• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Jacobi Elliptic SN, CN and DN</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../jacobi.html" title="Jacobi Elliptic Functions">
9<link rel="prev" href="jac_over.html" title="Overview of the Jacobi Elliptic Functions">
10<link rel="next" href="jacobi_cd.html" title="Jacobi Elliptic Function cd">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="jac_over.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../jacobi.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_cd.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.jacobi.jacobi_elliptic"></a><a class="link" href="jacobi_elliptic.html" title="Jacobi Elliptic SN, CN and DN">Jacobi Elliptic
28      SN, CN and DN</a>
29</h3></div></div></div>
30<h5>
31<a name="math_toolkit.jacobi.jacobi_elliptic.h0"></a>
32        <span class="phrase"><a name="math_toolkit.jacobi.jacobi_elliptic.synopsis"></a></span><a class="link" href="jacobi_elliptic.html#math_toolkit.jacobi.jacobi_elliptic.synopsis">Synopsis</a>
33      </h5>
34<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">jacobi_elliptic</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
35</pre>
36<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
37
38 <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
39 <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">jacobi_elliptic</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">V</span><span class="special">*</span> <span class="identifier">pcn</span><span class="special">,</span> <span class="identifier">V</span><span class="special">*</span> <span class="identifier">pdn</span><span class="special">);</span>
40
41 <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Policy</span><span class="special">&gt;</span>
42 <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">jacobi_elliptic</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">V</span><span class="special">*</span> <span class="identifier">pcn</span><span class="special">,</span> <span class="identifier">V</span><span class="special">*</span> <span class="identifier">pdn</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">Policy</span><span class="special">&amp;);</span>
43
44<span class="special">}}</span> <span class="comment">// namespaces</span>
45</pre>
46<h5>
47<a name="math_toolkit.jacobi.jacobi_elliptic.h1"></a>
48        <span class="phrase"><a name="math_toolkit.jacobi.jacobi_elliptic.description"></a></span><a class="link" href="jacobi_elliptic.html#math_toolkit.jacobi.jacobi_elliptic.description">Description</a>
49      </h5>
50<p>
51        The function <a class="link" href="jacobi_elliptic.html" title="Jacobi Elliptic SN, CN and DN">jacobi_elliptic</a>
52        calculates the three copolar Jacobi elliptic functions <span class="emphasis"><em>sn(u, k)</em></span>,
53        <span class="emphasis"><em>cn(u, k)</em></span> and <span class="emphasis"><em>dn(u, k)</em></span>. The returned
54        value is <span class="emphasis"><em>sn(u, k)</em></span>, and if provided, <code class="computeroutput"><span class="special">*</span><span class="identifier">pcn</span></code> is set to <span class="emphasis"><em>cn(u, k)</em></span>,
55        and <code class="computeroutput"><span class="special">*</span><span class="identifier">pdn</span></code>
56        is set to <span class="emphasis"><em>dn(u, k)</em></span>.
57      </p>
58<p>
59        The functions are defined as follows, given:
60      </p>
61<div class="blockquote"><blockquote class="blockquote"><p>
62          <span class="inlinemediaobject"><img src="../../../equations/jacobi1.svg"></span>
63
64        </p></blockquote></div>
65<p>
66        The the angle <span class="emphasis"><em>φ</em></span> is called the <span class="emphasis"><em>amplitude</em></span>
67        and:
68      </p>
69<div class="blockquote"><blockquote class="blockquote"><p>
70          <span class="inlinemediaobject"><img src="../../../equations/jacobi2.svg"></span>
71
72        </p></blockquote></div>
73<div class="note"><table border="0" summary="Note">
74<tr>
75<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../doc/src/images/note.png"></td>
76<th align="left">Note</th>
77</tr>
78<tr><td align="left" valign="top"><p>
79          <span class="emphasis"><em>φ</em></span> is called the amplitude. <span class="emphasis"><em>k</em></span> is
80          called the elliptic modulus.
