• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section:extreme_dist Extreme Value Distribution]
2
3``#include <boost/math/distributions/extreme.hpp>``
4
5   template <class RealType = double,
6             class ``__Policy``   = ``__policy_class`` >
7   class extreme_value_distribution;
8
9   typedef extreme_value_distribution<> extreme_value;
10
11   template <class RealType, class ``__Policy``>
12   class extreme_value_distribution
13   {
14   public:
15      typedef RealType value_type;
16
17      extreme_value_distribution(RealType location = 0, RealType scale = 1);
18
19      RealType scale()const;
20      RealType location()const;
21   };
22
23There are various
24[@http://mathworld.wolfram.com/ExtremeValueDistribution.html extreme value distributions]
25: this implementation represents the maximum case,
26and is variously known as a Fisher-Tippett distribution,
27a log-Weibull distribution or a Gumbel distribution.
28
29Extreme value theory is important for assessing risk for highly unusual events,
30such as 100-year floods.
31
32More information can be found on the
33[@http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm NIST],
34[@http://en.wikipedia.org/wiki/Extreme_value_distribution Wikipedia],
35[@http://mathworld.wolfram.com/ExtremeValueDistribution.html Mathworld],
36and [@http://en.wikipedia.org/wiki/Extreme_value_theory Extreme value theory]
37websites.
38
39The relationship of the types of extreme value distributions, of which this is but one, is
40discussed by
41[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
42Samuel Kotz & Saralees Nadarajah].
43
44The distribution has a PDF given by:
45
46[expression f(x) = (1/scale) e[super -(x-location)/scale] e[super -e[super -(x-location)/scale]]]
47
48which in the standard case (scale = 1, location = 0) reduces to:
49
50[expression f(x) = e[super -x]e[super -e[super -x]]]
51
52The following graph illustrates how the PDF varies with the location parameter:
53
54[graph extreme_value_pdf1]
55
56And this graph illustrates how the PDF varies with the shape parameter:
57
58[graph extreme_value_pdf2]
59
60[h4 Member Functions]
61
62   extreme_value_distribution(RealType location = 0, RealType scale = 1);
63
64Constructs an Extreme Value distribution with the specified location and scale
65parameters.
66
67Requires `scale > 0`, otherwise calls __domain_error.
68
69   RealType location()const;
70
71Returns the location parameter of the distribution.
72
73   RealType scale()const;
74
75Returns the scale parameter of the distribution.
76
77[h4 Non-member Accessors]
78
79All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions]
80that are generic to all distributions are supported: __usual_accessors.
81
82The domain of the random parameter is \[-[infin], +[infin]\].
83
84[h4 Accuracy]
85
86The extreme value distribution is implemented in terms of the
87standard library `exp` and `log` functions and as such should have very low
88error rates.
89
90[h4 Implementation]
91
92In the following table:
93/a/ is the location parameter, /b/ is the scale parameter,
94/x/ is the random variate, /p/ is the probability and /q = 1-p/.
95
96[table
97[[Function][Implementation Notes]]
98[[pdf][Using the relation: pdf = exp((a-x)/b) * exp(-exp((a-x)/b)) / b ]]
99[[cdf][Using the relation: p = exp(-exp((a-x)/b)) ]]
100[[cdf complement][Using the relation: q = -expm1(-exp((a-x)/b)) ]]
101[[quantile][Using the relation: a - log(-log(p)) * b]]
102[[quantile from the complement][Using the relation: a - log(-log1p(-q)) * b]]
103[[mean][a + [@http://en.wikipedia.org/wiki/Euler-Mascheroni_constant Euler-Mascheroni-constant] * b]]
104[[standard deviation][pi * b / sqrt(6)]]
105[[mode][The same as the location parameter /a/.]]
106[[skewness][12 * sqrt(6) * zeta(3) / pi[super 3] ]]
107[[kurtosis][27 / 5]]
108[[kurtosis excess][kurtosis - 3 or 12 / 5]]
109]
110
111[endsect] [/section:extreme_dist Extreme Value]
112
113[/ extreme_value.qbk
114  Copyright 2006 John Maddock and Paul A. Bristow.
115  Distributed under the Boost Software License, Version 1.0.
116  (See accompanying file LICENSE_1_0.txt or copy at
117  http://www.boost.org/LICENSE_1_0.txt).
118]
119
120