• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Bessel Functions of the First and Second Kinds</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../bessel.html" title="Bessel Functions">
9<link rel="prev" href="bessel_over.html" title="Bessel Function Overview">
10<link rel="next" href="bessel_root.html" title="Finding Zeros of Bessel Functions of the First and Second Kinds">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="bessel_over.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../bessel.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="bessel_root.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.bessel.bessel_first"></a><a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">Bessel Functions of
28      the First and Second Kinds</a>
29</h3></div></div></div>
30<h5>
31<a name="math_toolkit.bessel.bessel_first.h0"></a>
32        <span class="phrase"><a name="math_toolkit.bessel.bessel_first.synopsis"></a></span><a class="link" href="bessel_first.html#math_toolkit.bessel.bessel_first.synopsis">Synopsis</a>
33      </h5>
34<p>
35        <code class="computeroutput"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">bessel</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>
36      </p>
37<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
38<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">);</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
42
43<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
44<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">);</span>
45
46<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
47<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
48</pre>
49<h5>
50<a name="math_toolkit.bessel.bessel_first.h1"></a>
51        <span class="phrase"><a name="math_toolkit.bessel.bessel_first.description"></a></span><a class="link" href="bessel_first.html#math_toolkit.bessel.bessel_first.description">Description</a>
52      </h5>
53<p>
54        The functions <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_bessel_j</a>
55        and <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_neumann</a> return
56        the result of the Bessel functions of the first and second kinds respectively:
57      </p>
58<div class="blockquote"><blockquote class="blockquote"><p>
59          <span class="serif_italic">cyl_bessel_j(v, x) = J<sub>v</sub>(x)</span>
60        </p></blockquote></div>
61<div class="blockquote"><blockquote class="blockquote"><p>
62          <span class="serif_italic">cyl_neumann(v, x) = Y<sub>v</sub>(x) = N<sub>v</sub>(x)</span>
63        </p></blockquote></div>
64<p>
65        where:
66      </p>
67<div class="blockquote"><blockquote class="blockquote"><p>
68          <span class="inlinemediaobject"><img src="../../../equations/bessel2.svg"></span>
69
70        </p></blockquote></div>
71<div class="blockquote"><blockquote class="blockquote"><p>
72          <span class="inlinemediaobject"><img src="../../../equations/bessel3.svg"></span>
73
74        </p></blockquote></div>
75<p>
76        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
77        type calculation rules</em></span></a> when T1 and T2 are different types.
78        The functions are also optimised for the relatively common case that T1 is
79        an integer.
80      </p>
81<p>
82        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
83        be used to control the behaviour of the function: how it handles errors,
84        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
85        documentation for more details</a>.
86      </p>
87<p>
88        The functions return the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
89        whenever the result is undefined or complex. For <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_bessel_j</a>
90        this occurs when <code class="computeroutput"><span class="identifier">x</span> <span class="special">&lt;</span>
91        <span class="number">0</span></code> and v is not an integer, or when
92        <code class="computeroutput"><span class="identifier">x</span> <span class="special">==</span>
93        <span class="number">0</span></code> and <code class="computeroutput"><span class="identifier">v</span>
94        <span class="special">!=</span> <span class="number">0</span></code>.
95        For <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_neumann</a> this
96        occurs when <code class="computeroutput"><span class="identifier">x</span> <span class="special">&lt;=</span>
97        <span class="number">0</span></code>.
98      </p>
99<p>
100        The following graph illustrates the cyclic nature of J<sub>v</sub>:
101      </p>
102<div class="blockquote"><blockquote class="blockquote"><p>
103          <span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_j.svg" align="middle"></span>
104
105        </p></blockquote></div>
106<p>
107        The following graph shows the behaviour of Y<sub>v</sub>: this is also cyclic for large
108        <span class="emphasis"><em>x</em></span>, but tends to -∞ for small <span class="emphasis"><em>x</em></span>:
109      </p>
110<div class="blockquote"><blockquote class="blockquote"><p>
111          <span class="inlinemediaobject"><img src="../../../graphs/cyl_neumann.svg" align="middle"></span>
112
113        </p></blockquote></div>
114<h5>
115<a name="math_toolkit.bessel.bessel_first.h2"></a>
116        <span class="phrase"><a name="math_toolkit.bessel.bessel_first.testing"></a></span><a class="link" href="bessel_first.html#math_toolkit.bessel.bessel_first.testing">Testing</a>
117      </h5>
118<p>
119        There are two sets of test values: spot values calculated using <a href="http://functions.wolfram.com" target="_top">functions.wolfram.com</a>,
120        and a much larger set of tests computed using a simplified version of this
121        implementation (with all the special case handling removed).
122      </p>
123<h5>
124<a name="math_toolkit.bessel.bessel_first.h3"></a>
125        <span class="phrase"><a name="math_toolkit.bessel.bessel_first.accuracy"></a></span><a class="link" href="bessel_first.html#math_toolkit.bessel.bessel_first.accuracy">Accuracy</a>
126      </h5>
127<p>
128        The following tables show how the accuracy of these functions varies on various
129        platforms, along with comparisons to other libraries. Note that the cyclic
130        nature of these functions means that they have an infinite number of irrational
131        roots: in general these functions have arbitrarily large <span class="emphasis"><em>relative</em></span>
132        errors when the arguments are sufficiently close to a root. Of course the
133        absolute error in such cases is always small. Note that only results for
134        the widest floating-point type on the system are given as narrower types
135        have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively zero
136        error</a>. All values are relative errors in units of epsilon. Most of
137        the gross errors exhibited by other libraries occur for very large arguments
138        - you will need to drill down into the actual program output if you need
139        more information on this.
