• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section:number_series Number Series]
2
3[section:bernoulli_numbers Bernoulli Numbers]
4
5[@https://en.wikipedia.org/wiki/Bernoulli_number Bernoulli numbers]
6are a sequence of rational numbers useful for the Taylor series expansion,
7Euler-Maclaurin formula, and the Riemann zeta function.
8
9Bernoulli numbers are used in evaluation of some Boost.Math functions,
10including the __tgamma, __lgamma and polygamma functions.
11
12[h4 Single Bernoulli number]
13
14[h4 Synopsis]
15
16``
17#include <boost/math/special_functions/bernoulli.hpp>
18``
19
20  namespace boost { namespace math {
21
22  template <class T>
23  T bernoulli_b2n(const int n);  // Single Bernoulli number (default policy).
24
25  template <class T, class Policy>
26  T bernoulli_b2n(const int n, const Policy &pol); // User policy for errors etc.
27
28  }} // namespaces
29
30[h4 Description]
31
32Both return the (2 * n)[super th] Bernoulli number B[sub 2n].
33
34Note that since all odd numbered Bernoulli numbers are zero (apart from B[sub 1] which is -[frac12])
35the interface will only return the even numbered Bernoulli numbers.
36
37This function uses fast table lookup for low-indexed Bernoulli numbers, while larger values are calculated
38as needed and then cached.  The caching mechanism requires a certain amount of thread safety code, so
39`unchecked_bernoulli_b2n` may provide a better interface for performance critical code.
40
41The final __Policy argument is optional and can be used to control the behaviour of the function:
42how it handles errors, what level of precision to use, etc.
43
44Refer to __policy_section for more details.
45
46[h4 Examples]
47
48[import ../../example/bernoulli_example.cpp]
49[bernoulli_example_1]
50
51[bernoulli_output_1]
52
53[h4 Single (unchecked) Bernoulli number]
54
55[h4 Synopsis]
56``
57#include <boost/math/special_functions/bernoulli.hpp>
58
59``
60
61  template <>
62  struct max_bernoulli_b2n<T>;
63
64  template<class T>
65  inline T unchecked_bernoulli_b2n(unsigned n);
66
67`unchecked_bernoulli_b2n` provides access to Bernoulli numbers [*without any checks for overflow or invalid parameters].
68It is implemented as a direct (and very fast) table lookup, and while not recommended for general use it can be useful
69inside inner loops where the ultimate performance is required, and error checking is moved outside the loop.
70
71The largest value you can pass to `unchecked_bernoulli_b2n<>` is `max_bernoulli_b2n<>::value`: passing values greater than
72that will result in a buffer overrun error, so it's clearly important to place the error handling in your own code
73when using this direct interface.
74
75The value of `boost::math::max_bernoulli_b2n<T>::value` varies by the type T, for types `float`/`double`/`long double`
76it's the largest value which doesn't overflow the target type: for example, `boost::math::max_bernoulli_b2n<double>::value` is 129.
77However, for multiprecision types, it's the largest value for which the result can be represented as the ratio of two 64-bit
78integers, for example `boost::math::max_bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>::value` is just 17.  Of course
79larger indexes can be passed to `bernoulli_b2n<T>(n)`, but then you lose fast table lookup (i.e. values may need to be calculated).
80
81[bernoulli_example_4]
82[bernoulli_output_4]
83
84[h4 Multiple Bernoulli Numbers]
85
86[h4 Synopsis]
87
88``
89#include <boost/math/special_functions/bernoulli.hpp>
90``
91
92  namespace boost { namespace math {
93
94  // Multiple Bernoulli numbers (default policy).
95  template <class T, class OutputIterator>
96  OutputIterator bernoulli_b2n(
97    int start_index,
98    unsigned number_of_bernoullis_b2n,
99    OutputIterator out_it);
100
101  // Multiple Bernoulli numbers (user policy).
102  template <class T, class OutputIterator, class Policy>
103  OutputIterator bernoulli_b2n(
104    int start_index,
105    unsigned number_of_bernoullis_b2n,
106    OutputIterator out_it,
107    const Policy& pol);
108  }} // namespaces
109
110[h4 Description]
111
112Two versions of the Bernoulli number function are provided to compute multiple Bernoulli numbers
113with one call (one with default policy and the other allowing a user-defined policy).
114
115These return a series of Bernoulli numbers:
116
117[expression [B[sub 2*start_index], B[sub 2*(start_index+1)], ..., B[sub 2*(start_index+number_of_bernoullis_b2n-1)]]]
118
119[h4 Examples]
120[bernoulli_example_2]
121[bernoulli_output_2]
122[bernoulli_example_3]
123[bernoulli_output_3]
124
125The source of this example is at [@../../example/bernoulli_example.cpp bernoulli_example.cpp]
126
127[h4 Accuracy]
128
129All the functions usually return values within one ULP (unit in the last place) for the floating-point type.
130
131[h4 Implementation]
132
133The implementation details are in [@../../include/boost/math/special_functions/detail/bernoulli_details.hpp bernoulli_details.hpp]
134and [@../../include/boost/math/special_functions/detail/unchecked_bernoulli.hpp unchecked_bernoulli.hpp].
