• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com).
2 //
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0.
5 // (See accompanying file LICENSE_1_0.txt
6 // or copy at http://www.boost.org/LICENSE_1_0.txt)
7 //
8 
9 #include <algorithm>
10 #include <boost/math/tools/test.hpp>
11 #include <boost/math/concepts/real_concept.hpp>
12 #include <boost/math/distributions/complement.hpp>
13 #include <boost/math/distributions/hyperexponential.hpp>
14 #include <boost/math/tools/precision.hpp>
15 
16 #define BOOST_TEST_MAIN
17 #include <boost/test/unit_test.hpp>
18 #include <boost/test/tools/floating_point_comparison.hpp>
19 
20 #include <cstddef>
21 #include <iostream>
22 #include <vector>
23 
24 #define BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(T, actual, expected, tol) \
25     do {                                                                      \
26         std::vector<T> x = (actual);                                          \
27         std::vector<T> y = (expected);                                        \
28         BOOST_CHECK_EQUAL( x.size(), y.size() );                              \
29         const std::size_t n = x.size();                                       \
30         for (std::size_t i = 0; i < n; ++i)                                   \
31         {                                                                     \
32             BOOST_CHECK_CLOSE( x[i], y[i], tol );                             \
33         }                                                                     \
34     } while(false)
35 
36 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
37 typedef boost::mpl::list<float, double, long double, boost::math::concepts::real_concept> test_types;
38 #else
39 typedef boost::mpl::list<float, double> test_types;
40 #endif
41 
42 template <typename RealT>
make_tolerance()43 RealT make_tolerance()
44 {
45     // Tolerance is 100eps expressed as a percentage (as required by Boost.Build):
46     return boost::math::tools::epsilon<RealT>() * 100 * 100;
47 }
48 
BOOST_AUTO_TEST_CASE_TEMPLATE(klass,RealT,test_types)49 BOOST_AUTO_TEST_CASE_TEMPLATE(klass, RealT, test_types)
50 {
51     const RealT tol = make_tolerance<RealT>();
52 
53     boost::math::hyperexponential_distribution<RealT> dist;
54     BOOST_CHECK_EQUAL(dist.num_phases(), 1);
55     BOOST_CHECK_CLOSE(dist.probabilities()[0], static_cast<RealT>(1L), tol);
56     BOOST_CHECK_CLOSE(dist.rates()[0], static_cast<RealT>(1L), tol);
57 
58     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
59     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
60     const std::size_t n = sizeof(probs) / sizeof(RealT);
61 
62     boost::math::hyperexponential_distribution<RealT> dist_it(probs, probs+n, rates, rates+n);
63     BOOST_CHECK_EQUAL(dist_it.num_phases(), n);
64     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_it.probabilities(), std::vector<RealT>(probs, probs+n), tol);
65     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_it.rates(), std::vector<RealT>(rates, rates+n), tol);
66 
67     boost::math::hyperexponential_distribution<RealT> dist_r(probs, rates);
68     BOOST_CHECK_EQUAL(dist_r.num_phases(), n);
69     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_r.probabilities(), std::vector<RealT>(probs, probs+n), tol);
70     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_r.rates(), std::vector<RealT>(rates, rates+n), tol);
71 
72 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !(defined(BOOST_GCC_VERSION) && (BOOST_GCC_VERSION < 40500))
73     boost::math::hyperexponential_distribution<RealT> dist_il = {{static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L)}, {static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L)}};
74     BOOST_CHECK_EQUAL(dist_il.num_phases(), n);
75     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_il.probabilities(), std::vector<RealT>(probs, probs+n), tol);
76     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_il.rates(), std::vector<RealT>(rates, rates+n), tol);
77 
78     boost::math::hyperexponential_distribution<RealT> dist_n_r = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
79     BOOST_CHECK_EQUAL(dist_n_r.num_phases(), n);
80     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r.probabilities(), std::vector<RealT>(n, static_cast<RealT>(1.0L / 3.0L)), tol);
81     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r.rates(), std::vector<RealT>(rates, rates + n), tol);