81        </p></td></tr>
82</table></div>
83<div class="caution"><table border="0" summary="Caution">
84<tr>
85<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../doc/src/images/caution.png"></td>
86<th align="left">Caution</th>
87</tr>
88<tr><td align="left" valign="top">
89<p>
90          Rather like other elliptic functions, the Jacobi functions are expressed
91          in a variety of different ways. In particular, the parameter <span class="emphasis"><em>k</em></span>
92          (the modulus) may also be expressed using a modular angle α, or a parameter
93          <span class="emphasis"><em>m</em></span>. These are related by:
94        </p>
95<div class="blockquote"><blockquote class="blockquote"><p>
96            <span class="serif_italic">k = sin α</span>
97          </p></blockquote></div>
98<div class="blockquote"><blockquote class="blockquote"><p>
99            <span class="serif_italic">m = k<sup>2</sup> = sin<sup>2</sup>α</span>
100          </p></blockquote></div>
101<p>
102          So that the function <span class="emphasis"><em>sn</em></span> (for example) may be expressed
103          as either:
104        </p>
105<div class="blockquote"><blockquote class="blockquote"><p>
106            <span class="serif_italic">sn(u, k)</span>
107          </p></blockquote></div>
108<div class="blockquote"><blockquote class="blockquote"><p>
109            <span class="serif_italic">sn(u \ α)</span>
110          </p></blockquote></div>
111<div class="blockquote"><blockquote class="blockquote"><p>
112            <span class="serif_italic">sn(u | m)</span>
113          </p></blockquote></div>
114<p>
115          To further complicate matters, some texts refer to the <span class="emphasis"><em>complement
116          of the parameter m</em></span>, or 1 - m, where:
117        </p>
118<div class="blockquote"><blockquote class="blockquote"><p>
119            <span class="serif_italic">1 - m = 1 - k<sup>2</sup> = cos<sup>2</sup>α</span>
120          </p></blockquote></div>
121<p>
122          This implementation uses <span class="emphasis"><em>k</em></span> throughout, and makes this
123          the first argument to the functions: this is for alignment with the elliptic
124          integrals which match the requirements of the <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf" target="_top">Technical
125          Report on C++ Library Extensions</a>. However, you should be extra
126          careful when using these functions!
127        </p>
128</td></tr>
129</table></div>
130<p>
131        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
132        be used to control the behaviour of the function: how it handles errors,
133        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
134        documentation for more details</a>.
135      </p>
136<p>
137        The following graphs illustrate how these functions change as <span class="emphasis"><em>k</em></span>
138        changes: for small <span class="emphasis"><em>k</em></span> these are sine waves, while as
139        <span class="emphasis"><em>k</em></span> tends to 1 they become hyperbolic functions:
140      </p>
141<div class="blockquote"><blockquote class="blockquote"><p>
142          <span class="inlinemediaobject"><img src="../../../graphs/jacobi_sn.svg" align="middle"></span>
143
144        </p></blockquote></div>
145<div class="blockquote"><blockquote class="blockquote"><p>
146          <span class="inlinemediaobject"><img src="../../../graphs/jacobi_cn.svg" align="middle"></span>
147
148        </p></blockquote></div>
149<div class="blockquote"><blockquote class="blockquote"><p>
150          <span class="inlinemediaobject"><img src="../../../graphs/jacobi_dn.svg" align="middle"></span>
151
152        </p></blockquote></div>
153<h5>
154<a name="math_toolkit.jacobi.jacobi_elliptic.h2"></a>
155        <span class="phrase"><a name="math_toolkit.jacobi.jacobi_elliptic.accuracy"></a></span><a class="link" href="jacobi_elliptic.html#math_toolkit.jacobi.jacobi_elliptic.accuracy">Accuracy</a>
156      </h5>
157<p>
158        These functions are computed using only basic arithmetic operations and trigonometric
159        functions, so there isn't much variation in accuracy over differing platforms.
160        Typically errors are trivially small for small angles, and as is typical
161        for cyclic functions, grow as the angle increases. Note that only results
162        for the widest floating-point type on the system are given as narrower types
163        have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively zero
164        error</a>. All values are relative errors in units of epsilon.
