• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<HTML>
2<!--
3     Copyright (c) Jeremy Siek 2000
4
5     Distributed under the Boost Software License, Version 1.0.
6     (See accompanying file LICENSE_1_0.txt or copy at
7     http://www.boost.org/LICENSE_1_0.txt)
8  -->
9<Head>
10<Title>Boost Graph Library: Dijkstra's Shortest Paths</Title>
11<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
12        ALINK="#ff0000">
13<IMG SRC="../../../boost.png"
14     ALT="C++ Boost" width="277" height="86">
15
16<BR Clear>
17
18<H1><A NAME="sec:dijkstra"></A><img src="figs/python.gif" alt="(Python)"/>
19<TT>dijkstra_shortest_paths</TT>
20</H1>
21
22<P>
23<PRE>
24<i>// named parameter version</i>
25template &lt;typename Graph, typename P, typename T, typename R&gt;
26void
27dijkstra_shortest_paths(Graph&amp; g,
28  typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
29  const bgl_named_params&lt;P, T, R&gt;&amp; params);
30
31<i>// non-named parameter version</i>
32template &lt;typename Graph, typename <a href="DijkstraVisitor.html">DijkstraVisitor</a>,
33	  typename PredecessorMap, typename DistanceMap,
34	  typename WeightMap, typename VertexIndexMap, typename <a href="http://www.boost.org/sgi/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.boost.org/sgi/stl/BinaryFunction.html">CombineFunction</a>,
35	  typename DistInf, typename DistZero, typename ColorMap = <i>default</i>&gt;
36void dijkstra_shortest_paths
37  (const Graph&amp; g,
38   typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
39   PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
40   VertexIndexMap index_map,
41   CompareFunction compare, CombineFunction combine, DistInf inf, DistZero zero,
42   DijkstraVisitor vis, ColorMap color = <i>default</i>)
43
44<i>// version that does not initialize the property maps (except for the default color map)</i>
45template &lt;class Graph, class DijkstraVisitor,
46          class PredecessorMap, class DistanceMap,
47          class WeightMap, class IndexMap, class Compare, class Combine,
48          class DistZero, class ColorMap&gt;
49void
50dijkstra_shortest_paths_no_init
51  (const Graph&amp; g,
52   typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
53   PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
54   IndexMap index_map,
55   Compare compare, Combine combine, DistZero zero,
56   DijkstraVisitor vis, ColorMap color = <i>default</i>);
57</PRE>
58
59<P>
60This algorithm&nbsp;[<A HREF="bibliography.html#dijkstra59">10</A>,<A
61HREF="bibliography.html#clr90">8</A>] solves the single-source
62shortest-paths problem on a weighted, directed or undirected graph for
63the case where all edge weights are nonnegative.  Use the Bellman-Ford
64algorithm for the case when some edge weights are negative.  Use
65breadth-first search instead of Dijkstra's algorithm when all edge
66weights are equal to one.  For the definition of the shortest-path
67problem see Section <A
68HREF="graph_theory_review.html#sec:shortest-paths-algorithms">Shortest-Paths
69Algorithms</A> for some background to the shortest-path problem.
70</P>
71
72<P>
73There are two main options for obtaining output from the
74<tt>dijkstra_shortest_paths()</tt> function. If you provide a
75distance property map through the <tt>distance_map()</tt> parameter
76then the shortest distance from the source vertex to every other
77vertex in the graph will be recorded in the distance map. Also you can
78record the shortest paths tree in a predecessor map: for each vertex
79<i>u in V</i>, <i>p[u]</i> will be the predecessor of <i>u</i> in
80the shortest paths tree (unless <i>p[u] = u</i>, in which case <i>u</i> is
81either the source or a vertex unreachable from the source).  In
82addition to these two options, the user can provide their own
83custom-made visitor that takes actions during any of the
84algorithm's event points.</P>
85
86<P>
87Dijkstra's algorithm finds all the shortest paths from the source
88vertex to every other vertex by iteratively ``growing'' the set of
89vertices <i>S</i> to which it knows the shortest path. At each step of
90the algorithm, the next vertex added to <i>S</i> is determined by a
91priority queue.  The queue contains the vertices in <i>V - S</i><a
92href="#1">[1]</a> prioritized by their distance label, which is the
93length of the shortest path seen so far for each vertex. The vertex
94<i>u</i> at the top of the priority queue is then added to <i>S</i>,
95and each of its out-edges is relaxed: if the distance to <i>u</i> plus
96the weight of the out-edge <i>(u,v)</i> is less than the distance
97label for <i>v</i> then the estimated distance for vertex <i>v</i> is
98reduced.  The algorithm then loops back, processing the next vertex at
99the top of the priority queue. The algorithm finishes when the
100priority queue is empty.
