• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // test_binomial.cpp
2 
3 // Copyright John Maddock 2006.
4 // Copyright  Paul A. Bristow 2007.
5 
6 // Use, modification and distribution are subject to the
7 // Boost Software License, Version 1.0.
8 // (See accompanying file LICENSE_1_0.txt
9 // or copy at http://www.boost.org/LICENSE_1_0.txt)
10 
11 // Basic sanity test for Binomial Cumulative Distribution Function.
12 
13 #define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
14 
15 #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
16 #  define TEST_FLOAT
17 #  define TEST_DOUBLE
18 #  define TEST_LDOUBLE
19 #  define TEST_REAL_CONCEPT
20 #endif
21 
22 #ifdef _MSC_VER
23 #  pragma warning(disable: 4127) // conditional expression is constant.
24 #  pragma warning(disable: 4100) // unreferenced formal parameter.
25 // Seems an entirely spurious warning - formal parameter T IS used - get error if /* T */
26 //#  pragma warning(disable: 4535) // calling _set_se_translator() requires /EHa (in Boost.test)
27 // Enable C++ Exceptions Yes With SEH Exceptions (/EHa) prevents warning 4535.
28 #endif
29 
30 #include <boost/math/tools/test.hpp>
31 #include <boost/math/concepts/real_concept.hpp> // for real_concept
32 using ::boost::math::concepts::real_concept;
33 
34 #include <boost/math/distributions/binomial.hpp> // for binomial_distribution
35 using boost::math::binomial_distribution;
36 
37 #define BOOST_TEST_MAIN
38 #include <boost/test/unit_test.hpp> // for test_main
39 #include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
40 #include "table_type.hpp"
41 
42 #include "test_out_of_range.hpp"
43 
44 #include <iostream>
45 using std::cout;
46 using std::endl;
47 #include <limits>
48 using std::numeric_limits;
49 
50 template <class RealType>
test_spot(RealType N,RealType k,RealType p,RealType P,RealType Q,RealType tol)51 void test_spot(
52      RealType N,    // Number of trials
53      RealType k,    // Number of successes
54      RealType p,    // Probability of success
55      RealType P,    // CDF
56      RealType Q,    // Complement of CDF
57      RealType tol)  // Test tolerance
58 {
59    boost::math::binomial_distribution<RealType> bn(N, p);
60    BOOST_CHECK_CLOSE(
61       cdf(bn, k), P, tol);
62    if((P < 0.99) && (Q < 0.99))
63    {
64       //
65       // We can only check this if P is not too close to 1,
66       // so that we can guarantee Q is free of error:
67       //
68       BOOST_CHECK_CLOSE(
69          cdf(complement(bn, k)), Q, tol);
70       if(k != 0)
71       {
72          BOOST_CHECK_CLOSE(
73             quantile(bn, P), k, tol);
74       }
75       else
76       {
77          // Just check quantile is very small:
78          if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value))
79          {
80             // Limit where this is checked: if exponent range is very large we may
81             // run out of iterations in our root finding algorithm.
82             BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10);
83          }
84       }
85       if(k != 0)
86       {
87          BOOST_CHECK_CLOSE(
88             quantile(complement(bn, Q)), k, tol);
89       }
90       else
91       {
92          // Just check quantile is very small:
93          if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value))
94          {
95             // Limit where this is checked: if exponent range is very large we may
96             // run out of iterations in our root finding algorithm.
