1 // test_binomial.cpp
2
3 // Copyright John Maddock 2006.
4 // Copyright Paul A. Bristow 2007.
5
6 // Use, modification and distribution are subject to the
7 // Boost Software License, Version 1.0.
8 // (See accompanying file LICENSE_1_0.txt
9 // or copy at http://www.boost.org/LICENSE_1_0.txt)
10
11 // Basic sanity test for Binomial Cumulative Distribution Function.
12
13 #define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
14
15 #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
16 # define TEST_FLOAT
17 # define TEST_DOUBLE
18 # define TEST_LDOUBLE
19 # define TEST_REAL_CONCEPT
20 #endif
21
22 #ifdef _MSC_VER
23 # pragma warning(disable: 4127) // conditional expression is constant.
24 # pragma warning(disable: 4100) // unreferenced formal parameter.
25 // Seems an entirely spurious warning - formal parameter T IS used - get error if /* T */
26 //# pragma warning(disable: 4535) // calling _set_se_translator() requires /EHa (in Boost.test)
27 // Enable C++ Exceptions Yes With SEH Exceptions (/EHa) prevents warning 4535.
28 #endif
29
30 #include <boost/math/tools/test.hpp>
31 #include <boost/math/concepts/real_concept.hpp> // for real_concept
32 using ::boost::math::concepts::real_concept;
33
34 #include <boost/math/distributions/binomial.hpp> // for binomial_distribution
35 using boost::math::binomial_distribution;
36
37 #define BOOST_TEST_MAIN
38 #include <boost/test/unit_test.hpp> // for test_main
39 #include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
40 #include "table_type.hpp"
41
42 #include "test_out_of_range.hpp"
43
44 #include <iostream>
45 using std::cout;
46 using std::endl;
47 #include <limits>
48 using std::numeric_limits;
49
50 template <class RealType>
test_spot(RealType N,RealType k,RealType p,RealType P,RealType Q,RealType tol)51 void test_spot(
52 RealType N, // Number of trials
53 RealType k, // Number of successes
54 RealType p, // Probability of success
55 RealType P, // CDF
56 RealType Q, // Complement of CDF
57 RealType tol) // Test tolerance
58 {
59 boost::math::binomial_distribution<RealType> bn(N, p);
60 BOOST_CHECK_CLOSE(
61 cdf(bn, k), P, tol);
62 if((P < 0.99) && (Q < 0.99))
63 {
64 //
65 // We can only check this if P is not too close to 1,
66 // so that we can guarantee Q is free of error:
67 //
68 BOOST_CHECK_CLOSE(
69 cdf(complement(bn, k)), Q, tol);
70 if(k != 0)
71 {
72 BOOST_CHECK_CLOSE(
73 quantile(bn, P), k, tol);
74 }
75 else
76 {
77 // Just check quantile is very small:
78 if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value))
79 {
80 // Limit where this is checked: if exponent range is very large we may
81 // run out of iterations in our root finding algorithm.
82 BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10);
83 }
84 }
85 if(k != 0)
86 {
87 BOOST_CHECK_CLOSE(
88 quantile(complement(bn, Q)), k, tol);
89 }
90 else
91 {
92 // Just check quantile is very small:
93 if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value))
94 {
95 // Limit where this is checked: if exponent range is very large we may
96 // run out of iterations in our root finding algorithm.