101</P>
102<P>
103The algorithm uses color markers (white, gray, and black) to keep
104track of which set each vertex is in. Vertices colored black are in
105<i>S</i>. Vertices colored white or gray are in <i>V-S</i>. White vertices have
106not yet been discovered and gray vertices are in the priority queue.
107By default, the algorithm will allocate an array to store a color
108marker for each vertex in the graph. You can provide your own storage
109and access for colors with the <tt>color_map()</tt> parameter.
110</P>
111<p>
112The following is the pseudo-code for Dijkstra's single-source shortest
113paths algorithm. <i>w</i> is the edge weight, <i>d</i> is the distance label,
114and <i>p</i> is the predecessor of each vertex which is used to encode
115the shortest paths tree. <i>Q</i> is a priority queue that supports the
116DECREASE-KEY operation.  The visitor event points for the algorithm are
117indicated by the labels on the right.
118</p>
119
120<table>
121<tr>
122<td valign="top">
123<pre>
124DIJKSTRA(<i>G</i>, <i>s</i>, <i>w</i>)
125  <b>for</b> each vertex <i>u in V</i> <b>(This loop is not run in dijkstra_shortest_paths_no_init)</b>
126    <i>d[u] := infinity</i>
127    <i>p[u] := u</i>
128    <i>color[u] :=</i> WHITE
129  <b>end for</b>
130  <i>color[s] := </i>GRAY
131  <i>d[s] := 0</i>
132  INSERT(<i>Q</i>, <i>s</i>)
133  <b>while</b> (<i>Q != &Oslash;</i>)
134    <i>u :=</i> EXTRACT-MIN(<i>Q</i>)
135    <i>S := S U { u }</i>
136    <b>for</b> each vertex <i>v in Adj[u]</i>
137      <b>if</b> (<i>w(u,v) + d[u] < d[v]</i>)
138        <i>d[v] := w(u,v) + d[u]</i>
139        <i>p[v] := u</i>
140        <b>if</b> (<i>color[v] =</i> WHITE)
141          <i>color[v] :=</i> GRAY
142          INSERT(<i>Q</i>, <i>v</i>)
143        <b>else if</b> (<i>color[v] =</i> GRAY)
144          DECREASE-KEY(<i>Q</i>, <i>v</i>)
145      <b>else</b>
146        <i>...</i>
147    <b>end for</b>
148    <i>color[u] :=</i> BLACK
149  <b>end while</b>
150  return (<i>d</i>, <i>p</i>)
151</pre>
152</td>
153<td valign="top">
154<pre>
155
156initialize vertex <i>u</i>
157
158
159
160
161
162
163discover vertex <i>s</i>
164
165examine vertex <i>u</i>
166
167examine edge <i>(u,v)</i>
168
169edge <i>(u,v)</i> relaxed
170
171
172
173discover vertex <i>v</i>
174
175
176
177edge <i>(u,v)</i> not relaxed
178
179finish vertex <i>u</i>
180</pre>
181</td>
182</tr>
183</table>
184
185<h3>Where Defined</h3>
186
187<a href="../../../boost/graph/dijkstra_shortest_paths.hpp"><tt>boost/graph/dijkstra_shortest_paths.hpp</tt></a>
188
189<h3>Parameters</h3>
190
191IN: <tt>const Graph&amp; g</tt>
192<blockquote>
193  The graph object on which the algorithm will be applied.
194  The type <tt>Graph</tt> must be a model of
195  <a href="./VertexListGraph.html">Vertex List Graph</a>
196  and <a href="./IncidenceGraph.html">Incidence Graph</a>.<br>
197
198  <b>Python</b>: The parameter is named <tt>graph</tt>.
