• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Known Issues, and TODO List</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../status.html" title="Chapter 24. Library Status">
9<link rel="prev" href="history2.html" title="History and What's New">
10<link rel="next" href="credits.html" title="Credits and Acknowledgements">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="history2.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../status.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="credits.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.issues"></a><a class="link" href="issues.html" title="Known Issues, and TODO List">Known Issues, and TODO List</a>
28</h2></div></div></div>
29<p>
30      Predominantly this is a TODO list, or a list of possible future enhancements.
31      Items labeled "High Priority" effect the proper functioning of the
32      component, and should be fixed as soon as possible. Items labeled "Medium
33      Priority" are desirable enhancements, often pertaining to the performance
34      of the component, but do not effect it's accuracy or functionality. Items labeled
35      "Low Priority" should probably be investigated at some point. Such
36      classifications are obviously highly subjective.
37    </p>
38<p>
39      If you don't see a component listed here, then we don't have any known issues
40      with it.
41    </p>
42<h5>
43<a name="math_toolkit.issues.h0"></a>
44      <span class="phrase"><a name="math_toolkit.issues.tgamma"></a></span><a class="link" href="issues.html#math_toolkit.issues.tgamma">tgamma</a>
45    </h5>
46<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
47          Can the <a class="link" href="lanczos.html" title="The Lanczos Approximation">Lanczos approximation</a>
48          be optimized any further? (low priority)
49        </li></ul></div>
50<h5>
51<a name="math_toolkit.issues.h1"></a>
52      <span class="phrase"><a name="math_toolkit.issues.incomplete_beta"></a></span><a class="link" href="issues.html#math_toolkit.issues.incomplete_beta">Incomplete
53      Beta</a>
54    </h5>
55<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
56          Investigate Didonato and Morris' asymptotic expansion for large a and b
57          (medium priority).
58        </li></ul></div>
59<h5>
60<a name="math_toolkit.issues.h2"></a>
61      <span class="phrase"><a name="math_toolkit.issues.inverse_gamma"></a></span><a class="link" href="issues.html#math_toolkit.issues.inverse_gamma">Inverse
62      Gamma</a>
63    </h5>
64<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
65          Investigate whether we can skip iteration altogether if the first approximation
66          is good enough (Medium Priority).
67        </li></ul></div>
68<h5>
69<a name="math_toolkit.issues.h3"></a>
70      <span class="phrase"><a name="math_toolkit.issues.polynomials"></a></span><a class="link" href="issues.html#math_toolkit.issues.polynomials">Polynomials</a>
71    </h5>
72<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
73          The Legendre and Laguerre Polynomials have surprisingly different error
74          rates on different platforms, considering they are evaluated with only
75          basic arithmetic operations. Maybe this is telling us something, or maybe
76          not (Low Priority).
77        </li></ul></div>
78<h5>
79<a name="math_toolkit.issues.h4"></a>
80      <span class="phrase"><a name="math_toolkit.issues.elliptic_integrals"></a></span><a class="link" href="issues.html#math_toolkit.issues.elliptic_integrals">Elliptic
81      Integrals</a>
82    </h5>
83<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
84<li class="listitem">
85          [para Carlson's algorithms (mainly R<sub>J</sub>) are somewhat prone to internal overflow/underflow
86          when the arguments are very large or small. The homogeneity relations:]
87          [para R<sub>F</sub>(ka, kb, kc) = k<sup>-1/2</sup> R<sub>F</sub>(a, b, c)] [para and] [para R<sub>J</sub>(ka, kb, kc,
88          kr) = k<sup>-3/2</sup> R<sub>J</sub>(a, b, c, r)] [para could be used to sidestep trouble here:
89          provided the problem domains can be accurately identified. (Medium Priority).]
90        </li>
91<li class="listitem">
92          There are a several other integrals: Bulirsch's <span class="emphasis"><em>el</em></span>
93          functions that could be implemented using Carlson's integrals (Low Priority).