97 BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10);
98 }
99 }
100 if(k > 0)
101 {
102 // estimate success ratio:
103 // Note lower bound uses a different formula internally
104 // from upper bound, have to adjust things to prevent
105 // fencepost errors:
106 BOOST_CHECK_CLOSE(
107 binomial_distribution<RealType>::find_lower_bound_on_p(
108 N, k+1, Q),
109 p, tol);
110 BOOST_CHECK_CLOSE(
111 binomial_distribution<RealType>::find_upper_bound_on_p(
112 N, k, P),
113 p, tol);
114
115 if(Q < P)
116 {
117 // Default method (Clopper Pearson)
118 BOOST_CHECK(
119 binomial_distribution<RealType>::find_lower_bound_on_p(
120 N, k, Q)
121 <=
122 binomial_distribution<RealType>::find_upper_bound_on_p(
123 N, k, Q)
124 );
125 BOOST_CHECK((
126 binomial_distribution<RealType>::find_lower_bound_on_p(
127 N, k, Q)
128 <= k/N) && (k/N <=
129 binomial_distribution<RealType>::find_upper_bound_on_p(
130 N, k, Q))
131 );
132 // Bayes Method (Jeffreys Prior)
133 BOOST_CHECK(
134 binomial_distribution<RealType>::find_lower_bound_on_p(
135 N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval)
136 <=
137 binomial_distribution<RealType>::find_upper_bound_on_p(
138 N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval)
139 );
140 BOOST_CHECK((
141 binomial_distribution<RealType>::find_lower_bound_on_p(
142 N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval)
143 <= k/N) && (k/N <=
144 binomial_distribution<RealType>::find_upper_bound_on_p(
145 N, k, Q, binomial_distribution<RealType>::jeffreys_prior_interval))
146 );
147 }
148 else
149 {
150 // Default method (Clopper Pearson)
151 BOOST_CHECK(
152 binomial_distribution<RealType>::find_lower_bound_on_p(
153 N, k, P)
154 <=
155 binomial_distribution<RealType>::find_upper_bound_on_p(
156 N, k, P)
157 );
158 BOOST_CHECK(
159 (binomial_distribution<RealType>::find_lower_bound_on_p(
160 N, k, P)
161 <= k / N) && (k/N <=
162 binomial_distribution<RealType>::find_upper_bound_on_p(
163 N, k, P))
164 );
165 // Bayes Method (Jeffreys Prior)
166 BOOST_CHECK(
167 binomial_distribution<RealType>::find_lower_bound_on_p(
168 N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval)
169 <=
170 binomial_distribution<RealType>::find_upper_bound_on_p(
171 N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval)
172 );
173 BOOST_CHECK(
174 (binomial_distribution<RealType>::find_lower_bound_on_p(
175 N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval)
176 <= k / N) && (k/N <=
177 binomial_distribution<RealType>::find_upper_bound_on_p(
178 N, k, P, binomial_distribution<RealType>::jeffreys_prior_interval))
179 );
180 }
181 }
182 //
183 // estimate sample size:
184 //
185 BOOST_CHECK_CLOSE(
186 binomial_distribution<RealType>::find_minimum_number_of_trials(
187 k, p, P),
188 N, tol);
189 BOOST_CHECK_CLOSE(
190 binomial_distribution<RealType>::find_maximum_number_of_trials(
191 k, p, Q),
192 N, tol);
193 }
194
195 // Double check consistency of CDF and PDF by computing
196 // the finite sum:
197 RealType sum = 0;
198 for(unsigned i = 0; i <= k; ++i)
199 sum += pdf(bn, RealType(i));
200 BOOST_CHECK_CLOSE(
201 sum, P, tol);
202 // And complement as well:
203 sum = 0;
204 for(RealType i = N; i > k; i -= 1)
205 sum += pdf(bn, i);
206 if(P < 0.99)
207 {
208 BOOST_CHECK_CLOSE(
209 sum, Q, tol);
210 }
211 else
212 {
213 // Not enough information content in P for Q to be meaningful
214 RealType tol = (std::max)(2 * Q, boost::math::tools::epsilon<RealType>());
215 BOOST_CHECK(sum < tol);
216 }
217 }
218
219 template <class RealType> // Any floating-point type RealType.
test_spots(RealType T)220 void test_spots(RealType T)
221 {
222 // Basic sanity checks, test data is to double precision only
223 // so set tolerance to 100eps expressed as a percent, or
224 // 100eps of type double expressed as a percent, whichever
225 // is the larger.
226
227 RealType tolerance = (std::max)
228 (boost::math::tools::epsilon<RealType>(),
229 static_cast<RealType>(std::numeric_limits<double>::epsilon()));
230 tolerance *= 100 * 1000;
231 RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percent
232
233 cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl;
234
235
236 // Sources of spot test values:
237
238 // MathCAD defines pbinom(k, n, p)
239 // returns pr(X ,=k) when random variable X has the binomial distribution with parameters n and p.