199</blockquote>
200
201IN: <tt>vertex_descriptor s</tt>
202<blockquote>
203  The source vertex. All distance will be calculated from this vertex,
204  and the shortest paths tree will be rooted at this vertex.<br>
205
206  <b>Python</b>: The parameter is named <tt>root_vertex</tt>.
207</blockquote>
208
209<h3>Named Parameters</h3>
210
211IN: <tt>weight_map(WeightMap w_map)</tt>
212<blockquote>
213  The weight or ``length'' of each edge in the graph. The weights
214  must all be non-negative, and the algorithm will throw a
215  <a href="./exception.html#negative_edge"><tt>negative_edge</tt></a>
216  exception is one of the edges is negative.
217  The type <tt>WeightMap</tt> must be a model of
218  <a href="../../property_map/doc/ReadablePropertyMap.html">Readable Property Map</a>. The edge descriptor type of
219  the graph needs to be usable as the key type for the weight
220  map. The value type for this map must be
221  the same as the value type of the distance map.<br>
222  <b>Default:</b>  <tt>get(edge_weight, g)</tt><br>
223
224  <b>Python</b>: Must be an <tt>edge_double_map</tt> for the graph.<br>
225  <b>Python default</b>: <tt>graph.get_edge_double_map("weight")</tt>
226</blockquote>
227
228IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt>
229<blockquote>
230  This maps each vertex to an integer in the range <tt>[0,
231    num_vertices(g))</tt>. This is necessary for efficient updates of the
232  heap data structure&nbsp;[<A
233  HREF="bibliography.html#driscoll88">61</A>] when an edge is relaxed.
234  The type
235  <tt>VertexIndexMap</tt> must be a model of
236  <a href="../../property_map/doc/ReadablePropertyMap.html">Readable Property Map</a>. The value type of the map must be an
237  integer type. The vertex descriptor type of the graph needs to be
238  usable as the key type of the map.<br>
239  <b>Default:</b> <tt>get(vertex_index, g)</tt>.
240    Note: if you use this default, make sure your graph has
241    an internal <tt>vertex_index</tt> property. For example,
242    <tt>adjacency_list</tt> with <tt>VertexList=listS</tt> does
243    not have an internal <tt>vertex_index</tt> property.
244   <br>
245
246  <b>Python</b>: Unsupported parameter.
247</blockquote>
248
249OUT: <tt>predecessor_map(PredecessorMap p_map)</tt>
250<blockquote>
251  The predecessor map records the edges in the shortest path tree, the tree computed
252  by the traversal of the graph. Upon completion of the algorithm, the edges
253  <i>(p[u],u)</i> for all <i>u in V</i> are in the tree.  The shortest path
254  from vertex <i>s</i> to each vertex <i>v</i> in the graph consists of the
255  vertices <i>v</i>, <i>p[v]</i>, <i>p[p[v]]</i>, and so on until <i>s</i> is
256  reached, in reverse order.  The
257  tree is not guaranteed to be a minimum spanning tree. If <i>p[u] =
258  u</i> then <i>u</i> is either the source vertex or a vertex that is
259  not reachable from the source.  The <tt>PredecessorMap</tt> type
260  must be a <a
261  href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
262  Property Map</a> whose key and value types are the same as the vertex
263  descriptor type of the graph.<br>
264  <b>Default:</b> <tt>dummy_property_map</tt><br>
265
266  <b>Python</b>: Must be a <tt>vertex_vertex_map</tt> for the graph.<br>
267</blockquote>
268
269UTIL/OUT: <tt>distance_map(DistanceMap d_map)</tt>
270<blockquote>
271  The shortest path weight from the source vertex <tt>s</tt> to each
272  vertex in the graph <tt>g</tt> is recorded in this property map. The
273  shortest path weight is the sum of the edge weights along the
274  shortest path.  The type <tt>DistanceMap</tt> must be a model of <a
275  href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
276  Property Map</a>. The vertex descriptor type of the graph needs to
277  be usable as the key type of the distance map.
