1 //
2 // composed_3.cpp
3 // ~~~~~~~~~~~~~~
4 //
5 // Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See accompanying
8 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9 //
10
11 #include <boost/asio/bind_executor.hpp>
12 #include <boost/asio/io_context.hpp>
13 #include <boost/asio/ip/tcp.hpp>
14 #include <boost/asio/use_future.hpp>
15 #include <boost/asio/write.hpp>
16 #include <cstring>
17 #include <functional>
18 #include <iostream>
19 #include <string>
20 #include <type_traits>
21 #include <utility>
22
23 using boost::asio::ip::tcp;
24
25 // NOTE: This example requires the new boost::asio::async_initiate function. For
26 // an example that works with the Networking TS style of completion tokens,
27 // please see an older version of asio.
28
29 //------------------------------------------------------------------------------
30
31 // In this composed operation we repackage an existing operation, but with a
32 // different completion handler signature. The asynchronous operation
33 // requirements are met by delegating responsibility to the underlying
34 // operation.
35
36 template <typename CompletionToken>
async_write_message(tcp::socket & socket,const char * message,CompletionToken && token)37 auto async_write_message(tcp::socket& socket,
38 const char* message, CompletionToken&& token)
39 // The return type of the initiating function is deduced from the combination
40 // of CompletionToken type and the completion handler's signature. When the
41 // completion token is a simple callback, the return type is always void.
42 // In this example, when the completion token is boost::asio::yield_context
43 // (used for stackful coroutines) the return type would be also be void, as
44 // there is no non-error argument to the completion handler. When the
45 // completion token is boost::asio::use_future it would be std::future<void>.
46 //
47 // In C++14 we can omit the return type as it is automatically deduced from
48 // the return type of boost::asio::async_initiate.
49 {
50 // In addition to determining the mechanism by which an asynchronous
51 // operation delivers its result, a completion token also determines the time
52 // when the operation commences. For example, when the completion token is a
53 // simple callback the operation commences before the initiating function
54 // returns. However, if the completion token's delivery mechanism uses a
55 // future, we might instead want to defer initiation of the operation until
56 // the returned future object is waited upon.
57 //
58 // To enable this, when implementing an asynchronous operation we must
59 // package the initiation step as a function object. The initiation function
60 // object's call operator is passed the concrete completion handler produced
61 // by the completion token. This completion handler matches the asynchronous
62 // operation's completion handler signature, which in this example is:
63 //
64 // void(boost::system::error_code error)
65 //
66 // The initiation function object also receives any additional arguments
67 // required to start the operation. (Note: We could have instead passed these
68 // arguments in the lambda capture set. However, we should prefer to
69 // propagate them as function call arguments as this allows the completion
70 // token to optimise how they are passed. For example, a lazy future which
71 // defers initiation would need to make a decay-copy of the arguments, but
72 // when using a simple callback the arguments can be trivially forwarded
73 // straight through.)
74 auto initiation = [](auto&& completion_handler,
75 tcp::socket& socket, const char* message)
76 {
77 // The async_write operation has a completion handler signature of:
78 //
79 // void(boost::system::error_code error, std::size n)
80 //
81 // This differs from our operation's signature in that it is also passed
82 // the number of bytes transferred as an argument of type std::size_t. We
83 // will adapt our completion handler to async_write's completion handler
84 // signature by using std::bind, which drops the additional argument.
85 //
86 // However, it is essential to the correctness of our composed operation
87 // that we preserve the executor of the user-supplied completion handler.
88 // The std::bind function will not do this for us, so we must do this by
89 // first obtaining the completion handler's associated executor (defaulting
90 // to the I/O executor - in this case the executor of the socket - if the
91 // completion handler does not have its own) ...
92 auto executor = boost::asio::get_associated_executor(
93 completion_handler, socket.get_executor());
94
95 // ... and then binding this executor to our adapted completion handler
96 // using the boost::asio::bind_executor function.
97 boost::asio::async_write(socket,
98 boost::asio::buffer(message, std::strlen(message)),
99 boost::asio::bind_executor(executor,
100 std::bind(std::forward<decltype(completion_handler)>(
101 completion_handler), std::placeholders::_1)));
102 };
103
104 // The boost::asio::async_initiate function takes:
105 //
106 // - our initiation function object,
107 // - the completion token,
108 // - the completion handler signature, and
109 // - any additional arguments we need to initiate the operation.
110 //
111 // It then asks the completion token to create a completion handler (i.e. a
112 // callback) with the specified signature, and invoke the initiation function
113 // object with this completion handler as well as the additional arguments.
114 // The return value of async_initiate is the result of our operation's
115 // initiating function.
116 //
117 // Note that we wrap non-const reference arguments in std::reference_wrapper
118 // to prevent incorrect decay-copies of these objects.
119 return boost::asio::async_initiate<
120 CompletionToken, void(boost::system::error_code)>(
121 initiation, token, std::ref(socket), message);
122 }
123
124 //------------------------------------------------------------------------------
125
test_callback()126 void test_callback()
127 {
128 boost::asio::io_context io_context;
129
130 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
131 tcp::socket socket = acceptor.accept();
132
133 // Test our asynchronous operation using a lambda as a callback.
134 async_write_message(socket, "Testing callback\r\n",
135 [](const boost::system::error_code& error)
136 {
137 if (!error)
138 {
139 std::cout << "Message sent\n";
140 }
141 else
142 {
143 std::cout << "Error: " << error.message() << "\n";
144 }
145 });
146
147 io_context.run();
148 }
149
150 //------------------------------------------------------------------------------
151
test_future()152 void test_future()
153 {
154 boost::asio::io_context io_context;
155
156 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
157 tcp::socket socket = acceptor.accept();
158
159 // Test our asynchronous operation using the use_future completion token.
160 // This token causes the operation's initiating function to return a future,
161 // which may be used to synchronously wait for the result of the operation.
162 std::future<void> f = async_write_message(
163 socket, "Testing future\r\n", boost::asio::use_future);
164
165 io_context.run();
166
167 // Get the result of the operation.
168 try
169 {
170 // Get the result of the operation.
171 f.get();
172 std::cout << "Message sent\n";
173 }
174 catch (const std::exception& e)
175 {
176 std::cout << "Error: " << e.what() << "\n";
177 }
178 }
179
180 //------------------------------------------------------------------------------
181
main()182 int main()
183 {
184 test_callback();
185 test_future();
186 }
187