97             BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10);
98          }
99       }
100       if(k > 0)
101       {
102          // estimate success ratio:
103          // Note lower bound uses a different formula internally
104          // from upper bound, have to adjust things to prevent
105          // fencepost errors:
106          BOOST_CHECK_CLOSE(
107             binomial_distribution<RealType>::find_lower_bound_on_p(
108                N, k+1, Q),
109             p, tol);
110          BOOST_CHECK_CLOSE(
111             binomial_distribution<RealType>::find_upper_bound_on_p(
112                N, k, P),
113             p, tol);
114 
115          if(Q < P)
116          {
117             // Default method (Clopper Pearson)
118             BOOST_CHECK(
119                binomial_distribution<RealType>::find_lower_bound_on_p(
120                   N, k, Q)
121                   <=
122                binomial_distribution<RealType>::find_upper_bound_on_p(
123                   N, k, Q)
124                   );
125             BOOST_CHECK((
126                binomial_distribution<RealType>::find_lower_bound_on_p(
127                   N, k, Q)
128                   <= k/N) && (k/N <=
129                binomial_distribution<RealType>::find_upper_bound_on_p(
130                   N, k, Q))
131                   );
132             // Bayes Method (Jeffreys Prior)
133             BOOST_CHECK(
134                binomial_distribution<RealType>::find_lower_bound_on_p(
135                N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval)
136                   <=
137                binomial_distribution<RealType>::find_upper_bound_on_p(
138                   N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval)
139                   );
140             BOOST_CHECK((
141                binomial_distribution<RealType>::find_lower_bound_on_p(
142                   N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval)
143                   <= k/N) && (k/N <=
144                binomial_distribution<RealType>::find_upper_bound_on_p(
145                   N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval))
146                   );
147          }
148          else
149          {
150             // Default method (Clopper Pearson)
151             BOOST_CHECK(
152                binomial_distribution<RealType>::find_lower_bound_on_p(
153                   N, k, P)
154                   <=
155                binomial_distribution<RealType>::find_upper_bound_on_p(
156                   N, k, P)
157                   );
158             BOOST_CHECK(
159                (binomial_distribution<RealType>::find_lower_bound_on_p(
160                   N, k, P)
161                   <= k / N) && (k/N <=
162                binomial_distribution<RealType>::find_upper_bound_on_p(
163                   N, k, P))
164                   );
165             // Bayes Method (Jeffreys Prior)
166             BOOST_CHECK(
167                binomial_distribution<RealType>::find_lower_bound_on_p(
168                   N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval)
169                   <=
170                binomial_distribution<RealType>::find_upper_bound_on_p(
171                   N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval)
172                   );
173             BOOST_CHECK(
174                (binomial_distribution<RealType>::find_lower_bound_on_p(
175                   N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval)
176                   <= k / N) && (k/N <=
177                binomial_distribution<RealType>::find_upper_bound_on_p(
178                   N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval))
179                   );
180          }
181       }
182       //
183       // estimate sample size:
184       //
185       BOOST_CHECK_CLOSE(
186          binomial_distribution<RealType>::find_minimum_number_of_trials(
187             k, p, P),
188          N, tol);
189       BOOST_CHECK_CLOSE(
190          binomial_distribution<RealType>::find_maximum_number_of_trials(
191             k, p, Q),
192          N, tol);
193    }
194 
195    // Double check consistency of CDF and PDF by computing
196    // the finite sum:
197    RealType sum = 0;
198    for(unsigned i = 0; i <= k; ++i)
199       sum += pdf(bn, RealType(i));
200    BOOST_CHECK_CLOSE(
201       sum, P, tol);
202    // And complement as well:
203    sum = 0;
204    for(RealType i = N; i > k; i -= 1)
205       sum += pdf(bn, i);
206    if(P < 0.99)
207    {
208       BOOST_CHECK_CLOSE(
209          sum, Q, tol);
210    }
211    else
212    {
213       // Not enough information content in P for Q to be meaningful
214       RealType tol = (std::max)(2 * Q, boost::math::tools::epsilon<RealType>());
215       BOOST_CHECK(sum < tol);
216    }
217 }
218 
219 template <class RealType> // Any floating-point type RealType.
test_spots(RealType T)220 void test_spots(RealType T)
221 {
222   // Basic sanity checks, test data is to double precision only
223   // so set tolerance to 100eps expressed as a percent, or
224   // 100eps of type double expressed as a percent, whichever
225   // is the larger.
226 
227   RealType tolerance = (std::max)
228       (boost::math::tools::epsilon<RealType>(),
229       static_cast<RealType>(std::numeric_limits<double>::epsilon()));
230   tolerance *= 100 * 1000;
231   RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100;  // 5 eps as a percent
232 
233   cout << "Tolerance for type " << typeid(T).name()  << " is " << tolerance << " %" << endl;
234 
235 
236   // Sources of spot test values:
237 
238   // MathCAD defines pbinom(k, n, p)
239   // returns pr(X ,=k) when random variable X has the binomial distribution with parameters n and p.