140      </p>
141<div class="table">
142<a name="math_toolkit.bessel.bessel_first.table_cyl_bessel_j_integer_orders_"></a><p class="title"><b>Table 8.40. Error rates for cyl_bessel_j (integer orders)</b></p>
143<div class="table-contents"><table class="table" summary="Error rates for cyl_bessel_j (integer orders)">
144<colgroup>
145<col>
146<col>
147<col>
148<col>
149<col>
150</colgroup>
151<thead><tr>
152<th>
153              </th>
154<th>
155                <p>
156                  GNU C++ version 7.1.0<br> linux<br> long double
157                </p>
158              </th>
159<th>
160                <p>
161                  GNU C++ version 7.1.0<br> linux<br> double
162                </p>
163              </th>
164<th>
165                <p>
166                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
167                </p>
168              </th>
169<th>
170                <p>
171                  Microsoft Visual C++ version 14.1<br> Win32<br> double
172                </p>
173              </th>
174</tr></thead>
175<tbody>
176<tr>
177<td>
178                <p>
179                  Bessel J0: Mathworld Data (Integer Version)
180                </p>
181              </td>
182<td>
183                <p>
184                  <span class="blue">Max = 6.55ε (Mean = 2.86ε)</span><br> <br>
185                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 5.04ε (Mean = 1.78ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j_integer_orders___cmath__Bessel_J0_Mathworld_Data_Integer_Version_">And
186                  other failures.</a>)
187                </p>
188              </td>
189<td>
190                <p>
191                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
192                  2.1:</em></span> Max = 1.12ε (Mean = 0.488ε))<br> (<span class="emphasis"><em>Rmath
193                  3.2.3:</em></span> Max = 0.629ε (Mean = 0.223ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_integer_orders__Rmath_3_2_3_Bessel_J0_Mathworld_Data_Integer_Version_">And
194                  other failures.</a>)
195                </p>
196              </td>
197<td>
198                <p>
199                  <span class="blue">Max = 6.55ε (Mean = 2.86ε)</span>
200                </p>
201              </td>
202<td>
203                <p>
204                  <span class="blue">Max = 2.52ε (Mean = 1.2ε)</span><br> <br>
205                  (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> Max = 1.89ε (Mean = 0.988ε))
206                </p>
207              </td>
208</tr>
209<tr>
210<td>
211                <p>
212                  Bessel J0: Mathworld Data (Tricky cases) (Integer Version)
213                </p>
214              </td>
215<td>
216                <p>
217                  <span class="blue">Max = 1.64e+08ε (Mean = 6.69e+07ε)</span><br>
218                  <br> (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 4.79e+08ε (Mean
219                  = 1.96e+08ε))
220                </p>
221              </td>
222<td>
223                <p>
224                  <span class="blue">Max = 8e+04ε (Mean = 3.27e+04ε)</span><br>
225                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1e+07ε (Mean = 4.11e+06ε))<br>
226                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 1.04e+07ε (Mean = 4.29e+06ε))
227                </p>
228              </td>
229<td>
230                <p>
231                  <span class="blue">Max = 1.64e+08ε (Mean = 6.69e+07ε)</span>
232                </p>
233              </td>
234<td>
235                <p>
236                  <span class="blue">Max = 1e+07ε (Mean = 4.09e+06ε)</span><br>
237                  <br> (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> <span class="red">Max
238                  = 2.54e+08ε (Mean = 1.04e+08ε))</span>
239                </p>
240              </td>
241</tr>
242<tr>
243<td>
244                <p>
245                  Bessel J1: Mathworld Data (Integer Version)
246                </p>
247              </td>
248<td>
249                <p>
250                  <span class="blue">Max = 3.59ε (Mean = 1.33ε)</span><br> <br>
251                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 6.1ε (Mean = 2.95ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j_integer_orders___cmath__Bessel_J1_Mathworld_Data_Integer_Version_">And
252                  other failures.</a>)
253                </p>
254              </td>
255<td>
256                <p>
257                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
258                  2.1:</em></span> Max = 1.89ε (Mean = 0.721ε))<br> (<span class="emphasis"><em>Rmath
259                  3.2.3:</em></span> Max = 0.946ε (Mean = 0.39ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_integer_orders__Rmath_3_2_3_Bessel_J1_Mathworld_Data_Integer_Version_">And
260                  other failures.</a>)
261                </p>
262              </td>
263<td>
264                <p>
265                  <span class="blue">Max = 1.44ε (Mean = 0.637ε)</span>
266                </p>
267              </td>
268<td>
269                <p>
270                  <span class="blue">Max = 1.73ε (Mean = 0.976ε)</span><br> <br>
271                  (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> Max = 11.4ε (Mean = 4.15ε))
272                </p>
273              </td>
274</tr>
275<tr>
276<td>
277                <p>
278                  Bessel J1: Mathworld Data (tricky cases) (Integer Version)
279                </p>
280              </td>
281<td>
282                <p>
283                  <span class="blue">Max = 2.18e+05ε (Mean = 9.76e+04ε)</span><br>
284                  <br> (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 2.15e+06ε (Mean
285                  = 1.58e+06ε))
286                </p>
287              </td>
288<td>
289                <p>
290                  <span class="blue">Max = 106ε (Mean = 47.5ε)</span><br> <br>
291                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.26e+06ε (Mean = 6.28e+05ε))<br>
292                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 2.93e+06ε (Mean = 1.7e+06ε))
293                </p>
294              </td>
295<td>
296                <p>
297                  <span class="blue">Max = 2.18e+05ε (Mean = 9.76e+04ε)</span>
298                </p>
299              </td>
300<td>
301                <p>
302                  <span class="blue">Max = 3.23e+04ε (Mean = 1.45e+04ε)</span><br>
303                  <br> (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> Max = 1.44e+07ε (Mean
304                  = 6.5e+06ε))
305                </p>
306              </td>
307</tr>
308<tr>
309<td>
310                <p>
311                  Bessel JN: Mathworld Data (Integer Version)
312                </p>
313              </td>
314<td>
315                <p>
316                  <span class="blue">Max = 6.85ε (Mean = 3.35ε)</span><br> <br>
317                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> <span class="red">Max = 2.13e+19ε (Mean
318                  = 5.16e+18ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j_integer_orders___cmath__Bessel_JN_Mathworld_Data_Integer_Version_">And
319                  other failures.</a>)</span>
320                </p>
321              </td>
322<td>
323                <p>
324                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
325                  2.1:</em></span> Max = 6.9e+05ε (Mean = 2.53e+05ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_integer_orders__GSL_2_1_Bessel_JN_Mathworld_Data_Integer_Version_">And
326                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
327                  <span class="red">Max = +INFε (Mean = +INFε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_integer_orders__Rmath_3_2_3_Bessel_JN_Mathworld_Data_Integer_Version_">And
328                  other failures.</a>)</span>