82 #endif // BOOST_NO_CXX11_HDR_INITIALIZER_LIST
83 
84     boost::math::hyperexponential_distribution<RealT> dist_n_it(rates, rates+n);
85     BOOST_CHECK_EQUAL(dist_n_it.num_phases(), n);
86     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_it.probabilities(), std::vector<RealT>(n, static_cast<RealT>(1.0L/3.0L)), tol);
87     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_it.rates(), std::vector<RealT>(rates, rates+n), tol);
88 
89     boost::math::hyperexponential_distribution<RealT> dist_n_r2(rates);
90     BOOST_CHECK_EQUAL(dist_n_r2.num_phases(), n);
91     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r2.probabilities(), std::vector<RealT>(n, static_cast<RealT>(1.0L/3.0L)), tol);
92     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r2.rates(), std::vector<RealT>(rates, rates+n), tol);
93 }
94 
BOOST_AUTO_TEST_CASE_TEMPLATE(range,RealT,test_types)95 BOOST_AUTO_TEST_CASE_TEMPLATE(range, RealT, test_types)
96 {
97     const RealT tol = make_tolerance<RealT>();
98 
99     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
100     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
101     const std::size_t n = sizeof(probs) / sizeof(RealT);
102 
103     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
104 
105     std::pair<RealT,RealT> res;
106     res = boost::math::range(dist);
107 
108     BOOST_CHECK_CLOSE( res.first, static_cast<RealT>(0), tol );
109     if(std::numeric_limits<RealT>::has_infinity)
110     {
111        BOOST_CHECK_EQUAL(res.second, std::numeric_limits<RealT>::infinity());
112     }
113     else
114     {
115        BOOST_CHECK_EQUAL(res.second, boost::math::tools::max_value<RealT>());
116     }
117 }
118 
BOOST_AUTO_TEST_CASE_TEMPLATE(support,RealT,test_types)119 BOOST_AUTO_TEST_CASE_TEMPLATE(support, RealT, test_types)
120 {
121     const RealT tol = make_tolerance<RealT>();
122 
123     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
124     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1), static_cast<RealT>(1.5L) };
125     const std::size_t n = sizeof(probs)/sizeof(RealT);
126 
127     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
128 
129     std::pair<RealT,RealT> res;
130     res = boost::math::support(dist);
131 
132     BOOST_CHECK_CLOSE( res.first, boost::math::tools::min_value<RealT>(), tol );
133     BOOST_CHECK_CLOSE( res.second, boost::math::tools::max_value<RealT>(), tol );
134 }
135 
BOOST_AUTO_TEST_CASE_TEMPLATE(pdf,RealT,test_types)136 BOOST_AUTO_TEST_CASE_TEMPLATE(pdf, RealT, test_types)
137 {
138     const RealT tol = make_tolerance<RealT>();
139 
140     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
141     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1), static_cast<RealT>(1.5) };
142     const std::size_t n = sizeof(probs)/sizeof(RealT);
143 
144     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
145 
146     // Mathematica: Table[N[PDF[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], x], 35], {x, 0, 4}]
147     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(0)), static_cast<RealT>(1.15L), tol );
148     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(1)), static_cast<RealT>(0.33836451843401841053899743762056570L), tol );
149     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(2)), static_cast<RealT>(0.11472883036402599696225903724543774L), tol );
150     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(3)), static_cast<RealT>(0.045580883928883895659238122486617681L), tol );
151     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(4)), static_cast<RealT>(0.020887284122781292094799231452333314L), tol );
152 }
153 
BOOST_AUTO_TEST_CASE_TEMPLATE(cdf,RealT,test_types)154 BOOST_AUTO_TEST_CASE_TEMPLATE(cdf, RealT, test_types)
155 {
156     const RealT tol = make_tolerance<RealT>();
157 
158     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
159     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
160     const std::size_t n = sizeof(probs)/sizeof(RealT);
161 
162     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
163 
164     // Mathematica: Table[N[CDF[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], x], 35], {x, 0, 4}]
165     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(0)), static_cast<RealT>(0), tol );
166     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(1)), static_cast<RealT>(0.65676495563182570433394272657131939L), tol );