94        </li>
95<li class="listitem">
96          The integrals K(k) and E(k) could be implemented using rational approximations
97          (both for efficiency and accuracy), assuming we can find them. (Medium
98          Priority).
99        </li>
100</ul></div>
101<h5>
102<a name="math_toolkit.issues.h5"></a>
103      <span class="phrase"><a name="math_toolkit.issues.owen_s_t_function"></a></span><a class="link" href="issues.html#math_toolkit.issues.owen_s_t_function">Owen's
104      T Function</a>
105    </h5>
106<p>
107      There is a problem area at arbitrary precision when <span class="emphasis"><em>a</em></span>
108      is very close to 1. However, note that the value for <span class="emphasis"><em>T(h, 1)</em></span>
109      is well known and easy to compute, and if we replaced the <span class="emphasis"><em>a<sup>k</sup></em></span>
110      terms in series T1, T2 or T4 by <span class="emphasis"><em>(a<sup>k</sup> - 1)</em></span> then we would
111      have the difference between <span class="emphasis"><em>T(h, a)</em></span> and <span class="emphasis"><em>T(h,
112      1)</em></span>. Unfortunately this doesn't improve the convergence of those
113      series in that area. It certainly looks as though a new series in terms of
114      <span class="emphasis"><em>(1-a)<sup>k</sup></em></span> is both possible and desirable in this area, but
115      it remains elusive at present.
116    </p>
117<h5>
118<a name="math_toolkit.issues.h6"></a>
119      <span class="phrase"><a name="math_toolkit.issues.statistical_distributions"></a></span><a class="link" href="issues.html#math_toolkit.issues.statistical_distributions">Statistical
120      distributions</a>
121    </h5>
122<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
123          Student's t Perhaps switch to normal distribution as a better approximation
124          for very large degrees of freedom?
125        </li></ul></div>
126<h5>
127<a name="math_toolkit.issues.h7"></a>
128      <span class="phrase"><a name="math_toolkit.issues.feature_requests"></a></span><a class="link" href="issues.html#math_toolkit.issues.feature_requests">Feature
129      Requests</a>
130    </h5>
131<p>
132      The following table lists distributions that are found in other packages but
133      which are not yet present here, the more frequently the distribution is found,
134      the higher the priority for implementing it:
135    </p>
136<div class="informaltable"><table class="table">
137<colgroup>
138<col>
139<col>
140<col>
141<col>
142<col>
143<col>
144</colgroup>
145<thead><tr>
146<th>
147              <p>
148                Distribution
149              </p>
150            </th>
151<th>
152              <p>
153                R
154              </p>
155            </th>
156<th>
157              <p>
158                Mathematica 6
159              </p>
160            </th>
161<th>
162              <p>
163                NIST
164              </p>
165            </th>
166<th>
167              <p>
168                Regress+
169              </p>
170            </th>
171<th>
172              <p>
173                Matlab
174              </p>
175            </th>
176</tr></thead>
177<tbody>
178<tr>
179<td>
180              <p>
181                Geometric
182              </p>
183            </td>
184<td>
185              <p>
186                X
187              </p>
188            </td>
189<td>
190              <p>
191                X
192              </p>
193            </td>
194<td>
195              <p>
196                -
197              </p>
198            </td>
199<td>
200              <p>
201                -
202              </p>
203            </td>
204<td>
205              <p>
206                X
207              </p>
208            </td>
209</tr>
210<tr>
211<td>
212              <p>
213                Multinomial
214              </p>
215            </td>
216<td>
217              <p>
218                X
219              </p>
220            </td>
221<td>
222              <p>
223                -
224              </p>
225            </td>
226<td>
227              <p>
228                -
229              </p>
230            </td>
231<td>
232              <p>
233                -
234              </p>
235            </td>
236<td>
237              <p>
238                X
239              </p>
240            </td>
241</tr>
242<tr>
243<td>
244              <p>
245                Tukey Lambda
246              </p>
247            </td>
248<td>
249              <p>
250                X
251              </p>
252            </td>
253<td>
254              <p>
255                -
256              </p>
257            </td>
258<td>
259              <p>
260                X
261              </p>
262            </td>
263<td>
264              <p>
265                -
266              </p>
267            </td>
268<td>
269              <p>
270                -
271              </p>
272            </td>
273</tr>
274<tr>
275<td>
276              <p>
277                Half Normal / Folded Normal
278              </p>
279            </td>
280<td>
281              <p>
282                -
283              </p>
284            </td>
285<td>
286              <p>
287                X
288              </p>
289            </td>
290<td>
291              <p>
292                -
293              </p>
294            </td>
295<td>
296              <p>
297                X
298              </p>
299            </td>
300<td>
301              <p>
302                -
303              </p>
304            </td>
305</tr>
306<tr>
307<td>
308              <p>
309                Chi
310              </p>
311            </td>
312<td>
313              <p>
314                -
315              </p>
316            </td>
317<td>
318              <p>
319                X
320              </p>