329                </p>
330              </td>
331<td>
332                <p>
333                  <span class="blue">Max = 463ε (Mean = 112ε)</span>
334                </p>
335              </td>
336<td>
337                <p>
338                  <span class="blue">Max = 14.7ε (Mean = 5.4ε)</span><br> <br>
339                  (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> <span class="red">Max =
340                  +INFε (Mean = +INFε) <a class="link" href="../logs_and_tables/logs.html#errors_Microsoft_Visual_C_version_14_1_Win32_double_cyl_bessel_j_integer_orders___math_h__Bessel_JN_Mathworld_Data_Integer_Version_">And
341                  other failures.</a>)</span>
342                </p>
343              </td>
344</tr>
345</tbody>
346</table></div>
347</div>
348<br class="table-break"><div class="table">
349<a name="math_toolkit.bessel.bessel_first.table_cyl_bessel_j"></a><p class="title"><b>Table 8.41. Error rates for cyl_bessel_j</b></p>
350<div class="table-contents"><table class="table" summary="Error rates for cyl_bessel_j">
351<colgroup>
352<col>
353<col>
354<col>
355<col>
356<col>
357</colgroup>
358<thead><tr>
359<th>
360              </th>
361<th>
362                <p>
363                  GNU C++ version 7.1.0<br> linux<br> long double
364                </p>
365              </th>
366<th>
367                <p>
368                  GNU C++ version 7.1.0<br> linux<br> double
369                </p>
370              </th>
371<th>
372                <p>
373                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
374                </p>
375              </th>
376<th>
377                <p>
378                  Microsoft Visual C++ version 14.1<br> Win32<br> double
379                </p>
380              </th>
381</tr></thead>
382<tbody>
383<tr>
384<td>
385                <p>
386                  Bessel J0: Mathworld Data
387                </p>
388              </td>
389<td>
390                <p>
391                  <span class="blue">Max = 6.55ε (Mean = 2.86ε)</span><br> <br>
392                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 5.04ε (Mean = 1.78ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j__cmath__Bessel_J0_Mathworld_Data">And
393                  other failures.</a>)
394                </p>
395              </td>
396<td>
397                <p>
398                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
399                  2.1:</em></span> Max = 0.629ε (Mean = 0.223ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_GSL_2_1_Bessel_J0_Mathworld_Data">And
400                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
401                  Max = 0.629ε (Mean = 0.223ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_Rmath_3_2_3_Bessel_J0_Mathworld_Data">And
402                  other failures.</a>)
403                </p>
404              </td>
405<td>
406                <p>
407                  <span class="blue">Max = 6.55ε (Mean = 2.86ε)</span>
408                </p>
409              </td>
410<td>
411                <p>
412                  <span class="blue">Max = 2.52ε (Mean = 1.2ε)</span>
413                </p>
414              </td>
415</tr>
416<tr>
417<td>
418                <p>
419                  Bessel J0: Mathworld Data (Tricky cases)
420                </p>
421              </td>
422<td>
423                <p>
424                  <span class="blue">Max = 1.64e+08ε (Mean = 6.69e+07ε)</span><br>
425                  <br> (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 4.79e+08ε (Mean
426                  = 1.96e+08ε))
427                </p>
428              </td>
429<td>
430                <p>
431                  <span class="blue">Max = 8e+04ε (Mean = 3.27e+04ε)</span><br>
432                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 6.5e+07ε (Mean = 2.66e+07ε))<br>
433                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 1.04e+07ε (Mean = 4.29e+06ε))
434                </p>
435              </td>
436<td>
437                <p>
438                  <span class="blue">Max = 1.64e+08ε (Mean = 6.69e+07ε)</span>
439                </p>
440              </td>
441<td>
442                <p>
443                  <span class="blue">Max = 1e+07ε (Mean = 4.09e+06ε)</span>
444                </p>
445              </td>
446</tr>
447<tr>
448<td>
449                <p>
450                  Bessel J1: Mathworld Data
451                </p>
452              </td>
453<td>
454                <p>
455                  <span class="blue">Max = 3.59ε (Mean = 1.33ε)</span><br> <br>
456                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 6.1ε (Mean = 2.95ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j__cmath__Bessel_J1_Mathworld_Data">And
457                  other failures.</a>)
458                </p>
459              </td>
460<td>
461                <p>
462                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
463                  2.1:</em></span> Max = 6.62ε (Mean = 2.35ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_GSL_2_1_Bessel_J1_Mathworld_Data">And
464                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
465                  Max = 0.946ε (Mean = 0.39ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_Rmath_3_2_3_Bessel_J1_Mathworld_Data">And
466                  other failures.</a>)
467                </p>
468              </td>
469<td>
470                <p>
471                  <span class="blue">Max = 1.44ε (Mean = 0.637ε)</span>
472                </p>
473              </td>
474<td>
475                <p>
476                  <span class="blue">Max = 1.73ε (Mean = 0.976ε)</span>
477                </p>
478              </td>
479</tr>
480<tr>
481<td>
482                <p>
483                  Bessel J1: Mathworld Data (tricky cases)
484                </p>
485              </td>
486<td>
487                <p>
488                  <span class="blue">Max = 2.18e+05ε (Mean = 9.76e+04ε)</span><br>
489                  <br> (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 2.15e+06ε (Mean
490                  = 1.58e+06ε))
491                </p>
492              </td>
493<td>
494                <p>
495                  <span class="blue">Max = 106ε (Mean = 47.5ε)</span><br> <br>
496                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 8.75e+05ε (Mean = 5.32e+05ε))<br>
497                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 2.93e+06ε (Mean = 1.7e+06ε))
498                </p>
499              </td>
500<td>
501                <p>
502                  <span class="blue">Max = 2.18e+05ε (Mean = 9.76e+04ε)</span>
503                </p>
504              </td>
505<td>
506                <p>
507                  <span class="blue">Max = 3.23e+04ε (Mean = 1.45e+04ε)</span>
508                </p>
509              </td>
510</tr>
511<tr>
512<td>
513                <p>
514                  Bessel JN: Mathworld Data
515                </p>
516              </td>
517<td>
518                <p>
519                  <span class="blue">Max = 6.85ε (Mean = 3.35ε)</span><br> <br>
520                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> <span class="red">Max = 2.13e+19ε (Mean
521                  = 5.16e+18ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j__cmath__Bessel_JN_Mathworld_Data">And
522                  other failures.</a>)</span>
523                </p>
524              </td>
525<td>
526                <p>
527                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
528                  2.1:</em></span> Max = 6.9e+05ε (Mean = 2.15e+05ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_GSL_2_1_Bessel_JN_Mathworld_Data">And
529                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
530                  <span class="red">Max = +INFε (Mean = +INFε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_Rmath_3_2_3_Bessel_JN_Mathworld_Data">And
