• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright Nick Thompson, 2019
3  * Use, modification and distribution are subject to the
4  * Boost Software License, Version 1.0. (See accompanying file
5  * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6  */
7 #define BOOST_TEST_MODULE lanczos_smoothing_test
8 
9 #include <random>
10 #include <array>
11 #include <boost/range.hpp>
12 #include <boost/numeric/ublas/vector.hpp>
13 #include <boost/math/constants/constants.hpp>
14 #include <boost/test/included/unit_test.hpp>
15 #include <boost/test/tools/floating_point_comparison.hpp>
16 #include <boost/math/differentiation/lanczos_smoothing.hpp>
17 #include <boost/multiprecision/cpp_bin_float.hpp>
18 #include <boost/math/special_functions/next.hpp> // for float_distance
19 #include <boost/math/tools/condition_numbers.hpp>
20 
21 using std::abs;
22 using std::pow;
23 using std::sqrt;
24 using std::sin;
25 using boost::math::constants::two_pi;
26 using boost::multiprecision::cpp_bin_float_50;
27 using boost::multiprecision::cpp_bin_float_100;
28 using boost::math::differentiation::discrete_lanczos_derivative;
29 using boost::math::differentiation::detail::discrete_legendre;
30 using boost::math::differentiation::detail::interior_velocity_filter;
31 using boost::math::differentiation::detail::boundary_velocity_filter;
32 using boost::math::tools::summation_condition_number;
33 
34 template<class Real>
test_dlp_norms()35 void test_dlp_norms()
36 {
37     std::cout << "Testing Discrete Legendre Polynomial norms on type " << typeid(Real).name() << "\n";
38     Real tol = std::numeric_limits<Real>::epsilon();
39     auto dlp = discrete_legendre<Real>(1, Real(0));
40     BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), 3, tol);
41     BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), 2, tol);
42     dlp = discrete_legendre<Real>(2, Real(0));
43     BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), Real(5)/Real(2), tol);
44     BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), Real(5)/Real(4), tol);
45     BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(2), Real(3*3*7)/Real(pow(2,6)), 2*tol);
46     dlp = discrete_legendre<Real>(200, Real(0));
47     for(size_t r = 0; r < 10; ++r)
48     {
49         Real calc = dlp.norm_sq(r);
50         Real expected = Real(2)/Real(2*r+1);
51         // As long as r << n, ||q_r||^2 -> 2/(2r+1) as n->infty
52         BOOST_CHECK_CLOSE_FRACTION(calc, expected, 0.05);
53     }
54 
55 }
56 
57 template<class Real>
test_dlp_evaluation()58 void test_dlp_evaluation()
59 {
60     std::cout << "Testing evaluation of Discrete Legendre polynomials on type " << typeid(Real).name() << "\n";
61     Real tol = std::numeric_limits<Real>::epsilon();
62     size_t n = 25;
63     Real x = 0.72;
64     auto dlp = discrete_legendre<Real>(n, x);
65     Real q0 = dlp(x, 0);
66     BOOST_TEST(q0 == 1);
67     Real q1 = dlp(x, 1);
68     BOOST_TEST(q1 == x);
69     Real q2 = dlp(x, 2);
70     int N = 2*n+1;
71     Real expected = 0.5*(3*x*x - Real(N*N - 1)/Real(4*n*n));
72     BOOST_CHECK_CLOSE_FRACTION(q2, expected, tol);
73     Real q3 = dlp(x, 3);
74     expected = (x/3)*(5*expected - (Real(N*N - 4))/(2*n*n));
75     BOOST_CHECK_CLOSE_FRACTION(q3, expected, 2*tol);
76 
77     // q_r(x) is even for even r, and odd for odd r:
78     for (size_t n = 8; n < 22; ++n)
79     {
80         dlp = discrete_legendre<Real>(n, x);
81         for(size_t r = 2; r <= n; ++r)
82         {
83             if (r & 1)
84             {
85                 Real q1 = dlp(x, r);
86                 Real q2 = -dlp(-x, r);
87                 BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol);
88             }
89             else
90             {
91                 Real q1 = dlp(x, r);
92                 Real q2 = dlp(-x, r);
93                 BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol);
94             }
95 
96             Real l2_sq = 0;
97             for (int j = -(int)n; j <= (int) n; ++j)
98             {
99                 Real y = Real(j)/Real(n);
100                 Real term = dlp(y, r);
101                 l2_sq += term*term;
102             }
103             l2_sq /= n;
104             Real l2_sq_expected = dlp.norm_sq(r);