240 // 0 <= k ,= n
241 // 0 <= p <= 1
242 // P = pbinom(30, 500, 0.05) = 0.869147702104609
243
244 using boost::math::binomial_distribution;
245 using ::boost::math::cdf;
246 using ::boost::math::pdf;
247
248 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 0)
249 // Test binomial using cdf spot values from MathCAD.
250 // These test quantiles and complements as well.
251 test_spot(
252 static_cast<RealType>(500), // Sample size, N
253 static_cast<RealType>(30), // Number of successes, k
254 static_cast<RealType>(0.05), // Probability of success, p
255 static_cast<RealType>(0.869147702104609), // Probability of result (CDF), P
256 static_cast<RealType>(1 - 0.869147702104609), // Q = 1 - P
257 tolerance);
258
259 test_spot(
260 static_cast<RealType>(500), // Sample size, N
261 static_cast<RealType>(250), // Number of successes, k
262 static_cast<RealType>(0.05), // Probability of success, p
263 static_cast<RealType>(1), // Probability of result (CDF), P
264 static_cast<RealType>(0), // Q = 1 - P
265 tolerance);
266
267 test_spot(
268 static_cast<RealType>(500), // Sample size, N
269 static_cast<RealType>(470), // Number of successes, k
270 static_cast<RealType>(0.95), // Probability of success, p
271 static_cast<RealType>(0.176470742656766), // Probability of result (CDF), P
272 static_cast<RealType>(1 - 0.176470742656766), // Q = 1 - P
273 tolerance * 10); // Note higher tolerance on this test!
274
275 test_spot(
276 static_cast<RealType>(500), // Sample size, N
277 static_cast<RealType>(400), // Number of successes, k
278 static_cast<RealType>(0.05), // Probability of success, p
279 static_cast<RealType>(1), // Probability of result (CDF), P
280 static_cast<RealType>(0), // Q = 1 - P
281 tolerance);
282
283 test_spot(
284 static_cast<RealType>(500), // Sample size, N
285 static_cast<RealType>(400), // Number of successes, k
286 static_cast<RealType>(0.9), // Probability of success, p
287 static_cast<RealType>(1.80180425681923E-11), // Probability of result (CDF), P
288 static_cast<RealType>(1 - 1.80180425681923E-11), // Q = 1 - P
289 tolerance);
290
291 test_spot(
292 static_cast<RealType>(500), // Sample size, N
293 static_cast<RealType>(5), // Number of successes, k
294 static_cast<RealType>(0.05), // Probability of success, p
295 static_cast<RealType>(9.181808267643E-7), // Probability of result (CDF), P
296 static_cast<RealType>(1 - 9.181808267643E-7), // Q = 1 - P
297 tolerance);
298
299 test_spot(
300 static_cast<RealType>(2), // Sample size, N
301 static_cast<RealType>(1), // Number of successes, k
302 static_cast<RealType>(0.5), // Probability of success, p
303 static_cast<RealType>(0.75), // Probability of result (CDF), P
304 static_cast<RealType>(0.25), // Q = 1 - P
305 tolerance);
306
307 test_spot(
308 static_cast<RealType>(8), // Sample size, N
309 static_cast<RealType>(3), // Number of successes, k
310 static_cast<RealType>(0.25), // Probability of success, p
311 static_cast<RealType>(0.8861846923828125), // Probability of result (CDF), P
312 static_cast<RealType>(1 - 0.8861846923828125), // Q = 1 - P
313 tolerance);
314
315 test_spot(
316 static_cast<RealType>(8), // Sample size, N
317 static_cast<RealType>(0), // Number of successes, k
318 static_cast<RealType>(0.25), // Probability of success, p
319 static_cast<RealType>(0.1001129150390625), // Probability of result (CDF), P
320 static_cast<RealType>(1 - 0.1001129150390625), // Q = 1 - P
321 tolerance);
322
323 test_spot(
324 static_cast<RealType>(8), // Sample size, N
325 static_cast<RealType>(1), // Number of successes, k
326 static_cast<RealType>(0.25), // Probability of success, p
327 static_cast<RealType>(0.36708068847656244), // Probability of result (CDF), P
328 static_cast<RealType>(1 - 0.36708068847656244), // Q = 1 - P
329 tolerance);
330
331 test_spot(
332 static_cast<RealType>(8), // Sample size, N
333 static_cast<RealType>(4), // Number of successes, k
334 static_cast<RealType>(0.25), // Probability of success, p
335 static_cast<RealType>(0.9727020263671875), // Probability of result (CDF), P
336 static_cast<RealType>(1 - 0.9727020263671875), // Q = 1 - P
337 tolerance);
338
339 test_spot(
340 static_cast<RealType>(8), // Sample size, N
341 static_cast<RealType>(7), // Number of successes, k
342 static_cast<RealType>(0.25), // Probability of success, p
343 static_cast<RealType>(0.9999847412109375), // Probability of result (CDF), P
344 static_cast<RealType>(1 - 0.9999847412109375), // Q = 1 - P
345 tolerance);
346
347 // Tests on PDF follow:
348 BOOST_CHECK_CLOSE(
349 pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.75)),
350 static_cast<RealType>(10)), // k.