165      </p>
166<div class="table">
167<a name="math_toolkit.jacobi.jacobi_elliptic.table_jacobi_cn"></a><p class="title"><b>Table 8.70. Error rates for jacobi_cn</b></p>
168<div class="table-contents"><table class="table" summary="Error rates for jacobi_cn">
169<colgroup>
170<col>
171<col>
172<col>
173<col>
174<col>
175</colgroup>
176<thead><tr>
177<th>
178              </th>
179<th>
180                <p>
181                  GNU C++ version 7.1.0<br> linux<br> double
182                </p>
183              </th>
184<th>
185                <p>
186                  GNU C++ version 7.1.0<br> linux<br> long double
187                </p>
188              </th>
189<th>
190                <p>
191                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
192                </p>
193              </th>
194<th>
195                <p>
196                  Microsoft Visual C++ version 14.1<br> Win32<br> double
197                </p>
198              </th>
199</tr></thead>
200<tbody>
201<tr>
202<td>
203                <p>
204                  Jacobi Elliptic: Mathworld Data
205                </p>
206              </td>
207<td>
208                <p>
209                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
210                  2.1:</em></span> Max = 17.3ε (Mean = 4.29ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_cn_GSL_2_1_Jacobi_Elliptic_Mathworld_Data">And
211                  other failures.</a>)
212                </p>
213              </td>
214<td>
215                <p>
216                  <span class="blue">Max = 71.6ε (Mean = 19.3ε)</span>
217                </p>
218              </td>
219<td>
220                <p>
221                  <span class="blue">Max = 71.6ε (Mean = 19.4ε)</span>
222                </p>
223              </td>
224<td>
225                <p>
226                  <span class="blue">Max = 45.8ε (Mean = 11.4ε)</span>
227                </p>
228              </td>
229</tr>
230<tr>
231<td>
232                <p>
233                  Jacobi Elliptic: Random Data
234                </p>
235              </td>
236<td>
237                <p>
238                  <span class="blue">Max = 0.816ε (Mean = 0.0563ε)</span><br>
239                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 2.43ε (Mean = 0.803ε))
240                </p>
241              </td>
242<td>
243                <p>
244                  <span class="blue">Max = 1.68ε (Mean = 0.443ε)</span>
245                </p>
246              </td>
247<td>
248                <p>
249                  <span class="blue">Max = 1.68ε (Mean = 0.454ε)</span>
250                </p>
251              </td>
252<td>
253                <p>
254                  <span class="blue">Max = 1.83ε (Mean = 0.455ε)</span>
255                </p>
256              </td>
257</tr>
258<tr>
259<td>
260                <p>
261                  Jacobi Elliptic: Random Small Values
262                </p>
263              </td>
264<td>
265                <p>
266                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
267                  2.1:</em></span> Max = 55.2ε (Mean = 1.64ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_cn_GSL_2_1_Jacobi_Elliptic_Random_Small_Values">And
268                  other failures.</a>)
269                </p>
270              </td>
271<td>
272                <p>
273                  <span class="blue">Max = 10.4ε (Mean = 0.594ε)</span>
274                </p>
275              </td>
276<td>
277                <p>
278                  <span class="blue">Max = 10.4ε (Mean = 0.602ε)</span>
279                </p>
280              </td>
281<td>
282                <p>
283                  <span class="blue">Max = 26.2ε (Mean = 1.17ε)</span>
284                </p>
285              </td>
286</tr>
287<tr>
288<td>
289                <p>
290                  Jacobi Elliptic: Modulus near 1
291                </p>
292              </td>
293<td>
294                <p>
295                  <span class="blue">Max = 0.919ε (Mean = 0.127ε)</span><br> <br>
296                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 0ε (Mean = 0ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_cn_GSL_2_1_Jacobi_Elliptic_Modulus_near_1">And
297                  other failures.</a>)
298                </p>
299              </td>
300<td>
301                <p>
302                  <span class="blue">Max = 675ε (Mean = 87.1ε)</span>
303                </p>
304              </td>
305<td>
306                <p>
307                  <span class="blue">Max = 675ε (Mean = 86.8ε)</span>
308                </p>
309              </td>
310<td>
311                <p>
312                  <span class="blue">Max = 513ε (Mean = 126ε)</span>
313                </p>
314              </td>
315</tr>
316<tr>
317<td>
318                <p>
319                  Jacobi Elliptic: Large Phi
320                </p>
321              </td>
322<td>
323                <p>
324                  <span class="blue">Max = 14.2ε (Mean = 0.927ε)</span><br> <br>
325                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 5.92e+03ε (Mean = 477ε))