105             BOOST_CHECK_CLOSE_FRACTION(l2_sq, l2_sq_expected, 20*tol);
106         }
107     }
108 }
109 
110 template<class Real>
test_dlp_next()111 void test_dlp_next()
112 {
113     std::cout << "Testing Discrete Legendre polynomial 'next' function on type " << typeid(Real).name() << "\n";
114     Real tol = std::numeric_limits<Real>::epsilon();
115 
116     for(size_t n = 2; n < 20; ++n)
117     {
118         for(Real x = -1; x <= 1; x += 0.1)
119         {
120             auto dlp = discrete_legendre<Real>(n, x);
121             for (size_t k = 2; k < n; ++k)
122             {
123                 BOOST_CHECK_CLOSE(dlp.next(), dlp(x, k), tol);
124             }
125 
126             dlp = discrete_legendre<Real>(n, x);
127             for (size_t k = 2; k < n; ++k)
128             {
129                 BOOST_CHECK_CLOSE(dlp.next_prime(), dlp.prime(x, k), tol);
130             }
131         }
132     }
133 }
134 
135 
136 template<class Real>
test_dlp_derivatives()137 void test_dlp_derivatives()
138 {
139     std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n";
140     Real tol = 10*std::numeric_limits<Real>::epsilon();
141     int n = 25;
142     Real x = 0.72;
143     auto dlp = discrete_legendre<Real>(n, x);
144     Real q0p = dlp.prime(x, 0);
145     BOOST_TEST(q0p == 0);
146     Real q1p = dlp.prime(x, 1);
147     BOOST_TEST(q1p == 1);
148     Real q2p = dlp.prime(x, 2);
149     Real expected = 3*x;
150     BOOST_CHECK_CLOSE_FRACTION(q2p, expected, tol);
151 }
152 
153 template<class Real>
test_dlp_second_derivative()154 void test_dlp_second_derivative()
155 {
156     std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n";
157     int n = 25;
158     Real x = Real(1)/Real(3);
159     auto dlp = discrete_legendre<Real>(n, x);
160     Real q2pp = dlp.next_dbl_prime();
161     BOOST_TEST(q2pp == 3);
162 }
163 
164 
165 template<class Real>
test_interior_velocity_filter()166 void test_interior_velocity_filter()
167 {
168     using boost::math::constants::half;
169     std::cout << "Testing interior filter on type " << typeid(Real).name() << "\n";
170     Real tol = std::numeric_limits<Real>::epsilon();
171     for(int n = 1; n < 10; ++n)
172     {
173         for (int p = 1; p < n; p += 2)
174         {
175             auto f = interior_velocity_filter<Real>(n,p);
176             // Since we only store half the filter coefficients,
177             // we need to reindex the moment sums:
178             auto cond = summation_condition_number<Real>(0);
179             for (size_t j = 0; j < f.size(); ++j)
180             {
181                 cond += j*f[j];
182             }
183             BOOST_CHECK_CLOSE_FRACTION(cond.sum(), half<Real>(), 2*cond()*tol);
184 
185             for (int l = 3; l <= p; l += 2)
186             {
187                 cond = summation_condition_number<Real>(0);
188                 for (size_t j = 0; j < f.size() - 1; ++j)
189                 {
190                     cond += pow(Real(j), l)*f[j];
191                 }
192                 Real expected = -pow(Real(f.size() - 1), l)*f[f.size()-1];
193                 BOOST_CHECK_CLOSE_FRACTION(expected, cond.sum(), 7*cond()*tol);
194             }
195             //std::cout << "(n,p) = (" << n  << "," << p << ") = {";
196             //for (auto & x : f)
197             //{
198             //    std::cout << x << ", ";
199             //}
200             //std::cout << "}\n";
201         }
202     }
203 }
204 
205 template<class Real>
test_interior_lanczos()206 void test_interior_lanczos()
207 {
208     std::cout << "Testing interior Lanczos on type " << typeid(Real).name() << "\n";
209     Real tol = std::numeric_limits<Real>::epsilon();
210     std::vector<Real> v(500);
211     std::fill(v.begin(), v.end(), 7);
212 
213     for (size_t n = 1; n < 10; ++n)
214     {
215         for (size_t p = 2; p < 2*n; p += 2)
216         {
217             auto dld = discrete_lanczos_derivative(Real(0.1), n, p);
218             for (size_t m = n; m < v.size() - n; ++m)
219             {
220                 Real dvdt = dld(v, m);
221                 BOOST_CHECK_SMALL(dvdt, tol);
222             }
223             auto dvdt = dld(v);
224             for (size_t m = n; m < v.size() - n; ++m)
225             {
226                 BOOST_CHECK_SMALL(dvdt[m], tol);