240   // 0 <= k ,= n
241   // 0 <= p <= 1
242   // P = pbinom(30, 500, 0.05) = 0.869147702104609
243 
244   using boost::math::binomial_distribution;
245   using  ::boost::math::cdf;
246   using  ::boost::math::pdf;
247 
248 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 0)
249   // Test binomial using cdf spot values from MathCAD.
250   // These test quantiles and complements as well.
251   test_spot(
252      static_cast<RealType>(500),                     // Sample size, N
253      static_cast<RealType>(30),                      // Number of successes, k
254      static_cast<RealType>(0.05),                    // Probability of success, p
255      static_cast<RealType>(0.869147702104609),       // Probability of result (CDF), P
256      static_cast<RealType>(1 - 0.869147702104609),   // Q = 1 - P
257      tolerance);
258 
259   test_spot(
260      static_cast<RealType>(500),                     // Sample size, N
261      static_cast<RealType>(250),                     // Number of successes, k
262      static_cast<RealType>(0.05),                    // Probability of success, p
263      static_cast<RealType>(1),                       // Probability of result (CDF), P
264      static_cast<RealType>(0),   // Q = 1 - P
265      tolerance);
266 
267   test_spot(
268      static_cast<RealType>(500),                     // Sample size, N
269      static_cast<RealType>(470),                     // Number of successes, k
270      static_cast<RealType>(0.95),                    // Probability of success, p
271      static_cast<RealType>(0.176470742656766),       // Probability of result (CDF), P
272      static_cast<RealType>(1 - 0.176470742656766),   // Q = 1 - P
273      tolerance * 10);                                // Note higher tolerance on this test!
274 
275   test_spot(
276      static_cast<RealType>(500),                       // Sample size, N
277      static_cast<RealType>(400),                       // Number of successes, k
278      static_cast<RealType>(0.05),                      // Probability of success, p
279      static_cast<RealType>(1),                         // Probability of result (CDF), P
280      static_cast<RealType>(0),                         // Q = 1 - P
281      tolerance);
282 
283   test_spot(
284      static_cast<RealType>(500),                       // Sample size, N
285      static_cast<RealType>(400),                       // Number of successes, k
286      static_cast<RealType>(0.9),                       // Probability of success, p
287      static_cast<RealType>(1.80180425681923E-11),      // Probability of result (CDF), P
288      static_cast<RealType>(1 - 1.80180425681923E-11),  // Q = 1 - P
289      tolerance);
290 
291   test_spot(
292      static_cast<RealType>(500),                       // Sample size, N
293      static_cast<RealType>(5),                         // Number of successes, k
294      static_cast<RealType>(0.05),                      // Probability of success, p
295      static_cast<RealType>(9.181808267643E-7),         // Probability of result (CDF), P
296      static_cast<RealType>(1 - 9.181808267643E-7),     // Q = 1 - P
297      tolerance);
298 
299   test_spot(
300      static_cast<RealType>(2),                       // Sample size, N
301      static_cast<RealType>(1),                       // Number of successes, k
302      static_cast<RealType>(0.5),                     // Probability of success, p
303      static_cast<RealType>(0.75),                    // Probability of result (CDF), P
304      static_cast<RealType>(0.25),                    // Q = 1 - P
305      tolerance);
306 
307   test_spot(
308      static_cast<RealType>(8),                       // Sample size, N
309      static_cast<RealType>(3),                       // Number of successes, k
310      static_cast<RealType>(0.25),                    // Probability of success, p
311      static_cast<RealType>(0.8861846923828125),      // Probability of result (CDF), P
312      static_cast<RealType>(1 - 0.8861846923828125),  // Q = 1 - P
313      tolerance);
314 
315   test_spot(
316      static_cast<RealType>(8),                       // Sample size, N
317      static_cast<RealType>(0),                       // Number of successes, k
318      static_cast<RealType>(0.25),                    // Probability of success, p