135
136For `i <= max_bernoulli_index<T>::value` this is implemented by simple table lookup from a statically initialized table;
137for larger values of `i`, this is implemented by the Tangent Numbers algorithm as described in the paper:
138Fast Computation of Bernoulli, Tangent and Secant Numbers, Richard P. Brent and David Harvey,
139[@http://arxiv.org/pdf/1108.0286v3.pdf] (2011).
140
141[@http://mathworld.wolfram.com/TangentNumber.html Tangent (or Zag) numbers]
142(an even alternating permutation number) are defined
143and their generating function is also given therein.
144
145The relation of Tangent numbers with Bernoulli numbers  ['B[sub i]]
146is given by Brent and Harvey's equation 14:
147
148__spaces[equation tangent_numbers]
149
150Their relation with Bernoulli numbers ['B[sub i]] are defined by
151
152if i > 0 and i is even then  [equation bernoulli_numbers] [br]
153elseif i == 0 then  ['B[sub i]] = 1 [br]
154elseif i == 1 then  ['B[sub i]] = -1/2 [br]
155elseif i < 0 or i is odd then ['B[sub i]] = 0
156
157Note that computed values are stored in a fixed-size table, access is thread safe via atomic operations (i.e. lock
158free programming), this imparts a much lower overhead on access to cached values than might otherwise be expected -
159typically for multiprecision types the cost of thread synchronisation is negligible, while for built in types
160this code is not normally executed anyway.  For very large arguments which cannot be reasonably computed or
161stored in our cache, an asymptotic expansion [@http://www.luschny.de/math/primes/bernincl.html due to Luschny] is used:
162
163[equation bernoulli_numbers2]
164
165[endsect] [/section:bernoulli_numbers Bernoulli Numbers]
166
167
168[section:tangent_numbers Tangent Numbers]
169
170[@http://en.wikipedia.org/wiki/Tangent_numbers Tangent numbers],
171also called a zag function.  See also
172[@http://mathworld.wolfram.com/TangentNumber.html Tangent number].
173
174The first few values are 1, 2, 16, 272, 7936, 353792, 22368256, 1903757312 ...
175(sequence [@http://oeis.org/A000182 A000182 in OEIS]).
176They are called tangent numbers because they appear as
177numerators in the Maclaurin series of `tan(x)`.
178
179[*Important:] there are two competing definitions of Tangent numbers in common use
180(depending on whether you take the even or odd numbered values as non-zero), we use:
181
182[equation tangent_number_def]
183
184Which gives:
185
186[equation tangent_number_def2]
187
188Tangent numbers are used in the computation of Bernoulli numbers,
189but are also made available here.
190
191[h4 Synopsis]
192``
193#include <boost/math/special_functions/detail/bernoulli.hpp>
194``
195
196  template <class T>
197  T tangent_t2n(const int i);  // Single tangent number (default policy).
198
199  template <class T, class Policy>
200  T tangent_t2n(const int i, const Policy &pol); // Single tangent number (user policy).
201
202  // Multiple tangent numbers (default policy).
203  template <class T, class OutputIterator>
204  OutputIterator tangent_t2n(const int start_index,
205                                      const unsigned number_of_tangent_t2n,
206                                      OutputIterator out_it);
207
208  // Multiple tangent numbers (user policy).
209  template <class T, class OutputIterator, class Policy>
210  OutputIterator tangent_t2n(const int start_index,
211                                      const unsigned number_of_tangent_t2n,
212                                      OutputIterator out_it,
213                                      const Policy& pol);
214
215[h4 Examples]
216
217[tangent_example_1]
218
219The output is:
220[tangent_output_1]
221
222The source of this example is at [@../../example/bernoulli_example.cpp bernoulli_example.cpp]
223
224[h4 Implementation]
225
226Tangent numbers are calculated as intermediates in the calculation of the __bernoulli_numbers:
227refer to the __bernoulli_numbers documentation for details.
228
229[endsect] [/section:tangent_numbers Tangent Numbers]
230
231[section:primes Prime Numbers]
232
233[h4 Synopsis]
234
235``
236#include <boost/math/special_functions/prime.hpp>
237``
238
239  namespace boost { namespace math {
240
241  template <class Policy>
242  constexpr boost::uint32_t prime(unsigned n, const Policy& pol);
243
244  constexpr boost::uint32_t prime(unsigned n);
245
246  static const unsigned max_prime = 10000;
247
248  }} // namespaces
249
250[h4 Description]
251
252The function `prime` provides fast table lookup to the first 10000 prime numbers (starting from 2
253as the zeroth prime: as 1 isn't terribly useful in practice).  There are two function signatures
254one of which takes an optional __Policy as the second parameter to control error handling.
255
256The constant `max_prime` is the largest value you can pass to `prime` without incurring an error.
257
258Passing a value greater than `max_prime` results in a __domain_error being raised.
259
260This function is `constexpr` only if the compiler supports C++14 constexpr functions.
261
262[endsect] [/section:primes]
263
264[endsect] [/Number Series]
265
266[/
267  Copyright 2013, 2014 Nikhar Agrawal, Christopher Kormanyos, John Maddock, Paul A. Bristow.
268  Distributed under the Boost Software License, Version 1.0.
269  (See accompanying file LICENSE_1_0.txt or copy at
270  http://www.boost.org/LICENSE_1_0.txt).
271]
272