• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Polynomial and Rational Function Evaluation</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../poly.html" title="Chapter 11. Polynomials and Rational Functions">
9<link rel="prev" href="polynomials.html" title="Polynomials">
10<link rel="next" href="../interpolation.html" title="Chapter 12. Interpolation">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="polynomials.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../poly.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../interpolation.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.rational"></a><a class="link" href="rational.html" title="Polynomial and Rational Function Evaluation">Polynomial and Rational Function
28    Evaluation</a>
29</h2></div></div></div>
30<h5>
31<a name="math_toolkit.rational.h0"></a>
32      <span class="phrase"><a name="math_toolkit.rational.synopsis"></a></span><a class="link" href="rational.html#math_toolkit.rational.synopsis">Synopsis</a>
33    </h5>
34<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">tools</span><span class="special">/</span><span class="identifier">rational</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
35</pre>
36<pre class="programlisting"><span class="comment">// Polynomials:</span>
37<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
38<span class="identifier">V</span> <span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">poly</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">val</span><span class="special">);</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
41<span class="identifier">V</span> <span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">poly</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">val</span><span class="special">);</span>
42
43<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
44<span class="identifier">U</span> <span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">poly</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">count</span><span class="special">);</span>
45
46<span class="comment">// Even polynomials:</span>
47<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
48<span class="identifier">V</span> <span class="identifier">evaluate_even_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">poly</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
49
50<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
51<span class="identifier">V</span> <span class="identifier">evaluate_even_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">poly</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
52
53<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
54<span class="identifier">U</span> <span class="identifier">evaluate_even_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">poly</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">count</span><span class="special">);</span>
55
56<span class="comment">// Odd polynomials</span>
57<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
58<span class="identifier">V</span> <span class="identifier">evaluate_odd_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">a</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
59
60<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
61<span class="identifier">V</span> <span class="identifier">evaluate_odd_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
62
63<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
64<span class="identifier">U</span> <span class="identifier">evaluate_odd_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">poly</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">count</span><span class="special">);</span>
65
66<span class="comment">// Rational Functions:</span>
67<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
68<span class="identifier">V</span> <span class="identifier">evaluate_rational</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">a</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">b</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
69
70<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
71<span class="identifier">V</span> <span class="identifier">evaluate_rational</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
72
73<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
74<span class="identifier">V</span> <span class="identifier">evaluate_rational</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">num</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">*</span> <span class="identifier">denom</span><span class="special">,</span> <span class="identifier">V</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">count</span><span class="special">);</span>
75</pre>
76<h5>
77<a name="math_toolkit.rational.h1"></a>
78      <span class="phrase"><a name="math_toolkit.rational.description"></a></span><a class="link" href="rational.html#math_toolkit.rational.description">Description</a>
79    </h5>
80<p>
81      Each of the functions come in three variants: a pair of overloaded functions
82      where the order of the polynomial or rational function is evaluated at compile
83      time, and an overload that accepts a runtime variable for the size of the coefficient
84      array. Generally speaking, compile time evaluation of the array size results
85      in better type safety, is less prone to programmer errors, and may result in
86      better optimised code. The polynomial evaluation functions in particular, are
87      specialised for various array sizes, allowing for loop unrolling, and one hopes,
88      optimal inline expansion.
89    </p>
90<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
91<span class="identifier">V</span> <span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">poly</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">val</span><span class="special">);</span>
92
93<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
94<span class="identifier">V</span> <span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">poly</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">val</span><span class="special">);</span>
95
96<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
97<span class="identifier">U</span> <span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">poly</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">count</span><span class="special">);</span>
98</pre>
99<p>
100      Evaluates the <a href="http://en.wikipedia.org/wiki/Polynomial" target="_top">polynomial</a>
101      described by the coefficients stored in <span class="emphasis"><em>poly</em></span>.
102    </p>
103<p>
104      If the size of the array is specified at runtime, then the polynomial most
105      have order <span class="emphasis"><em>count-1</em></span> with <span class="emphasis"><em>count</em></span> coefficients.
106      Otherwise it has order <span class="emphasis"><em>N-1</em></span> with <span class="emphasis"><em>N</em></span>
107      coefficients.
108    </p>
109<p>
110      Coefficients should be stored such that the coefficients for the x<sup>i</sup> terms are
111      in poly[i].
112    </p>
113<p>
114      The types of the coefficients and of variable <span class="emphasis"><em>z</em></span> may differ
115      as long as <span class="emphasis"><em>*poly</em></span> is convertible to type <span class="emphasis"><em>U</em></span>.
116      This allows, for example, for the coefficient table to be a table of integers
117      if this is appropriate.
118    </p>
119<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
120<span class="identifier">V</span> <span class="identifier">evaluate_even_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">poly</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
121
122<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
123<span class="identifier">V</span> <span class="identifier">evaluate_even_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">poly</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
124
125<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
126<span class="identifier">U</span> <span class="identifier">evaluate_even_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">poly</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">count</span><span class="special">);</span>
127</pre>
128<p>
129      As above, but evaluates an even polynomial: one where all the powers of <span class="emphasis"><em>z</em></span>
130      are even numbers. Equivalent to calling <code class="computeroutput"><span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="identifier">poly</span><span class="special">,</span>
131      <span class="identifier">z</span><span class="special">*</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">count</span><span class="special">)</span></code>.