321            </td>
322<td>
323              <p>
324                -
325              </p>
326            </td>
327<td>
328              <p>
329                X
330              </p>
331            </td>
332<td>
333              <p>
334                -
335              </p>
336            </td>
337</tr>
338<tr>
339<td>
340              <p>
341                Gumbel
342              </p>
343            </td>
344<td>
345              <p>
346                -
347              </p>
348            </td>
349<td>
350              <p>
351                X
352              </p>
353            </td>
354<td>
355              <p>
356                -
357              </p>
358            </td>
359<td>
360              <p>
361                X
362              </p>
363            </td>
364<td>
365              <p>
366                -
367              </p>
368            </td>
369</tr>
370<tr>
371<td>
372              <p>
373                Discrete Uniform
374              </p>
375            </td>
376<td>
377              <p>
378                -
379              </p>
380            </td>
381<td>
382              <p>
383                X
384              </p>
385            </td>
386<td>
387              <p>
388                -
389              </p>
390            </td>
391<td>
392              <p>
393                -
394              </p>
395            </td>
396<td>
397              <p>
398                X
399              </p>
400            </td>
401</tr>
402<tr>
403<td>
404              <p>
405                Log Series
406              </p>
407            </td>
408<td>
409              <p>
410                -
411              </p>
412            </td>
413<td>
414              <p>
415                X
416              </p>
417            </td>
418<td>
419              <p>
420                -
421              </p>
422            </td>
423<td>
424              <p>
425                X
426              </p>
427            </td>
428<td>
429              <p>
430                -
431              </p>
432            </td>
433</tr>
434<tr>
435<td>
436              <p>
437                Nakagami (generalised Chi)
438              </p>
439            </td>
440<td>
441              <p>
442                -
443              </p>
444            </td>
445<td>
446              <p>
447                -
448              </p>
449            </td>
450<td>
451              <p>
452                -
453              </p>
454            </td>
455<td>
456              <p>
457                X
458              </p>
459            </td>
460<td>
461              <p>
462                X
463              </p>
464            </td>
465</tr>
466<tr>
467<td>
468              <p>
469                Log Logistic
470              </p>
471            </td>
472<td>
473              <p>
474                -
475              </p>
476            </td>
477<td>
478              <p>
479                -
480              </p>
481            </td>
482<td>
483              <p>
484                -
485              </p>
486            </td>
487<td>
488              <p>
489                -
490              </p>
491            </td>
492<td>
493              <p>
494                X
495              </p>
496            </td>
497</tr>
498<tr>
499<td>
500              <p>
501                Tukey (Studentized range)
502              </p>
503            </td>
504<td>
505              <p>
506                X
507              </p>
508            </td>
509<td>
510              <p>
511                -
512              </p>
513            </td>
514<td>
515              <p>
516                -
517              </p>
518            </td>
519<td>
520              <p>
521                -
522              </p>
523            </td>
524<td>
525              <p>
526                -
527              </p>
528            </td>
529</tr>
530<tr>
531<td>
532              <p>
533                Wilcoxon rank sum
534              </p>
535            </td>
536<td>
537              <p>
538                X
539              </p>
540            </td>
541<td>
542              <p>
543                -
544              </p>
545            </td>
546<td>
547              <p>
548                -
549              </p>
550            </td>
551<td>
552              <p>
553                -
554              </p>
555            </td>
556<td>
557              <p>
558                -
559              </p>
560            </td>
561</tr>
562<tr>
563<td>
564              <p>
565                Wincoxon signed rank
566              </p>
567            </td>
568<td>
569              <p>
570                X
571              </p>
572            </td>
573<td>
574              <p>
575                -
576              </p>
577            </td>
578<td>
579              <p>
580                -
581              </p>
582            </td>
583<td>
584              <p>
585                -
586              </p>
587            </td>
588<td>
589              <p>
590                -
591              </p>
592            </td>
593</tr>
594<tr>
595<td>
596              <p>
597                Non-central Beta
598              </p>
599            </td>
600<td>
601              <p>
602                X
603              </p>
604            </td>
605<td>
606              <p>
607                -
608              </p>
609            </td>
610<td>
611              <p>
612                -
613              </p>
614            </td>
615<td>
616              <p>
617                -
618              </p>
619            </td>
620<td>
621              <p>
622                -
623              </p>
624            </td>
625</tr>
626<tr>
627<td>
628              <p>
629                Maxwell
630              </p>
631            </td>
632<td>
633              <p>
634                -
635              </p>
636            </td>