167     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(2)), static_cast<RealT>(0.86092999261079575662302418965093162L), tol );
168     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(3)), static_cast<RealT>(0.93488334919083369807146961400871370L), tol );
169     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(4)), static_cast<RealT>(0.96619887559772402832156211090812241L), tol );
170 }
171 
172 
BOOST_AUTO_TEST_CASE_TEMPLATE(quantile,RealT,test_types)173 BOOST_AUTO_TEST_CASE_TEMPLATE(quantile, RealT, test_types)
174 {
175     const RealT tol = make_tolerance<RealT>();
176 
177     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
178     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
179     const std::size_t n = sizeof(probs)/sizeof(RealT);
180 
181     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
182 
183     // Mathematica: Table[N[Quantile[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], p], 35], {p, {0.`35, 0.6567649556318257043339427265713193884067872189124925936717`35, 0.8609299926107957566230241896509316171726985139265620607067`35, 0.9348833491908336980714696140087136988562861627183715044229`35, 0.9661988755977240283215621109081224127091468307592751727719`35}}]
184     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0)), static_cast<RealT>(0), tol );
185     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.65676495563182570433394272657131939L)), static_cast<RealT>(1), tol );
186     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.86092999261079575662302418965093162L)), static_cast<RealT>(2), tol );
187     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.93488334919083369807146961400871370L)), static_cast<RealT>(3), tol );
188     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.96619887559772402832156211090812241L)), static_cast<RealT>(4), tol );
189 }
190 
BOOST_AUTO_TEST_CASE_TEMPLATE(ccdf,RealT,test_types)191 BOOST_AUTO_TEST_CASE_TEMPLATE(ccdf, RealT, test_types)
192 {
193     const RealT tol = make_tolerance<RealT>();
194 
195     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
196     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
197     const std::size_t n = sizeof(probs)/sizeof(RealT);
198 
199     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
200 
201     // Mathematica: Table[N[SurvivalFunction[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], x], 35], {x, 0, 4}]
202     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(0))), static_cast<RealT>(1), tol );
203     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(1))), static_cast<RealT>(0.34323504436817429566605727342868061L), tol );
204     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(2))), static_cast<RealT>(0.13907000738920424337697581034906838L), tol );
205     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(3))), static_cast<RealT>(0.065116650809166301928530385991286301L), tol );
206     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(4))), static_cast<RealT>(0.033801124402275971678437889091877587L), tol );
207 }
208 
209 
BOOST_AUTO_TEST_CASE_TEMPLATE(cquantile,RealT,test_types)210 BOOST_AUTO_TEST_CASE_TEMPLATE(cquantile, RealT, test_types)
211 {
212     const RealT tol = make_tolerance<RealT>();
213 
214     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
215     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
216     const std::size_t n = sizeof(probs) / sizeof(RealT);
217 
218     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
219 
220     // Mathematica: Table[N[InverseSurvivalFunction[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], p], 35], {p, {1.`35, 0.3432350443681742956660572734286806115932127810875074063283`35, 0.1390700073892042433769758103490683828273014860734379392933`35, 0.0651166508091663019285303859912863011437138372816284955771`35, 0.0338011244022759716784378890918775872908531692407248272281`35}}]
221     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(1))), static_cast<RealT>(0), tol );
222     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.34323504436817429566605727342868061L))), static_cast<RealT>(1), tol );
223     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.13907000738920424337697581034906838L))), static_cast<RealT>(2), tol );
224     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.065116650809166301928530385991286301L))), static_cast<RealT>(3), tol );
225     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.033801124402275971678437889091877587L))), static_cast<RealT>(4), tol );
