• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //           Copyright Matthew Pulver 2018 - 2019.
2 // Distributed under the Boost Software License, Version 1.0.
3 //      (See accompanying file LICENSE_1_0.txt or copy at
4 //           https://www.boost.org/LICENSE_1_0.txt)
5 
6 #include <boost/math/differentiation/autodiff.hpp>
7 #include <iostream>
8 #include <stdexcept>
9 
10 using namespace boost::math::constants;
11 using namespace boost::math::differentiation;
12 
13 // Equations and function/variable names are from
14 // https://en.wikipedia.org/wiki/Greeks_(finance)#Formulas_for_European_option_Greeks
15 
16 // Standard normal probability density function
17 template <typename X>
phi(X const & x)18 X phi(X const& x) {
19   return one_div_root_two_pi<X>() * exp(-0.5 * x * x);
20 }
21 
22 // Standard normal cumulative distribution function
23 template <typename X>
Phi(X const & x)24 X Phi(X const& x) {
25   return 0.5 * erfc(-one_div_root_two<X>() * x);
26 }
27 
28 enum class CP { call, put };
29 
30 // Assume zero annual dividend yield (q=0).
31 template <typename Price, typename Sigma, typename Tau, typename Rate>
black_scholes_option_price(CP cp,double K,Price const & S,Sigma const & sigma,Tau const & tau,Rate const & r)32 promote<Price, Sigma, Tau, Rate> black_scholes_option_price(CP cp,
33                                                             double K,
34                                                             Price const& S,
35                                                             Sigma const& sigma,
36                                                             Tau const& tau,
37                                                             Rate const& r) {
38   using namespace std;
39   auto const d1 = (log(S / K) + (r + sigma * sigma / 2) * tau) / (sigma * sqrt(tau));
40   auto const d2 = (log(S / K) + (r - sigma * sigma / 2) * tau) / (sigma * sqrt(tau));
41   switch (cp) {
42     case CP::call:
43       return S * Phi(d1) - exp(-r * tau) * K * Phi(d2);
44     case CP::put:
45       return exp(-r * tau) * K * Phi(-d2) - S * Phi(-d1);
46     default:
47       throw std::runtime_error("Invalid CP value.");
48   }
49 }
50 
main()51 int main() {
52   double const K = 100.0;  // Strike price.
53   auto const variables = make_ftuple<double, 3, 3, 1, 1>(105, 5, 30.0 / 365, 1.25 / 100);
54   auto const& S = std::get<0>(variables);      // Stock price.
55   auto const& sigma = std::get<1>(variables);  // Volatility.
56   auto const& tau = std::get<2>(variables);    // Time to expiration in years. (30 days).
57   auto const& r = std::get<3>(variables);      // Interest rate.
58   auto const call_price = black_scholes_option_price(CP::call, K, S, sigma, tau, r);
59   auto const put_price = black_scholes_option_price(CP::put, K, S, sigma, tau, r);
60 
61   double const d1 = static_cast<double>((log(S / K) + (r + sigma * sigma / 2) * tau) / (sigma * sqrt(tau)));
62   double const d2 = static_cast<double>((log(S / K) + (r - sigma * sigma / 2) * tau) / (sigma * sqrt(tau)));
63   double const formula_call_delta = +Phi(+d1);
64   double const formula_put_delta = -Phi(-d1);
65   double const formula_vega = static_cast<double>(S * phi(d1) * sqrt(tau));
66   double const formula_call_theta =
67       static_cast<double>(-S * phi(d1) * sigma / (2 * sqrt(tau)) - r * K * exp(-r * tau) * Phi(+d2));
68   double const formula_put_theta =
69       static_cast<double>(-S * phi(d1) * sigma / (2 * sqrt(tau)) + r * K * exp(-r * tau) * Phi(-d2));
70   double const formula_call_rho = static_cast<double>(+K * tau * exp(-r * tau) * Phi(+d2));
71   double const formula_put_rho = static_cast<double>(-K * tau * exp(-r * tau) * Phi(-d2));