637<td>
638              <p>
639                X
640              </p>
641            </td>
642<td>
643              <p>
644                -
645              </p>
646            </td>
647<td>
648              <p>
649                -
650              </p>
651            </td>
652<td>
653              <p>
654                -
655              </p>
656            </td>
657</tr>
658<tr>
659<td>
660              <p>
661                Beta-Binomial
662              </p>
663            </td>
664<td>
665              <p>
666                -
667              </p>
668            </td>
669<td>
670              <p>
671                X
672              </p>
673            </td>
674<td>
675              <p>
676                -
677              </p>
678            </td>
679<td>
680              <p>
681                -
682              </p>
683            </td>
684<td>
685              <p>
686                -
687              </p>
688            </td>
689</tr>
690<tr>
691<td>
692              <p>
693                Beta-negative Binomial
694              </p>
695            </td>
696<td>
697              <p>
698                -
699              </p>
700            </td>
701<td>
702              <p>
703                X
704              </p>
705            </td>
706<td>
707              <p>
708                -
709              </p>
710            </td>
711<td>
712              <p>
713                -
714              </p>
715            </td>
716<td>
717              <p>
718                -
719              </p>
720            </td>
721</tr>
722<tr>
723<td>
724              <p>
725                Zipf
726              </p>
727            </td>
728<td>
729              <p>
730                -
731              </p>
732            </td>
733<td>
734              <p>
735                X
736              </p>
737            </td>
738<td>
739              <p>
740                -
741              </p>
742            </td>
743<td>
744              <p>
745                -
746              </p>
747            </td>
748<td>
749              <p>
750                -
751              </p>
752            </td>
753</tr>
754<tr>
755<td>
756              <p>
757                Birnbaum-Saunders / Fatigue Life
758              </p>
759            </td>
760<td>
761              <p>
762                -
763              </p>
764            </td>
765<td>
766              <p>
767                -
768              </p>
769            </td>
770<td>
771              <p>
772                X
773              </p>
774            </td>
775<td>
776              <p>
777                -
778              </p>
779            </td>
780<td>
781              <p>
782                -
783              </p>
784            </td>
785</tr>
786<tr>
787<td>
788              <p>
789                Double Exponential
790              </p>
791            </td>
792<td>
793              <p>
794                -
795              </p>
796            </td>
797<td>
798              <p>
799                -
800              </p>
801            </td>
802<td>
803              <p>
804                X
805              </p>
806            </td>
807<td>
808              <p>
809                -
810              </p>
811            </td>
812<td>
813              <p>
814                -
815              </p>
816            </td>
817</tr>
818<tr>
819<td>
820              <p>
821                Power Normal
822              </p>
823            </td>
824<td>
825              <p>
826                -
827              </p>
828            </td>
829<td>
830              <p>
831                -
832              </p>
833            </td>
834<td>
835              <p>
836                X
837              </p>
838            </td>
839<td>
840              <p>
841                -
842              </p>
843            </td>
844<td>
845              <p>
846                -
847              </p>
848            </td>
849</tr>
850<tr>
851<td>
852              <p>
853                Power Lognormal
854              </p>
855            </td>
856<td>
857              <p>
858                -
859              </p>
860            </td>
861<td>
862              <p>
863                -
864              </p>
865            </td>
866<td>
867              <p>
868                X
869              </p>
870            </td>
871<td>
872              <p>
873                -
874              </p>
875            </td>
876<td>
877              <p>
878                -
879              </p>
880            </td>
881</tr>
882<tr>
883<td>
884              <p>
885                Cosine
886              </p>
887            </td>
888<td>
889              <p>
890                -
891              </p>
892            </td>
893<td>
894              <p>
895                -
896              </p>
897            </td>
898<td>
899              <p>
900                -
901              </p>
902            </td>
903<td>
904              <p>
905                X
906              </p>
907            </td>
908<td>
909              <p>
910                -
911              </p>
912            </td>
913</tr>
914<tr>
915<td>
916              <p>
917                Double Gamma
918              </p>
919            </td>
920<td>
921              <p>
922                -
923              </p>
924            </td>
925<td>
926              <p>
927                -
928              </p>
929            </td>
930<td>
931              <p>
932                -
933              </p>
934            </td>
935<td>
936              <p>
937                X
938              </p>
939            </td>
940<td>
941              <p>
942                -
943              </p>
944            </td>
945</tr>
946<tr>
947<td>
948              <p>
949                Double Weibul
950              </p>
951            </td>
952<td>
953              <p>
