1 // Copyright Paul A. Bristow 2016, 2017, 2018.
2 // Copyright John Maddock 2016.
3
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8
9 // test_lambert_w_integrals.cpp
10 //! \brief quadrature tests that cover the whole range of the Lambert W0 function.
11
12 #include <boost/config.hpp> // for BOOST_MSVC definition etc.
13 #include <boost/version.hpp> // for BOOST_MSVC versions.
14
15 // Boost macros
16 #define BOOST_TEST_MAIN
17 #define BOOST_LIB_DIAGNOSTIC "on" // Report library file details.
18 #include <boost/test/included/unit_test.hpp> // Boost.Test
19 // #include <boost/test/unit_test.hpp> // Boost.Test
20 #include <boost/test/tools/floating_point_comparison.hpp>
21
22 #include <boost/array.hpp>
23 #include <boost/lexical_cast.hpp>
24 #include <boost/type_traits/is_constructible.hpp>
25 #include <boost/math/special_functions/fpclassify.hpp> // isnan, isfinite.
26 #include <boost/math/special_functions/next.hpp> // float_next, float_prior
27 using boost::math::float_next;
28 using boost::math::float_prior;
29 #include <boost/math/special_functions/ulp.hpp> // ulp
30
31 #include <boost/math/tools/test_value.hpp> // for create_test_value and macro BOOST_MATH_TEST_VALUE.
32 #include <boost/math/policies/policy.hpp>
33 using boost::math::policies::digits2;
34 using boost::math::policies::digits10;
35 #include <boost/math/special_functions/lambert_w.hpp> // For Lambert W lambert_w function.
36 using boost::math::lambert_wm1;
37 using boost::math::lambert_w0;
38
39 #include <limits>
40 #include <cmath>
41 #include <typeinfo>
42 #include <iostream>
43 #include <type_traits>
44 #include <exception>
45
46 std::string show_versions(void);
47
48 // Added code and test for Integral of the Lambert W function: by Nick Thompson.
49 // https://en.wikipedia.org/wiki/Lambert_W_function#Definite_integrals
50
51 #include <boost/math/constants/constants.hpp> // for integral tests.
52 #include <boost/math/quadrature/tanh_sinh.hpp> // for integral tests.
53 #include <boost/math/quadrature/exp_sinh.hpp> // for integral tests.
54
55 using boost::math::policies::policy;
56 using boost::math::policies::make_policy;
57
58 // using statements needed for changing error handling policy.
59 using boost::math::policies::evaluation_error;
60 using boost::math::policies::domain_error;
61 using boost::math::policies::overflow_error;
62 using boost::math::policies::ignore_error;
63 using boost::math::policies::throw_on_error;
64
65 typedef policy<
66 domain_error<throw_on_error>,
67 overflow_error<ignore_error>
68 > no_throw_policy;
69
70 // Assumes that function has a throw policy, for example:
71 // NOT lambert_w0<T>(1 / (x * x), no_throw_policy());
72 // Error in function boost::math::quadrature::exp_sinh<double>::integrate:
73 // The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
74 // Please ensure your function evaluates to a finite number of its entire domain.
75 template <typename T>
debug_integration_proc(T x)76 T debug_integration_proc(T x)
77 {
78 T result; // warning C4701: potentially uninitialized local variable 'result' used
79 // T result = 0 ; // But result may not be assigned below?
80 try
81 {
82 // Assign function call to result in here...
83 if (x <= sqrt(boost::math::tools::min_value<T>()) )
84 {
85 result = 0;
86 }
87 else
88 {
89 result = lambert_w0<T>(1 / (x * x));
90 }
91 // result = lambert_w0<T>(1 / (x * x), no_throw_policy()); // Bad idea, less helpful diagnostic message is:
92 // Error in function boost::math::quadrature::exp_sinh<double>::integrate:
93 // The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
94 // Please ensure your function evaluates to a finite number of its entire domain.