227             }
228         }
229     }
230 
231 
232     for(size_t i = 0; i < v.size(); ++i)
233     {
234         v[i] = 7*i+8;
235     }
236 
237     for (size_t n = 1; n < 10; ++n)
238     {
239         for (size_t p = 2; p < 2*n; p += 2)
240         {
241             auto dld = discrete_lanczos_derivative(Real(1), n, p);
242             for (size_t m = n; m < v.size() - n; ++m)
243             {
244                 Real dvdt = dld(v, m);
245                 BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 2000*tol);
246             }
247             auto dvdt = dld(v);
248             for (size_t m = n; m < v.size() - n; ++m)
249             {
250                 BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 7, 2000*tol);
251             }
252         }
253     }
254 
255     //std::random_device rd{};
256     //auto seed = rd();
257     //std::cout << "Seed = " << seed << "\n";
258     std::mt19937 gen(4172378669);
259     std::normal_distribution<> dis{0, 0.01};
260     for (size_t i = 0; i < v.size(); ++i)
261     {
262         v[i] = 7*i+8 + dis(gen);
263     }
264 
265     for (size_t n = 1; n < 10; ++n)
266     {
267         for (size_t p = 2; p < 2*n; p += 2)
268         {
269             auto dld = discrete_lanczos_derivative(Real(1), n, p);
270             for (size_t m = n; m < v.size() - n; ++m)
271             {
272                 BOOST_CHECK_CLOSE_FRACTION(dld(v, m), Real(7), Real(0.0042));
273             }
274         }
275     }
276 
277 
278     for (size_t i = 0; i < v.size(); ++i)
279     {
280         v[i] = 15*i*i + 7*i+8 + dis(gen);
281     }
282 
283     for (size_t n = 1; n < 10; ++n)
284     {
285         for (size_t p = 2; p < 2*n; p += 2)
286         {
287             auto dld = discrete_lanczos_derivative(Real(1), n, p);
288             for (size_t m = n; m < v.size() - n; ++m)
289             {
290                 BOOST_CHECK_CLOSE_FRACTION(dld(v,m), Real(30*m + 7), Real(0.00008));
291             }
292         }
293     }
294 
295     std::normal_distribution<> dis1{0, 0.0001};
296     Real omega = Real(1)/Real(16);
297     for (size_t i = 0; i < v.size(); ++i)
298     {
299         v[i] = sin(i*omega) + dis1(gen);
300     }
301 
302     for (size_t n = 10; n < 20; ++n)
303     {
304         for (size_t p = 3; p < 100 && p < n/2; p += 2)
305         {
306             auto dld = discrete_lanczos_derivative(Real(1), n, p);
307 
308             for (size_t m = n; m < v.size() - n && m < n + 10; ++m)
309             {
310                 BOOST_CHECK_CLOSE_FRACTION(dld(v,m), omega*cos(omega*m), Real(0.03));
311             }
312         }
313     }
314 }
315 
316 template<class Real>
test_boundary_velocity_filters()317 void test_boundary_velocity_filters()
318 {
319     std::cout << "Testing boundary filters on type " << typeid(Real).name() << "\n";
320     Real tol = std::numeric_limits<Real>::epsilon();
321     for(int n = 1; n < 5; ++n)
322     {
323         for (int p = 1; p < 2*n+1; ++p)
324         {
325             for (int s = -n; s <= n; ++s)
326             {
327                 auto f = boundary_velocity_filter<Real>(n, p, s);
328                 // Sum is zero:
329                 auto cond = summation_condition_number<Real>(0);
330                 for (size_t i = 0; i < f.size() - 1; ++i)
331                 {
332                     cond += f[i];
333                 }
334 
335                 BOOST_CHECK_CLOSE_FRACTION(cond.sum(), -f[f.size()-1], 6*cond()*tol);
336 
337                 cond = summation_condition_number<Real>(0);
338                 for (size_t k = 0; k < f.size(); ++k)
339                 {
340                     Real j = Real(k) - Real(n);
341                     // note the shifted index here:
342                     cond += (j-s)*f[k];
343                 }
344                 BOOST_CHECK_CLOSE_FRACTION(cond.sum(), 1, 6*cond()*tol);
345 
346 
347                 for (int l = 2; l <= p; ++l)
348                 {
349                     cond = summation_condition_number<Real>(0);
350                     for (size_t k = 0; k < f.size() - 1; ++k)
351                     {
352                         Real j = Real(k) - Real(n);
353                         // The condition number of this sum is infinite!