319      static_cast<RealType>(0.1001129150390625),      // Probability of result (CDF), P
320      static_cast<RealType>(1 - 0.1001129150390625),  // Q = 1 - P
321      tolerance);
322 
323   test_spot(
324      static_cast<RealType>(8),                       // Sample size, N
325      static_cast<RealType>(1),                       // Number of successes, k
326      static_cast<RealType>(0.25),                    // Probability of success, p
327      static_cast<RealType>(0.36708068847656244),     // Probability of result (CDF), P
328      static_cast<RealType>(1 - 0.36708068847656244), // Q = 1 - P
329      tolerance);
330 
331   test_spot(
332      static_cast<RealType>(8),                       // Sample size, N
333      static_cast<RealType>(4),                       // Number of successes, k
334      static_cast<RealType>(0.25),                    // Probability of success, p
335      static_cast<RealType>(0.9727020263671875),      // Probability of result (CDF), P
336      static_cast<RealType>(1 - 0.9727020263671875),  // Q = 1 - P
337      tolerance);
338 
339   test_spot(
340      static_cast<RealType>(8),                       // Sample size, N
341      static_cast<RealType>(7),                       // Number of successes, k
342      static_cast<RealType>(0.25),                    // Probability of success, p
343      static_cast<RealType>(0.9999847412109375),      // Probability of result (CDF), P
344      static_cast<RealType>(1 - 0.9999847412109375),  // Q = 1 - P
345      tolerance);
346 
347   // Tests on PDF follow:
348   BOOST_CHECK_CLOSE(
349      pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.75)),
350      static_cast<RealType>(10)),  // k.
351      static_cast<RealType>(0.00992227527967770583927631378173), // 0.00992227527967770583927631378173
352      tolerance);
353 
354   BOOST_CHECK_CLOSE(
355     pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.5)),
356     static_cast<RealType>(10)),  // k.
357     static_cast<RealType>(0.17619705200195312500000000000000000000), // get k=10 0.049611376398388612 p = 0.25
358     tolerance);
359 
360   // Binomial pdf Test values from
361   // http://www.adsciengineering.com/bpdcalc/index.php  for example
362   // http://www.adsciengineering.com/bpdcalc/index.php?n=20&p=0.25&start=0&stop=20&Submit=Generate
363   // Appears to use at least 80-bit long double for 32 decimal digits accuracy,
364   // but loses accuracy of display if leading zeros?
365   // (if trailings zero then are exact values?)
366   // so useful for testing 64-bit double accuracy.
367   // P = 0.25, n = 20, k = 0 to 20
368 
369   //0   C(20,0) * 0.25^0 * 0.75^20   0.00317121193893399322405457496643
370   //1   C(20,1) * 0.25^1 * 0.75^19   0.02114141292622662149369716644287
371   //2   C(20,2) * 0.25^2 * 0.75^18   0.06694780759971763473004102706909
372   //3   C(20,3) * 0.25^3 * 0.75^17   0.13389561519943526946008205413818
373   //4   C(20,4) * 0.25^4 * 0.75^16   0.18968545486586663173511624336242
374   //5   C(20,5) * 0.25^5 * 0.75^15   0.20233115185692440718412399291992
375   //6   C(20,6) * 0.25^6 * 0.75^14   0.16860929321410367265343666076660
376   //7   C(20,7) * 0.25^7 * 0.75^13   0.11240619547606911510229110717773
377   //8   C(20,8) * 0.25^8 * 0.75^12   0.06088668921620410401374101638793
378   //9   C(20,9) * 0.25^9 * 0.75^11   0.02706075076275737956166267395019
379   //10   C(20,10) * 0.25^10 * 0.75^10   0.00992227527967770583927631378173
380   //11   C(20,11) * 0.25^11 * 0.75^9   0.00300675008475081995129585266113
381   //12   C(20,12) * 0.25^12 * 0.75^8   0.00075168752118770498782396316528
382   //13   C(20,13) * 0.25^13 * 0.75^7   0.00015419231203850358724594116210
383   //14   C(20,14) * 0.25^14 * 0.75^6   0.00002569871867308393120765686035
384   //15   C(20,15) * 0.25^15 * 0.75^5   0.00000342649582307785749435424804
385   //16   C(20,16) * 0.25^16 * 0.75^4   0.00000035692664823727682232856750
386   //17   C(20,17) * 0.25^17 * 0.75^3   0.00000002799424692057073116302490
387   //18   C(20,18) * 0.25^18 * 0.75^2   0.00000000155523594003170728683471
388   //19   C(20,19) * 0.25^19 * 0.75^1   0.00000000005456968210637569427490
389   //20   C(20,20) * 0.25^20 * 0.75^0   0.00000000000090949470177292823791
390 
391 
392     BOOST_CHECK_CLOSE(
393     pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
394     static_cast<RealType>(10)),  // k.