226 }
227 
BOOST_AUTO_TEST_CASE_TEMPLATE(mean,RealT,test_types)228 BOOST_AUTO_TEST_CASE_TEMPLATE(mean, RealT, test_types)
229 {
230     const RealT tol = make_tolerance<RealT>();
231 
232     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
233     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
234     const std::size_t n = sizeof(probs) / sizeof(RealT);
235 
236     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
237 
238     // Mathematica: N[Mean[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
239     BOOST_CHECK_CLOSE( boost::math::mean(dist), static_cast<RealT>(1.0333333333333333333333333333333333L), tol );
240 }
241 
BOOST_AUTO_TEST_CASE_TEMPLATE(variance,RealT,test_types)242 BOOST_AUTO_TEST_CASE_TEMPLATE(variance, RealT, test_types)
243 {
244     const RealT tol = make_tolerance<RealT>();
245 
246     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
247     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
248     const std::size_t n = sizeof(probs) / sizeof(RealT);
249 
250     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
251 
252     // Mathematica: N[Variance[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
253     BOOST_CHECK_CLOSE( boost::math::variance(dist), static_cast<RealT>(1.5766666666666666666666666666666667L), tol );
254 }
255 
BOOST_AUTO_TEST_CASE_TEMPLATE(kurtosis,RealT,test_types)256 BOOST_AUTO_TEST_CASE_TEMPLATE(kurtosis, RealT, test_types)
257 {
258     const RealT tol = make_tolerance<RealT>();
259 
260     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
261     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
262     const std::size_t n = sizeof(probs) / sizeof(RealT);
263 
264     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
265 
266     // Mathematica: N[Kurtosis[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
267     BOOST_CHECK_CLOSE( boost::math::kurtosis(dist), static_cast<RealT>(19.750738616808728416968743435138046L), tol );
268     // Mathematica: N[Kurtosis[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}] - 3.`35], 35]
269     BOOST_CHECK_CLOSE( boost::math::kurtosis_excess(dist), static_cast<RealT>(16.750738616808728416968743435138046L), tol );
270 }
271 
BOOST_AUTO_TEST_CASE_TEMPLATE(skewness,RealT,test_types)272 BOOST_AUTO_TEST_CASE_TEMPLATE(skewness, RealT, test_types)
273 {
274     const RealT tol = make_tolerance<RealT>();
275 
276     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
277     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
278     const std::size_t n = sizeof(probs) / sizeof(RealT);
279 
280     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
281 
282     // Mathematica: N[Skewness[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
283     BOOST_CHECK_CLOSE( boost::math::skewness(dist), static_cast<RealT>(3.1811387449963809211146099116375685L), tol );
284 }
285 
BOOST_AUTO_TEST_CASE_TEMPLATE(mode,RealT,test_types)286 BOOST_AUTO_TEST_CASE_TEMPLATE(mode, RealT, test_types)
287 {
288     const RealT tol = make_tolerance<RealT>();
289 
290     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) };
291     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) };
292     const std::size_t n = sizeof(probs) / sizeof(RealT);
293 
294     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n);
295 
296     BOOST_CHECK_CLOSE( boost::math::mode(dist), static_cast<RealT>(0), tol );
297 }
298 
299 template <class T>
f(T t)300 void f(T t)
301 {
302    std::cout << typeid(t).name() << std::endl;
303 }
304 
BOOST_AUTO_TEST_CASE(construct)305 BOOST_AUTO_TEST_CASE(construct)
306 {
307    boost::array<double, 3> da1 = { { 0.5, 1, 1.5 } };
308    boost::array<double, 3> da2 = { { 0.25, 0.5, 0.25 } };
309    std::vector<double> v1(da1.begin(), da1.end());
310    std::vector<double> v2(da2.begin(), da2.end());
311 
312    std::vector<double> result_v;
313    boost::math::hyperexponential he1(v2, v1);
314    result_v = he1.rates();
315    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end());
316    result_v = he1.probabilities();
317    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end());
318 
319    boost::math::hyperexponential he2(da2, da1);
320    result_v = he2.rates();
321    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end());
322    result_v = he2.probabilities();
323    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end());
324 