72   double const formula_gamma = static_cast<double>(phi(d1) / (S * sigma * sqrt(tau)));
73   double const formula_vanna = static_cast<double>(-phi(d1) * d2 / sigma);
74   double const formula_charm =
75       static_cast<double>(phi(d1) * (d2 * sigma * sqrt(tau) - 2 * r * tau) / (2 * tau * sigma * sqrt(tau)));
76   double const formula_vomma = static_cast<double>(S * phi(d1) * sqrt(tau) * d1 * d2 / sigma);
77   double const formula_veta = static_cast<double>(-S * phi(d1) * sqrt(tau) *
78                                                   (r * d1 / (sigma * sqrt(tau)) - (1 + d1 * d2) / (2 * tau)));
79   double const formula_speed =
80       static_cast<double>(-phi(d1) * (d1 / (sigma * sqrt(tau)) + 1) / (S * S * sigma * sqrt(tau)));
81   double const formula_zomma = static_cast<double>(phi(d1) * (d1 * d2 - 1) / (S * sigma * sigma * sqrt(tau)));
82   double const formula_color =
83       static_cast<double>(-phi(d1) / (2 * S * tau * sigma * sqrt(tau)) *
84                           (1 + (2 * r * tau - d2 * sigma * sqrt(tau)) * d1 / (sigma * sqrt(tau))));
85   double const formula_ultima =
86       -formula_vega * static_cast<double>((d1 * d2 * (1 - d1 * d2) + d1 * d1 + d2 * d2) / (sigma * sigma));
87 
88   std::cout << std::setprecision(std::numeric_limits<double>::digits10)
89             << "autodiff black-scholes call price = " << call_price.derivative(0, 0, 0, 0) << '\n'
90             << "autodiff black-scholes put  price = " << put_price.derivative(0, 0, 0, 0) << '\n'
91             << "\n## First-order Greeks\n"
92             << "autodiff call delta = " << call_price.derivative(1, 0, 0, 0) << '\n'
93             << " formula call delta = " << formula_call_delta << '\n'
94             << "autodiff call vega  = " << call_price.derivative(0, 1, 0, 0) << '\n'
95             << " formula call vega  = " << formula_vega << '\n'
96             << "autodiff call theta = " << -call_price.derivative(0, 0, 1, 0)
97             << '\n'  // minus sign due to tau = T-time
98             << " formula call theta = " << formula_call_theta << '\n'
99             << "autodiff call rho   = " << call_price.derivative(0, 0, 0, 1) << '\n'
100             << " formula call rho   = " << formula_call_rho << '\n'
101             << '\n'
102             << "autodiff put delta = " << put_price.derivative(1, 0, 0, 0) << '\n'
103             << " formula put delta = " << formula_put_delta << '\n'
104             << "autodiff put vega  = " << put_price.derivative(0, 1, 0, 0) << '\n'
105             << " formula put vega  = " << formula_vega << '\n'
106             << "autodiff put theta = " << -put_price.derivative(0, 0, 1, 0) << '\n'
107             << " formula put theta = " << formula_put_theta << '\n'
108             << "autodiff put rho   = " << put_price.derivative(0, 0, 0, 1) << '\n'
109             << " formula put rho   = " << formula_put_rho << '\n'
110             << "\n## Second-order Greeks\n"
111             << "autodiff call gamma = " << call_price.derivative(2, 0, 0, 0) << '\n'
112             << "autodiff put  gamma = " << put_price.derivative(2, 0, 0, 0) << '\n'
113             << "      formula gamma = " << formula_gamma << '\n'
114             << "autodiff call vanna = " << call_price.derivative(1, 1, 0, 0) << '\n'
115             << "autodiff put  vanna = " << put_price.derivative(1, 1, 0, 0) << '\n'
116             << "      formula vanna = " << formula_vanna << '\n'
117             << "autodiff call charm = " << -call_price.derivative(1, 0, 1, 0) << '\n'
118             << "autodiff put  charm = " << -put_price.derivative(1, 0, 1, 0) << '\n'
119             << "      formula charm = " << formula_charm << '\n'