531                  other failures.</a>)</span>
532                </p>
533              </td>
534<td>
535                <p>
536                  <span class="blue">Max = 463ε (Mean = 112ε)</span>
537                </p>
538              </td>
539<td>
540                <p>
541                  <span class="blue">Max = 14.7ε (Mean = 5.4ε)</span>
542                </p>
543              </td>
544</tr>
545<tr>
546<td>
547                <p>
548                  Bessel J: Mathworld Data
549                </p>
550              </td>
551<td>
552                <p>
553                  <span class="blue">Max = 14.7ε (Mean = 4.11ε)</span><br> <br>
554                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 3.49e+05ε (Mean = 8.09e+04ε)
555                  <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j__cmath__Bessel_J_Mathworld_Data">And
556                  other failures.</a>)
557                </p>
558              </td>
559<td>
560                <p>
561                  <span class="blue">Max = 10ε (Mean = 2.24ε)</span><br> <br>
562                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 2.39e+05ε (Mean = 5.37e+04ε)
563                  <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_GSL_2_1_Bessel_J_Mathworld_Data">And
564                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
565                  <span class="red">Max = +INFε (Mean = +INFε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_Rmath_3_2_3_Bessel_J_Mathworld_Data">And
566                  other failures.</a>)</span>
567                </p>
568              </td>
569<td>
570                <p>
571                  <span class="blue">Max = 14.7ε (Mean = 4.22ε)</span>
572                </p>
573              </td>
574<td>
575                <p>
576                  <span class="blue">Max = 14.9ε (Mean = 3.89ε)</span>
577                </p>
578              </td>
579</tr>
580<tr>
581<td>
582                <p>
583                  Bessel J: Mathworld Data (large values)
584                </p>
585              </td>
586<td>
587                <p>
588                  <span class="blue">Max = 607ε (Mean = 305ε)</span><br> <br>
589                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 34.9ε (Mean = 17.4ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_bessel_j__cmath__Bessel_J_Mathworld_Data_large_values_">And
590                  other failures.</a>)
591                </p>
592              </td>
593<td>
594                <p>
595                  <span class="blue">Max = 0.536ε (Mean = 0.268ε)</span><br> <br>
596                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 4.91e+03ε (Mean = 2.46e+03ε)
597                  <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_GSL_2_1_Bessel_J_Mathworld_Data_large_values_">And
598                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
599                  Max = 5.9ε (Mean = 3.76ε))
600                </p>
601              </td>
602<td>
603                <p>
604                  <span class="blue">Max = 607ε (Mean = 305ε)</span>
605                </p>
606              </td>
607<td>
608                <p>
609                  <span class="blue">Max = 9.31ε (Mean = 5.52ε)</span>
610                </p>
611              </td>
612</tr>
613<tr>
614<td>
615                <p>
616                  Bessel JN: Random Data
617                </p>
618              </td>
619<td>
620                <p>
621                  <span class="blue">Max = 50.8ε (Mean = 3.69ε)</span><br> <br>
622                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 1.12e+03ε (Mean = 88.7ε))
623                </p>
624              </td>
625<td>
626                <p>
627                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
628                  2.1:</em></span> Max = 75.7ε (Mean = 5.36ε))<br> (<span class="emphasis"><em>Rmath
629                  3.2.3:</em></span> Max = 3.93ε (Mean = 1.22ε))
630                </p>
631              </td>
632<td>
633                <p>
634                  <span class="blue">Max = 99.6ε (Mean = 22ε)</span>
635                </p>
636              </td>
637<td>
638                <p>
639                  <span class="blue">Max = 17.5ε (Mean = 1.46ε)</span>
640                </p>
641              </td>
642</tr>
643<tr>
644<td>
645                <p>
646                  Bessel J: Random Data
647                </p>
648              </td>
649<td>
650                <p>
651                  <span class="blue">Max = 11.4ε (Mean = 1.68ε)</span><br> <br>
652                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 501ε (Mean = 52.3ε))
653                </p>
654              </td>
655<td>
656                <p>
657                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
658                  2.1:</em></span> Max = 15.5ε (Mean = 3.33ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_bessel_j_GSL_2_1_Bessel_J_Random_Data">And
659                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
660                  Max = 6.74ε (Mean = 1.3ε))
661                </p>
662              </td>
663<td>
664                <p>
665                  <span class="blue">Max = 260ε (Mean = 34ε)</span>
666                </p>
667              </td>
668<td>
669                <p>
670                  <span class="blue">Max = 9.24ε (Mean = 1.17ε)</span>
671                </p>
672              </td>
673</tr>
674<tr>
675<td>
676                <p>
677                  Bessel J: Random Data (Tricky large values)
678                </p>
679              </td>
680<td>
681                <p>
682                  <span class="blue">Max = 785ε (Mean = 94.2ε)</span><br> <br>
683                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> <span class="red">Max = 5.01e+17ε (Mean
684                  = 6.23e+16ε))</span>
685                </p>
686              </td>
687<td>
688                <p>
689                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
690                  2.1:</em></span> Max = 2.48e+05ε (Mean = 5.11e+04ε))<br> (<span class="emphasis"><em>Rmath
691                  3.2.3:</em></span> Max = 71.6ε (Mean = 11.7ε))
692                </p>
693              </td>
694<td>
695                <p>
696                  <span class="blue">Max = 785ε (Mean = 97.4ε)</span>
697                </p>
698              </td>
699<td>
700                <p>
701                  <span class="blue">Max = 59.2ε (Mean = 8.67ε)</span>
702                </p>
703              </td>
704</tr>
705</tbody>
706</table></div>
707</div>
708<br class="table-break"><div class="table">
709<a name="math_toolkit.bessel.bessel_first.table_cyl_neumann_integer_orders_"></a><p class="title"><b>Table 8.42. Error rates for cyl_neumann (integer orders)</b></p>
710<div class="table-contents"><table class="table" summary="Error rates for cyl_neumann (integer orders)">
711<colgroup>
712<col>
713<col>
714<col>
715<col>
716<col>
717</colgroup>
718<thead><tr>
719<th>
720              </th>
721<th>
722                <p>
723                  GNU C++ version 7.1.0<br> linux<br> long double
724                </p>
725              </th>
726<th>
727                <p>
728                  GNU C++ version 7.1.0<br> linux<br> double
729                </p>
730              </th>
731<th>
732                <p>
733                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
734                </p>
735              </th>
736<th>
737                <p>
738                  Microsoft Visual C++ version 14.1<br> Win32<br> double
739                </p>
740              </th>
741</tr></thead>
742<tbody>
743<tr>
744<td>
745                <p>
746                  Y0: Mathworld Data (Integer Version)
747                </p>
748              </td>
749<td>
750                <p>
