• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Laguerre (and Associated) Polynomials</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../sf_poly.html" title="Polynomials">
9<link rel="prev" href="legendre_stieltjes.html" title="Legendre-Stieltjes Polynomials">
10<link rel="next" href="hermite.html" title="Hermite Polynomials">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="legendre_stieltjes.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="hermite.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.sf_poly.laguerre"></a><a class="link" href="laguerre.html" title="Laguerre (and Associated) Polynomials">Laguerre (and Associated)
28      Polynomials</a>
29</h3></div></div></div>
30<h5>
31<a name="math_toolkit.sf_poly.laguerre.h0"></a>
32        <span class="phrase"><a name="math_toolkit.sf_poly.laguerre.synopsis"></a></span><a class="link" href="laguerre.html#math_toolkit.sf_poly.laguerre.synopsis">Synopsis</a>
33      </h5>
34<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">laguerre</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
35</pre>
36<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
37
38<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
39<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">);</span>
40
41<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
42<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
43
44<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
45<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">);</span>
46
47<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
48<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
49
50<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">&gt;</span>
51<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre_next</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">Ln</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">Lnm1</span><span class="special">);</span>
52
53<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">&gt;</span>
54<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre_next</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">Ln</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">Lnm1</span><span class="special">);</span>
55
56
57<span class="special">}}</span> <span class="comment">// namespaces</span>
58</pre>
59<h5>
60<a name="math_toolkit.sf_poly.laguerre.h1"></a>
61        <span class="phrase"><a name="math_toolkit.sf_poly.laguerre.description"></a></span><a class="link" href="laguerre.html#math_toolkit.sf_poly.laguerre.description">Description</a>
62      </h5>
63<p>
64        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
65        type calculation rules</em></span></a>: note than when there is a single
66        template argument the result is the same type as that argument or <code class="computeroutput"><span class="keyword">double</span></code> if the template argument is an integer
67        type.
68      </p>
69<p>
70        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
71        be used to control the behaviour of the function: how it handles errors,
72        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
73        documentation for more details</a>.
74      </p>
75<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
76<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">);</span>
77
78<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
79<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
80</pre>
81<p>
82        Returns the value of the Laguerre Polynomial of order <span class="emphasis"><em>n</em></span>
83        at point <span class="emphasis"><em>x</em></span>:
84      </p>
85<div class="blockquote"><blockquote class="blockquote"><p>
86          <span class="inlinemediaobject"><img src="../../../equations/laguerre_0.svg"></span>
87
88        </p></blockquote></div>
89<p>
90        The following graph illustrates the behaviour of the first few Laguerre Polynomials:
91      </p>
92<div class="blockquote"><blockquote class="blockquote"><p>
93          <span class="inlinemediaobject"><img src="../../../graphs/laguerre.svg" align="middle"></span>
94
95        </p></blockquote></div>
96<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
97<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">);</span>
98
99<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
100<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
101</pre>
102<p>
103        Returns the Associated Laguerre polynomial of degree <span class="emphasis"><em>n</em></span>
104        and order <span class="emphasis"><em>m</em></span> at point <span class="emphasis"><em>x</em></span>:
105      </p>
106<div class="blockquote"><blockquote class="blockquote"><p>
107          <span class="inlinemediaobject"><img src="../../../equations/laguerre_1.svg"></span>
108
109        </p></blockquote></div>
110<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">&gt;</span>
111<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre_next</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">Ln</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">Lnm1</span><span class="special">);</span>
112</pre>
113<p>
114        Implements the three term recurrence relation for the Laguerre polynomials,
115        this function can be used to create a sequence of values evaluated at the
116        same <span class="emphasis"><em>x</em></span>, and for rising <span class="emphasis"><em>n</em></span>.
117      </p>
118<div class="blockquote"><blockquote class="blockquote"><p>
119          <span class="inlinemediaobject"><img src="../../../equations/laguerre_2.svg"></span>
120
121        </p></blockquote></div>
122<p>
123        For example we could produce a vector of the first 10 polynomial values using:
124      </p>
125<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>  <span class="comment">// Abscissa value</span>
126<span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">;</span>
127<span class="identifier">v</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">laguerre</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="identifier">x</span><span class="special">)).</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">laguerre</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="identifier">x</span><span class="special">));</span>
128<span class="keyword">for</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span> <span class="identifier">l</span> <span class="special">&lt;</span> <span class="number">10</span><span class="special">;</span> <span class="special">++</span><span class="identifier">l</span><span class="special">)</span>
129   <span class="identifier">v</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">laguerre_next</span><span class="special">(</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">v</span><span class="special">[</span><span class="identifier">l</span><span class="special">],</span> <span class="identifier">v</span><span class="special">[</span><span class="identifier">l</span><span class="special">-</span><span class="number">1</span><span class="special">]));</span>