95
96 } // try
97 catch (const std::exception& e)
98 {
99 std::cout << "Exception " << e.what() << std::endl;
100 // set breakpoint here:
101 std::cout << "Unexpected exception thrown in integration code at abscissa (x): " << x << "." << std::endl;
102 if (!std::isfinite(result))
103 {
104 // set breakpoint here:
105 std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
106 }
107 if (std::isnan(result))
108 {
109 // set breakpoint here:
110 std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
111 }
112 } // catch
113 return result;
114 } // T debug_integration_proc(T x)
115
116 template<class Real>
test_integrals()117 void test_integrals()
118 {
119 // Integral of the Lambert W function:
120 // https://en.wikipedia.org/wiki/Lambert_W_function
121 using boost::math::quadrature::tanh_sinh;
122 using boost::math::quadrature::exp_sinh;
123 // file:///I:/modular-boost/libs/math/doc/html/math_toolkit/quadrature/double_exponential/de_tanh_sinh.html
124 using std::sqrt;
125
126 std::cout << "Integration of type " << typeid(Real).name() << std::endl;
127
128 Real tol = std::numeric_limits<Real>::epsilon();
129 { // // Integrate for function lambert_W0(z);
130 tanh_sinh<Real> ts;
131 Real a = 0;
132 Real b = boost::math::constants::e<Real>();
133 auto f = [](Real z)->Real
134 {
135 return lambert_w0<Real>(z);
136 };
137 Real z = ts.integrate(f, a, b); // OK without any decltype(f)
138 BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::e<Real>() - 1, tol);
139 }
140 {
141 // Integrate for function lambert_W0(z/(z sqrt(z)).
142 exp_sinh<Real> es;
143 auto f = [](Real z)->Real
144 {
145 return lambert_w0<Real>(z)/(z * sqrt(z));
146 };
147 Real z = es.integrate(f); // OK
148 BOOST_CHECK_CLOSE_FRACTION(z, 2 * boost::math::constants::root_two_pi<Real>(), tol);
149 }
150 {
151 // Integrate for function lambert_W0(1/z^2).
152 exp_sinh<Real> es;
153 //const Real sqrt_min = sqrt(boost::math::tools::min_value<Real>()); // 1.08420217e-19 fo 32-bit float.
154 // error C3493: 'sqrt_min' cannot be implicitly captured because no default capture mode has been specified
155 auto f = [](Real z)->Real
156 {
157 if (z <= sqrt(boost::math::tools::min_value<Real>()) )
158 { // Too small would underflow z * z and divide by zero to overflow 1/z^2 for lambert_w0 z parameter.
159 return static_cast<Real>(0);
160 }
161 else
162 {
163 return lambert_w0<Real>(1 / (z * z)); // warning C4756: overflow in constant arithmetic, even though cannot happen.
164 }
165 };
166 Real z = es.integrate(f);
167 BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::root_two_pi<Real>(), tol);
168 }
169 } // template<class Real> void test_integrals()
170
171
BOOST_AUTO_TEST_CASE(integrals)172 BOOST_AUTO_TEST_CASE( integrals )
173 {
174 std::cout << "Macro BOOST_MATH_LAMBERT_W0_INTEGRALS is defined." << std::endl;
175 BOOST_TEST_MESSAGE("\nTest Lambert W0 integrals.");
176 try
177 {
178 // using statements needed to change precision policy.
179 using boost::math::policies::policy;
180 using boost::math::policies::make_policy;
181 using boost::math::policies::precision;
182 using boost::math::policies::digits2;
183 using boost::math::policies::digits10;
184
185 // using statements needed for changing error handling policy.
186 using boost::math::policies::evaluation_error;
187 using boost::math::policies::domain_error;
188 using boost::math::policies::overflow_error;
189 using boost::math::policies::ignore_error;
190 using boost::math::policies::throw_on_error;
191
192
193 /*
194 typedef policy<
195 domain_error<throw_on_error>,
196 overflow_error<ignore_error>
197 > no_throw_policy;
198
199 // Experiment with better diagnostics.