395     static_cast<RealType>(0.00992227527967770583927631378173), // k=10  p = 0.25
396     tolerance);
397 
398     BOOST_CHECK_CLOSE( // k = 0 use different formula - only exp so more accurate.
399     pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
400     static_cast<RealType>(0)),  // k.
401     static_cast<RealType>(0.00317121193893399322405457496643), // k=0  p = 0.25
402     tolerance);
403 
404     BOOST_CHECK_CLOSE( // k = 20 use different formula - only exp so more accurate.
405     pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
406     static_cast<RealType>(20)),  // k == n.
407     static_cast<RealType>(0.00000000000090949470177292823791), // k=20  p = 0.25
408     tolerance);
409 
410     BOOST_CHECK_CLOSE( // k = 1.
411     pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
412     static_cast<RealType>(1)),  // k.
413     static_cast<RealType>(0.02114141292622662149369716644287), // k=1  p = 0.25
414     tolerance);
415 
416     // Some exact (probably) values.
417     BOOST_CHECK_CLOSE(
418     pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
419     static_cast<RealType>(0)),  // k.
420     static_cast<RealType>(0.10011291503906250000000000000000), // k=0  p = 0.25
421     tolerance);
422 
423     BOOST_CHECK_CLOSE( // k = 1.
424     pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
425     static_cast<RealType>(1)),  // k.
426     static_cast<RealType>(0.26696777343750000000000000000000), // k=1  p = 0.25
427     tolerance);
428 
429     BOOST_CHECK_CLOSE( // k = 2.
430     pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
431     static_cast<RealType>(2)),  // k.
432     static_cast<RealType>(0.31146240234375000000000000000000), // k=2  p = 0.25
433     tolerance);
434 
435     BOOST_CHECK_CLOSE( // k = 3.
436     pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
437     static_cast<RealType>(3)),  // k.
438     static_cast<RealType>(0.20764160156250000000000000000000), // k=3  p = 0.25
439     tolerance);
440 
441     BOOST_CHECK_CLOSE( // k = 7.
442     pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
443     static_cast<RealType>(7)),  // k.
444     static_cast<RealType>(0.00036621093750000000000000000000), // k=7  p = 0.25
445     tolerance);
446 
447     BOOST_CHECK_CLOSE( // k = 8.
448     pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
449     static_cast<RealType>(8)),  // k = n.
450     static_cast<RealType>(0.00001525878906250000000000000000), // k=8  p = 0.25
451     tolerance);
452 
453     binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25));
454     RealType x = static_cast<RealType>(0.125);
455     using namespace std; // ADL of std names.
456     // mean:
457     BOOST_CHECK_CLOSE(
458        mean(dist)
459        , static_cast<RealType>(8 * 0.25), tol2);
460     // variance:
461     BOOST_CHECK_CLOSE(
462        variance(dist)
463        , static_cast<RealType>(8 * 0.25 * 0.75), tol2);
464     // std deviation:
465     BOOST_CHECK_CLOSE(
466        standard_deviation(dist)
467        , static_cast<RealType>(sqrt(8 * 0.25L * 0.75L)), tol2);
468     // hazard:
469     BOOST_CHECK_CLOSE(
470        hazard(dist, x)
471        , pdf(dist, x) / cdf(complement(dist, x)), tol2);
472     // cumulative hazard:
473     BOOST_CHECK_CLOSE(
474        chf(dist, x)
475        , -log(cdf(complement(dist, x))), tol2);
476     // coefficient_of_variation:
477     BOOST_CHECK_CLOSE(
478        coefficient_of_variation(dist)
479        , standard_deviation(dist) / mean(dist), tol2);
480     // mode:
481     BOOST_CHECK_CLOSE(
482        mode(dist)
483        , static_cast<RealType>(std::floor(9 * 0.25)), tol2);
484     // skewness:
485     BOOST_CHECK_CLOSE(
486        skewness(dist)
487        , static_cast<RealType>(0.40824829046386301636621401245098L), (std::max)(tol2, static_cast<RealType>(5e-29))); // test data has 32 digits only.