751                  <span class="blue">Max = 5.53ε (Mean = 2.4ε)</span><br> <br>
752                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 2.05e+05ε (Mean = 6.87e+04ε))
753                </p>
754              </td>
755<td>
756                <p>
757                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
758                  2.1:</em></span> Max = 6.46ε (Mean = 2.38ε))<br> (<span class="emphasis"><em>Rmath
759                  3.2.3:</em></span> Max = 167ε (Mean = 56.5ε))
760                </p>
761              </td>
762<td>
763                <p>
764                  <span class="blue">Max = 5.53ε (Mean = 2.4ε)</span>
765                </p>
766              </td>
767<td>
768                <p>
769                  <span class="blue">Max = 4.61ε (Mean = 2.29ε)</span><br> <br>
770                  (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> Max = 5.37e+03ε (Mean = 1.81e+03ε))
771                </p>
772              </td>
773</tr>
774<tr>
775<td>
776                <p>
777                  Y1: Mathworld Data (Integer Version)
778                </p>
779              </td>
780<td>
781                <p>
782                  <span class="blue">Max = 6.33ε (Mean = 2.25ε)</span><br> <br>
783                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 9.71e+03ε (Mean = 4.08e+03ε))
784                </p>
785              </td>
786<td>
787                <p>
788                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
789                  2.1:</em></span> Max = 1.51ε (Mean = 0.839ε))<br> (<span class="emphasis"><em>Rmath
790                  3.2.3:</em></span> Max = 193ε (Mean = 64.4ε))
791                </p>
792              </td>
793<td>
794                <p>
795                  <span class="blue">Max = 6.33ε (Mean = 2.29ε)</span>
796                </p>
797              </td>
798<td>
799                <p>
800                  <span class="blue">Max = 4.75ε (Mean = 1.72ε)</span><br> <br>
801                  (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> Max = 1.86e+04ε (Mean = 6.2e+03ε))
802                </p>
803              </td>
804</tr>
805<tr>
806<td>
807                <p>
808                  Yn: Mathworld Data (Integer Version)
809                </p>
810              </td>
811<td>
812                <p>
813                  <span class="blue">Max = 55.2ε (Mean = 17.8ε)</span><br> <br>
814                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> <span class="red">Max = 2.2e+20ε (Mean
815                  = 6.97e+19ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_neumann_integer_orders___cmath__Yn_Mathworld_Data_Integer_Version_">And
816                  other failures.</a>)</span>
817                </p>
818              </td>
819<td>
820                <p>
821                  <span class="blue">Max = 0.993ε (Mean = 0.314ε)</span><br> <br>
822                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 2.41e+05ε (Mean = 7.62e+04ε))<br>
823                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 1.24e+04ε (Mean = 4e+03ε))
824                </p>
825              </td>
826<td>
827                <p>
828                  <span class="blue">Max = 55.2ε (Mean = 17.8ε)</span>
829                </p>
830              </td>
831<td>
832                <p>
833                  <span class="blue">Max = 35ε (Mean = 11.9ε)</span><br> <br>
834                  (<span class="emphasis"><em>&lt;math.h&gt;:</em></span> Max = 2.49e+05ε (Mean = 8.14e+04ε))
835                </p>
836              </td>
837</tr>
838</tbody>
839</table></div>
840</div>
841<br class="table-break"><div class="table">
842<a name="math_toolkit.bessel.bessel_first.table_cyl_neumann"></a><p class="title"><b>Table 8.43. Error rates for cyl_neumann</b></p>
843<div class="table-contents"><table class="table" summary="Error rates for cyl_neumann">
844<colgroup>
845<col>
846<col>
847<col>
848<col>
849<col>
850</colgroup>
851<thead><tr>
852<th>
853              </th>
854<th>
855                <p>
856                  GNU C++ version 7.1.0<br> linux<br> long double
857                </p>
858              </th>
859<th>
860                <p>
861                  GNU C++ version 7.1.0<br> linux<br> double
862                </p>
863              </th>
864<th>
865                <p>
866                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
867                </p>
868              </th>
869<th>
870                <p>
871                  Microsoft Visual C++ version 14.1<br> Win32<br> double
872                </p>
873              </th>
874</tr></thead>
875<tbody>
876<tr>
877<td>
878                <p>
879                  Y0: Mathworld Data
880                </p>
881              </td>
882<td>
883                <p>
884                  <span class="blue">Max = 5.53ε (Mean = 2.4ε)</span><br> <br>
885                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 2.05e+05ε (Mean = 6.87e+04ε))
886                </p>
887              </td>
888<td>
889                <p>
890                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
891                  2.1:</em></span> Max = 60.9ε (Mean = 20.4ε))<br> (<span class="emphasis"><em>Rmath
892                  3.2.3:</em></span> Max = 167ε (Mean = 56.5ε))
893                </p>
894              </td>
895<td>
896                <p>
897                  <span class="blue">Max = 5.53ε (Mean = 2.4ε)</span>
898                </p>
899              </td>
900<td>
901                <p>
902                  <span class="blue">Max = 4.61ε (Mean = 2.29ε)</span>
903                </p>
904              </td>
905</tr>
906<tr>
907<td>
908                <p>
909                  Y1: Mathworld Data
910                </p>
911              </td>
912<td>
913                <p>
914                  <span class="blue">Max = 6.33ε (Mean = 2.25ε)</span><br> <br>
915                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 9.71e+03ε (Mean = 4.08e+03ε))
916                </p>
917              </td>
918<td>
919                <p>
920                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
921                  2.1:</em></span> Max = 23.4ε (Mean = 8.1ε))<br> (<span class="emphasis"><em>Rmath
922                  3.2.3:</em></span> Max = 193ε (Mean = 64.4ε))
923                </p>
924              </td>
925<td>
926                <p>
927                  <span class="blue">Max = 6.33ε (Mean = 2.29ε)</span>
928                </p>
929              </td>
930<td>
931                <p>
932                  <span class="blue">Max = 4.75ε (Mean = 1.72ε)</span>
933                </p>
934              </td>
935</tr>
936<tr>
937<td>
938                <p>
939                  Yn: Mathworld Data
940                </p>
941              </td>
942<td>
943                <p>
944                  <span class="blue">Max = 55.2ε (Mean = 17.8ε)</span><br> <br>
945                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> <span class="red">Max = 2.2e+20ε (Mean
946                  = 6.97e+19ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_neumann__cmath__Yn_Mathworld_Data">And
947                  other failures.</a>)</span>
948                </p>
949              </td>
950<td>
951                <p>
952                  <span class="blue">Max = 0.993ε (Mean = 0.314ε)</span><br> <br>
953                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 2.41e+05ε (Mean = 7.62e+04ε)
954                  <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_neumann_GSL_2_1_Yn_Mathworld_Data">And
955                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
956                  Max = 1.24e+04ε (Mean = 4e+03ε))
957                </p>
958              </td>
959<td>
960                <p>
961                  <span class="blue">Max = 55.2ε (Mean = 17.8ε)</span>
962                </p>
963              </td>
964<td>
965                <p>