351 static_cast<RealType>(0.00992227527967770583927631378173), // 0.00992227527967770583927631378173
352 tolerance);
353
354 BOOST_CHECK_CLOSE(
355 pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.5)),
356 static_cast<RealType>(10)), // k.
357 static_cast<RealType>(0.17619705200195312500000000000000000000), // get k=10 0.049611376398388612 p = 0.25
358 tolerance);
359
360 // Binomial pdf Test values from
361 // http://www.adsciengineering.com/bpdcalc/index.php for example
362 // http://www.adsciengineering.com/bpdcalc/index.php?n=20&p=0.25&start=0&stop=20&Submit=Generate
363 // Appears to use at least 80-bit long double for 32 decimal digits accuracy,
364 // but loses accuracy of display if leading zeros?
365 // (if trailings zero then are exact values?)
366 // so useful for testing 64-bit double accuracy.
367 // P = 0.25, n = 20, k = 0 to 20
368
369 //0 C(20,0) * 0.25^0 * 0.75^20 0.00317121193893399322405457496643
370 //1 C(20,1) * 0.25^1 * 0.75^19 0.02114141292622662149369716644287
371 //2 C(20,2) * 0.25^2 * 0.75^18 0.06694780759971763473004102706909
372 //3 C(20,3) * 0.25^3 * 0.75^17 0.13389561519943526946008205413818
373 //4 C(20,4) * 0.25^4 * 0.75^16 0.18968545486586663173511624336242
374 //5 C(20,5) * 0.25^5 * 0.75^15 0.20233115185692440718412399291992
375 //6 C(20,6) * 0.25^6 * 0.75^14 0.16860929321410367265343666076660
376 //7 C(20,7) * 0.25^7 * 0.75^13 0.11240619547606911510229110717773
377 //8 C(20,8) * 0.25^8 * 0.75^12 0.06088668921620410401374101638793
378 //9 C(20,9) * 0.25^9 * 0.75^11 0.02706075076275737956166267395019
379 //10 C(20,10) * 0.25^10 * 0.75^10 0.00992227527967770583927631378173
380 //11 C(20,11) * 0.25^11 * 0.75^9 0.00300675008475081995129585266113
381 //12 C(20,12) * 0.25^12 * 0.75^8 0.00075168752118770498782396316528
382 //13 C(20,13) * 0.25^13 * 0.75^7 0.00015419231203850358724594116210
383 //14 C(20,14) * 0.25^14 * 0.75^6 0.00002569871867308393120765686035
384 //15 C(20,15) * 0.25^15 * 0.75^5 0.00000342649582307785749435424804
385 //16 C(20,16) * 0.25^16 * 0.75^4 0.00000035692664823727682232856750
386 //17 C(20,17) * 0.25^17 * 0.75^3 0.00000002799424692057073116302490
387 //18 C(20,18) * 0.25^18 * 0.75^2 0.00000000155523594003170728683471
388 //19 C(20,19) * 0.25^19 * 0.75^1 0.00000000005456968210637569427490
389 //20 C(20,20) * 0.25^20 * 0.75^0 0.00000000000090949470177292823791
390
391
392 BOOST_CHECK_CLOSE(
393 pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
394 static_cast<RealType>(10)), // k.
