• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Exponential Integral En</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../expint.html" title="Exponential Integrals">
9<link rel="prev" href="../expint.html" title="Exponential Integrals">
10<link rel="next" href="expint_i.html" title="Exponential Integral Ei">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="../expint.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="expint_i.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.expint.expint_n"></a><a class="link" href="expint_n.html" title="Exponential Integral En">Exponential Integral En</a>
28</h3></div></div></div>
29<h5>
30<a name="math_toolkit.expint.expint_n.h0"></a>
31        <span class="phrase"><a name="math_toolkit.expint.expint_n.synopsis"></a></span><a class="link" href="expint_n.html#math_toolkit.expint.expint_n.synopsis">Synopsis</a>
32      </h5>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">expint</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34</pre>
35<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
36
37<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
38<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
42
43<span class="special">}}</span> <span class="comment">// namespaces</span>
44</pre>
45<p>
46        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
47        type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> if T is an integer type, and T otherwise.
48      </p>
49<p>
50        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
51        be used to control the behaviour of the function: how it handles errors,
52        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
53        documentation for more details</a>.
54      </p>
55<h5>
56<a name="math_toolkit.expint.expint_n.h1"></a>
57        <span class="phrase"><a name="math_toolkit.expint.expint_n.description"></a></span><a class="link" href="expint_n.html#math_toolkit.expint.expint_n.description">Description</a>
58      </h5>
59<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
60<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
61
62<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
63<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
64</pre>
65<p>
66        Returns the <a href="http://mathworld.wolfram.com/En-Function.html" target="_top">exponential
67        integral En</a> of z:
68      </p>
69<div class="blockquote"><blockquote class="blockquote"><p>
70          <span class="inlinemediaobject"><img src="../../../equations/expint_n_1.svg"></span>
71
72        </p></blockquote></div>
73<div class="blockquote"><blockquote class="blockquote"><p>
74          <span class="inlinemediaobject"><img src="../../../graphs/expint2.svg" align="middle"></span>
75
76        </p></blockquote></div>
77<h5>
78<a name="math_toolkit.expint.expint_n.h2"></a>
79        <span class="phrase"><a name="math_toolkit.expint.expint_n.accuracy"></a></span><a class="link" href="expint_n.html#math_toolkit.expint.expint_n.accuracy">Accuracy</a>
80      </h5>
81<p>
82        The following table shows the peak errors (in units of epsilon) found on
83        various platforms with various floating point types, along with comparisons
84        to other libraries. Unless otherwise specified any floating point type that
85        is narrower than the one shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
86        zero error</a>.
87      </p>
88<div class="table">
89<a name="math_toolkit.expint.expint_n.table_expint_En_"></a><p class="title"><b>Table 8.77. Error rates for expint (En)</b></p>
90<div class="table-contents"><table class="table" summary="Error rates for expint (En)">
91<colgroup>
92<col>
93<col>
94<col>
95<col>
96<col>
97</colgroup>
98<thead><tr>
99<th>
100              </th>
101<th>
102                <p>
103                  GNU C++ version 7.1.0<br> linux<br> double
104                </p>
105              </th>
106<th>
107                <p>
108                  GNU C++ version 7.1.0<br> linux<br> long double
109                </p>
110              </th>
111<th>
112                <p>
113                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
114                </p>
115              </th>
116<th>
117                <p>
118                  Microsoft Visual C++ version 14.1<br> Win32<br> double
119                </p>
120              </th>
121</tr></thead>
122<tbody>
123<tr>
124<td>
125                <p>
126                  Exponential Integral En
127                </p>
128              </td>
129<td>
130                <p>
131                  <span class="blue">Max = 0.589ε (Mean = 0.0331ε)</span><br>
132                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 58.5ε (Mean = 17.1ε))
133                </p>
134              </td>
135<td>
136                <p>
137                  <span class="blue">Max = 9.97ε (Mean = 2.13ε)</span>
138                </p>
139              </td>
140<td>
141                <p>
142                  <span class="blue">Max = 9.97ε (Mean = 2.13ε)</span>
143                </p>
144              </td>
145<td>
146                <p>
147                  <span class="blue">Max = 7.16ε (Mean = 1.85ε)</span>
148                </p>
149              </td>
150</tr>
151<tr>
152<td>
153                <p>
154                  Exponential Integral En: small z values
155                </p>
156              </td>
157<td>
158                <p>
159                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
160                  2.1:</em></span> Max = 115ε (Mean = 23.6ε))
161                </p>