488     // kurtosis:
489     BOOST_CHECK_CLOSE(
490        kurtosis(dist)
491        , static_cast<RealType>(2.916666666666666666666666666666666666L), tol2);
492     // kurtosis excess:
493     BOOST_CHECK_CLOSE(
494        kurtosis_excess(dist)
495        , static_cast<RealType>(-0.08333333333333333333333333333333333333L), tol2);
496     // Check kurtosis_excess == kurtosis -3;
497       BOOST_CHECK_EQUAL(kurtosis(dist), static_cast<RealType>(3) + kurtosis_excess(dist));
498 
499     // special cases for PDF:
500     BOOST_CHECK_EQUAL(
501        pdf(
502           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
503           static_cast<RealType>(0)), static_cast<RealType>(1)
504        );
505     BOOST_CHECK_EQUAL(
506        pdf(
507           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
508           static_cast<RealType>(0.0001)), static_cast<RealType>(0)
509        );
510     BOOST_CHECK_EQUAL(
511        pdf(
512           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
513           static_cast<RealType>(0.001)), static_cast<RealType>(0)
514        );
515     BOOST_CHECK_EQUAL(
516        pdf(
517           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
518           static_cast<RealType>(8)), static_cast<RealType>(1)
519        );
520     BOOST_CHECK_EQUAL(
521        pdf(
522           binomial_distribution<RealType>(static_cast<RealType>(0), static_cast<RealType>(0.25)),
523           static_cast<RealType>(0)), static_cast<RealType>(1)
524        );
525     BOOST_MATH_CHECK_THROW(
526        pdf(
527           binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)),
528           static_cast<RealType>(0)), std::domain_error
529        );
530     BOOST_MATH_CHECK_THROW(
531        pdf(
532           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
533           static_cast<RealType>(0)), std::domain_error
534        );
535     BOOST_MATH_CHECK_THROW(
536        pdf(
537           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
538           static_cast<RealType>(0)), std::domain_error
539        );
540     BOOST_MATH_CHECK_THROW(
541        pdf(
542           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
543           static_cast<RealType>(-1)), std::domain_error
544        );
545     BOOST_MATH_CHECK_THROW(
546        pdf(
547           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
548           static_cast<RealType>(9)), std::domain_error
549        );
550     BOOST_MATH_CHECK_THROW(
551        cdf(
552           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
553           static_cast<RealType>(-1)), std::domain_error
554        );
555     BOOST_MATH_CHECK_THROW(
556        cdf(
557           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
558           static_cast<RealType>(9)), std::domain_error
559        );
560     BOOST_MATH_CHECK_THROW(
561        cdf(
562           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
563           static_cast<RealType>(0)), std::domain_error
564        );
565     BOOST_MATH_CHECK_THROW(
566        cdf(
567           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
568           static_cast<RealType>(0)), std::domain_error
569        );
570     BOOST_MATH_CHECK_THROW(
571        quantile(
572           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
573           static_cast<RealType>(0)), std::domain_error
574        );
575     BOOST_MATH_CHECK_THROW(
576        quantile(
577           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
578           static_cast<RealType>(0)), std::domain_error
579        );
580 
581     BOOST_CHECK_EQUAL(
582        quantile(
583           binomial_distribution<RealType>(static_cast<RealType>(16), static_cast<RealType>(0.25)),
584           static_cast<RealType>(0.01)), // Less than cdf == pdf(binomial_distribution<RealType>(16, 0.25), 0)
585           static_cast<RealType>(0) // so expect zero as best approximation.
