• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section:ellint_intro Elliptic Integral Overview]
2
3The main reference for the elliptic integrals is:
4
5[:M. Abramowitz and I. A. Stegun (Eds.) (1964)
6Handbook of Mathematical Functions with Formulas, Graphs, and
7Mathematical Tables,
8National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C.]
9
10and its recently revised version __DMLF, in particular
11[:[@https://dlmf.nist.gov/19 Elliptic Integrals, B. C. Carlson]]
12
13Mathworld also contain a lot of useful background information:
14
15[:[@http://mathworld.wolfram.com/EllipticIntegral.html Weisstein, Eric W.
16"Elliptic Integral." From MathWorld--A Wolfram Web Resource.]]
17
18As does [@http://en.wikipedia.org/wiki/Elliptic_integral Wikipedia Elliptic integral].
19
20[h4 Notation]
21
22All variables are real numbers unless otherwise noted.
23
24[h4 Definition]
25
26[equation ellint1]
27
28is called elliptic integral if ['R(t, s)] is a rational function
29of ['t] and ['s], and ['s[super 2]] is a cubic or quartic polynomial
30in ['t].
31
32Elliptic integrals generally cannot be expressed in terms of
33elementary functions. However, Legendre showed that all elliptic
34integrals can be reduced to the following three canonical forms:
35
36Elliptic Integral of the First Kind (Legendre form)
37
38[equation ellint2]
39
40Elliptic Integral of the Second Kind (Legendre form)
41
42[equation ellint3]
43
44Elliptic Integral of the Third Kind (Legendre form)
45
46[equation ellint4]
47
48where
49
50[equation ellint5]
51
52[note ['[phi]] is called the amplitude.
53
54['k] is called the elliptic modulus or eccentricity.
55
56['[alpha]] is called the modular angle.
57
58['n] is called the characteristic.]
59
60[caution Perhaps more than any other special functions the elliptic
61integrals are expressed in a variety of different ways.  In particular,
62the final parameter /k/ (the modulus) may be expressed using a modular
63angle [alpha], or a parameter /m/.  These are related by:
64
65[expression k = sin[thin][alpha]]
66
67[expression m = k[super 2] = sin[super 2][alpha]]
68
69So that the integral of the third kind (for example) may be expressed as
70either:
71
72[expression [Pi](n, [phi], k)]
73
74[expression [Pi](n, [phi] \\ [alpha])]
75
76[expression [Pi](n, [phi] | m)]
77
78To further complicate matters, some texts refer to the ['complement
79of the parameter m], or 1 - m, where:
80
81[expression 1 - m = 1 - k[super 2] = cos[super 2][alpha]]
82
83This implementation uses /k/ throughout: this matches the requirements
84of the [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
85Technical Report on C++ Library Extensions].[br]
86
87So you should be extra careful when using these functions!]
88
89[warning Boost.Math order of arguments differs from other implementations: /k/ is always the *first* argument.]
90
91A simple example comparing use of __WolframAlpha with Boost.Math (including much higher precision using __multiprecision)
92is [@../../example/jacobi_zeta_example.cpp jacobi_zeta_example.cpp].
93
94When ['[phi]] = ['[pi]] / 2, the elliptic integrals are called ['complete].
95
96Complete Elliptic Integral of the First Kind (Legendre form)
97
98[equation ellint6]
99
100Complete Elliptic Integral of the Second Kind (Legendre form)
101
102[equation ellint7]
103
104Complete Elliptic Integral of the Third Kind (Legendre form)
105
106[equation ellint8]
107
108Legendre also defined a fourth integral /D([phi],k)/ which is a combination of the other three:
109
110[equation ellint_d]
111
112Like the other Legendre integrals this comes in both complete and incomplete forms.
113
114[h4 Carlson Elliptic Integrals]
115
116Carlson [[link ellint_ref_carlson77 Carlson77]] [[link ellint_ref_carlson78  Carlson78]] gives an alternative definition of
117elliptic integral's canonical forms:
118
119Carlson's Elliptic Integral of the First Kind
120
121[equation ellint9]
122
123where ['x], ['y], ['z] are nonnegative and at most one of them
124may be zero.
125
126Carlson's Elliptic Integral of the Second Kind
127
128[equation ellint10]
129
130where ['x], ['y] are nonnegative, at most one of them may be zero,
131and ['z] must be positive.
132
133Carlson's Elliptic Integral of the Third Kind
134
135[equation ellint11]
136
137where ['x], ['y], ['z] are nonnegative, at most one of them may be
138zero, and ['p] must be nonzero.
139
140Carlson's Degenerate Elliptic Integral
141
142[equation ellint12]
143
144where ['x] is nonnegative and ['y] is nonzero.