162              </td>
163<td>
164                <p>
165                  <span class="blue">Max = 1.99ε (Mean = 0.559ε)</span>
166                </p>
167              </td>
168<td>
169                <p>
170                  <span class="blue">Max = 1.99ε (Mean = 0.559ε)</span>
171                </p>
172              </td>
173<td>
174                <p>
175                  <span class="blue">Max = 2.62ε (Mean = 0.531ε)</span>
176                </p>
177              </td>
178</tr>
179<tr>
180<td>
181                <p>
182                  Exponential Integral E1
183                </p>
184              </td>
185<td>
186                <p>
187                  <span class="blue">Max = 0.556ε (Mean = 0.0625ε)</span><br>
188                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 0.988ε (Mean = 0.469ε))
189                </p>
190              </td>
191<td>
192                <p>
193                  <span class="blue">Max = 0.965ε (Mean = 0.414ε)</span>
194                </p>
195              </td>
196<td>
197                <p>
198                  <span class="blue">Max = 0.965ε (Mean = 0.408ε)</span>
199                </p>
200              </td>
201<td>
202                <p>
203                  <span class="blue">Max = 0.988ε (Mean = 0.486ε)</span>
204                </p>
205              </td>
206</tr>
207</tbody>
208</table></div>
209</div>
210<br class="table-break"><h5>
211<a name="math_toolkit.expint.expint_n.h3"></a>
212        <span class="phrase"><a name="math_toolkit.expint.expint_n.testing"></a></span><a class="link" href="expint_n.html#math_toolkit.expint.expint_n.testing">Testing</a>
213      </h5>
214<p>
215        The tests for these functions come in two parts: basic sanity checks use
216        spot values calculated using <a href="http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=ExpIntegralE" target="_top">Mathworld's
217        online evaluator</a>, while accuracy checks use high-precision test values
218        calculated at 1000-bit precision with <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a>
219        and this implementation. Note that the generic and type-specific versions
220        of these functions use differing implementations internally, so this gives
221        us reasonably independent test data. Using our test data to test other "known
222        good" implementations also provides an additional sanity check.
223      </p>
224<h5>
225<a name="math_toolkit.expint.expint_n.h4"></a>
226        <span class="phrase"><a name="math_toolkit.expint.expint_n.implementation"></a></span><a class="link" href="expint_n.html#math_toolkit.expint.expint_n.implementation">Implementation</a>
227      </h5>
228<p>
229        The generic version of this function uses the continued fraction:
230      </p>
231<div class="blockquote"><blockquote class="blockquote"><p>
232          <span class="inlinemediaobject"><img src="../../../equations/expint_n_3.svg"></span>
233
234        </p></blockquote></div>
235<p>
236        for large <span class="emphasis"><em>x</em></span> and the infinite series:
237      </p>
238<div class="blockquote"><blockquote class="blockquote"><p>
239          <span class="inlinemediaobject"><img src="../../../equations/expint_n_2.svg"></span>
240
241        </p></blockquote></div>
242<p>
243        for small <span class="emphasis"><em>x</em></span>.
244      </p>
245<p>
246        Where the precision of <span class="emphasis"><em>x</em></span> is known at compile time and
247        is 113 bits or fewer in precision, then rational approximations <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
248        by JM</a> are used for the <code class="computeroutput"><span class="identifier">n</span>
249        <span class="special">==</span> <span class="number">1</span></code>
250        case.
251      </p>
252<p>
253        For <code class="computeroutput"><span class="identifier">x</span> <span class="special">&lt;</span>
254        <span class="number">1</span></code> the approximating form is a minimax
255        approximation:
256      </p>
257<div class="blockquote"><blockquote class="blockquote"><p>
258          <span class="inlinemediaobject"><img src="../../../equations/expint_n_4.svg"></span>
259
260        </p></blockquote></div>
261<p>
262        and for <code class="computeroutput"><span class="identifier">x</span> <span class="special">&gt;</span>
263        <span class="number">1</span></code> a Chebyshev interpolated approximation
264        of the form:
265      </p>
266<div class="blockquote"><blockquote class="blockquote"><p>
267          <span class="inlinemediaobject"><img src="../../../equations/expint_n_5.svg"></span>
268
269        </p></blockquote></div>
270<p>
271        is used.
272      </p>
273</div>
274<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
275<td align="left"></td>
276<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
277      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
278      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
279      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
280      Daryle Walker and Xiaogang Zhang<p>
281        Distributed under the Boost Software License, Version 1.0. (See accompanying
282        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
283      </p>
284</div></td>
285</tr></table>
286<hr>
287<div class="spirit-nav">
288<a accesskey="p" href="../expint.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="expint_i.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
289</div>
290</body>
291</html>
292