354                         // No need to get to worked up about the tolerance.
355                         cond += pow(j-s, l)*f[k];
356                     }
357 
358                     Real expected = -pow(Real(f.size()-1) - Real(n) - Real(s), l)*f[f.size()-1];
359                     if (expected == 0)
360                     {
361                         BOOST_CHECK_SMALL(cond.sum(), cond()*tol);
362                     }
363                     else
364                     {
365                         BOOST_CHECK_CLOSE_FRACTION(expected, cond.sum(), 200*cond()*tol);
366                     }
367                 }
368 
369                 //std::cout << "(n,p,s) = ("<< n << ", " << p << "," << s << ") = {";
370                 //for (auto & x : f)
371                 //{
372                 //    std::cout << x << ", ";
373                 //}
374                 //std::cout << "}\n";*/
375             }
376         }
377     }
378 }
379 
380 template<class Real>
test_boundary_lanczos()381 void test_boundary_lanczos()
382 {
383     std::cout << "Testing Lanczos boundary on type " << typeid(Real).name() << "\n";
384     Real tol = std::numeric_limits<Real>::epsilon();
385     std::vector<Real> v(500, 7);
386 
387     for (size_t n = 1; n < 10; ++n)
388     {
389         for (size_t p = 2; p < 2*n; ++p)
390         {
391             auto lsd = discrete_lanczos_derivative(Real(0.0125), n, p);
392             for (size_t m = 0; m < n; ++m)
393             {
394                 Real dvdt = lsd(v,m);
395                 BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol));
396             }
397             for (size_t m = v.size() - n; m < v.size(); ++m)
398             {
399                 Real dvdt = lsd(v,m);
400                 BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol));
401             }
402         }
403     }
404 
405     for(size_t i = 0; i < v.size(); ++i)
406     {
407         v[i] = 7*i+8;
408     }
409 
410     for (size_t n = 3; n < 10; ++n)
411     {
412         for (size_t p = 2; p < 2*n; ++p)
413         {
414             auto lsd = discrete_lanczos_derivative(Real(1), n, p);
415             for (size_t m = 0; m < n; ++m)
416             {
417                 Real dvdt = lsd(v,m);
418                 BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, sqrt(tol));
419             }
420 
421             for (size_t m = v.size() - n; m < v.size(); ++m)
422             {
423                 Real dvdt = lsd(v,m);
424                 BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 4*sqrt(tol));
425             }
426         }
427     }
428 
429     for (size_t i = 0; i < v.size(); ++i)
430     {
431         v[i] = 15*i*i + 7*i+8;
432     }
433 
434     for (size_t n = 1; n < 10; ++n)
435     {
436         for (size_t p = 2; p < 2*n; ++p)
437         {
438             auto lsd = discrete_lanczos_derivative(Real(1), n, p);
439             for (size_t m = 0; m < v.size(); ++m)
440             {
441                 BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 30*sqrt(tol));
442             }
443         }
444     }
445 
446     // Demonstrate that the boundary filters are also denoising:
447     //std::random_device rd{};
448     //auto seed = rd();
449     //std::cout << "seed = " << seed << "\n";
450     std::mt19937 gen(311354333);
451     std::normal_distribution<> dis{0, 0.01};
452     for (size_t i = 0; i < v.size(); ++i)
453     {
454         v[i] += dis(gen);
455     }
456 
457     for (size_t n = 1; n < 10; ++n)
458     {
459         for (size_t p = 2; p < n; ++p)
460         {
461             auto lsd = discrete_lanczos_derivative(Real(1), n, p);
462             for (size_t m = 0; m < v.size(); ++m)
463             {
464                 BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 0.005);
465             }
466             auto dvdt = lsd(v);
467             for (size_t m = 0; m < v.size(); ++m)
468             {
469                 BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 30*m+7, 0.005);
470             }
471         }
472     }
473 }
474 