325 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !(defined(BOOST_GCC_VERSION) && (BOOST_GCC_VERSION < 40500))
326    std::initializer_list<double> il = { 0.25, 0.5, 0.25 };
327    std::initializer_list<double> il2 = { 0.5, 1, 1.5 };
328    boost::math::hyperexponential he3(il, il2);
329    result_v = he3.rates();
330    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end());
331    result_v = he3.probabilities();
332    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end());
333 
334    boost::math::hyperexponential he4({ 0.25, 0.5, 0.25 }, { 0.5, 1.0, 1.5 });
335    result_v = he4.rates();
336    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end());
337    result_v = he4.probabilities();
338    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end());
339 #endif
340 }
341 
BOOST_AUTO_TEST_CASE_TEMPLATE(special_cases,RealT,test_types)342 BOOST_AUTO_TEST_CASE_TEMPLATE(special_cases, RealT, test_types)
343 {
344     const RealT tol = make_tolerance<RealT>();
345 
346     // When the number of phases is 1, the hyperexponential distribution is an exponential distribution
347     const RealT rates1[] = { static_cast<RealT>(0.5L) };
348     boost::math::hyperexponential_distribution<RealT> hexp1(rates1);
349     boost::math::exponential_distribution<RealT> exp1(rates1[0]);
350     BOOST_CHECK_CLOSE(boost::math::pdf(hexp1, static_cast<RealT>(1L)), boost::math::pdf(exp1, static_cast<RealT>(1L)), tol);
351     BOOST_CHECK_CLOSE(boost::math::cdf(hexp1, static_cast<RealT>(1L)), boost::math::cdf(exp1, static_cast<RealT>(1L)), tol);
352     BOOST_CHECK_CLOSE(boost::math::mean(hexp1), boost::math::mean(exp1), tol);
353     BOOST_CHECK_CLOSE(boost::math::variance(hexp1), boost::math::variance(exp1), tol);
354     BOOST_CHECK_CLOSE(boost::math::quantile(hexp1, static_cast<RealT>(0.25L)), boost::math::quantile(exp1, static_cast<RealT>(0.25L)), tol);
355     BOOST_CHECK_CLOSE(boost::math::median(hexp1), boost::math::median(exp1), tol);
356     BOOST_CHECK_CLOSE(boost::math::quantile(hexp1, static_cast<RealT>(0.75L)), boost::math::quantile(exp1, static_cast<RealT>(0.75L)), tol);
357     BOOST_CHECK_CLOSE(boost::math::mode(hexp1), boost::math::mode(exp1), tol);
358 
359     // When a k-phase hyperexponential distribution has all rates equal to r, the distribution is an exponential distribution with rate r
360     const RealT rate2 = static_cast<RealT>(0.5L);
361     const RealT rates2[] = { rate2, rate2, rate2 };
362     boost::math::hyperexponential_distribution<RealT> hexp2(rates2);
363     boost::math::exponential_distribution<RealT> exp2(rate2);
364     BOOST_CHECK_CLOSE(boost::math::pdf(hexp2, static_cast<RealT>(1L)), boost::math::pdf(exp2, static_cast<RealT>(1L)), tol);
365     BOOST_CHECK_CLOSE(boost::math::cdf(hexp2, static_cast<RealT>(1L)), boost::math::cdf(exp2, static_cast<RealT>(1L)), tol);
366     BOOST_CHECK_CLOSE(boost::math::mean(hexp2), boost::math::mean(exp2), tol);
367     BOOST_CHECK_CLOSE(boost::math::variance(hexp2), boost::math::variance(exp2), tol);
368     BOOST_CHECK_CLOSE(boost::math::quantile(hexp2, static_cast<RealT>(0.25L)), boost::math::quantile(exp2, static_cast<RealT>(0.25L)), tol);
369     BOOST_CHECK_CLOSE(boost::math::median(hexp2), boost::math::median(exp2), tol);
370     BOOST_CHECK_CLOSE(boost::math::quantile(hexp2, static_cast<RealT>(0.75L)), boost::math::quantile(exp2, static_cast<RealT>(0.75L)), tol);
371     BOOST_CHECK_CLOSE(boost::math::mode(hexp2), boost::math::mode(exp2), tol);
372 }
373 
BOOST_AUTO_TEST_CASE_TEMPLATE(error_cases,RealT,test_types)374 BOOST_AUTO_TEST_CASE_TEMPLATE(error_cases, RealT, test_types)
375 {
376    typedef boost::math::hyperexponential_distribution<RealT> dist_t;
377    boost::array<RealT, 2> probs = { { 1, 2 } };
378    boost::array<RealT, 3> probs2 = { { 1, 2, 3 } };
379    boost::array<RealT, 3> rates = { { 1, 2, 3 } };
380    BOOST_MATH_CHECK_THROW(dist_t(probs.begin(), probs.end(), rates.begin(), rates.end()), std::domain_error);
381    BOOST_MATH_CHECK_THROW(dist_t(probs, rates), std::domain_error);
382    rates[1] = 0;
383    BOOST_MATH_CHECK_THROW(dist_t(probs2, rates), std::domain_error);
384    rates[1] = -1;
385    BOOST_MATH_CHECK_THROW(dist_t(probs2, rates), std::domain_error);
386    BOOST_MATH_CHECK_THROW(dist_t(probs.begin(), probs.begin(), rates.begin(), rates.begin()), std::domain_error);
387    BOOST_MATH_CHECK_THROW(dist_t(rates.begin(), rates.begin()), std::domain_error);
388 }
389