395 static_cast<RealType>(0.00992227527967770583927631378173), // k=10 p = 0.25
396 tolerance);
397
398 BOOST_CHECK_CLOSE( // k = 0 use different formula - only exp so more accurate.
399 pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
400 static_cast<RealType>(0)), // k.
401 static_cast<RealType>(0.00317121193893399322405457496643), // k=0 p = 0.25
402 tolerance);
403
404 BOOST_CHECK_CLOSE( // k = 20 use different formula - only exp so more accurate.
405 pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
406 static_cast<RealType>(20)), // k == n.
407 static_cast<RealType>(0.00000000000090949470177292823791), // k=20 p = 0.25
408 tolerance);
409
410 BOOST_CHECK_CLOSE( // k = 1.
411 pdf(binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
412 static_cast<RealType>(1)), // k.
413 static_cast<RealType>(0.02114141292622662149369716644287), // k=1 p = 0.25
414 tolerance);
415
416 // Some exact (probably) values.
417 BOOST_CHECK_CLOSE(
418 pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
419 static_cast<RealType>(0)), // k.
420 static_cast<RealType>(0.10011291503906250000000000000000), // k=0 p = 0.25
421 tolerance);
422
423 BOOST_CHECK_CLOSE( // k = 1.
424 pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
425 static_cast<RealType>(1)), // k.
426 static_cast<RealType>(0.26696777343750000000000000000000), // k=1 p = 0.25
427 tolerance);
428
429 BOOST_CHECK_CLOSE( // k = 2.
430 pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
431 static_cast<RealType>(2)), // k.
432 static_cast<RealType>(0.31146240234375000000000000000000), // k=2 p = 0.25
433 tolerance);
434
435 BOOST_CHECK_CLOSE( // k = 3.
436 pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
437 static_cast<RealType>(3)), // k.
438 static_cast<RealType>(0.20764160156250000000000000000000), // k=3 p = 0.25
439 tolerance);
440
441 BOOST_CHECK_CLOSE( // k = 7.
442 pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
443 static_cast<RealType>(7)), // k.
444 static_cast<RealType>(0.00036621093750000000000000000000), // k=7 p = 0.25
445 tolerance);
446
447 BOOST_CHECK_CLOSE( // k = 8.
448 pdf(binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
449 static_cast<RealType>(8)), // k = n.
450 static_cast<RealType>(0.00001525878906250000000000000000), // k=8 p = 0.25
451 tolerance);
452
453 binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25));
454 RealType x = static_cast<RealType>(0.125);
455 using namespace std; // ADL of std names.
456 // mean:
457 BOOST_CHECK_CLOSE(
458 mean(dist)
459 , static_cast<RealType>(8 * 0.25), tol2);
460 // variance:
461 BOOST_CHECK_CLOSE(
462 variance(dist)
463 , static_cast<RealType>(8 * 0.25 * 0.75), tol2);
464 // std deviation:
465 BOOST_CHECK_CLOSE(
466 standard_deviation(dist)
467 , static_cast<RealType>(sqrt(8 * 0.25L * 0.75L)), tol2);
468 // hazard:
469 BOOST_CHECK_CLOSE(
470 hazard(dist, x)
471 , pdf(dist, x) / cdf(complement(dist, x)), tol2);
472 // cumulative hazard:
473 BOOST_CHECK_CLOSE(
474 chf(dist, x)
475 , -log(cdf(complement(dist, x))), tol2);
476 // coefficient_of_variation:
477 BOOST_CHECK_CLOSE(
478 coefficient_of_variation(dist)
479 , standard_deviation(dist) / mean(dist), tol2);
480 // mode:
481 BOOST_CHECK_CLOSE(
482 mode(dist)
483 , static_cast<RealType>(std::floor(9 * 0.25)), tol2);
484 // skewness:
485 BOOST_CHECK_CLOSE(
486 skewness(dist)
487 , static_cast<RealType>(0.40824829046386301636621401245098L), (std::max)(tol2, static_cast<RealType>(5e-29))); // test data has 32 digits only.