475 template<class Real>
test_acceleration_filters()476 void test_acceleration_filters()
477 {
478     Real eps = std::numeric_limits<Real>::epsilon();
479     for (size_t n = 1; n < 5; ++n)
480     {
481         for(size_t p = 3; p <= 2*n; ++p)
482         {
483             for(int64_t s = -int64_t(n); s <= 0; ++s)
484             {
485                 auto g = boost::math::differentiation::detail::acceleration_filter<long double>(n,p,s);
486 
487                 std::vector<Real> f(g.size());
488                 for (size_t i = 0; i < g.size(); ++i)
489                 {
490                     f[i] = static_cast<Real>(g[i]);
491                 }
492 
493                 auto cond = summation_condition_number<Real>(0);
494 
495                 for (size_t i = 0; i < f.size() - 1; ++i)
496                 {
497                     cond += f[i];
498                 }
499                 BOOST_CHECK_CLOSE_FRACTION(cond.sum(), -f[f.size()-1], 10*cond()*eps);
500 
501 
502                 cond = summation_condition_number<Real>(0);
503                 for (size_t k = 0; k < f.size() -1; ++k)
504                 {
505                     Real j = Real(k) - Real(n);
506                     cond += (j-s)*f[k];
507                 }
508                 Real expected = -(Real(f.size()-1)- Real(n) - s)*f[f.size()-1];
509                 BOOST_CHECK_CLOSE_FRACTION(cond.sum(), expected, 10*cond()*eps);
510 
511                 cond = summation_condition_number<Real>(0);
512                 for (size_t k = 0; k < f.size(); ++k)
513                 {
514                     Real j = Real(k) - Real(n);
515                     cond += (j-s)*(j-s)*f[k];
516                 }
517                 BOOST_CHECK_CLOSE_FRACTION(cond.sum(), 2, 100*cond()*eps);
518                 // See unlabelled equation in McDevitt, 2012, just after equation 26:
519                 // It appears that there is an off-by-one error in that equation, since p + 1 moments don't vanish, only p.
520                 // This test is itself suspect; the condition number of the moment sum is infinite.
521                 // So the *slightest* error in the filter gets amplified by the test; in terms of the
522                 // behavior of the actual filter, it's not a big deal.
523                 for (size_t l = 3; l <= p; ++l)
524                 {
525                     cond = summation_condition_number<Real>(0);
526                     for (size_t k = 0; k < f.size() - 1; ++k)
527                     {
528                         Real j = Real(k) - Real(n);
529                         cond += pow((j-s), l)*f[k];
530                     }
531                     Real expected = -pow(Real(f.size()- 1 - n -s), l)*f[f.size()-1];
532                     BOOST_CHECK_CLOSE_FRACTION(cond.sum(), expected, 1000*cond()*eps);
533                 }
534             }
535         }
536     }
537 }
538 
539 template<class Real>
test_lanczos_acceleration()540 void test_lanczos_acceleration()
541 {
542     Real eps = std::numeric_limits<Real>::epsilon();
543     std::vector<Real> v(100, 7);
544     auto lanczos = discrete_lanczos_derivative<Real, 2>(Real(1), 4, 3);
545     for (size_t i = 0; i < v.size(); ++i)
546     {
547         BOOST_CHECK_SMALL(lanczos(v, i), eps);
548     }
549 
550     for(size_t i = 0; i < v.size(); ++i)
551     {
552         v[i] = 7*i + 6;
553     }
554     for (size_t i = 0; i < v.size(); ++i)
555     {
556         BOOST_CHECK_SMALL(lanczos(v,i), 200*eps);
557     }
558 
559     for(size_t i = 0; i < v.size(); ++i)
560     {
561         v[i] = 7*i*i + 9*i + 6;
562     }
563     for (size_t i = 0; i < v.size(); ++i)
564     {
565         BOOST_CHECK_CLOSE_FRACTION(lanczos(v, i), 14, 1500*eps);
566     }
567 
568     // Now add noise, and kick up the smoothing of the Lanzcos derivative (increase n):
569     //std::random_device rd{};
570     //auto seed = rd();
571     //std::cout << "seed = " << seed << "\n";
572     size_t seed = 2507134629;
573     std::mt19937 gen(seed);
574     Real std_dev = 0.1;
575     std::normal_distribution<Real> dis{0, std_dev};