586        );
587 
588     BOOST_CHECK_EQUAL(
589        cdf(
590           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
591           static_cast<RealType>(8)), static_cast<RealType>(1)
592        );
593     BOOST_CHECK_EQUAL(
594        cdf(
595           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
596           static_cast<RealType>(7)), static_cast<RealType>(1)
597        );
598     BOOST_CHECK_EQUAL(
599        cdf(
600           binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
601           static_cast<RealType>(7)), static_cast<RealType>(0)
602        );
603 
604 #endif
605 
606   {
607     // This is a visual sanity check that everything is OK:
608     binomial_distribution<RealType> my8dist(8., 0.25); // Note: double values (matching the distribution definition) avoid the need for any casting.
609     //cout << "mean(my8dist) = " << boost::math::mean(my8dist) << endl; // mean(my8dist) = 2
610     //cout << "my8dist.trials() = " << my8dist.trials()  << endl; // my8dist.trials() = 8
611     //cout << "my8dist.success_fraction() = " << my8dist.success_fraction()  << endl; // my8dist.success_fraction() = 0.25
612     BOOST_CHECK_CLOSE(my8dist.trials(), static_cast<RealType>(8), tol2);
613     BOOST_CHECK_CLOSE(my8dist.success_fraction(), static_cast<RealType>(0.25), tol2);
614 
615    //{
616    //   int n = static_cast<int>(boost::math::tools::real_cast<double>(my8dist.trials()));
617    //   RealType sumcdf = 0.;
618    //   for (int k = 0; k <= n; k++)
619    //   {
620    //     cout << k << ' ' << pdf(my8dist, static_cast<RealType>(k));
621    //     sumcdf += pdf(my8dist, static_cast<RealType>(k));
622    //     cout  << ' '  << sumcdf;
623    //     cout << ' ' << cdf(my8dist, static_cast<RealType>(k));
624    //     cout << ' ' << sumcdf - cdf(my8dist, static_cast<RealType>(k)) << endl;
625    //   } // for k
626    // }
627     // n = 8, p =0.25
628     //k         pdf              cdf
629     //0 0.1001129150390625 0.1001129150390625
630     //1 0.26696777343749994 0.36708068847656244
631     //2 0.31146240234375017 0.67854309082031261
632     //3 0.20764160156249989 0.8861846923828125
633     //4 0.086517333984375 0.9727020263671875
634     //5 0.023071289062499997 0.9957733154296875
635     //6 0.0038452148437500009 0.9996185302734375
636     //7 0.00036621093749999984 0.9999847412109375
637     //8 1.52587890625e-005 1 1 0
638   }
639 #define T RealType
640 #include "binomial_quantile.ipp"
641 
642   for(unsigned i = 0; i < binomial_quantile_data.size(); ++i)
643   {
644      using namespace boost::math::policies;
645      RealType tol = boost::math::tools::epsilon<RealType>() * 500;
646      if(!boost::is_floating_point<RealType>::value)
647         tol *= 10;  // no lanczos approximation implies less accuracy
648      RealType x;
649 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 1)
650      //
651      // Check full real value first:
652      //
653      typedef policy<discrete_quantile<boost::math::policies::real> > P1;
654      binomial_distribution<RealType, P1> p1(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
655      x = quantile(p1, binomial_quantile_data[i][2]);
656      BOOST_CHECK_CLOSE_FRACTION(x, (RealType)binomial_quantile_data[i][3], tol);
657      x = quantile(complement(p1, (RealType)binomial_quantile_data[i][2]));
658      BOOST_CHECK_CLOSE_FRACTION(x, (RealType)binomial_quantile_data[i][4], tol);
659 #endif
660 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 2)
661      //
662      // Now with round down to integer:
663      //
664      typedef policy<discrete_quantile<integer_round_down> > P2;
665      binomial_distribution<RealType, P2> p2(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
666      x = quantile(p2, binomial_quantile_data[i][2]);
667      BOOST_CHECK_EQUAL(x, (RealType)floor(binomial_quantile_data[i][3]));
668      x = quantile(complement(p2, binomial_quantile_data[i][2]));
669      BOOST_CHECK_EQUAL(x, (RealType)floor(binomial_quantile_data[i][4]));
670 #endif
671 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 3)
672      //
673      // Now with round up to integer:
674      //
675      typedef policy<discrete_quantile<integer_round_up> > P3;
676      binomial_distribution<RealType, P3> p3(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
677      x = quantile(p3, binomial_quantile_data[i][2]);