488 // kurtosis:
489 BOOST_CHECK_CLOSE(
490 kurtosis(dist)
491 , static_cast<RealType>(2.916666666666666666666666666666666666L), tol2);
492 // kurtosis excess:
493 BOOST_CHECK_CLOSE(
494 kurtosis_excess(dist)
495 , static_cast<RealType>(-0.08333333333333333333333333333333333333L), tol2);
496 // Check kurtosis_excess == kurtosis -3;
497 BOOST_CHECK_EQUAL(kurtosis(dist), static_cast<RealType>(3) + kurtosis_excess(dist));
498
499 // special cases for PDF:
500 BOOST_CHECK_EQUAL(
501 pdf(
502 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
503 static_cast<RealType>(0)), static_cast<RealType>(1)
504 );
505 BOOST_CHECK_EQUAL(
506 pdf(
507 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
508 static_cast<RealType>(0.0001)), static_cast<RealType>(0)
509 );
510 BOOST_CHECK_EQUAL(
511 pdf(
512 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
513 static_cast<RealType>(0.001)), static_cast<RealType>(0)
514 );
515 BOOST_CHECK_EQUAL(
516 pdf(
517 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
518 static_cast<RealType>(8)), static_cast<RealType>(1)
519 );
520 BOOST_CHECK_EQUAL(
521 pdf(
522 binomial_distribution<RealType>(static_cast<RealType>(0), static_cast<RealType>(0.25)),
523 static_cast<RealType>(0)), static_cast<RealType>(1)
524 );
525 BOOST_MATH_CHECK_THROW(
526 pdf(
527 binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)),
528 static_cast<RealType>(0)), std::domain_error
529 );
530 BOOST_MATH_CHECK_THROW(
531 pdf(
532 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
533 static_cast<RealType>(0)), std::domain_error
534 );
535 BOOST_MATH_CHECK_THROW(
536 pdf(
537 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
538 static_cast<RealType>(0)), std::domain_error
539 );
540 BOOST_MATH_CHECK_THROW(
541 pdf(
542 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
543 static_cast<RealType>(-1)), std::domain_error
544 );
545 BOOST_MATH_CHECK_THROW(
546 pdf(
547 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
548 static_cast<RealType>(9)), std::domain_error
549 );
550 BOOST_MATH_CHECK_THROW(
551 cdf(
552 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
553 static_cast<RealType>(-1)), std::domain_error
554 );
555 BOOST_MATH_CHECK_THROW(
556 cdf(
557 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
558 static_cast<RealType>(9)), std::domain_error
559 );
560 BOOST_MATH_CHECK_THROW(
561 cdf(
562 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
563 static_cast<RealType>(0)), std::domain_error
564 );
565 BOOST_MATH_CHECK_THROW(
566 cdf(
567 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
568 static_cast<RealType>(0)), std::domain_error
569 );
570 BOOST_MATH_CHECK_THROW(
571 quantile(
572 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
573 static_cast<RealType>(0)), std::domain_error
574 );
575 BOOST_MATH_CHECK_THROW(
576 quantile(
577 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
578 static_cast<RealType>(0)), std::domain_error
579 );
580
581 BOOST_CHECK_EQUAL(
582 quantile(
583 binomial_distribution<RealType>(static_cast<RealType>(16), static_cast<RealType>(0.25)),
584 static_cast<RealType>(0.01)), // Less than cdf == pdf(binomial_distribution<RealType>(16, 0.25), 0)
585 static_cast<RealType>(0) // so expect zero as best approximation.
586 );
587
588 BOOST_CHECK_EQUAL(
589 cdf(
590 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
591 static_cast<RealType>(8)), static_cast<RealType>(1)
592 );
593 BOOST_CHECK_EQUAL(
594 cdf(
595 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
596 static_cast<RealType>(7)), static_cast<RealType>(1)
597 );
598 BOOST_CHECK_EQUAL(
599 cdf(
600 binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
601 static_cast<RealType>(7)), static_cast<RealType>(0)
602 );
603
604 #endif
605
606 {
607 // This is a visual sanity check that everything is OK:
608 binomial_distribution<RealType> my8dist(8., 0.25); // Note: double values (matching the distribution definition) avoid the need for any casting.