130</pre>
131<p>
132        Formally the arguments are:
133      </p>
134<div class="variablelist">
135<p class="title"><b></b></p>
136<dl class="variablelist">
137<dt><span class="term">n</span></dt>
138<dd><p>
139              The degree <span class="emphasis"><em>n</em></span> of the last polynomial calculated.
140            </p></dd>
141<dt><span class="term">x</span></dt>
142<dd><p>
143              The abscissa value
144            </p></dd>
145<dt><span class="term">Ln</span></dt>
146<dd><p>
147              The value of the polynomial evaluated at degree <span class="emphasis"><em>n</em></span>.
148            </p></dd>
149<dt><span class="term">Lnm1</span></dt>
150<dd><p>
151              The value of the polynomial evaluated at degree <span class="emphasis"><em>n-1</em></span>.
152            </p></dd>
153</dl>
154</div>
155<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">&gt;</span>
156<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">laguerre_next</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">Ln</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">Lnm1</span><span class="special">);</span>
157</pre>
158<p>
159        Implements the three term recurrence relation for the Associated Laguerre
160        polynomials, this function can be used to create a sequence of values evaluated
161        at the same <span class="emphasis"><em>x</em></span>, and for rising degree <span class="emphasis"><em>n</em></span>.
162      </p>
163<div class="blockquote"><blockquote class="blockquote"><p>
164          <span class="inlinemediaobject"><img src="../../../equations/laguerre_3.svg"></span>
165
166        </p></blockquote></div>
167<p>
168        For example we could produce a vector of the first 10 polynomial values using:
169      </p>
170<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>  <span class="comment">// Abscissa value</span>
171<span class="keyword">int</span> <span class="identifier">m</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>      <span class="comment">// order</span>
172<span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">;</span>
173<span class="identifier">v</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">laguerre</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">x</span><span class="special">)).</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">laguerre</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">x</span><span class="special">));</span>
174<span class="keyword">for</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span> <span class="identifier">l</span> <span class="special">&lt;</span> <span class="number">10</span><span class="special">;</span> <span class="special">++</span><span class="identifier">l</span><span class="special">)</span>
175   <span class="identifier">v</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">laguerre_next</span><span class="special">(</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">v</span><span class="special">[</span><span class="identifier">l</span><span class="special">],</span> <span class="identifier">v</span><span class="special">[</span><span class="identifier">l</span><span class="special">-</span><span class="number">1</span><span class="special">]));</span>
176</pre>
177<p>
178        Formally the arguments are:
179      </p>
180<div class="variablelist">
181<p class="title"><b></b></p>
182<dl class="variablelist">
183<dt><span class="term">n</span></dt>
184<dd><p>
185              The degree of the last polynomial calculated.
186            </p></dd>
187<dt><span class="term">m</span></dt>
188<dd><p>
189              The order of the Associated Polynomial.
190            </p></dd>
191<dt><span class="term">x</span></dt>
192<dd><p>
193              The abscissa value.
194            </p></dd>
195<dt><span class="term">Ln</span></dt>
196<dd><p>
197              The value of the polynomial evaluated at degree <span class="emphasis"><em>n</em></span>.
198            </p></dd>
199<dt><span class="term">Lnm1</span></dt>
200<dd><p>
201              The value of the polynomial evaluated at degree <span class="emphasis"><em>n-1</em></span>.
202            </p></dd>
203</dl>
204</div>
205<h5>
206<a name="math_toolkit.sf_poly.laguerre.h2"></a>
207        <span class="phrase"><a name="math_toolkit.sf_poly.laguerre.accuracy"></a></span><a class="link" href="laguerre.html#math_toolkit.sf_poly.laguerre.accuracy">Accuracy</a>
208      </h5>
209<p>
210        The following table shows peak errors (in units of epsilon) for various domains
211        of input arguments. Note that only results for the widest floating point
212        type on the system are given as narrower types have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
213        zero error</a>.