200 typedef float Real;
201
202 Real inf = std::numeric_limits<Real>::infinity();
203 Real max = (std::numeric_limits<Real>::max)();
204 std::cout.precision(std::numeric_limits<Real>::max_digits10);
205 //std::cout << "lambert_w0(inf) = " << lambert_w0(inf) << std::endl; // lambert_w0(inf) = 1.79769e+308
206 std::cout << "lambert_w0(inf, throw_policy()) = " << lambert_w0(inf, no_throw_policy()) << std::endl; // inf
207 std::cout << "lambert_w0(max) = " << lambert_w0(max) << std::endl; // lambert_w0(max) = 703.227
208 //std::cout << lambert_w0(inf) << std::endl; // inf - will throw.
209 std::cout << "lambert_w0(0) = " << lambert_w0(0.) << std::endl; // 0
210 std::cout << "lambert_w0(std::numeric_limits<Real>::denorm_min()) = " << lambert_w0(std::numeric_limits<Real>::denorm_min()) << std::endl; // 4.94066e-324
211 std::cout << "lambert_w0(std::numeric_limits<Real>::min()) = " << lambert_w0((std::numeric_limits<Real>::min)()) << std::endl; // 2.22507e-308
212
213 // Approximate the largest lambert_w you can get for type T?
214 float max_w_f = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<float>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
215 std::cout << "w max_f " << max_w_f << std::endl; // 84.2879
216 Real max_w = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<Real>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
217 std::cout << "w max " << max_w << std::endl; // 703.227
218
219 std::cout << "lambert_w0(7.2416706213544837e-163) = " << lambert_w0(7.2416706213544837e-163) << std::endl; //
220 std::cout << "test integral 1/z^2" << std::endl;
221 std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
222 std::cout << "ULP = " << boost::math::ulp(1e-10, policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
223 std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<11> >()) << std::endl; // ULP = 2.2204460492503131e-16
224 std::cout << "epsilon = " << std::numeric_limits<Real>::epsilon() << std::endl; //
225 std::cout << "sqrt(max) = " << sqrt(boost::math::tools::max_value<float>() ) << std::endl; // sqrt(max) = 1.8446742974197924e+19
226 std::cout << "sqrt(min) = " << sqrt(boost::math::tools::min_value<float>() ) << std::endl; // sqrt(min) = 1.0842021724855044e-19
227
228
229
230 // Demo debug version.
231 Real tol = std::numeric_limits<Real>::epsilon();
232 Real x;
233 {
234 using boost::math::quadrature::exp_sinh;
235 exp_sinh<Real> es;
236 // Function to be integrated, lambert_w0(1/z^2).
237
238 //auto f = [](Real z)->Real
239 //{ // Naive - no protection against underflow and subsequent divide by zero.
240 // return lambert_w0<Real>(1 / (z * z));
241 //};
242 // Diagnostic is:
243 // Error in function boost::math::lambert_w0<Real>: Expected a finite value but got inf
244
245 auto f = [](Real z)->Real
246 { // Debug with diagnostics for underflow and subsequent divide by zero and other bad things.
247 return debug_integration_proc(z);
248 };
249 // Exception Error in function boost::math::lambert_w0<double>: Expected a finite value but got inf.
250
251 // Unexpected exception thrown in integration code at abscissa: 7.2416706213544837e-163.
252 // Unexpected exception thrown in integration code at abscissa (x): 3.478765835953569e-23.
253 x = es.integrate(f);
254 std::cout << "es.integrate(f) = " << x << std::endl;
255 BOOST_CHECK_CLOSE_FRACTION(x, boost::math::constants::root_two_pi<Real>(), tol);
256 // root_two_pi<double = 2.506628274631000502
257 }
258 */
259
260 test_integrals<float>();
261 }
262 catch (std::exception& ex)
263 {
264 std::cout << ex.what() << std::endl;
265 }
266 }
267
268