278
279  The value type of the distance map is the element type of a <a
280  href="./Monoid.html">Monoid</a> formed with the <tt>combine</tt>
281  function object and the <tt>zero</tt> object for the identity
282  element. Also the distance value type must have a <a
283  href="http://www.boost.org/sgi/stl/StrictWeakOrdering.html">
284  StrictWeakOrdering</a> provided by the <tt>compare</tt> function
285  object.<br>
286  <b>Default:</b> <a
287  href="../../property_map/doc/iterator_property_map.html">
288  <tt>iterator_property_map</tt></a> created from a
289  <tt>std::vector</tt> of the <tt>WeightMap</tt>'s value type of size
290  <tt>num_vertices(g)</tt> and using the <tt>i_map</tt> for the index
291  map.<br>
292
293  <b>Python</b>: Must be a <tt>vertex_double_map</tt> for the graph.<br>
294</blockquote>
295
296IN: <tt>distance_compare(CompareFunction cmp)</tt>
297<blockquote>
298  This function is use to compare distances to determine which vertex
299  is closer to the source vertex.  The <tt>CompareFunction</tt> type
300  must be a model of <a
301  href="http://www.boost.org/sgi/stl/BinaryPredicate.html">Binary
302  Predicate</a> and have argument types that match the value type of
303  the <tt>DistanceMap</tt> property map.<br>
304
305  <b>Default:</b>
306  <tt>std::less&lt;D&gt;</tt> with <tt>D=typename
307  property_traits&lt;DistanceMap&gt;::value_type</tt><br>
308
309  <b>Python</b>: Unsupported parameter.
310</blockquote>
311
312IN: <tt>distance_combine(CombineFunction cmb)</tt>
313<blockquote>
314  This function is used to combine distances to compute the distance
315  of a path. The <tt>CombineFunction</tt> type must be a model of <a
316  href="http://www.boost.org/sgi/stl/BinaryFunction.html">Binary
317  Function</a>. The first argument type of the binary function must
318  match the value type of the <tt>DistanceMap</tt> property map and
319  the second argument type must match the value type of the
320  <tt>WeightMap</tt> property map.  The result type must be the same
321  type as the distance value type.<br>
322
323  <b>Default:</b> <tt>std::plus&lt;D&gt;</tt> with
324   <tt>D=typename property_traits&lt;DistanceMap&gt;::value_type</tt><br>
325
326  <b>Python</b>: Unsupported parameter.
327</blockquote>
328
329IN: <tt>distance_inf(D inf)</tt>
330<blockquote>
331  The <tt>inf</tt> object must be the greatest value of any <tt>D</tt> object.
332  That is, <tt>compare(d, inf) == true</tt> for any <tt>d != inf</tt>.
333  The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.  Edges
334  are assumed to have a weight less than (using <tt>distance_compare</tt> for
335  comparison) this value.<br>
336  <b>Default:</b> <tt>std::numeric_limits&lt;D&gt;::max()</tt><br>
337
338  <b>Python</b>: Unsupported parameter.
339</blockquote>
340
341IN: <tt>distance_zero(D zero)</tt>
342<blockquote>
343  The <tt>zero</tt> value must be the identity element for the
344  <a href="./Monoid.html">Monoid</a> formed by the distance values
345  and the <tt>combine</tt> function object.
346  The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.<br>
347  <b>Default:</b> <tt>D()</tt>with
348   <tt>D=typename property_traits&lt;DistanceMap&gt;::value_type</tt><br>
349
350  <b>Python</b>: Unsupported parameter.
351</blockquote>
352
353UTIL/OUT: <tt>color_map(ColorMap c_map)</tt>
354<blockquote>
355  This is used during the execution of the algorithm to mark the
356  vertices. The vertices start out white and become gray when they are
357  inserted in the queue. They then turn black when they are removed
358  from the queue. At the end of the algorithm, vertices reachable from
359  the source vertex will have been colored black. All other vertices
360  will still be white. The type <tt>ColorMap</tt> must be a model of
361  <a href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
362  Property Map</a>. A vertex descriptor must be usable as the key type
363  of the map, and the value type of the map must be a model of
364  <a href="./ColorValue.html">Color Value</a>.<br>
365  <b>Default:</b> an <a
366  href="../../property_map/doc/iterator_property_map.html">
367  <tt>iterator_property_map</tt></a> created from a <tt>std::vector</tt>
368  of <tt>default_color_type</tt> of size <tt>num_vertices(g)</tt> and
369  using the <tt>i_map</tt> for the index map.<br>
370
371  <b>Python</b>: The color map must be a <tt>vertex_color_map</tt> for
372  the graph.