120             << "autodiff call vomma = " << call_price.derivative(0, 2, 0, 0) << '\n'
121             << "autodiff put  vomma = " << put_price.derivative(0, 2, 0, 0) << '\n'
122             << "      formula vomma = " << formula_vomma << '\n'
123             << "autodiff call veta = " << call_price.derivative(0, 1, 1, 0) << '\n'
124             << "autodiff put  veta = " << put_price.derivative(0, 1, 1, 0) << '\n'
125             << "      formula veta = " << formula_veta << '\n'
126             << "\n## Third-order Greeks\n"
127             << "autodiff call speed = " << call_price.derivative(3, 0, 0, 0) << '\n'
128             << "autodiff put  speed = " << put_price.derivative(3, 0, 0, 0) << '\n'
129             << "      formula speed = " << formula_speed << '\n'
130             << "autodiff call zomma = " << call_price.derivative(2, 1, 0, 0) << '\n'
131             << "autodiff put  zomma = " << put_price.derivative(2, 1, 0, 0) << '\n'
132             << "      formula zomma = " << formula_zomma << '\n'
133             << "autodiff call color = " << call_price.derivative(2, 0, 1, 0) << '\n'
134             << "autodiff put  color = " << put_price.derivative(2, 0, 1, 0) << '\n'
135             << "      formula color = " << formula_color << '\n'
136             << "autodiff call ultima = " << call_price.derivative(0, 3, 0, 0) << '\n'
137             << "autodiff put  ultima = " << put_price.derivative(0, 3, 0, 0) << '\n'
138             << "      formula ultima = " << formula_ultima << '\n';
139   return 0;
140 }
141 /*
142 Output:
143 autodiff black-scholes call price = 56.5136030677739
144 autodiff black-scholes put  price = 51.4109161009333
145 
146 ## First-order Greeks
147 autodiff call delta = 0.773818444921273
148  formula call delta = 0.773818444921274
149 autodiff call vega  = 9.05493427705736
150  formula call vega  = 9.05493427705736
151 autodiff call theta = -275.73013426444
152  formula call theta = -275.73013426444
153 autodiff call rho   = 2.03320550539396
154  formula call rho   = 2.03320550539396
155 
156 autodiff put delta = -0.226181555078726
157  formula put delta = -0.226181555078726
158 autodiff put vega  = 9.05493427705736
159  formula put vega  = 9.05493427705736
160 autodiff put theta = -274.481417851526
161  formula put theta = -274.481417851526
162 autodiff put rho   = -6.17753255212599
163  formula put rho   = -6.17753255212599
164 
165 ## Second-order Greeks
166 autodiff call gamma = 0.00199851912993254
167 autodiff put  gamma = 0.00199851912993254
168       formula gamma = 0.00199851912993254
169 autodiff call vanna = 0.0410279463126531
170 autodiff put  vanna = 0.0410279463126531
171       formula vanna = 0.0410279463126531
172 autodiff call charm = -1.2505564233679
173 autodiff put  charm = -1.2505564233679
174       formula charm = -1.2505564233679
175 autodiff call vomma = -0.928114149313108
176 autodiff put  vomma = -0.928114149313108
177       formula vomma = -0.928114149313107
178 autodiff call veta = 26.7947073115641
179 autodiff put  veta = 26.7947073115641
180       formula veta = 26.7947073115641
181 
182 ## Third-order Greeks
183 autodiff call speed = -2.90117322380992e-05
184 autodiff put  speed = -2.90117322380992e-05
185       formula speed = -2.90117322380992e-05
186 autodiff call zomma = -0.000604548369901419
187 autodiff put  zomma = -0.000604548369901419
188       formula zomma = -0.000604548369901419
189 autodiff call color = -0.0184014426606065
190 autodiff put  color = -0.0184014426606065
191       formula color = -0.0184014426606065
192 autodiff call ultima = -0.0922426864775683
193 autodiff put  ultima = -0.0922426864775683
194       formula ultima = -0.0922426864775685
195 **/
196