214      </p>
215<div class="table">
216<a name="math_toolkit.sf_poly.laguerre.table_laguerre_n_x_"></a><p class="title"><b>Table 8.35. Error rates for laguerre(n, x)</b></p>
217<div class="table-contents"><table class="table" summary="Error rates for laguerre(n, x)">
218<colgroup>
219<col>
220<col>
221<col>
222<col>
223<col>
224</colgroup>
225<thead><tr>
226<th>
227              </th>
228<th>
229                <p>
230                  GNU C++ version 7.1.0<br> linux<br> double
231                </p>
232              </th>
233<th>
234                <p>
235                  GNU C++ version 7.1.0<br> linux<br> long double
236                </p>
237              </th>
238<th>
239                <p>
240                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
241                </p>
242              </th>
243<th>
244                <p>
245                  Microsoft Visual C++ version 14.1<br> Win32<br> double
246                </p>
247              </th>
248</tr></thead>
249<tbody><tr>
250<td>
251                <p>
252                  Laguerre Polynomials
253                </p>
254              </td>
255<td>
256                <p>
257                  <span class="blue">Max = 6.82ε (Mean = 0.408ε)</span><br> <br>
258                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 3.1e+03ε (Mean = 185ε))
259                </p>
260              </td>
261<td>
262                <p>
263                  <span class="blue">Max = 1.39e+04ε (Mean = 828ε)</span><br>
264                  <br> (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 4.2e+03ε (Mean
265                  = 251ε))
266                </p>
267              </td>
268<td>
269                <p>
270                  <span class="blue">Max = 1.39e+04ε (Mean = 828ε)</span>
271                </p>
272              </td>
273<td>
274                <p>
275                  <span class="blue">Max = 3.1e+03ε (Mean = 185ε)</span>
276                </p>
277              </td>
278</tr></tbody>
279</table></div>
280</div>
281<br class="table-break"><div class="table">
282<a name="math_toolkit.sf_poly.laguerre.table_laguerre_n_m_x_"></a><p class="title"><b>Table 8.36. Error rates for laguerre(n, m, x)</b></p>
283<div class="table-contents"><table class="table" summary="Error rates for laguerre(n, m, x)">
284<colgroup>
285<col>
286<col>
287<col>
288<col>
289<col>
290</colgroup>
291<thead><tr>
292<th>
293              </th>
294<th>
295                <p>
296                  GNU C++ version 7.1.0<br> linux<br> double
297                </p>
298              </th>
299<th>
300                <p>
301                  GNU C++ version 7.1.0<br> linux<br> long double
302                </p>
303              </th>
304<th>
305                <p>
306                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
307                </p>
308              </th>
309<th>
310                <p>
311                  Microsoft Visual C++ version 14.1<br> Win32<br> double
312                </p>
313              </th>
314</tr></thead>
315<tbody><tr>
316<td>
317                <p>
318                  Associated Laguerre Polynomials
319                </p>
320              </td>
321<td>
322                <p>
323                  <span class="blue">Max = 0.84ε (Mean = 0.0358ε)</span><br> <br>
324                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 434ε (Mean = 10.7ε))
325                </p>
326              </td>
327<td>
328                <p>
329                  <span class="blue">Max = 167ε (Mean = 6.38ε)</span><br> <br>
330                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 206ε (Mean = 6.86ε))
331                </p>
332              </td>
333<td>
334                <p>
335                  <span class="blue">Max = 167ε (Mean = 6.38ε)</span>
336                </p>
337              </td>
338<td>
339                <p>
340                  <span class="blue">Max = 434ε (Mean = 11.1ε)</span>
341                </p>
342              </td>
343</tr></tbody>
344</table></div>
345</div>
346<br class="table-break"><p>
347        Note that the worst errors occur when the degree increases, values greater
348        than ~120 are very unlikely to produce sensible results, especially in the
349        associated polynomial case when the order is also large. Further the relative
350        errors are likely to grow arbitrarily large when the function is very close
351        to a root.
352      </p>
353<h5>
354<a name="math_toolkit.sf_poly.laguerre.h3"></a>
355        <span class="phrase"><a name="math_toolkit.sf_poly.laguerre.testing"></a></span><a class="link" href="laguerre.html#math_toolkit.sf_poly.laguerre.testing">Testing</a>
356      </h5>
357<p>
358        A mixture of spot tests of values calculated using functions.wolfram.com,
359        and randomly generated test data are used: the test data was computed using
360        <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a> at 1000-bit
361        precision.
362      </p>
363<h5>
364<a name="math_toolkit.sf_poly.laguerre.h4"></a>
365        <span class="phrase"><a name="math_toolkit.sf_poly.laguerre.implementation"></a></span><a class="link" href="laguerre.html#math_toolkit.sf_poly.laguerre.implementation">Implementation</a>
366      </h5>
367<p>
368        These functions are implemented using the stable three term recurrence relations.
369        These relations guarantee low absolute error but cannot guarantee low relative
370        error near one of the roots of the polynomials.
371      </p>
372</div>
373<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
374<td align="left"></td>
375<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
376      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
377      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
378      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
379      Daryle Walker and Xiaogang Zhang<p>
380        Distributed under the Boost Software License, Version 1.0. (See accompanying
381        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
382      </p>
383</div></td>
384</tr></table>
385<hr>
386<div class="spirit-nav">
387<a accesskey="p" href="legendre_stieltjes.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="hermite.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
388</div>
389</body>
390</html>
391