• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1Pixel Locator
2=============
3
4.. contents::
5   :local:
6   :depth: 2
7
8Overview
9--------
10
11A Locator allows for navigation in two or more dimensions. Locators are
12N-dimensional iterators in spirit, but we use a different name because they
13don't satisfy all the requirements of iterators. For example, they don't
14supply increment and decrement operators because it is unclear which dimension
15the operators should advance along.
16N-dimensional locators model the following concept:
17
18.. code-block:: cpp
19
20  concept RandomAccessNDLocatorConcept<Regular Loc>
21  {
22    typename value_type;        // value over which the locator navigates
23    typename reference;         // result of dereferencing
24    typename difference_type; where PointNDConcept<difference_type>; // return value of operator-.
25    typename const_t;           // same as Loc, but operating over immutable values
26    typename cached_location_t; // type to store relative location (for efficient repeated access)
27    typename point_t  = difference_type;
28
29    static const size_t num_dimensions; // dimensionality of the locator
30    where num_dimensions = point_t::num_dimensions;
31
32    // The difference_type and iterator type along each dimension. The iterators may only differ in
33    // difference_type. Their value_type must be the same as Loc::value_type
34    template <size_t D> struct axis {
35        typename coord_t = point_t::axis<D>::coord_t;
36        typename iterator; where RandomAccessTraversalConcept<iterator>; // iterator along D-th axis.
37        where iterator::value_type == value_type;
38    };
39
40    // Defines the type of a locator similar to this type, except it invokes Deref upon dereferencing
41    template <PixelDereferenceAdaptorConcept Deref> struct add_deref {
42        typename type;        where RandomAccessNDLocatorConcept<type>;
43        static type make(const Loc& loc, const Deref& deref);
44    };
45
46    Loc& operator+=(Loc&, const difference_type&);
47    Loc& operator-=(Loc&, const difference_type&);
48    Loc operator+(const Loc&, const difference_type&);
49    Loc operator-(const Loc&, const difference_type&);
50
51    reference operator*(const Loc&);
52    reference operator[](const Loc&, const difference_type&);
53
54    // Storing relative location for faster repeated access and accessing it
55    cached_location_t Loc::cache_location(const difference_type&) const;
56    reference operator[](const Loc&,const cached_location_t&);
57
58    // Accessing iterators along a given dimension at the current location or at a given offset
59    template <size_t D> axis<D>::iterator&       Loc::axis_iterator();
60    template <size_t D> axis<D>::iterator const& Loc::axis_iterator() const;
61    template <size_t D> axis<D>::iterator        Loc::axis_iterator(const difference_type&) const;
62  };
63
64  template <typename Loc>
65  concept MutableRandomAccessNDLocatorConcept
66      : RandomAccessNDLocatorConcept<Loc>
67  {
68    where Mutable<reference>;
69  };
70
71Two-dimensional locators have additional requirements:
72
73.. code-block:: cpp
74
75  concept RandomAccess2DLocatorConcept<RandomAccessNDLocatorConcept Loc>
76  {
77    where num_dimensions==2;
78    where Point2DConcept<point_t>;
79
80    typename x_iterator = axis<0>::iterator;
81    typename y_iterator = axis<1>::iterator;
82    typename x_coord_t  = axis<0>::coord_t;
83    typename y_coord_t  = axis<1>::coord_t;
84
85    // Only available to locators that have dynamic step in Y
86    //Loc::Loc(const Loc& loc, y_coord_t);
87
88    // Only available to locators that have dynamic step in X and Y
89    //Loc::Loc(const Loc& loc, x_coord_t, y_coord_t, bool transposed=false);
90
91    x_iterator&       Loc::x();
92    x_iterator const& Loc::x() const;
93    y_iterator&       Loc::y();
94    y_iterator const& Loc::y() const;
95
96    x_iterator Loc::x_at(const difference_type&) const;
97    y_iterator Loc::y_at(const difference_type&) const;
98    Loc Loc::xy_at(const difference_type&) const;
99
100    // x/y versions of all methods that can take difference type
101    x_iterator        Loc::x_at(x_coord_t, y_coord_t) const;
102    y_iterator        Loc::y_at(x_coord_t, y_coord_t) const;
103    Loc               Loc::xy_at(x_coord_t, y_coord_t) const;
104    reference         operator()(const Loc&, x_coord_t, y_coord_t);
105    cached_location_t Loc::cache_location(x_coord_t, y_coord_t) const;
106
107    bool      Loc::is_1d_traversable(x_coord_t width) const;
108    y_coord_t Loc::y_distance_to(const Loc& loc2, x_coord_t x_diff) const;
109  };
110
111  concept MutableRandomAccess2DLocatorConcept<RandomAccess2DLocatorConcept Loc>
112      : MutableRandomAccessNDLocatorConcept<Loc> {};
113
1142D locators can have a dynamic step not just horizontally, but
115vertically. This gives rise to the Y equivalent of
116``HasDynamicXStepTypeConcept``:
117
118.. code-block:: cpp
119
120  concept HasDynamicYStepTypeConcept<typename T>
121  {
122    typename dynamic_y_step_type<T>;
123        where Metafunction<dynamic_y_step_type<T> >;
124  };
125
126All locators and image views that GIL provides model
127``HasDynamicYStepTypeConcept``.
