• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[/
2  Copyright 2019, Nick Thompson
3  Distributed under the Boost Software License, Version 1.0.
4  (See accompanying file LICENSE_1_0.txt or copy at
5  http://www.boost.org/LICENSE_1_0.txt).
6]
7
8[section:jacobi Jacobi Polynomials]
9
10[h4 Synopsis]
11
12``
13#include <boost/math/special_functions/jacobi.hpp>
14``
15
16   namespace boost{ namespace math{
17
18   template<typename Real>
19   Real jacobi(unsigned n, Real alpha, Real beta, Real x);
20
21   template<typename Real>
22   Real jacobi_derivative(unsigned n, Real alpha, Real beta, Real x, unsigned k);
23
24   template<typename Real>
25   Real jacobi_prime(unsigned n, Real alpha, Real beta, Real x);
26
27   template<typename Real>
28   Real jacobi_double_prime(unsigned n, Real alpha, Real beta, Real x);
29
30   }} // namespaces
31
32Jacobi polynomials are a family of orthogonal polynomials.
33
34A basic usage is as follows:
35
36    using boost::math::jacobi;
37    double x = 0.5;
38    double alpha = 0.3;
39    double beta = 7.2;
40    unsigned n = 3;
41    double y = jacobi(n, alpha, beta, x);
42
43All derivatives of the Jacobi polynomials are available.
44The /k/-th derivative of the /n/-th Gegenbauer polynomial is given by
45
46    using boost::math::jacobi_derivative;
47    double x = 0.5;
48    double alpha = 0.3;
49    double beta = 7.2;
50    unsigned n = 3;
51    double y = jacobi_derivative(n, alpha, beta, x, k);
52
53For consistency with the rest of the library, `jacobi_prime` is provided which simply returns `jacobi_derivative(n, lambda, x,1)`.
54
55[$../graphs/jacobi.svg]
56
57[h3 Implementation]
58
59The implementation uses the 3-term recurrence for the Jacobi polynomials, rising.
60
61
62[endsect]
63