609 //cout << "mean(my8dist) = " << boost::math::mean(my8dist) << endl; // mean(my8dist) = 2
610 //cout << "my8dist.trials() = " << my8dist.trials() << endl; // my8dist.trials() = 8
611 //cout << "my8dist.success_fraction() = " << my8dist.success_fraction() << endl; // my8dist.success_fraction() = 0.25
612 BOOST_CHECK_CLOSE(my8dist.trials(), static_cast<RealType>(8), tol2);
613 BOOST_CHECK_CLOSE(my8dist.success_fraction(), static_cast<RealType>(0.25), tol2);
614
615 //{
616 // int n = static_cast<int>(boost::math::tools::real_cast<double>(my8dist.trials()));
617 // RealType sumcdf = 0.;
618 // for (int k = 0; k <= n; k++)
619 // {
620 // cout << k << ' ' << pdf(my8dist, static_cast<RealType>(k));
621 // sumcdf += pdf(my8dist, static_cast<RealType>(k));
622 // cout << ' ' << sumcdf;
623 // cout << ' ' << cdf(my8dist, static_cast<RealType>(k));
624 // cout << ' ' << sumcdf - cdf(my8dist, static_cast<RealType>(k)) << endl;
625 // } // for k
626 // }
627 // n = 8, p =0.25
628 //k pdf cdf
629 //0 0.1001129150390625 0.1001129150390625
630 //1 0.26696777343749994 0.36708068847656244
631 //2 0.31146240234375017 0.67854309082031261
632 //3 0.20764160156249989 0.8861846923828125
633 //4 0.086517333984375 0.9727020263671875
634 //5 0.023071289062499997 0.9957733154296875
635 //6 0.0038452148437500009 0.9996185302734375
636 //7 0.00036621093749999984 0.9999847412109375
637 //8 1.52587890625e-005 1 1 0
638 }
639 #define T RealType
640 #include "binomial_quantile.ipp"
641
642 for(unsigned i = 0; i < binomial_quantile_data.size(); ++i)
643 {
644 using namespace boost::math::policies;
645 RealType tol = boost::math::tools::epsilon<RealType>() * 500;
646 if(!boost::is_floating_point<RealType>::value)
647 tol *= 10; // no lanczos approximation implies less accuracy
648 RealType x;
649 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 1)
650 //
651 // Check full real value first:
652 //
653 typedef policy<discrete_quantile<boost::math::policies::real> > P1;
654 binomial_distribution<RealType, P1> p1(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
655 x = quantile(p1, binomial_quantile_data[i][2]);
656 BOOST_CHECK_CLOSE_FRACTION(x, (RealType)binomial_quantile_data[i][3], tol);
657 x = quantile(complement(p1, (RealType)binomial_quantile_data[i][2]));
658 BOOST_CHECK_CLOSE_FRACTION(x, (RealType)binomial_quantile_data[i][4], tol);
659 #endif
660 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 2)
661 //
662 // Now with round down to integer:
663 //
664 typedef policy<discrete_quantile<integer_round_down> > P2;
665 binomial_distribution<RealType, P2> p2(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
666 x = quantile(p2, binomial_quantile_data[i][2]);
667 BOOST_CHECK_EQUAL(x, (RealType)floor(binomial_quantile_data[i][3]));
668 x = quantile(complement(p2, binomial_quantile_data[i][2]));
669 BOOST_CHECK_EQUAL(x, (RealType)floor(binomial_quantile_data[i][4]));
670 #endif
671 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 3)
672 //
673 // Now with round up to integer:
674 //
675 typedef policy<discrete_quantile<integer_round_up> > P3;
676 binomial_distribution<RealType, P3> p3(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
677 x = quantile(p3, binomial_quantile_data[i][2]);
678 BOOST_CHECK_EQUAL(x, (RealType)ceil(binomial_quantile_data[i][3]));
679 x = quantile(complement(p3, binomial_quantile_data[i][2]));
680 BOOST_CHECK_EQUAL(x, (RealType)ceil(binomial_quantile_data[i][4]));
681 #endif
682 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 4)
683 //
684 // Now with round to integer "outside":
685 //
686 typedef policy<discrete_quantile<integer_round_outwards> > P4;
687 binomial_distribution<RealType, P4> p4(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