128
129Sometimes it is necessary to swap the meaning of X and Y for a given locator
130or image view type (for example, GIL provides a function to transpose an image
131view). Such locators and views must be transposable:
132
133.. code-block:: cpp
134
135  concept HasTransposedTypeConcept<typename T>
136  {
137    typename transposed_type<T>;
138        where Metafunction<transposed_type<T> >;
139  };
140
141All GIL provided locators and views model ``HasTransposedTypeConcept``.
142
143The locators GIL uses operate over models of ``PixelConcept`` and their x and
144y dimension types are the same. They model the following concept:
145
146.. code-block:: cpp
147
148  concept PixelLocatorConcept<RandomAccess2DLocatorConcept Loc>
149  {
150    where PixelValueConcept<value_type>;
151    where PixelIteratorConcept<x_iterator>;
152    where PixelIteratorConcept<y_iterator>;
153    where x_coord_t == y_coord_t;
154
155    typename coord_t = x_coord_t;
156  };
157
158  concept MutablePixelLocatorConcept<PixelLocatorConcept Loc> : MutableRandomAccess2DLocatorConcept<Loc> {};
159
160.. seealso::
161
162  - `HasDynamicYStepTypeConcept<T> <reference/structboost_1_1gil_1_1_has_dynamic_y_step_type_concept.html>`_
163  - `HasTransposedTypeConcept<T> <reference/structboost_1_1gil_1_1_has_transposed_type_concept.html>`_
164  - `RandomAccessNDLocatorConcept<Locator> <reference/structboost_1_1gil_1_1_random_access_n_d_locator_concept.html>`_
165  - `MutableRandomAccessNDLocatorConcept<Locator> <reference/structboost_1_1gil_1_1_mutable_random_access_n_d_locator_concept.html>`_
166  - `RandomAccess2DLocatorConcept<Locator> <reference/structboost_1_1gil_1_1_random_access2_d_locator_concept.html>`_
167  - `MutableRandomAccess2DLocatorConcept<Locator> <reference/structboost_1_1gil_1_1_mutable_random_access2_d_locator_concept.html>`_
168  - `PixelLocatorConcept<Locator> <reference/structboost_1_1gil_1_1_pixel_locator_concept.html>`_
169  - `MutablePixelLocatorConcept<Locator> <reference/structboost_1_1gil_1_1_mutable_pixel_locator_concept.html>`_
170
171Models
172------
173
174GIL provides two models of ``PixelLocatorConcept`` - a memory-based locator,
175``memory_based_2d_locator`` and a virtual locator ``virtual_2d_locator``.
176
177The ``memory_based_2d_locator`` is a locator over planar or interleaved images
178that have their pixels in memory. It takes a model of ``StepIteratorConcept``
179over pixels as a template parameter. (When instantiated with a model of
180``MutableStepIteratorConcept``, it models ``MutablePixelLocatorConcept``).
181
182.. code-block:: cpp
183
184  // StepIterator models StepIteratorConcept, MemoryBasedIteratorConcept
185  template <typename StepIterator>
186  class memory_based_2d_locator;
187
188The step of ``StepIterator`` must be the number of memory units (bytes or
189bits) per row (thus it must be memunit advanceable). The class
190``memory_based_2d_locator`` is a wrapper around ``StepIterator`` and uses it
191to navigate vertically, while its base iterator is used to navigate
192horizontally.
193
194Combining fundamental iterator and step iterator allows us to create locators
195that describe complex pixel memory organizations. First, we have a choice of
196iterator to use for horizontal direction, i.e. for iterating over the pixels
197on the same row. Using the fundamental and step iterators gives us four
198choices:
199
200- ``pixel<T,C>*`` - for interleaved images
201- ``planar_pixel_iterator<T*,C>`` - for planar images
202- ``memory_based_step_iterator<pixel<T,C>*>`` - for interleaved images with
203  non-standard step)
204- ``memory_based_step_iterator<planar_pixel_iterator<T*,C> >`` - for planar
205  images with non-standard step
206
207Of course, one could provide their own custom x-iterator. One such example
208described later is an iterator adaptor that performs color conversion when
209dereferenced.