966                  <span class="blue">Max = 35ε (Mean = 11.9ε)</span>
967                </p>
968              </td>
969</tr>
970<tr>
971<td>
972                <p>
973                  Yv: Mathworld Data
974                </p>
975              </td>
976<td>
977                <p>
978                  <span class="blue">Max = 10.7ε (Mean = 4.93ε)</span><br> <br>
979                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> <span class="red">Max = 3.49e+15ε (Mean
980                  = 1.05e+15ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_neumann__cmath__Yv_Mathworld_Data">And
981                  other failures.</a>)</span>
982                </p>
983              </td>
984<td>
985                <p>
986                  <span class="blue">Max = 10ε (Mean = 3.02ε)</span><br> <br>
987                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.07e+05ε (Mean = 3.22e+04ε)
988                  <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_neumann_GSL_2_1_Yv_Mathworld_Data">And
989                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
990                  Max = 243ε (Mean = 73.9ε))
991                </p>
992              </td>
993<td>
994                <p>
995                  <span class="blue">Max = 10.7ε (Mean = 5.1ε)</span>
996                </p>
997              </td>
998<td>
999                <p>
1000                  <span class="blue">Max = 7.89ε (Mean = 3.27ε)</span>
1001                </p>
1002              </td>
1003</tr>
1004<tr>
1005<td>
1006                <p>
1007                  Yv: Mathworld Data (large values)
1008                </p>
1009              </td>
1010<td>
1011                <p>
1012                  <span class="blue">Max = 1.7ε (Mean = 1.33ε)</span><br> <br>
1013                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 43.2ε (Mean = 16.3ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_neumann__cmath__Yv_Mathworld_Data_large_values_">And
1014                  other failures.</a>)
1015                </p>
1016              </td>
1017<td>
1018                <p>
1019                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
1020                  2.1:</em></span> Max = 60.8ε (Mean = 23ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_cyl_neumann_GSL_2_1_Yv_Mathworld_Data_large_values_">And
1021                  other failures.</a>)<br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span>
1022                  Max = 0.682ε (Mean = 0.335ε))
1023                </p>
1024              </td>
1025<td>
1026                <p>
1027                  <span class="blue">Max = 1.7ε (Mean = 1.33ε)</span>
1028                </p>
1029              </td>
1030<td>
1031                <p>
1032                  <span class="blue">Max = 0.682ε (Mean = 0.423ε)</span>
1033                </p>
1034              </td>
1035</tr>
1036<tr>
1037<td>
1038                <p>
1039                  Y0 and Y1: Random Data
1040                </p>
1041              </td>
1042<td>
1043                <p>
1044                  <span class="blue">Max = 10.8ε (Mean = 3.04ε)</span><br> <br>
1045                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 2.59e+03ε (Mean = 500ε))
1046                </p>
1047              </td>
1048<td>
1049                <p>
1050                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
1051                  2.1:</em></span> Max = 34.4ε (Mean = 8.9ε))<br> (<span class="emphasis"><em>Rmath
1052                  3.2.3:</em></span> Max = 83ε (Mean = 14.2ε))
1053                </p>
1054              </td>
1055<td>
1056                <p>
1057                  <span class="blue">Max = 10.8ε (Mean = 3.04ε)</span>
1058                </p>
1059              </td>
1060<td>
1061                <p>
1062                  <span class="blue">Max = 4.17ε (Mean = 1.24ε)</span>
1063                </p>
1064              </td>
1065</tr>
1066<tr>
1067<td>
1068                <p>
1069                  Yn: Random Data
1070                </p>
1071              </td>
1072<td>
1073                <p>
1074                  <span class="blue">Max = 338ε (Mean = 27.5ε)</span><br> <br>
1075                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 4.01e+03ε (Mean = 348ε))
1076                </p>
1077              </td>
1078<td>
1079                <p>
1080                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
1081                  2.1:</em></span> Max = 500ε (Mean = 47.8ε))<br> (<span class="emphasis"><em>Rmath
1082                  3.2.3:</em></span> Max = 691ε (Mean = 67.9ε))
1083                </p>
1084              </td>
1085<td>
1086                <p>
1087                  <span class="blue">Max = 338ε (Mean = 27.5ε)</span>
1088                </p>
1089              </td>
1090<td>
1091                <p>
1092                  <span class="blue">Max = 117ε (Mean = 10.2ε)</span>
1093                </p>
1094              </td>
1095</tr>
1096<tr>
1097<td>
1098                <p>
1099                  Yv: Random Data
1100                </p>
1101              </td>
1102<td>
1103                <p>
1104                  <span class="blue">Max = 2.08e+03ε (Mean = 149ε)</span><br>
1105                  <br> (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> <span class="red">Max
1106                  = +INFε (Mean = +INFε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_cyl_neumann__cmath__Yv_Random_Data">And
1107                  other failures.</a>)</span>
1108                </p>
1109              </td>
1110<td>
1111                <p>
1112                  <span class="blue">Max = 1.53ε (Mean = 0.102ε)</span><br> <br>
1113                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.41e+06ε (Mean = 7.67e+04ε))<br>
1114                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 1.79e+05ε (Mean = 9.64e+03ε))
1115                </p>
1116              </td>
1117<td>
1118                <p>
1119                  <span class="blue">Max = 2.08e+03ε (Mean = 149ε)</span>
1120                </p>
1121              </td>
1122<td>
1123                <p>
1124                  <span class="blue">Max = 1.23e+03ε (Mean = 69.9ε)</span>
1125                </p>
1126              </td>
1127</tr>
1128</tbody>
1129</table></div>
1130</div>
1131<br class="table-break"><p>
1132        Note that for large <span class="emphasis"><em>x</em></span> these functions are largely dependent
1133        on the accuracy of the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span></code> and
1134        <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cos</span></code> functions.
1135      </p>
1136<p>
1137        Comparison to GSL and <a href="http://www.netlib.org/cephes/" target="_top">Cephes</a>
1138        is interesting: both <a href="http://www.netlib.org/cephes/" target="_top">Cephes</a>
1139        and this library optimise the integer order case - leading to identical results
1140        - simply using the general case is for the most part slightly more accurate
1141        though, as noted by the better accuracy of GSL in the integer argument cases.
1142        This implementation tends to perform much better when the arguments become
1143        large, <a href="http://www.netlib.org/cephes/" target="_top">Cephes</a> in particular
1144        produces some remarkably inaccurate results with some of the test data (no
1145        significant figures correct), and even GSL performs badly with some inputs
1146        to J<sub>v</sub>. Note that by way of double-checking these results, the worst performing
1147        <a href="http://www.netlib.org/cephes/" target="_top">Cephes</a> and GSL cases were
1148        recomputed using <a href="http://functions.wolfram.com" target="_top">functions.wolfram.com</a>,
1149        and the result checked against our test data: no errors in the test data
1150        were found.