373</blockquote>
374
375OUT: <tt>visitor(DijkstraVisitor v)</tt>
376<blockquote>
377  Use this to specify actions that you would like to happen
378  during certain event points within the algorithm.
379  The type <tt>DijkstraVisitor</tt> must be a model of the
380  <a href="./DijkstraVisitor.html">Dijkstra Visitor</a> concept.
381 The visitor object is passed by value <a
382  href="#2">[2]</a>.<br>
383  <b>Default:</b> <tt>dijkstra_visitor&lt;null_visitor&gt;</tt><br>
384
385  <b>Python</b>: The parameter should be an object that derives from
386  the <a
387  href="DijkstraVisitor.html#python"><tt>DijkstraVisitor</tt></a> type
388  of the graph.
389</blockquote>
390
391
392<H3>Complexity</H3>
393
394<P>
395The time complexity is <i>O(V log V + E)</i>.
396
397
398<h3>Visitor Event Points</h3>
399
400<ul>
401<li><b><tt>vis.initialize_vertex(u, g)</tt></b>
402  is invoked on each vertex in the graph before the start of the
403  algorithm.
404<li><b><tt>vis.examine_vertex(u, g)</tt></b>
405  is invoked on a vertex as it is removed from the priority queue
406  and added to set <i>S</i>. At this point we know that <i>(p[u],u)</i>
407  is a shortest-paths tree edge so
408  <i>d[u] = delta(s,u) = d[p[u]] + w(p[u],u)</i>. Also, the distances
409  of the examined vertices is monotonically increasing
410  <i>d[u<sub>1</sub>] <= d[u<sub>2</sub>] <= d[u<sub>n</sub>]</i>.
411<li><b><tt>vis.examine_edge(e, g)</tt></b>
412  is invoked on each out-edge of a vertex immediately after it has
413  been added to set <i>S</i>.
414<li><b><tt>vis.edge_relaxed(e, g)</tt></b>
415  is invoked on edge <i>(u,v)</i> if <i>d[u] + w(u,v) < d[v]</i>.
416  The edge <i>(u,v)</i> that participated in the last
417  relaxation for vertex <i>v</i> is an edge in the shortest paths tree.
418<li><b><tt>vis.discover_vertex(v, g)</tt></b>
419  is invoked on vertex <i>v</i> when the edge
420  <i>(u,v)</i> is examined and <i>v</i> is WHITE. Since
421  a vertex is colored GRAY when it is discovered,
422  each reachable vertex is discovered exactly once. This
423  is also when the vertex is inserted into the priority queue.
424<li><b><tt>vis.edge_not_relaxed(e, g)</tt></b>
425  is invoked if the edge is not relaxed (see above).
426<li><b><tt>vis.finish_vertex(u, g)</tt></b>
427   is invoked on a vertex after all of its out edges have
428  been examined.
429</ul>
430
431<H3>Example</H3>
432
433<P>
434See <a href="../example/dijkstra-example.cpp">
435<TT>example/dijkstra-example.cpp</TT></a> for an example of using Dijkstra's
436algorithm.
437
438<H3>See also</H3> <a href="dijkstra_shortest_paths_no_color_map.html">dijkstra_shortest_paths_no_color_map</a> for a version of Dijkstra's shortest path that does not use a color map.
439
440<H3>Notes</H3>
441
442<a name="1">[1]</a>
443The algorithm used here saves a little space by not putting all <i>V -
444S</i> vertices in the priority queue at once, but instead only those
445vertices in <i>V - S</i> that are discovered and therefore have a
446distance less than infinity.
447
448<p><a name="2">[2]</a>
449  Since the visitor parameter is passed by value, if your visitor
450  contains state then any changes to the state during the algorithm
451  will be made to a copy of the visitor object, not the visitor object
452  passed in. Therefore you may want the visitor to hold this state by
453  pointer or reference.
454
455<br>
456<HR>
457<TABLE>
458<TR valign=top>
459<TD nowrap>Copyright &copy; 2000-2001</TD><TD>
460<A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
461</TD></TR></TABLE>
462
463</BODY>
464</HTML>
465