132    </p>
133<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
134<span class="identifier">V</span> <span class="identifier">evaluate_odd_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">a</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
135
136<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
137<span class="identifier">V</span> <span class="identifier">evaluate_odd_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
138
139<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
140<span class="identifier">U</span> <span class="identifier">evaluate_odd_polynomial</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">poly</span><span class="special">,</span> <span class="identifier">U</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">count</span><span class="special">);</span>
141</pre>
142<p>
143      As above but evaluates a polynomial where all the powers are odd numbers. Equivalent
144      to <code class="computeroutput"><span class="identifier">evaluate_polynomial</span><span class="special">(</span><span class="identifier">poly</span><span class="special">+</span><span class="number">1</span><span class="special">,</span> <span class="identifier">z</span><span class="special">*</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">count</span><span class="special">-</span><span class="number">1</span><span class="special">)</span>
145      <span class="special">*</span> <span class="identifier">z</span> <span class="special">+</span> <span class="identifier">poly</span><span class="special">[</span><span class="number">0</span><span class="special">]</span></code>.
146    </p>
147<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
148<span class="identifier">V</span> <span class="identifier">evaluate_rational</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">(&amp;</span><span class="identifier">num</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">(&amp;</span><span class="identifier">denom</span><span class="special">)[</span><span class="identifier">N</span><span class="special">],</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
149
150<span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">N</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
151<span class="identifier">V</span> <span class="identifier">evaluate_rational</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">num</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">U</span><span class="special">,</span><span class="identifier">N</span><span class="special">&gt;&amp;</span> <span class="identifier">denom</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">V</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">);</span>
152
153<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">V</span><span class="special">&gt;</span>
154<span class="identifier">V</span> <span class="identifier">evaluate_rational</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">num</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">*</span> <span class="identifier">denom</span><span class="special">,</span> <span class="identifier">V</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">count</span><span class="special">);</span>
155</pre>
156<p>
157      Evaluates the rational function (the ratio of two polynomials) described by
158      the coefficients stored in <span class="emphasis"><em>num</em></span> and <span class="emphasis"><em>denom</em></span>.
159    </p>
160<p>
161      If the size of the array is specified at runtime then both polynomials most
162      have order <span class="emphasis"><em>count-1</em></span> with <span class="emphasis"><em>count</em></span> coefficients.
163      Otherwise both polynomials have order <span class="emphasis"><em>N-1</em></span> with <span class="emphasis"><em>N</em></span>
164      coefficients.
165    </p>
166<p>
167      Array <span class="emphasis"><em>num</em></span> describes the numerator, and <span class="emphasis"><em>demon</em></span>
168      the denominator.
169    </p>
170<p>
171      Coefficients should be stored such that the coefficients for the x<sup>i </sup> terms are
172      in num[i] and denom[i].
173    </p>
174<p>
175      The types of the coefficients and of variable <span class="emphasis"><em>v</em></span> may differ
176      as long as <span class="emphasis"><em>*num</em></span> and <span class="emphasis"><em>*denom</em></span> are convertible
177      to type <span class="emphasis"><em>V</em></span>. This allows, for example, for one or both of
178      the coefficient tables to be a table of integers if this is appropriate.
179    </p>
180<p>
181      These functions are designed to safely evaluate the result, even when the value
182      <span class="emphasis"><em>z</em></span> is very large. As such they do not take advantage of
183      compile time array sizes to make any optimisations. These functions are best
184      reserved for situations where <span class="emphasis"><em>z</em></span> may be large: if you can
185      be sure that numerical overflow will not occur then polynomial evaluation with
186      compile-time array sizes may offer slightly better performance.
187    </p>
188<h5>
189<a name="math_toolkit.rational.h2"></a>
190      <span class="phrase"><a name="math_toolkit.rational.implementation"></a></span><a class="link" href="rational.html#math_toolkit.rational.implementation">Implementation</a>
191    </h5>
192<p>
193      Polynomials are evaluated by <a href="http://en.wikipedia.org/wiki/Horner_algorithm" target="_top">Horners
194      method</a>. If the array size is known at compile time then the functions
195      dispatch to size-specific implementations that unroll the evaluation loop.
196    </p>
197<p>
198      Rational evaluation is by <a href="http://en.wikipedia.org/wiki/Horner_algorithm" target="_top">Horners
199      method</a>: with the two polynomials being evaluated in parallel to make
200      the most of the processors floating-point pipeline. If <span class="emphasis"><em>v</em></span>
201      is greater than one, then the polynomials are evaluated in reverse order as
202      polynomials in <span class="emphasis"><em>1/v</em></span>: this avoids unnecessary numerical
203      overflow when the coefficients are large.
204    </p>
205<p>
206      Both the polynomial and rational function evaluation algorithms can be tuned
207      using various configuration macros to provide optimal performance for a particular
208      combination of compiler and platform. This includes support for second-order
209      Horner's methods. The various options are <a class="link" href="tuning.html" title="Performance Tuning Macros">documented
210      here</a>. However, the performance benefits to be gained from these are
211      marginal on most current hardware, consequently it's best to run the <a class="link" href="perf_test_app.html" title="The Performance Test Applications">performance test application</a> before
212      changing the default settings.
213    </p>
214</div>
215<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
216<td align="left"></td>
217<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
218      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
219      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
220      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
221      Daryle Walker and Xiaogang Zhang<p>
222        Distributed under the Boost Software License, Version 1.0. (See accompanying
223        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
224      </p>
225</div></td>
226</tr></table>
227<hr>
228<div class="spirit-nav">
229<a accesskey="p" href="polynomials.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../poly.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../interpolation.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
230</div>
231</body>
232</html>
233