688 x = quantile(p4, binomial_quantile_data[i][2]);
689 BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? floor(binomial_quantile_data[i][3]) : ceil(binomial_quantile_data[i][3])));
690 x = quantile(complement(p4, binomial_quantile_data[i][2]));
691 BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? ceil(binomial_quantile_data[i][4]) : floor(binomial_quantile_data[i][4])));
692 #endif
693 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 5)
694 //
695 // Now with round to integer "inside":
696 //
697 typedef policy<discrete_quantile<integer_round_inwards> > P5;
698 binomial_distribution<RealType, P5> p5(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
699 x = quantile(p5, binomial_quantile_data[i][2]);
700 BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? ceil(binomial_quantile_data[i][3]) : floor(binomial_quantile_data[i][3])));
701 x = quantile(complement(p5, binomial_quantile_data[i][2]));
702 BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? floor(binomial_quantile_data[i][4]) : ceil(binomial_quantile_data[i][4])));
703 #endif
704 #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 6)
705 //
706 // Now with round to nearest integer:
707 //
708 typedef policy<discrete_quantile<integer_round_nearest> > P6;
709 binomial_distribution<RealType, P6> p6(binomial_quantile_data[i][0], binomial_quantile_data[i][1]);
710 x = quantile(p6, binomial_quantile_data[i][2]);
711 BOOST_CHECK_EQUAL(x, (RealType)(floor(binomial_quantile_data[i][3] + 0.5f)));
712 x = quantile(complement(p6, binomial_quantile_data[i][2]));
713 BOOST_CHECK_EQUAL(x, (RealType)(floor(binomial_quantile_data[i][4] + 0.5f)));
714 #endif
715 }
716
717 check_out_of_range<boost::math::binomial_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.
718
719
720 } // template <class RealType>void test_spots(RealType)
721
BOOST_AUTO_TEST_CASE(test_main)722 BOOST_AUTO_TEST_CASE( test_main )
723 {
724 BOOST_MATH_CONTROL_FP;
725 // Check that can generate binomial distribution using one convenience methods:
726 binomial_distribution<> mybn2(1., 0.5); // Using default RealType double.
727 // but that
728 // boost::math::binomial mybn1(1., 0.5); // Using typedef fails
729 // error C2039: 'binomial' : is not a member of 'boost::math'
730
731 // Basic sanity-check spot values.
732
733 // (Parameter value, arbitrarily zero, only communicates the floating point type).
734 #ifdef TEST_FLOAT
735 test_spots(0.0F); // Test float.
736 #endif
737 #ifdef TEST_DOUBLE
738 test_spots(0.0); // Test double.
739 #endif
740 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
741 #ifdef TEST_LDOUBLE
742 test_spots(0.0L); // Test long double.
743 #endif
744 #if !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
745 #ifdef TEST_REAL_CONCEPT
746 test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
747 #endif
748 #endif
749 #else
750 std::cout << "<note>The long double tests have been disabled on this platform "
751 "either because the long double overloads of the usual math functions are "
752 "not available at all, or because they are too inaccurate for these tests "
753 "to pass.</note>" << std::endl;
754 #endif
755
756 } // BOOST_AUTO_TEST_CASE( test_main )
757
758 /*
759
760 Output is:
761
762 Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_binomial.exe"
763 Running 1 test case...
764 Tolerance for type float is 0.0119209 %
765 Tolerance for type double is 2.22045e-011 %
766 Tolerance for type long double is 2.22045e-011 %
767 Tolerance for type class boost::math::concepts::real_concept is 2.22045e-011 %
768
769 *** No errors detected
770
771 ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========
772
773
774 */
775