326                </p>
327              </td>
328<td>
329                <p>
330                  <span class="blue">Max = 2.97e+04ε (Mean = 1.9e+03ε)</span>
331                </p>
332              </td>
333<td>
334                <p>
335                  <span class="blue">Max = 2.97e+04ε (Mean = 1.9e+03ε)</span>
336                </p>
337              </td>
338<td>
339                <p>
340                  <span class="blue">Max = 3.27e+04ε (Mean = 1.93e+03ε)</span>
341                </p>
342              </td>
343</tr>
344</tbody>
345</table></div>
346</div>
347<br class="table-break"><div class="table">
348<a name="math_toolkit.jacobi.jacobi_elliptic.table_jacobi_dn"></a><p class="title"><b>Table 8.71. Error rates for jacobi_dn</b></p>
349<div class="table-contents"><table class="table" summary="Error rates for jacobi_dn">
350<colgroup>
351<col>
352<col>
353<col>
354<col>
355<col>
356</colgroup>
357<thead><tr>
358<th>
359              </th>
360<th>
361                <p>
362                  GNU C++ version 7.1.0<br> linux<br> double
363                </p>
364              </th>
365<th>
366                <p>
367                  GNU C++ version 7.1.0<br> linux<br> long double
368                </p>
369              </th>
370<th>
371                <p>
372                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
373                </p>
374              </th>
375<th>
376                <p>
377                  Microsoft Visual C++ version 14.1<br> Win32<br> double
378                </p>
379              </th>
380</tr></thead>
381<tbody>
382<tr>
383<td>
384                <p>
385                  Jacobi Elliptic: Mathworld Data
386                </p>
387              </td>
388<td>
389                <p>
390                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
391                  2.1:</em></span> Max = 2.82ε (Mean = 1.18ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_dn_GSL_2_1_Jacobi_Elliptic_Mathworld_Data">And
392                  other failures.</a>)
393                </p>
394              </td>
395<td>
396                <p>
397                  <span class="blue">Max = 49ε (Mean = 14ε)</span>
398                </p>
399              </td>
400<td>
401                <p>
402                  <span class="blue">Max = 49ε (Mean = 14ε)</span>
403                </p>
404              </td>
405<td>
406                <p>
407                  <span class="blue">Max = 34.3ε (Mean = 8.71ε)</span>
408                </p>
409              </td>
410</tr>
411<tr>
412<td>
413                <p>
414                  Jacobi Elliptic: Random Data
415                </p>
416              </td>
417<td>
418                <p>
419                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
420                  2.1:</em></span> Max = 3ε (Mean = 0.61ε))
421                </p>
422              </td>
423<td>
424                <p>
425                  <span class="blue">Max = 1.53ε (Mean = 0.473ε)</span>
426                </p>
427              </td>
428<td>
429                <p>
430                  <span class="blue">Max = 1.53ε (Mean = 0.481ε)</span>
431                </p>
432              </td>
433<td>
434                <p>
435                  <span class="blue">Max = 1.52ε (Mean = 0.466ε)</span>
436                </p>
437              </td>
438</tr>
439<tr>
440<td>
441                <p>
442                  Jacobi Elliptic: Random Small Values
443                </p>
444              </td>
445<td>
446                <p>
447                  <span class="blue">Max = 0.5ε (Mean = 0.0122ε)</span><br> <br>
448                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.5ε (Mean = 0.391ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_dn_GSL_2_1_Jacobi_Elliptic_Random_Small_Values">And
449                  other failures.</a>)
450                </p>
451              </td>
452<td>
453                <p>
454                  <span class="blue">Max = 22.4ε (Mean = 0.777ε)</span>
455                </p>
456              </td>
457<td>
458                <p>
459                  <span class="blue">Max = 22.4ε (Mean = 0.763ε)</span>
460                </p>
461              </td>
462<td>
463                <p>
464                  <span class="blue">Max = 16.1ε (Mean = 0.685ε)</span>
465                </p>
466              </td>
467</tr>
468<tr>
469<td>
470                <p>
471                  Jacobi Elliptic: Modulus near 1
472                </p>
473              </td>
474<td>
475                <p>
476                  <span class="blue">Max = 2.28ε (Mean = 0.194ε)</span><br> <br>
477                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 0ε (Mean = 0ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_dn_GSL_2_1_Jacobi_Elliptic_Modulus_near_1">And
478                  other failures.</a>)
479                </p>
480              </td>
481<td>
482                <p>
483                  <span class="blue">Max = 3.75e+03ε (Mean = 293ε)</span>
484                </p>
485              </td>
486<td>
487                <p>
