• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section:f_dist F Distribution]
2
3``#include <boost/math/distributions/fisher_f.hpp>``
4
5   namespace boost{ namespace math{
6
7   template <class RealType = double,
8             class ``__Policy``   = ``__policy_class`` >
9   class fisher_f_distribution;
10
11   typedef fisher_f_distribution<> fisher_f;
12
13   template <class RealType, class ``__Policy``>
14   class fisher_f_distribution
15   {
16   public:
17      typedef RealType value_type;
18
19      // Construct:
20      fisher_f_distribution(const RealType& i, const RealType& j);
21
22      // Accessors:
23      RealType degrees_of_freedom1()const;
24      RealType degrees_of_freedom2()const;
25   };
26
27   }} //namespaces
28
29The F distribution is a continuous distribution that arises when testing
30whether two samples have the same variance.  If [chi][super 2][sub m] and
31[chi][super 2][sub n] are independent variates each distributed as
32Chi-Squared with /m/ and /n/ degrees of freedom, then the test statistic:
33
34[expression F[sub n,m] = ([chi][super 2][sub n] / n) / ([chi][super 2][sub m] / m)]
35
36Is distributed over the range \[0, [infin]\] with an F distribution, and
37has the PDF:
38
39[equation fisher_pdf]
40
41The following graph illustrates how the PDF varies depending on the
42two degrees of freedom parameters.
43
44[graph fisher_f_pdf]
45
46
47[h4 Member Functions]
48
49      fisher_f_distribution(const RealType& df1, const RealType& df2);
50
51Constructs an F-distribution with numerator degrees of freedom /df1/
52and denominator degrees of freedom /df2/.
53
54Requires that /df1/ and /df2/ are both greater than zero, otherwise __domain_error
55is called.
56
57      RealType degrees_of_freedom1()const;
58
59Returns the numerator degrees of freedom parameter of the distribution.
60
61      RealType degrees_of_freedom2()const;
62
63Returns the denominator degrees of freedom parameter of the distribution.
64
65[h4 Non-member Accessors]
66
67All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions]
68that are generic to all distributions are supported: __usual_accessors.
69
70The domain of the random variable is \[0, +[infin]\].
71
72[h4 Examples]
73
74Various [link math_toolkit.stat_tut.weg.f_eg worked examples] are
75available illustrating the use of the F Distribution.
76
77[h4 Accuracy]
78
79The normal distribution is implemented in terms of the
80[link math_toolkit.sf_beta.ibeta_function incomplete beta function]
81and its [link math_toolkit.sf_beta.ibeta_inv_function inverses],
82refer to those functions for accuracy data.
83
84[h4 Implementation]
85
86In the following table /v1/ and /v2/ are the first and second
87degrees of freedom parameters of the distribution,
88/x/ is the random variate, /p/ is the probability, and /q = 1-p/.
89
90[table
91[[Function][Implementation Notes]]
92[[pdf][The usual form of the PDF is given by:
93
94[equation fisher_pdf]
95
96However, that form is hard to evaluate directly without incurring problems with
97either accuracy or numeric overflow.
98
99Direct differentiation of the CDF expressed in terms of the incomplete beta function
100
101led to the following two formulas:
102
103[expression f[sub v1,v2](x) = y * __ibeta_derivative(v2 \/ 2, v1 \/ 2, v2 \/ (v2 + v1 * x))]
104
105with y = (v2 * v1) \/ ((v2 + v1 * x) * (v2 + v1 * x))
106
107and
108
109[expression f[sub v1,v2](x) = y * __ibeta_derivative(v1 \/ 2, v2 \/ 2, v1 * x \/ (v2 + v1 * x))]
110
111with y = (z * v1 - x * v1 * v1) \/ z[super 2]
112
113and z = v2 + v1 * x
114
115The first of these is used for v1 * x > v2, otherwise the second is used.
116
117The aim is to keep the /x/ argument to __ibeta_derivative away from 1 to avoid
118rounding error. ]]
119[[cdf][Using the relations:
120
121[expression p = __ibeta(v1 \/ 2, v2 \/ 2, v1 * x \/ (v2 + v1 * x))]
122
123and
124
125[expression :p = __ibetac(v2 \/ 2, v1 \/ 2, v2 \/ (v2 + v1 * x))]
126
127The first is used for v1 * x > v2, otherwise the second is used.
128
129The aim is to keep the /x/ argument to __ibeta well away from 1 to
130avoid rounding error. ]]
131
132[[cdf complement][Using the relations:
133
134[expression p = __ibetac(v1 \/ 2, v2 \/ 2, v1 * x \/ (v2 + v1 * x))]
135
136and
137
138[expression p = __ibeta(v2 \/ 2, v1 \/ 2, v2 \/ (v2 + v1 * x))]
139
140The first is used for v1 * x < v2, otherwise the second is used.
141
142The aim is to keep the /x/ argument to __ibeta well away from 1 to
143avoid rounding error. ]]
144[[quantile][Using the relation:
145
146[expression x = v2 * a \/ (v1 * b)]
147
148where:
149
150[expression a = __ibeta_inv(v1 \/ 2, v2 \/ 2, p)]
151
152and
153
154[expression b = 1 - a]
155
156Quantities /a/ and /b/ are both computed by __ibeta_inv without the
157subtraction implied above.]]
158[[quantile
159
160from the complement][Using the relation:
161
162[expression x = v2 * a \/ (v1 * b)]
163
164where
165
166[expression a = __ibetac_inv(v1 \/ 2, v2 \/ 2, p)]
167
168and
169
170[expression b = 1 - a]
171
172Quantities /a/ and /b/ are both computed by __ibetac_inv without the
173subtraction implied above.]]
174[[mean][v2 \/ (v2 - 2)]]
175[[variance][2 * v2[super 2 ] * (v1 + v2 - 2) \/ (v1 * (v2 - 2) * (v2 - 2) * (v2 - 4))]]
176[[mode][v2 * (v1 - 2) \/ (v1 * (v2 + 2))]]
177[[skewness][2 * (v2 + 2 * v1 - 2) * sqrt((2 * v2 - 8) \/ (v1 * (v2 + v1 - 2))) \/ (v2 - 6)]]
178[[kurtosis and kurtosis excess]
179    [Refer to, [@http://mathworld.wolfram.com/F-Distribution.html
180    Weisstein, Eric W. "F-Distribution." From MathWorld--A Wolfram Web Resource.]  ]]
181]
182
183[endsect] [/section:f_dist F distribution]
184
185[/ fisher.qbk
186  Copyright 2006 John Maddock and Paul A. Bristow.
187  Distributed under the Boost Software License, Version 1.0.
188  (See accompanying file LICENSE_1_0.txt or copy at
189  http://www.boost.org/LICENSE_1_0.txt).
190]
191