954                -
955              </p>
956            </td>
957<td>
958              <p>
959                -
960              </p>
961            </td>
962<td>
963              <p>
964                -
965              </p>
966            </td>
967<td>
968              <p>
969                X
970              </p>
971            </td>
972<td>
973              <p>
974                -
975              </p>
976            </td>
977</tr>
978<tr>
979<td>
980              <p>
981                Hyperbolic Secant
982              </p>
983            </td>
984<td>
985              <p>
986                -
987              </p>
988            </td>
989<td>
990              <p>
991                -
992              </p>
993            </td>
994<td>
995              <p>
996                -
997              </p>
998            </td>
999<td>
1000              <p>
1001                X
1002              </p>
1003            </td>
1004<td>
1005              <p>
1006                -
1007              </p>
1008            </td>
1009</tr>
1010<tr>
1011<td>
1012              <p>
1013                Semicircular
1014              </p>
1015            </td>
1016<td>
1017              <p>
1018                -
1019              </p>
1020            </td>
1021<td>
1022              <p>
1023                -
1024              </p>
1025            </td>
1026<td>
1027              <p>
1028                -
1029              </p>
1030            </td>
1031<td>
1032              <p>
1033                X
1034              </p>
1035            </td>
1036<td>
1037              <p>
1038                -
1039              </p>
1040            </td>
1041</tr>
1042<tr>
1043<td>
1044              <p>
1045                Bradford
1046              </p>
1047            </td>
1048<td>
1049              <p>
1050                -
1051              </p>
1052            </td>
1053<td>
1054              <p>
1055                -
1056              </p>
1057            </td>
1058<td>
1059              <p>
1060                -
1061              </p>
1062            </td>
1063<td>
1064              <p>
1065                X
1066              </p>
1067            </td>
1068<td>
1069              <p>
1070                -
1071              </p>
1072            </td>
1073</tr>
1074<tr>
1075<td>
1076              <p>
1077                Birr / Fisk
1078              </p>
1079            </td>
1080<td>
1081              <p>
1082                -
1083              </p>
1084            </td>
1085<td>
1086              <p>
1087                -
1088              </p>
1089            </td>
1090<td>
1091              <p>
1092                -
1093              </p>
1094            </td>
1095<td>
1096              <p>
1097                X
1098              </p>
1099            </td>
1100<td>
1101              <p>
1102                -
1103              </p>
1104            </td>
1105</tr>
1106<tr>
1107<td>
1108              <p>
1109                Reciprocal
1110              </p>
1111            </td>
1112<td>
1113              <p>
1114                -
1115              </p>
1116            </td>
1117<td>
1118              <p>
1119                -
1120              </p>
1121            </td>
1122<td>
1123              <p>
1124                -
1125              </p>
1126            </td>
1127<td>
1128              <p>
1129                X
1130              </p>
1131            </td>
1132<td>
1133              <p>
1134                -
1135              </p>
1136            </td>
1137</tr>
1138<tr>
1139<td>
1140              <p>
1141                Kolmogorov Distribution
1142              </p>
1143            </td>
1144<td>
1145              <p>
1146                -
1147              </p>
1148            </td>
1149<td>
1150              <p>
1151                -
1152              </p>
1153            </td>
1154<td>
1155              <p>
1156                -
1157              </p>
1158            </td>
1159<td>
1160              <p>
1161                -
1162              </p>
1163            </td>
1164<td>
1165              <p>
1166                -
1167              </p>
1168            </td>
1169</tr>
1170</tbody>
1171</table></div>
1172<p>
1173      Also asked for more than once:
1174    </p>
1175<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1176<li class="listitem">
1177          Add support for interpolated distributions, possibly combine with numeric
1178          integration and differentiation.
1179        </li>
1180<li class="listitem">
1181          Add support for bivariate and multivariate distributions: most especially
1182          the normal.
1183        </li>
1184<li class="listitem">
1185          Add support for the log of the cdf and pdf: this is mainly a performance
1186          optimisation since we can avoid some special function calls for some distributions
1187          by returning the log of the result.
1188        </li>
1189</ul></div>
1190</div>
1191<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
1192<td align="left"></td>
1193<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
1194      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
1195      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
1196      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
1197      Daryle Walker and Xiaogang Zhang<p>
1198        Distributed under the Boost Software License, Version 1.0. (See accompanying
1199        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
1200      </p>
1201</div></td>
1202</tr></table>
1203<hr>
1204<div class="spirit-nav">
1205<a accesskey="p" href="history2.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../status.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="credits.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
1206</div>
1207</body>
1208</html>
1209