488                  <span class="blue">Max = 3.75e+03ε (Mean = 293ε)</span>
489                </p>
490              </td>
491<td>
492                <p>
493                  <span class="blue">Max = 6.24e+03ε (Mean = 482ε)</span>
494                </p>
495              </td>
496</tr>
497<tr>
498<td>
499                <p>
500                  Jacobi Elliptic: Large Phi
501                </p>
502              </td>
503<td>
504                <p>
505                  <span class="blue">Max = 14.1ε (Mean = 0.897ε)</span><br> <br>
506                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 121ε (Mean = 22ε))
507                </p>
508              </td>
509<td>
510                <p>
511                  <span class="blue">Max = 2.82e+04ε (Mean = 1.79e+03ε)</span>
512                </p>
513              </td>
514<td>
515                <p>
516                  <span class="blue">Max = 2.82e+04ε (Mean = 1.79e+03ε)</span>
517                </p>
518              </td>
519<td>
520                <p>
521                  <span class="blue">Max = 1.67e+04ε (Mean = 1e+03ε)</span>
522                </p>
523              </td>
524</tr>
525</tbody>
526</table></div>
527</div>
528<br class="table-break"><div class="table">
529<a name="math_toolkit.jacobi.jacobi_elliptic.table_jacobi_sn"></a><p class="title"><b>Table 8.72. Error rates for jacobi_sn</b></p>
530<div class="table-contents"><table class="table" summary="Error rates for jacobi_sn">
531<colgroup>
532<col>
533<col>
534<col>
535<col>
536<col>
537</colgroup>
538<thead><tr>
539<th>
540              </th>
541<th>
542                <p>
543                  GNU C++ version 7.1.0<br> linux<br> double
544                </p>
545              </th>
546<th>
547                <p>
548                  GNU C++ version 7.1.0<br> linux<br> long double
549                </p>
550              </th>
551<th>
552                <p>
553                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
554                </p>
555              </th>
556<th>
557                <p>
558                  Microsoft Visual C++ version 14.1<br> Win32<br> double
559                </p>
560              </th>
561</tr></thead>
562<tbody>
563<tr>
564<td>
565                <p>
566                  Jacobi Elliptic: Mathworld Data
567                </p>
568              </td>
569<td>
570                <p>
571                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
572                  2.1:</em></span> Max = 588ε (Mean = 146ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_sn_GSL_2_1_Jacobi_Elliptic_Mathworld_Data">And
573                  other failures.</a>)
574                </p>
575              </td>
576<td>
577                <p>
578                  <span class="blue">Max = 341ε (Mean = 80.7ε)</span>
579                </p>
580              </td>
581<td>
582                <p>
583                  <span class="blue">Max = 341ε (Mean = 80.7ε)</span>
584                </p>
585              </td>
586<td>
587                <p>
588                  <span class="blue">Max = 481ε (Mean = 113ε)</span>
589                </p>
590              </td>
591</tr>
592<tr>
593<td>
594                <p>
595                  Jacobi Elliptic: Random Data
596                </p>
597              </td>
598<td>
599                <p>
600                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
601                  2.1:</em></span> Max = 4.02ε (Mean = 1.07ε))
602                </p>
603              </td>
604<td>
605                <p>
606                  <span class="blue">Max = 2.01ε (Mean = 0.584ε)</span>
607                </p>
608              </td>
609<td>
610                <p>
611                  <span class="blue">Max = 2.01ε (Mean = 0.593ε)</span>
612                </p>
613              </td>
614<td>
615                <p>
616                  <span class="blue">Max = 1.92ε (Mean = 0.567ε)</span>
617                </p>
618              </td>
619</tr>
620<tr>
621<td>
622                <p>
623                  Jacobi Elliptic: Random Small Values
624                </p>
625              </td>
626<td>
627                <p>
628                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
629                  2.1:</em></span> Max = 11.7ε (Mean = 1.65ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_sn_GSL_2_1_Jacobi_Elliptic_Random_Small_Values">And
630                  other failures.</a>)
631                </p>
632              </td>
633<td>
634                <p>
635                  <span class="blue">Max = 1.99ε (Mean = 0.347ε)</span>
636                </p>
637              </td>
638<td>
639                <p>
640                  <span class="blue">Max = 1.99ε (Mean = 0.347ε)</span>
641                </p>
642              </td>
643<td>
644                <p>
645                  <span class="blue">Max = 2.11ε (Mean = 0.385ε)</span>
646                </p>
647              </td>
648</tr>
649<tr>
650<td>
651                <p>
652                  Jacobi Elliptic: Modulus near 1
653                </p>
654              </td>
655<td>
656                <p>