1151      </p>
1152<p>
1153        The following error plot are based on an exhaustive search of the functions
1154        domain for J0 and Y0, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
1155        precision, other compilers and precisions are very similar - the plots simply
1156        illustrate the relatively large errors as you approach a zero, and the very
1157        low errors elsewhere.
1158      </p>
1159<div class="blockquote"><blockquote class="blockquote"><p>
1160          <span class="inlinemediaobject"><img src="../../../graphs/j0__double.svg" align="middle"></span>
1161
1162        </p></blockquote></div>
1163<div class="blockquote"><blockquote class="blockquote"><p>
1164          <span class="inlinemediaobject"><img src="../../../graphs/y0__double.svg" align="middle"></span>
1165
1166        </p></blockquote></div>
1167<h5>
1168<a name="math_toolkit.bessel.bessel_first.h4"></a>
1169        <span class="phrase"><a name="math_toolkit.bessel.bessel_first.implementation"></a></span><a class="link" href="bessel_first.html#math_toolkit.bessel.bessel_first.implementation">Implementation</a>
1170      </h5>
1171<p>
1172        The implementation is mostly about filtering off various special cases:
1173      </p>
1174<p>
1175        When <span class="emphasis"><em>x</em></span> is negative, then the order <span class="emphasis"><em>v</em></span>
1176        must be an integer or the result is a domain error. If the order is an integer
1177        then the function is odd for odd orders and even for even orders, so we reflect
1178        to <span class="emphasis"><em>x &gt; 0</em></span>.
1179      </p>
1180<p>
1181        When the order <span class="emphasis"><em>v</em></span> is negative then the reflection formulae
1182        can be used to move to <span class="emphasis"><em>v &gt; 0</em></span>:
1183      </p>
1184<div class="blockquote"><blockquote class="blockquote"><p>
1185          <span class="inlinemediaobject"><img src="../../../equations/bessel9.svg"></span>
1186
1187        </p></blockquote></div>
1188<div class="blockquote"><blockquote class="blockquote"><p>
1189          <span class="inlinemediaobject"><img src="../../../equations/bessel10.svg"></span>
1190
1191        </p></blockquote></div>
1192<p>
1193        Note that if the order is an integer, then these formulae reduce to:
1194      </p>
1195<div class="blockquote"><blockquote class="blockquote"><p>
1196          <span class="serif_italic">J<sub>-n</sub> = (-1)<sup>n</sup>J<sub>n</sub></span>
1197        </p></blockquote></div>
1198<div class="blockquote"><blockquote class="blockquote"><p>
1199          <span class="serif_italic">Y<sub>-n</sub> = (-1)<sup>n</sup>Y<sub>n</sub></span>
1200        </p></blockquote></div>
1201<p>
1202        However, in general, a negative order implies that we will need to compute
1203        both J and Y.
1204      </p>
1205<p>
1206        When <span class="emphasis"><em>x</em></span> is large compared to the order <span class="emphasis"><em>v</em></span>
1207        then the asymptotic expansions for large <span class="emphasis"><em>x</em></span> in M. Abramowitz
1208        and I.A. Stegun, <span class="emphasis"><em>Handbook of Mathematical Functions</em></span>
1209        9.2.19 are used (these were found to be more reliable than those in A&amp;S
1210        9.2.5).
1211      </p>
1212<p>
1213        When the order <span class="emphasis"><em>v</em></span> is an integer the method first relates
1214        the result to J<sub>0</sub>, J<sub>1</sub>, Y<sub>0</sub> and Y<sub>1</sub> using either forwards or backwards recurrence
1215        (Miller's algorithm) depending upon which is stable. The values for J<sub>0</sub>, J<sub>1</sub>,
1216        Y<sub>0</sub> and Y<sub>1</sub> are calculated using the rational minimax approximations on root-bracketing
1217        intervals for small <span class="emphasis"><em>|x|</em></span> and Hankel asymptotic expansion
1218        for large <span class="emphasis"><em>|x|</em></span>. The coefficients are from:
1219      </p>
1220<div class="blockquote"><blockquote class="blockquote"><p>
1221          W.J. Cody, <span class="emphasis"><em>ALGORITHM 715: SPECFUN - A Portable FORTRAN Package
1222          of Special Function Routines and Test Drivers</em></span>, ACM Transactions
1223          on Mathematical Software, vol 19, 22 (1993).
1224        </p></blockquote></div>
1225<p>
1226        and
1227      </p>
1228<div class="blockquote"><blockquote class="blockquote"><p>
1229          J.F. Hart et al, <span class="emphasis"><em>Computer Approximations</em></span>, John Wiley
1230          &amp; Sons, New York, 1968.
1231        </p></blockquote></div>
1232<p>
1233        These approximations are accurate to around 19 decimal digits: therefore
1234        these methods are not used when type T has more than 64 binary digits.
1235      </p>
1236<p>
1237        When <span class="emphasis"><em>x</em></span> is smaller than machine epsilon then the following
1238        approximations for Y<sub>0</sub>(x), Y<sub>1</sub>(x), Y<sub>2</sub>(x) and Y<sub>n</sub>(x) can be used (see: <a href="http://functions.wolfram.com/03.03.06.0037.01" target="_top">http://functions.wolfram.com/03.03.06.0037.01</a>,
1239        <a href="http://functions.wolfram.com/03.03.06.0038.01" target="_top">http://functions.wolfram.com/03.03.06.0038.01</a>,
1240        <a href="http://functions.wolfram.com/03.03.06.0039.01" target="_top">http://functions.wolfram.com/03.03.06.0039.01</a>
1241        and <a href="http://functions.wolfram.com/03.03.06.0040.01" target="_top">http://functions.wolfram.com/03.03.06.0040.01</a>):
1242      </p>
1243<div class="blockquote"><blockquote class="blockquote"><p>
1244          <span class="inlinemediaobject"><img src="../../../equations/bessel_y0_small_z.svg"></span>
1245
1246        </p></blockquote></div>
1247<div class="blockquote"><blockquote class="blockquote"><p>
1248          <span class="inlinemediaobject"><img src="../../../equations/bessel_y1_small_z.svg"></span>
1249
1250        </p></blockquote></div>
1251<div class="blockquote"><blockquote class="blockquote"><p>
1252          <span class="inlinemediaobject"><img src="../../../equations/bessel_y2_small_z.svg"></span>
1253
1254        </p></blockquote></div>
1255<div class="blockquote"><blockquote class="blockquote"><p>
1256          <span class="inlinemediaobject"><img src="../../../equations/bessel_yn_small_z.svg"></span>
1257
1258        </p></blockquote></div>
1259<p>
1260        When <span class="emphasis"><em>x</em></span> is small compared to <span class="emphasis"><em>v</em></span> and
1261        <span class="emphasis"><em>v</em></span> is not an integer, then the following series approximation
1262        can be used for Y<sub>v</sub>(x), this is also an area where other approximations are
1263        often too slow to converge to be used (see <a href="http://functions.wolfram.com/03.03.06.0034.01" target="_top">http://functions.wolfram.com/03.03.06.0034.01</a>):
1264      </p>
1265<div class="blockquote"><blockquote class="blockquote"><p>
1266          <span class="inlinemediaobject"><img src="../../../equations/bessel_yv_small_z.svg"></span>
1267
1268        </p></blockquote></div>
1269<p>
1270        When <span class="emphasis"><em>x</em></span> is small compared to <span class="emphasis"><em>v</em></span>,
1271        J<sub>v</sub>x is best computed directly from the series:
1272      </p>
1273<div class="blockquote"><blockquote class="blockquote"><p>
1274          <span class="inlinemediaobject"><img src="../../../equations/bessel2.svg"></span>