145
146[note ['R[sub C](x, y) = R[sub F](x, y, y)]
147
148['R[sub D](x, y, z) = R[sub J](x, y, z, z)]]
149
150Carlson's Symmetric Integral
151
152[equation ellint27]
153
154[h4 Duplication Theorem]
155
156Carlson proved in [[link ellint_ref_carlson78  Carlson78]] that
157
158[equation ellint13]
159
160[h4 Carlson's Formulas]
161
162The Legendre form and Carlson form of elliptic integrals are related
163by equations:
164
165[equation ellint14]
166
167In particular,
168
169[equation ellint15]
170
171[h4 Miscellaneous Elliptic Integrals]
172
173There are two functions related to the elliptic integrals which otherwise
174defy categorisation, these are the Jacobi Zeta function:
175
176[equation jacobi_zeta]
177
178and the Heuman Lambda function:
179
180[equation heuman_lambda]
181
182Both of these functions are easily implemented in terms of Carlson's integrals, and are
183provided in this library as __jacobi_zeta and __heuman_lambda.
184
185[h4 Numerical Algorithms]
186
187The conventional methods for computing elliptic integrals are Gauss
188and Landen transformations, which converge quadratically and work
189well for elliptic integrals of the first and second kinds.
190Unfortunately they suffer from loss of significant digits for the
191third kind.
192
193Carlson's algorithm [[link ellint_ref_carlson79  Carlson79]] [[link ellint_ref_carlson78  Carlson78]], by contrast,
194provides a unified method for all three kinds of elliptic integrals with satisfactory precisions.
195
196[h4 References]
197
198Special mention goes to:
199
200[:A. M. Legendre, ['Trait[eacute] des Fonctions Elliptiques et des Integrales
201Euleriennes], Vol. 1. Paris (1825).]
202
203However the main references are:
204
205# [#ellint_ref_AS]M. Abramowitz and I. A. Stegun (Eds.) (1964)
206Handbook of Mathematical Functions with Formulas, Graphs, and
207Mathematical Tables,
208National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C.
209# [@https://dlmf.nist.gov/19 NIST Digital Library of Mathematical Functions, Elliptic Integrals, B. C. Carlson]
210# [#ellint_ref_carlson79]B.C. Carlson, ['Computing elliptic integrals by duplication],
211    Numerische Mathematik, vol 33, 1 (1979).
212# [#ellint_ref_carlson77]B.C. Carlson, ['Elliptic Integrals of the First Kind],
213    SIAM Journal on Mathematical Analysis, vol 8, 231 (1977).
214# [#ellint_ref_carlson78]B.C. Carlson, ['Short Proofs of Three Theorems on Elliptic Integrals],
215    SIAM Journal on Mathematical Analysis, vol 9, 524 (1978).
216# [#ellint_ref_carlson81]B.C. Carlson and E.M. Notis, ['ALGORITHM 577: Algorithms for Incomplete
217    Elliptic Integrals], ACM Transactions on Mathematical Software,
218    vol 7, 398 (1981).
219# B. C. Carlson, ['On computing elliptic integrals and functions]. J. Math. and
220Phys., 44 (1965), pp. 36-51.
221# B. C. Carlson, ['A table of elliptic integrals of the second kind]. Math. Comp., 49
222(1987), pp. 595-606. (Supplement, ibid., pp. S13-S17.)
223# B. C. Carlson, ['A table of elliptic integrals of the third kind]. Math. Comp., 51 (1988),
224pp. 267-280. (Supplement, ibid., pp. S1-S5.)
225# B. C. Carlson, ['A table of elliptic integrals: cubic cases]. Math. Comp., 53 (1989), pp.
226327-333.
227# B. C. Carlson, ['A table of elliptic integrals: one quadratic factor]. Math. Comp., 56 (1991),
228pp. 267-280.
229# B. C. Carlson, ['A table of elliptic integrals: two quadratic factors]. Math. Comp., 59
230(1992), pp. 165-180.
231# B. C. Carlson, ['[@http://arxiv.org/abs/math.CA/9409227
232Numerical computation of real or complex elliptic integrals]]. Numerical Algorithms,
233Volume 10, Number 1 / March, 1995, p13-26.
234# B. C. Carlson and John L. Gustafson, ['[@http://arxiv.org/abs/math.CA/9310223
235Asymptotic Approximations for Symmetric Elliptic Integrals]],
236SIAM Journal on Mathematical Analysis, Volume 25, Issue 2 (March 1994), 288-303.
237
238
239The following references, while not directly relevant to our implementation,
240may also be of interest:
241
242# R. Burlisch, ['Numerical Computation of Elliptic Integrals and Elliptic Functions.]
243Numerical Mathematik 7, 78-90.
244# R. Burlisch, ['An extension of the Bartky Transformation to Incomplete
245Elliptic Integrals of the Third Kind]. Numerical Mathematik 13, 266-284.
246# R. Burlisch, ['Numerical Computation of Elliptic Integrals and Elliptic Functions. III].
247Numerical Mathematik 13, 305-315.
248# T. Fukushima and H. Ishizaki, ['[@http://adsabs.harvard.edu/abs/1994CeMDA..59..237F
249Numerical Computation of Incomplete Elliptic Integrals of a General Form.]]
250Celestial Mechanics and Dynamical Astronomy, Volume 59, Number 3 / July, 1994,
251237-251.
252
253[endsect] [/section:ellint_intro Elliptic Integral Overview]
254
255[/
256Copyright (c) 2006 Xiaogang Zhang
257Use, modification and distribution are subject to the
258Boost Software License, Version 1.0. (See accompanying file
259LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
260]
261
262