657                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
658                  2.1:</em></span> Max = 0ε (Mean = 0ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_jacobi_sn_GSL_2_1_Jacobi_Elliptic_Modulus_near_1">And
659                  other failures.</a>)
660                </p>
661              </td>
662<td>
663                <p>
664                  <span class="blue">Max = 109ε (Mean = 7.35ε)</span>
665                </p>
666              </td>
667<td>
668                <p>
669                  <span class="blue">Max = 109ε (Mean = 7.38ε)</span>
670                </p>
671              </td>
672<td>
673                <p>
674                  <span class="blue">Max = 23.2ε (Mean = 1.85ε)</span>
675                </p>
676              </td>
677</tr>
678<tr>
679<td>
680                <p>
681                  Jacobi Elliptic: Large Phi
682                </p>
683              </td>
684<td>
685                <p>
686                  <span class="blue">Max = 12ε (Mean = 0.771ε)</span><br> <br>
687                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 4.54e+04ε (Mean = 2.63e+03ε))
688                </p>
689              </td>
690<td>
691                <p>
692                  <span class="blue">Max = 2.45e+04ε (Mean = 1.51e+03ε)</span>
693                </p>
694              </td>
695<td>
696                <p>
697                  <span class="blue">Max = 2.45e+04ε (Mean = 1.51e+03ε)</span>
698                </p>
699              </td>
700<td>
701                <p>
702                  <span class="blue">Max = 4.36e+04ε (Mean = 2.54e+03ε)</span>
703                </p>
704              </td>
705</tr>
706</tbody>
707</table></div>
708</div>
709<br class="table-break"><h5>
710<a name="math_toolkit.jacobi.jacobi_elliptic.h3"></a>
711        <span class="phrase"><a name="math_toolkit.jacobi.jacobi_elliptic.testing"></a></span><a class="link" href="jacobi_elliptic.html#math_toolkit.jacobi.jacobi_elliptic.testing">Testing</a>
712      </h5>
713<p>
714        The tests use a mixture of spot test values calculated using the online calculator
715        at <a href="http://functions.wolfram.com/" target="_top">functions.wolfram.com</a>,
716        and random test data generated using MPFR at 1000-bit precision and this
717        implementation.
718      </p>
719<h5>
720<a name="math_toolkit.jacobi.jacobi_elliptic.h4"></a>
721        <span class="phrase"><a name="math_toolkit.jacobi.jacobi_elliptic.implementation"></a></span><a class="link" href="jacobi_elliptic.html#math_toolkit.jacobi.jacobi_elliptic.implementation">Implementation</a>
722      </h5>
723<p>
724        For <span class="emphasis"><em>k &gt; 1</em></span> we apply the relations:
725      </p>
726<div class="blockquote"><blockquote class="blockquote"><p>
727          <span class="inlinemediaobject"><img src="../../../equations/jacobi3.svg"></span>
728
729        </p></blockquote></div>
730<p>
731        Then filter off the special cases:
732      </p>
733<div class="blockquote"><blockquote class="blockquote"><p>
734          <span class="serif_italic"><span class="emphasis"><em>sn(0, k) = 0</em></span> and <span class="emphasis"><em>cn(0,
735          k) = dn(0, k) = 1</em></span></span>
736        </p></blockquote></div>
737<div class="blockquote"><blockquote class="blockquote"><p>
738          <span class="serif_italic"><span class="emphasis"><em>sn(u, 0) = sin(u), cn(u, 0) = cos(u)
739          and dn(u, 0) = 1</em></span></span>
740        </p></blockquote></div>
741<div class="blockquote"><blockquote class="blockquote"><p>
742          <span class="serif_italic"><span class="emphasis"><em>sn(u, 1) = tanh(u), cn(u, 1) = dn(u,
743          1) = 1 / cosh(u)</em></span></span>
744        </p></blockquote></div>
745<p>
746        And for <span class="emphasis"><em>k<sup>4</sup> &lt; ε</em></span> we have:
747      </p>
748<div class="blockquote"><blockquote class="blockquote"><p>
749          <span class="inlinemediaobject"><img src="../../../equations/jacobi4.svg"></span>
750
751        </p></blockquote></div>
752<p>
753        Otherwise the values are calculated using the method of <a href="http://dlmf.nist.gov/22.20#SS2" target="_top">arithmetic
754        geometric means</a>.
755      </p>
756</div>
757<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
758<td align="left"></td>
759<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
760      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
761      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
762      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
763      Daryle Walker and Xiaogang Zhang<p>
764        Distributed under the Boost Software License, Version 1.0. (See accompanying
765        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
766      </p>
767</div></td>
768</tr></table>
769<hr>
770<div class="spirit-nav">
771<a accesskey="p" href="jac_over.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../jacobi.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_cd.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
772</div>
773</body>
774</html>
775