210
211Given a horizontal iterator ``XIterator``, we could choose the ``y-iterator``,
212the iterator that moves along a column, as
213``memory_based_step_iterator<XIterator>`` with a step equal to the number of
214memory units (bytes or bits) per row. Again, one is free to provide their own
215y-iterator.
216
217Then we can instantiate
218``memory_based_2d_locator<memory_based_step_iterator<XIterator> >`` to obtain
219a 2D pixel locator, as the diagram indicates:
220
221.. image:: ../images/pixel_locator.gif
222
223The ``memory_based_2d_locator`` also offers `cached_location_t` as mechanism
224to store relative locations for optimized repeated access of neighborhood
225pixels. The 2D coordinates of relative locations are cached as 1-dimensional
226raw byte offsets. This provides efficient access if a neighboring locations
227relative to a given locator are read or written frequently (e.g. in filters).
228
229The ``virtual_2d_locator`` is a locator that is instantiated with a function
230object invoked upon dereferencing a pixel. It returns the value of a pixel
231given its X,Y coordinates. Virtual locators can be used to implement virtual
232image views that can model any user-defined function. See the GIL tutorial for
233an example of using virtual locators to create a view of the Mandelbrot set.
234
235Both the virtual and the memory-based locators subclass from
236``pixel_2d_locator_base``, a base class that provides most of the interface
237required by ``PixelLocatorConcept``. Users may find this base class useful if
238they need to provide other models of ``PixelLocatorConcept``.
239
240Here is some sample code using locators:
241
242.. code-block:: cpp
243
244  loc=img.xy_at(10,10);            // start at pixel (x=10,y=10)
245  above=loc.cache_location(0,-1);  // remember relative locations of neighbors above and below
246  below=loc.cache_location(0, 1);
247  ++loc.x();                       // move to (11,10)
248  loc.y()+=15;                     // move to (11,25)
249  loc-=point<std::ptrdiff_t>(1,1);// move to (10,24)
250  *loc=(loc(0,-1)+loc(0,1))/2;     // set pixel (10,24) to the average of (10,23) and (10,25) (grayscale pixels only)
251  *loc=(loc[above]+loc[below])/2;  // the same, but faster using cached relative neighbor locations
252
253The standard GIL locators are fast and lightweight objects. For example, the
254locator for a simple interleaved image consists of one raw pointer to the
255pixel location plus one integer for the row size in bytes, for a total of
2568 bytes. ``++loc.x()`` amounts to incrementing a raw pointer (or N pointers
257for planar images). Computing 2D offsets is slower as it requires
258multiplication and addition. Filters, for example, need to access the same
259neighbors for every pixel in the image, in which case the relative positions
260can be cached into a raw byte difference using ``cache_location``.
261In the above example ``loc[above]`` for simple interleaved images amounts to a
262raw array index operator.
263
264Iterator over 2D image
265----------------------
266
267Sometimes we want to perform the same, location-independent operation
268over all pixels of an image. In such a case it is useful to represent
269the pixels as a one-dimensional array. GIL's ``iterator_from_2d`` is a
270random access traversal iterator that visits all pixels in an image in
271the natural memory-friendly order left-to-right inside
272top-to-bottom. It takes a locator, the width of the image and the
273current X position. This is sufficient information for it to determine
274when to do a "carriage return". Synopsis:
275
276.. code-block:: cpp
277
278  template <typename Locator>  // Models PixelLocatorConcept
279  class iterator_from_2d
280  {
281  public:
282    iterator_from_2d(const Locator& loc, int x, int width);
283
284    iterator_from_2d& operator++(); // if (++_x<_width) ++_p.x(); else _p+=point_t(-_width,1);
285
286    ...
287  private:
288    int _x, _width;
289    Locator _p;
290  };
291
292Iterating through the pixels in an image using ``iterator_from_2d`` is slower
293than going through all rows and using the x-iterator at each row. This is
294because two comparisons are done per iteration step - one for the end
295condition of the loop using the iterators, and one inside
296``iterator_from_2d::operator++`` to determine whether we are at the end of a
297row. For fast operations, such as pixel copy, this second check adds about
29815% performance delay (measured for interleaved images on Intel platform).
299GIL overrides some STL algorithms, such as ``std::copy`` and ``std::fill``,
300when invoked with ``iterator_from_2d``-s, to go through each row using their
301base x-iterators, and, if the image has no padding (i.e.
302``iterator_from_2d::is_1d_traversable()`` returns true) to simply iterate
303using the x-iterators directly.
304