private_type</span></code>. The return
617          type of the pointer to function is <code class="computeroutput"><span class="identifier">private_type</span></code>.
618          If overload resolution selects our overload, then the type of <code class="computeroutput"><span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span>
619          <span class="identifier">b</span><span class="special">),</span>
620          <span class="number">0</span><span class="special">)</span></code>
621          is <code class="computeroutput"><span class="identifier">private_type</span></code>. Otherwise,
622          it is <code class="computeroutput"><span class="keyword">int</span></code>. That fact is used
623          to dispatch to either overload of <code class="computeroutput"><span class="identifier">is_private_type</span><span class="special">()</span></code>, which encodes its answer in the size
624          of its return type.
625        </p>
626<p>
627          That's how it works with binary functions. Now repeat the above process
628          for functions up to some predefined function arity, and you're done.
629        </p>
630</div>
631</div>
632<div class="section">
633<div class="titlepage"><div><div><h3 class="title">
634<a name="boost_proto.appendices.acknowledgements"></a><a class="link" href="appendices.html#boost_proto.appendices.acknowledgements" title="Appendix E: Acknowledgements">Appendix E:
635      Acknowledgements</a>
636</h3></div></div></div>
637<p>
638        I'd like to thank Joel de Guzman and Hartmut Kaiser for being willing to
639        take a chance on using Proto for their work on Spirit-2 and Karma when Proto
640        was little more than a vision. Their requirements and feedback have been
641        indespensable.
642      </p>
643<p>
644        Thanks also to Thomas Heller and again to Hartmut for their feedback and
645        suggestions during the redesign of Phoenix. That effort yielded several valuable
646        advanced features such as sub-domains, external transforms, and per-domain
647        <code class="computeroutput"><span class="identifier">as_child</span></code> customization.
648      </p>
649<p>
650        Thanks to Daniel James for providing a patch to remove the dependence on
651        deprecated configuration macros for C++0x features.
652      </p>
653<p>
654        Thanks to Joel Falcou and Christophe Henry for their enthusiasm, support,
655        feedback, and humor; and for volunteering to be Proto's co-maintainers.
656      </p>
657<p>
658        Thanks to Dave Abrahams for an especially detailed review, and for making
659        a VM with msvc-7.1 available so I could track down portability issues on
660        that compiler.
661      </p>
662<p>
663        Many thanks to Daniel Wallin who first implemented the code used to find
664        the common domain among a set, accounting for super- and sub-domains. Thanks
665        also to Jeremiah Willcock, John Bytheway and Krishna Achuthan who offered
666        alternate solutions to this tricky programming problem.
667      </p>
668<p>
669        Thanks also to the developers of <a href="http://acts.nersc.gov/formertools/pete/index.html" target="_top">PETE</a>.
670        I found many good ideas there.
671      </p>
672</div>
673</div>
674<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
675<td align="left"></td>
676<td align="right"><div class="copyright-footer">Copyright © 2008 Eric Niebler<p>
677        Distributed under the Boost Software License, Version 1.0. (See accompanying
678        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
679      </p>
680</div></td>
681</tr></table>
682<hr>
683<div class="spirit-nav">
684<a accesskey="p" href="../Transform.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../boost_random.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
685</div>
686</body>
687</html>
688