576     for (size_t i = 0; i < v.size(); ++i)
577     {
578         v[i] += dis(gen);
579     }
580     lanczos = discrete_lanczos_derivative<Real, 2>(Real(1), 18, 3);
581     auto w = lanczos(v);
582     for (size_t i = 0; i < v.size(); ++i)
583     {
584         BOOST_CHECK_CLOSE_FRACTION(w[i], 14, std_dev/200);
585     }
586 }
587 
588 template<class Real>
test_rescaling()589 void test_rescaling()
590 {
591     std::cout << "Test rescaling on type " << typeid(Real).name() << "\n";
592     Real tol = std::numeric_limits<Real>::epsilon();
593     std::vector<Real> v(500);
594     for(size_t i = 0; i < v.size(); ++i)
595     {
596         v[i] = 7*i*i + 9*i + 6;
597     }
598     std::vector<Real> dvdt1(500);
599     std::vector<Real> dvdt2(500);
600     auto lanczos1 = discrete_lanczos_derivative(Real(1));
601     auto lanczos2 = discrete_lanczos_derivative(Real(2));
602 
603     lanczos1(v, dvdt1);
604     lanczos2(v, dvdt2);
605 
606     for(size_t i = 0; i < v.size(); ++i)
607     {
608         BOOST_CHECK_CLOSE_FRACTION(dvdt1[i], 2*dvdt2[i], tol);
609     }
610 
611     auto lanczos3 = discrete_lanczos_derivative<Real, 2>(Real(1));
612     auto lanczos4 = discrete_lanczos_derivative<Real, 2>(Real(2));
613 
614 
615     std::vector<Real> dv2dt21(500);
616     std::vector<Real> dv2dt22(500);
617 
618     for(size_t i = 0; i < v.size(); ++i)
619     {
620         BOOST_CHECK_CLOSE_FRACTION(dv2dt21[i], 4*dv2dt22[i], tol);
621     }
622 }
623 
624 template<class Real>
test_data_representations()625 void test_data_representations()
626 {
627     std::cout << "Test rescaling on type " << typeid(Real).name() << "\n";
628     Real tol = 150*std::numeric_limits<Real>::epsilon();
629     std::array<Real, 500> v;
630     for(size_t i = 0; i < v.size(); ++i)
631     {
632         v[i] = 9*i + 6;
633     }
634     std::array<Real, 500> dvdt;
635     auto lanczos = discrete_lanczos_derivative(Real(1));
636 
637     lanczos(v, dvdt);
638 
639     for(size_t i = 0; i < v.size(); ++i)
640     {
641         BOOST_CHECK_CLOSE_FRACTION(dvdt[i], 9, tol);
642     }
643 
644     boost::numeric::ublas::vector<Real> w(500);
645     boost::numeric::ublas::vector<Real> dwdt(500);
646     for(size_t i = 0; i < w.size(); ++i)
647     {
648         w[i] = 9*i + 6;
649     }
650 
651     lanczos(w, dwdt);
652 
653     for(size_t i = 0; i < v.size(); ++i)
654     {
655         BOOST_CHECK_CLOSE_FRACTION(dwdt[i], 9, tol);
656     }
657 
658     auto v1 = boost::make_iterator_range(v.begin(), v.end());
659     auto v2 = boost::make_iterator_range(dvdt.begin(), dvdt.end());
660     lanczos(v1, v2);
661 
662     for(size_t i = 0; i < v2.size(); ++i)
663     {
664         BOOST_CHECK_CLOSE_FRACTION(v2[i], 9, tol);
665     }
666 
667     auto lanczos2 = discrete_lanczos_derivative<Real, 2>(Real(1));
668 
669     lanczos2(v1, v2);
670 
671     for(size_t i = 0; i < v2.size(); ++i)
672     {
673         BOOST_CHECK_SMALL(v2[i], 10*tol);
674     }
675 
676 }
677 
BOOST_AUTO_TEST_CASE(lanczos_smoothing_test)678 BOOST_AUTO_TEST_CASE(lanczos_smoothing_test)
679 {
680     test_dlp_second_derivative<double>();
681     test_dlp_norms<double>();
682     test_dlp_evaluation<double>();
683     test_dlp_derivatives<double>();
684     test_dlp_next<double>();
685 
686     // Takes too long!
687     //test_dlp_norms<cpp_bin_float_50>();
688     test_boundary_velocity_filters<double>();
689     test_boundary_velocity_filters<long double>();
690     // Takes too long!
691     //test_boundary_velocity_filters<cpp_bin_float_50>();
692     test_boundary_lanczos<double>();
693     test_boundary_lanczos<long double>();
694     // Takes too long!
695     //test_boundary_lanczos<cpp_bin_float_50>();
696 
697     test_interior_velocity_filter<double>();
698     test_interior_velocity_filter<long double>();
699     test_interior_lanczos<double>();
700 
701     test_acceleration_filters<double>();
702 
703     test_lanczos_acceleration<float>();
704     test_lanczos_acceleration<double>();
705 
706     test_rescaling<double>();
707     test_data_representations<double>();
708 }
709