1275
1276        </p></blockquote></div>
1277<p>
1278        In the general case we compute J<sub>v</sub> and Y<sub>v</sub> simultaneously.
1279      </p>
1280<p>
1281        To get the initial values, let μ = ν - floor(ν + 1/2), then μ is the fractional part
1282        of ν such that |μ| &lt;= 1/2 (we need this for convergence later). The idea
1283        is to calculate J<sub>μ</sub>(x), J<sub>μ+1</sub>(x), Y<sub>μ</sub>(x), Y<sub>μ+1</sub>(x) and use them to obtain J<sub>ν</sub>(x), Y<sub>ν</sub>(x).
1284      </p>
1285<p>
1286        The algorithm is called Steed's method, which needs two continued fractions
1287        as well as the Wronskian:
1288      </p>
1289<div class="blockquote"><blockquote class="blockquote"><p>
1290          <span class="inlinemediaobject"><img src="../../../equations/bessel8.svg"></span>
1291
1292        </p></blockquote></div>
1293<div class="blockquote"><blockquote class="blockquote"><p>
1294          <span class="inlinemediaobject"><img src="../../../equations/bessel11.svg"></span>
1295
1296        </p></blockquote></div>
1297<div class="blockquote"><blockquote class="blockquote"><p>
1298          <span class="inlinemediaobject"><img src="../../../equations/bessel12.svg"></span>
1299
1300        </p></blockquote></div>
1301<p>
1302        See: F.S. Acton, <span class="emphasis"><em>Numerical Methods that Work</em></span>, The Mathematical
1303        Association of America, Washington, 1997.
1304      </p>
1305<p>
1306        The continued fractions are computed using the modified Lentz's method (W.J.
1307        Lentz, <span class="emphasis"><em>Generating Bessel functions in Mie scattering calculations
1308        using continued fractions</em></span>, Applied Optics, vol 15, 668 (1976)).
1309        Their convergence rates depend on <span class="emphasis"><em>x</em></span>, therefore we need
1310        different strategies for large <span class="emphasis"><em>x</em></span> and small <span class="emphasis"><em>x</em></span>:
1311      </p>
1312<div class="blockquote"><blockquote class="blockquote"><p>
1313          <span class="emphasis"><em>x &gt; v</em></span>, CF1 needs O(<span class="emphasis"><em>x</em></span>) iterations
1314          to converge, CF2 converges rapidly
1315        </p></blockquote></div>
1316<div class="blockquote"><blockquote class="blockquote"><p>
1317          <span class="emphasis"><em>x &lt;= v</em></span>, CF1 converges rapidly, CF2 fails to converge
1318          when <span class="emphasis"><em>x</em></span> <code class="literal">-&gt;</code> 0
1319        </p></blockquote></div>
1320<p>
1321        When <span class="emphasis"><em>x</em></span> is large (<span class="emphasis"><em>x</em></span> &gt; 2), both
1322        continued fractions converge (CF1 may be slow for really large <span class="emphasis"><em>x</em></span>).
1323        J<sub>μ</sub>, J<sub>μ+1</sub>, Y<sub>μ</sub>, Y<sub>μ+1</sub> can be calculated by
1324      </p>
1325<div class="blockquote"><blockquote class="blockquote"><p>
1326          <span class="inlinemediaobject"><img src="../../../equations/bessel13.svg"></span>
1327
1328        </p></blockquote></div>
1329<p>
1330        where
1331      </p>
1332<div class="blockquote"><blockquote class="blockquote"><p>
1333          <span class="inlinemediaobject"><img src="../../../equations/bessel14.svg"></span>
1334
1335        </p></blockquote></div>
1336<p>
1337        J<sub>ν</sub> and Y<sub>μ</sub> are then calculated using backward (Miller's algorithm) and forward
1338        recurrence respectively.
1339      </p>
1340<p>
1341        When <span class="emphasis"><em>x</em></span> is small (<span class="emphasis"><em>x</em></span> &lt;= 2), CF2
1342        convergence may fail (but CF1 works very well). The solution here is Temme's
1343        series:
1344      </p>
1345<div class="blockquote"><blockquote class="blockquote"><p>
1346          <span class="inlinemediaobject"><img src="../../../equations/bessel15.svg"></span>
1347
1348        </p></blockquote></div>
1349<p>
1350        where
1351      </p>
1352<div class="blockquote"><blockquote class="blockquote"><p>
1353          <span class="inlinemediaobject"><img src="../../../equations/bessel16.svg"></span>
1354
1355        </p></blockquote></div>
1356<p>
1357        g<sub>k</sub> and h<sub>k</sub>
1358are also computed by recursions (involving gamma functions), but
1359        the formulas are a little complicated, readers are referred to N.M. Temme,
1360        <span class="emphasis"><em>On the numerical evaluation of the ordinary Bessel function of
1361        the second kind</em></span>, Journal of Computational Physics, vol 21, 343
1362        (1976). Note Temme's series converge only for |μ| &lt;= 1/2.
1363      </p>
1364<p>
1365        As the previous case, Y<sub>ν</sub> is calculated from the forward recurrence, so is Y<sub>ν+1</sub>.
1366        With these two values and f<sub>ν</sub>, the Wronskian yields J<sub>ν</sub>(x) directly without backward
1367        recurrence.
1368      </p>
1369</div>
1370<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
1371<td align="left"></td>
1372<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
1373      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
1374      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
1375      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
1376      Daryle Walker and Xiaogang Zhang<p>
1377        Distributed under the Boost Software License, Version 1.0. (See accompanying
1378        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
1379      </p>
1380</div></td>
1381</tr></table>
1382<hr>
1383<div class="spirit-nav">
1384<a accesskey="p" href="bessel_over.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../bessel.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="bessel_root.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
1385</div>
1386</body>
1387</html>
1388