678      BOOST_CHECK_EQUAL(x, (RealType)ceil(binomial_quantile_data[i][3]));
679      x = quantile(complement(p3, binomial_quantile_data[i][2]));
680      BOOST_CHECK_EQUAL(x, (RealType)ceil(binomial_quantile_data[i][4]));
681 #endif
682 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 4)
683      //
684      // Now with round to integer "outside":
685      //
686      typedef policy<discrete_quantile<integer_round_outwards> > P4;
687      binomial_distribution<RealType, P4> p4(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
688      x = quantile(p4, binomial_quantile_data[i][2]);
689      BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? floor(binomial_quantile_data[i][3]) : ceil(binomial_quantile_data[i][3])));
690      x = quantile(complement(p4, binomial_quantile_data[i][2]));
691      BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? ceil(binomial_quantile_data[i][4]) : floor(binomial_quantile_data[i][4])));
692 #endif
693 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 5)
694      //
695      // Now with round to integer "inside":
696      //
697      typedef policy<discrete_quantile<integer_round_inwards> > P5;
698      binomial_distribution<RealType, P5> p5(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
699      x = quantile(p5, binomial_quantile_data[i][2]);
700      BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? ceil(binomial_quantile_data[i][3]) : floor(binomial_quantile_data[i][3])));
701      x = quantile(complement(p5, binomial_quantile_data[i][2]));
702      BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? floor(binomial_quantile_data[i][4]) : ceil(binomial_quantile_data[i][4])));
703 #endif
704 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 6)
705      //
706      // Now with round to nearest integer:
707      //
708      typedef policy<discrete_quantile<integer_round_nearest> > P6;
709      binomial_distribution<RealType, P6> p6(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
710      x = quantile(p6, binomial_quantile_data[i][2]);
711      BOOST_CHECK_EQUAL(x, (RealType)(floor(binomial_quantile_data[i][3] + 0.5f)));
712      x = quantile(complement(p6, binomial_quantile_data[i][2]));
713      BOOST_CHECK_EQUAL(x, (RealType)(floor(binomial_quantile_data[i][4] + 0.5f)));
714 #endif
715   }
716 
717    check_out_of_range<boost::math::binomial_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.
718 
719 
720 } // template <class RealType>void test_spots(RealType)
721 
BOOST_AUTO_TEST_CASE(test_main)722 BOOST_AUTO_TEST_CASE( test_main )
723 {
724    BOOST_MATH_CONTROL_FP;
725    // Check that can generate binomial distribution using one convenience methods:
726    binomial_distribution<> mybn2(1., 0.5); // Using default RealType double.
727   // but that
728    // boost::math::binomial mybn1(1., 0.5); // Using typedef fails
729   // error C2039: 'binomial' : is not a member of 'boost::math'
730 
731   // Basic sanity-check spot values.
732 
733   // (Parameter value, arbitrarily zero, only communicates the floating point type).
734 #ifdef TEST_FLOAT
735   test_spots(0.0F); // Test float.
736 #endif
737 #ifdef TEST_DOUBLE
738   test_spots(0.0); // Test double.
739 #endif
740 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
741 #ifdef TEST_LDOUBLE
742   test_spots(0.0L); // Test long double.
743 #endif
744 #if !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
745 #ifdef TEST_REAL_CONCEPT
746   test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
747 #endif
748 #endif
749 #else
750    std::cout << "<note>The long double tests have been disabled on this platform "
751       "either because the long double overloads of the usual math functions are "
752       "not available at all, or because they are too inaccurate for these tests "
753       "to pass.</note>" << std::endl;
754 #endif
755 
756 } // BOOST_AUTO_TEST_CASE( test_main )
757 
758 /*
759 
760 Output is:
761 
762   Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_binomial.exe"
763   Running 1 test case...
764   Tolerance for type float is 0.0119209 %
765   Tolerance for type double is 2.22045e-011 %
766   Tolerance for type long double is 2.22045e-011 %
767   Tolerance for type class boost::math::concepts::real_concept is 2.22045e-011 %
768 
769   *** No errors detected
770 
771 ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========
772 
773 
774 */
775